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Direct spectrum detection based on Bayesian approach 
 
 

Abstract. The paper investigates the Bayesian framework's performance for a direct detection of spectrum parameters from the compressive 
measurements. The reconstruction signal stage is eliminated in by the Bayesian Compressive Sensing algorithm, which causes that the 
computational complexity and processing time are extremely reduced. The computational efficiency of the presented procedure is significantly better 
than a typical compressive sensing approach. The numerical simulations confirm the possibility of using this method to direct harmonics detection. 
 
Streszczenie. W artykule zbadano wydajność podejścia bayesowskiego do bezpośredniej estymacji parametrów widma na podstawie pomiarów 
oszczędnych. W algorytmie bayesowskiego oszczędnego próbkowania etap rekonstrukcji sygnału został wyeliminowany, a tym samym znacznie 
zmniejszyła się złożoność obliczeniowa i czas przetwarzania w stosunku do typowych algorytmów rekonstrukcji. Symulacje numeryczne 
potwierdzają możliwość zastosowanie tej metody do estymacji składowych widma bezpośrednio na podstawie próbek sygnałów. (Pomiar 
harmonicznych widma sygnału oparty na podejściu bayesowskim). 
 
Keywords:  reconstruction-free Compressive Sensing, Bayesian Compressive Sensing, direct spectrum sensing.  
Słowa kluczowe: oszczędne próbkowanie bez rekonstrukcji, bayesowskie oszczędne próbkowanie, bezpośrednie próbkowanie widma. 
 
 

Introduction 
The theory of Compressive Sensing (CS) was first 

introduced by Candes et al. [1] and Donoho [2] as a new 
framework for simultaneous signal sensing and 
compression. The CS-based signal acquisition can be 
performed with a continuous sensing operator that 
randomly sub-samples the input data and provides 
compressed measurements consisting of very few linear 
projections of the original signal. The CS acquisition 
strategy is implemented by so-called Analog-to-Information 
Converter (AIC). It is based on different types of 
configurable architecture (i.e. Random Demodulation (RD), 
Random Modulation Pre-Integrator (RMPI), Compressive 
Multiplexer (CMUX), or Non-Uniform Sampler (NUS)) [3-5]. 
The original signal can be faithfully recovered from the 
fewer random measurements by using CS reconstruction 
algorithms. There is a wealth of literature on all these 
aspects of CS. The reconstruction algorithms are 
computationally complex, consume a lot of energy, and 
their hardware implementation is exceptionally labor-
intensive. So the performance optimization of these 
algorithms is an active field of research in many 
applications [6-12]. 

In numerous cases, reconstruction algorithms perform 
moderately at low measurement rates and are 
computationally expensive. In practice, the purpose of 
measurement is not always to correctly reconstruct the 
input signal, but to estimate some of its parameters. Recent 
advances in CS theory have shown that effective inference 
is possible directly from the compressive measurements, 
without a reconstruction stage [13-20]. Especially in signal 
detection, the Bayesian-based approach was proposed to 
directly process the signals in the compressive domain [21]. 
A promising solution consists in implementation a Bayesian 
Compressing Sensing (BCS) for spectrum sensing in 
Cognitive Radio Networks [10, 22-24]. The reconstruction-
free BCS approach is that by extracting spectrum 
components directly from the compressed measurements. 
The reconstruction stage in the receiving node can be 
completely bypassed, what significantly reduces the 
computational complexity of the system.  

This paper presents an investigation of the Bayesian 
framework's performance for a spectrum determination 
directly from compressive measurements. The paper’s 
organization is as follows: in the next section, it is discussed 
the reconstruction-free CS technique along with the related 
signal model, which exhibits sparsity so that CS can be 
applied. In the subsequent section, the CS inversion 

problem from a Bayesian perspective and associated 
relevance vector machine (RVM) algorithm are detailed. 
Then, the estimation of spectrum parameters is presented. 
Finally, the simulation results for performance comparison 
with an emphasis on computation complexity, and accuracy 
are presented. Conclusions and future scope are discussed 
in the last section.  
 
Reconstruction Free CS concept 

The conventional CS signal processing scheme 
contains both acquisition and reconstruction stages (see 
Fig. 1). Suppose that the signal x of length N samples is 
represented by a linear combination of known basis 

functions i  in sparsity basis   with Na R  transform 

domain coefficients of x. When the number of nonzero 

coefficients in x is K that signal Nx R  can be transformed 
in sparse transform domain to K orthogonal vectors, 
where K N . The compressive measurements 

My R ( M N ) are obtained using: 
 

(1)   y x a a          
 

where: MxNR  - a measurement matrix, MxNR  - a 

reconstruction (sensing) matrix. 
 

Let, the examined signal is a multicomponent waveform that 
consists of K sinusoids, defined as: 
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where: Xk a vector of DFT coefficients wherein K 
coefficients, at most, are nonzero. 
 

Then, the acquisition process is described by: 
 

(3)   Ky X   
 

The relationship between the measurement lengths is K << 
M < N. 
In reconstruction-free CS model, the reconstruction stage is 
omitted (see Fig.1 – the bottom path). Assumed that, 
measurements may be noisily, therefore: 
 

(4)   K Gy X n    
 

where: nG - zero mean uncorrelated Gaussian noise with 
variance  σ2 . 
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Fig. 1. CS scenarios to detect a signal spectrum 
 
The expression (4) shows the relationship between the 
compressed time domain signal y, and the frequency 
domain sampled signal Xk.  
 
BCS Inversion framework 

In Bayesian modelling, all variables are treated as 
stochastic quantities defined by probability distribution 
functions. A vector Xk. is an unknown model parameter with 

a priori assigned probability distribution 2( )Kp X  , where 

2

1


 is the variance of the Gaussian probability density 

function and denotes an M × 1 hyperparameter vector of the 
Bayesian model. The probability of noise terms nG  is given 
as: 
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where: 2
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  and the quantity 1ߚ is a hyperparameter 

scalar of the Bayesian model. 
 

Taking account the equations (4) and (5), the compressive 
measurements y is a random process with conditional 
probability distribution inferred by Gaussian likelihood [22]: 
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where: 
p

 denotes the p – norm and is calculated as 
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Therefore, suppose that a zero-mean Gaussian prior 
distribution is defined on the frequency domain sampled 
signal Xk with a hyperparameter vector	[22] 2ߚ:  
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  s are independent hyperparameters that form’{2iߚ}
the β2=[β21, ..., β2K ]T vector and control the strength of the 
prior over associated Xi coefficients individually. 

The posterior conditional distribution can be expressed via 
Bayes’ rule as [23]: 
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Combining a linear model within a Gaussian likelihood with 
a Gaussian prior, this distribution is also a Gaussian 
distribution N(μ, ) [22]: 
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The posterior mean μ, and covariance Σ of the above 
distribution are expressed respectively by [25]: 

(10)  1
T y      

 

(11)    1

1
T


      

 

where: B is a vector B=diag{2ߚ,…,21ߚ ,21ߚK} 
 

 In (10) and (11), for a chosen CS acquisition strategy, 
the sensing matrix  is given, while the unknown values of 
hyperparameters should be projected. Marginal likelihood 
maximization technique such as RVM can be applied to 
calculate these hyperparameters iteratively from the data 
[26]. Maximization of the marginal likelihood function with 
respect to logarithm of	1ߚ and 2ߚ can be expressed as [26]: 

(12) 1
1 2

1
( , ) log(2 ) log

2
TL M C y C y          

 

where: 2 TC     , and 
MxMR is an identity 

matrix. 
 

Differentiating equation (12) with respect to 1ߚ and 2ߚ, and 
equating it to zero gives the following expressions that can 
be solved iteratively [26]: 

(13) 
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where: μi denotes the ith posterior mean weight from (10), 

and 21i i ii   , ii  is the ith diagonal element of the 

posterior signal covariance in (11) calculated with the 
updated 1ߚ and 2ߚ values. 
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Thus, μ and Σ can be obtained through an iterative 
algorithm, which iterates between equations (10) and (11), 
and (13) until a certain convergence criterion has been 
satisfied.  
 
The spectrum parameters estimation 

The goal of BCS is to estimate the sparse parameter 
vector ܺܭ by using a sparsity endorsing prior through the 
estimation of 1ߚ and 2ߚ. The hyperparameters are 
calculated iteratively. Suppose there is a specific threshold 
T for which the spectral coefficient is close to zero. The 
base vector, which is the corresponding column in the 
random measurement matrix, belonging to the relating 
spectral coefficient, can be removed in the estimation 
process. At each iteration, if μi>T the related coefficient Xi 
will be included in the iteration process. To complete the 
estimate, another stopping criterion must be defined as the 
convergence criterion that measures the changes between 
the updated values of the hyperparameter vector. The 
difference value  is described by [23]: 
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where: 1
2
n
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 and 2
n
i are inverse variance estimation of the 

ith prior at the (n+1)th and nth  iterations, respectively. 
 

The ith point sparse vector ܺܭ can be described by three 
parameters [22]: 
 

(15)     , ,i i iif    
 

where: fi is the spectral location, μi  denotes the magnitude, 
and ii  represents the estimation error. 
 

Taking into account that for a kth component of spectrum:  
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where: kc is the index for point estimates contiguous in the 
frequency domain. 
 

The sparse vector ܺܭ can be described by an estimator of a 
central frequency, an average magnitude, and an accuracy 
[22]: 
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   denotes the accuracy of the point 

estimate μk. 
 

If the composite feature point kth described by the pair of 
parameters will be multiplied by the inverse of the accuracy, 
we get [22]: 
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Thus, the average magnitude and central frequency of the 
kth spectral component is expressed by [22]:
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Performance analysis 
The numerical simulations were carried out in the 

LabVIEW programming environment to verify the 
performance of directly estimating spectrum parameters. 
The input signal is a 512-length multi-tone waveform with 
fundamental harmonic 50 Hz and sparsity level K set to 7. 
The resolution of DFT Δf is equal to 10 Hz. In CS 
acquisition stage, the random Bernoulli matrix is used as 
the measurement matrix. The sensing matrix  represents 
a partial random inverse Fourier transform matrix obtained 
by omitting rows from the transformation basis  . The 

measurement value y is generated by Equation (4) with a 
zero-mean white Gaussian noise of variance 0.005  .  

The following performance metrics are defined to 
evaluate the accuracy of direct spectrum detection.  
The estimation error (EE) of the average magnitudes is 
defined as: 

(20)  EE
 






  

 

The accuracy of spectral components localization in the 
frequency domain can be assessed by the frequency 
detection error (DEK) calculated for each components Xk: 
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The estimation error value depends on the number of 
iterations (the compressive measurements) (see Fig. 2). 
The minimum number of samples Mmin to satisfy the 
hyperparameter convergence criterion (14) is 160 samples, 
which corresponds to the compression ratio (i.e. M/N) equal 
to 0.31. If the difference value  is set low, the required 
number of iterations will increase. Comparing of the 
magnitude estimation performance of direct spectrum 
detection and conventional reconstruction algorithms, 
based on CS convex optimization algorithms, and greedy 
algorithms [11, 23, 25] is shown in Table 1. Note that the 
direct spectrum detection’s estimation error is less than the 
error sustains by Basis Pursuit (BP), discrete Radon 
transform CS (CS-DRT) algorithms, with similar input 
conditions. The number of the compressive measurements 
also influence the accuracy of localization of spectrum 
components (see Fig. 3). For Mmin, the detection error does 
not exceed 3% for the highest harmonics.  

A computational complexity and a computation time 
mainly depends on the RVM algorithm and precisely the 
number of rest of the basis vectors at the end of the 
iterations in BCS Inversion procedure. This relates to the 
number of nonzero coefficients K, and results as (MK2), 

called square complexity with linear multiplier [23]. The 
algorithm was run on an Intel (R) Core (T) i7-2600 CPU @ 
3.4 GHz processor with 8 GB RAM. The CPU load during 
the executing code was assessed with software Process 
Lasso (https://bitsum.com/). The computer burden did not 
exceed 10%. The run-time of an algorithm was appointed 
based on 100 trials. The obtained results confirm that the 
reconstruction free CS approach reduces the processing 
time compared with conventional CS methods (Tab. 1).  

 
Conclusion and future scope 

The paper highlights the possibility of direct estimation 
and detection of spectrum parameters from the 
compressive measurements using the Bayesian approach.  
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Fig. 2. The estimation error (EE) versus the number of compressive 
measurement. N=512, K=7, 0.005  , =0.075 
 

 
 

Fig. 3. The frequency detection error versus the number of 
compressive measurement. N=512, K=7, 0.005  , =0.075 
 
Table 1. The summary of the performances of the direct spectrum 
detection (DSD), BP, and CS-DRT algorithms (N=512) 

CS 
algorithm  

K  Mmin Estimation error 
Processing 

time [s] 
BP 6 223 0.2381 (MSE*) 1.3482 

CS-DRT 7 60 0.15 (MSE) 0.54 
DSD 7 160 0.075 0.27 

* MSE - mean square error 
 
The reconstruction stage is eliminated in the algorithm, and 
thus the computational complexity and processing time are 
significantly reduced. Furthermore, the computational 
efficiency of the presented procedure has been found to be 
much better than typical reconstruction algorithms, for the 
cases considered. Numerical simulations were performed 
for signal, which can be modelled as a superposition of a 
small number of sinusoids and the DFT basis forms its 
sparse domain. Based on this study's results, the future 
work will be related to the implementation of BCS for direct 
spectrum sensing in a more dynamic spectral environment.  
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