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Abstract

This dissertation is focused on analysis of the symmetric extendibility of quantum states
and its applications in the quantum information theory, with special attention paid to the
area of quantum entanglement distillation, quantum channels theory, quantum security, and
monogamy of quantum entanglement in time.

We analyze geometry of the set of symmetric extendible states, i.e. such states that
possess symmetric extensions and in particular, prove that the set is closed under action of
the 1-LOCC operators which is of a great importance for further applications in one-way
distillability of quantum states and quantum channels theory.

Basing on the Choi-Jamiolkowski isomorphism between quantum states and quantum
channels, we derive a simple test for the quantum channel capacity. We discuss also
monogamy of quantum entanglement and its relations with Bell theorem, and the sym-
metric extendibility.

Further, the subject of our analysis is also the theory of quantum entanglement mea-
sures and their relation to the symmetric extendibility. A new entanglement monotone and
parameter are introduced basing on this concept, which are applied as new upper bounds
on distillable entanglement. We introduce the concept of reduced variants of the quan-
tum communication rates, showing that they can efficiently estimate non-reduced quantum
measures.

Finally, it is derived that in the paradigm of the entangled consistent histories, introducing
the concept of quantum entanglement in time, a particular history is monogamous and we
can derive the Tsirelson bound on the Leggett-Garg temporal inequalities.

The results presented in this PhD thesis show importance of the concept of the symmetric
extendibility for further development of quantum information theory, especially in domain of

one-way communication.


http://mostwiedzy.pl

A\ MOST

Table of contents

List of figures vii
1 Introduction 1
2 Foundations of quantum information theory 4
2.1 Quantum StateS . . . . . . .. e e e e e e e e
2.2 ComposSite SYSteIMS . . . . . . . v e e e e e e e e e 8
2.3 Completely positive maps . . . . . . . . . .ot e e 11
2.4 Quantum measurements and operations . . . . . . ... ... ... 12
2.5 Quantumchannels . . ... .. ... ... ... ... . 16
2.6 Quantum entanglement and separability of quantum states . . . . . . . .. 20
2.7 Quantum entropic quantities . . . . . . . . . . ... ... 23
3 Monogamy of quantum entanglement and Bell theorem 25
3.1 Local realism and Bell inequalities . . . . . . ... ... ... ....... 25
3.2 Quantum entanglement is MONOZAMOUS . . . . . . . . . . . ... .. 30

3.3 Monogamy of Bell inequalities vs. symmetric extendibility of quantum states 31

4 Symmetric extendibility of quantum states 34
4.1 Geometry of the symmetric extendibleset . . . . . ... ... ....... 34
4.2  Set of symmetric extendible states is closed under 1-LOCC . . . . . . . .. 41
4.3 The separability problem vs. symmetric extendibility . . . . ... ... .. 43
4.4 Hierarchy of separability tests . . . . . . ... ... ... .. ....... 45
4.5 Convex optimization for searching symmetric extensions . . . . . . . . . . 45

S Isotropic states and their symmetric extensions 50
5.1 Isotropic states . . . . . . . . . ... 50
5.2 Symmetric extendibility of isotropic states . . . . . ... ... .. ... .. 51
5.3 Relative entropy and distance to the set of symmetric extendible states . . . 53


http://mostwiedzy.pl

A\ MOST

Table of contents vi
5.4 Symmetric extendibility of bipartite qubit states . . . . . . . ... ... .. 56
6 Distillation of entanglement and entanglement measures 59
6.1 Distilling quantum entanglement . . . . . . . ... ... ... 59
6.2 Entanglement measures . . . . . . . . . ... e 68
6.3 New upper bounds on one-way distillable entanglement . . . . . . . . . .. 75
6.4 Reduced one-way distillable entanglement . . . . . .. .. ... ... ... 77
7 Quantum channels 81
7.1 Types of quantum channel capacities . . . . . .. .. ... ... ...... 81
7.2 Simple test for quantum channel capacity . . . . ... ... ... .. ... 87
7.3 New upper bounds on one-way quantum channel capacity . . . . . ... .. 90
7.4  Super-activation of quantum channel capacities . . . . .. .. ... .. .. 93
8 Quantum privacy 96
8.1 Quantum private states and secretkey . . . . .. ... ..., 96
8.2 Shareability of quantum correlations vs. quantum privacy . . . . . . . . . . 102
8.3 Reducedsecretkey . . ... ... ... ... ... 105
9 Quantum entanglement in time 111
9.1 Entangled consistent histories theory . . . . . . .. .. ... ... 112
9.2 Towards monogamy of quantum entanglementintime . . . . . . . .. . .. 117
9.3 Tsirelson bound on Leggett-Garg Inequalities from entangled histories . . . 124
10 Conclusions 127
References 130


http://mostwiedzy.pl

A\ MOST

List of figures

2.1

3.1

4.1
4.2

5.1
5.2

6.1
6.2

7.1
7.2

8.1

9.1
9.2

Choi-Jamiolkowski Isomorphism . . . . . . . ... ... ... ....... 17
Hahn-Banach Theorem . . . . . .. ... ... ... .. ... ....... 29
K-extendible States . . . . . . . . ... Lo 35
Hierarchy of separability tests. . . . . . . . .. ... ... ... ...... 46
Bell Diagonal Two-Qubit States . . . . . . . . ... ... ... ...... 57
Symmetric Extendible Bell Diagonal States . . . . . . ... ... ... .. 58
Entanglement Distiallation . . . . . . .. ... ... ... ... 60
Best Symmetric Approximation . . . . . ... ..o L. 72
Quantum Capacity of Quantum Channels . . . . ... ... ... .. ... 82
Reduced Quantum Channel Capacity . . . . . . .. ... ... ... .... 91
Quantum Key Distillation . . . . . . . ... ... ... L0 98
The Consistent Histories Tree . . . . . . . ... .. .. .. ... .. .... 115
Mach-Zehnder Interferometer . . . . . . . .. ... Lo 122


http://mostwiedzy.pl

A\ MOST

Chapter 1
Introduction

The main objective of this PhD thesis is to analyze the concept of symmetric extendibility
of quantum states, i.e. states having the so-called symmetric extensions, and applications
of this property to the quantum information theory, with a particular attention paid to the
area of quantum entanglement distillation, quantum channels theory, quantum privacy, and
monogamy of quantum entanglement in time. Due to a strong relation between monogamy
of quantum entanglement and the symmetric extendibility of quantum states, we discuss
separability of quantum states in a context of symmetric extendibility. As a natural conse-
quence of this analysis, we analyze the Bell inequalities for quantum states having symmetric
extensions and structure of the set of symmetric extendible states.

Further, the subject of analysis is also the theory of quantum entanglement measures and
their relation to the symmetric extendibility. New entanglement monotones and parameters
are introduced basing on this concept, which are applied as new upper bounds on distillable
entanglement. Due to the Choi-Jamiolkowski isomorphism between states and quantum
channels, the symmetric extendibility is also a substantial concept for the theory of quantum
channel capacities in domain which is a matter of research of this thesis. We discuss also the
new concept of quantum entanglement in time and initiate analysis of its monogamy on the
ground of the consistent entangled histories, in similarity to the concept of monogamy of
spatial quantum entanglement directly related to symmetric extendibility. Since it is a newly
emerging discipline in quantum information theory, many fundamental tools, widely used for
spatial correlations, have to be further developed for temporal correlations in future research.
The outline of this thesis is as follows:

In chapter 2, we introduce the fundamental concepts and tools of quantum information
theory which are necessary for understanding the following chapters. A special focus is put

on the theory of quantum channels and quantum entanglement.
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Chapter 3 is devoted to the concept of monogamy of quantum entanglement and the fa-
mous Bell theorem. We recall the key assumptions behind local realism and Bell inequalities.
Further, the relations between symmetric extendibility of quantum states and violation of
Bell inequalities is explored.

In chapter 4, we discuss in depth the symmetric extendible states analyzing geometry
of the set consisting of quantum symmetric extendible states. In particular, we prove that
one cannot reduce maximal extendibility of quantum states even if acts with one-way LOCC
operations on multiple copies of the state [126, 128] which is now broadly used in the
literature [123, 124, 122, 112, 121]. Composite systems and their symmetric extendibility is
discussed with a general representation of the composite extensions [128]. We present also
the separability test hierarchy based on the symmetric extendibility of quantum states.

In chapter 5, we present analytically derived symmetric extensions of isotropic states
[126]. This result is important due to the fact that all bipartite quantum states can be
transformed under U ® U*-twirling operations into isotropic states. Basing on that, we
propose a new entanglement parameter [126] built on a normalized relative entropy distance
to the set of symmetric extendible states in analogy to the relative entropy of entanglement.
We recall also the conditions for symmetric extendibility of two-qubit states and present the
regions for Bell diagonal states.

Chapter 6 is focused on applications of symmetric extendibility concept to distillation
of quantum entanglement and entanglement measures. We recall the fundamental concepts
of quantum entanglement distillation protocols and entanglement measures. We present the
concept of best symmetric extendible approximation and a new entanglement monotone
[128]. We introduce the reduced version of one-way distillable entanglement [127] and
prove that it is an upper bound on one-way distillable entanglement. It is also proved that
asymptotically regularized new entanglement parameter [126] is a good upper bound on
one-way distillable entanglement.

The subject of chapter 7 is the concept of quantum channels and its symmetric ex-
tendibility. We recall classical and quantum channel capacities measures and discuss their
additivity. We present a simple test for quantum channel capacities [126] which is based on
the observation that quantum entanglement is monogamous and prevents parties from perfect
cloning of quantum states, thus, imposing on quantum channels, isomorphic (by means of
Choi-Jamiolkowski isomorphism) with symmetric extendible states, zero quantum capacity.
We present new reduced variant of quantum channel capacity [127] which in some cases
can dramatically reduce complexity of analysis of the search problem for quantum channel

capacities and which is a new upper bound on quantum channel capacity. Finally, we discuss
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the subject of super-activation of quantum channel capacities with symmetric extendible
channels.

In chapter 8 we discussed shareability of quantum private correlations. We recall the
concept of a quantum secret key and quantum private states. We introduce a reduced secret
key [127] and show that it can be used as an upper bound on the secret key rate of quantum
protocols. We present also some new lemmas bounding the one-way secret key rate in terms
of a distance to the set of symmetric extendible states [128].

Chapter 9 is devoted to the new emerging discipline focused on analysis of quantum
correlations in time. The issue of quantum entanglement in time [129, 130] is discussed
on the ground of the entangled consistent histories [40—42], a recently extended version of
the consistent (decoherent) histories theory [77-80, 85-87]. It is argued that in similarity
to quantum entanglement in space, temporal quantum entanglement as a new concept is
also monogamous for a particular history [129, 130]. Further, basing on the concept of
entangled histories we prove analytically the Tsirelson bound [38] on temporal CHSH-
like [39] inequalities which confirms the previous results based on convex optimization of
correlator spaces for correlations between the consecutive measurements [71].

In chapter 10, we summarize the key results of this PhD Thesis and elaborate on further

interesting open research problems and future research directions in this area.

List of publications:
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Theor. 49, 385301 (2016).

4. M. Nowakowski, Monogamy of quantum entanglement in time, Preprint quant-ph/1604.03976

(submitted to Phys. Rev. A).

5. M. Nowakowski, Quantum entanglement in time, American Institute of Phys. Conf.
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Chapter 2

Foundations of quantum information
theory

In this chapter we study the fundamental concepts related to quantum states and operations on
them which form a language of quantum information theory and will be a necessary tool for
understanding following chapters. Our present discussion will allow us to face more complex
matters related to symmetric extendibility of quantum states and quantum channels through
which they or their parts are sent. More extensive considerations on quantum information
theory foundations can be found in [3, 28, 13, 76, 125, 143].

2.1 Quantum states

In classical information theory, a source generates a binary state element represented by O or
1 in a binary space and in general, the classical source generates objects over a finite discrete
alphabet. In the world of quantum mechanics, a state |¥) of a physical object A can be a
convex linear combination over basis vectors corresponding to a complex Hilbert space ¢
in which the state of the physical object lives', i.e. [¥) € . This fact is formulated in
the following postulate of quantum mechanics: The state of an isolated physical system is
represented by the normalized state vector |¥) in the Hilbert space 7 and |||¥)|| = 1. The
system is then in a so-called pure state.

We will use further Dirac notation for representation of normalized quantum states

W) € A (kets’). As an example, one can represent the basis vectors of two-dimensional

1 0
Hilbert space .7” = C€ as follows:|0) = (O) N <1> . There always exists a dual space

"We will consider states living in Hilbert spaces of finite dimension: dim.# < oo.
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JC* associated with 777, which is a set of all linear functionals on 7. This represents the
corresponding relation:
H 3 |¥) — (Y| e (2.1)

Each ket |¥) € JZ can be now associated with a Hermitian conjugation (¥| € J#* (called

"bra’) and the scalar product between the vectors is a ’bra-ket’:

HxH3(19),|v) — (9ly) €C (2.2)

Let us now remind properties of the inner product in Hilbert spaces:

(9l9) >0, (2.3)
(wlg) = (¢]w)", (2.4)
(Vi +v2[0) = (v1]9) + (v2[9), (2.5)
(agly) = o™ (¢]y), @ €C, (2.6)
((9]¢) = 0) < (|9) = 0). (2.7)
The inner product generates a natural norm |||¥)|| = /(¥|¥) which induces the metric:

Dist([8), |9)) = [|[¥) — )| = /(¥ — B[ — D).

A state of the physical object can be represented by the pure state only if the observer
can possess maximal information about the object. Otherwise, the object is correlated with
the environment, i.e. it is correlated classically or quantum entangled with the environment
(quantum entanglement will be presented in the following sections) and then, there does
not exist a local observer measuring the state of the object that could possess a complete
knowledge about the state of the object. It should be emphasized that in the latter case lack
of full information about the object is not due to uncertainty in the classical sense, but is
a result of the inability of full description of the object correlated with other objects. The
object is then in a mixed state p € #(). The set of quantum states is a subset of the
operator algebra #(.7) acting on a Hilbert space .7, and the elements of the the set are

called density matrices.

Definition 2.1.1 The Banach algebra %() will denote a Banach algebra of bounded

linear operators A on a complex Hilbert space ¢ with a norm:

IA]] = sup{[|Ax][ : x € A, |[x|| < oo} (2.8)
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The boundedness of a linear operator A represents a fact that it maps bounded subsets in .77’
into bounded subsets in .7 which is a substantial property for physical quantities that can be
a subject of measurements as we will show further.

It can be shown (a proof in e.g. [19]) that an algebra #(.7) is endowed in involution
A — A* where exists the only one element A* € () so that:

vxye%’(&f) (A.X,y) = (xv A*y)v (2.9
A =]l A" (2.10)

It is worth mentioning that the (.7¢) is also a C*-algebra which is implied by the aforemen-
tioned properties. We remind now definitions of operator classes important for applications

in quantum information theory and quantum mechanics:

Definition 2.1.2 An operator A € B(H) is:

Hermitianif A = A", (2.11)
unitary if AN* = A*A =T where [ denotes identity in B(H), (2.12)
a projectorif A’ =A. (2.13)

Further, one introduce the scalar product for these operators:

V. es(n)(A,B) = Tr(A'B), (2.14)

where Tr(-) denotes the trace operation on the operator. Having defined such a product, we

can derive a norm in the algebra:

Vacar) | A ll=V(AA). (2.15)

The set of such operators endowed with the aforementioned scalar product and norm is a
special case of a Hilbert space, and is called a Hilbert-Schmidt space. Thus, whenever we use
the notation p € (%) in this thesis, we consider a quantum state from a Hilbert-Schmidt
space.

Assume that the system is in one of the states |y;) (i indexes the potential physical states)
with probability p;, the set {p;, |y;)} is called an ensemble of pure states and a density matrix
of such a setup is:

p =Y pilvi) (v, (2.16)
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where Y; p; = 1. Now, we can pose a question: when does an operator p € B(H) is
a density matrix representing a physical state? The answer comes from the following
well-known theorem:

Theorem 2.1.3 An operator p is a density matrix associated with {p;,|y;)} if and only if
the conditions hold:

) Tr(p) = 1.

(2) p =0, ie Vyer (Viply) 0.

It is worth mentioning that pure states |¥') € .7 can be associated with density matrix
p = |¥) (Y| which is a projector on one-dimensional subspace 7%, = span{|y)} since:

p* = ) (wllw)(w| = ly)(y|=p. (2.17)

This leads to the assumption that one can easily explore the degree of purity of the state
p engaging this observation. The following lemma gives a quick test of purity of a quantum
state p:

Lemma 2.1.4 Let p € B(I) be a density matrix then Tr(p?) < 1 and Tr(p?) = 1 only if

p is a pure state.

The state p € Z(C") is called a maximally mixed state if it has a form: p = %I , with the
identity operator / = Y ;|i)(i| and a standard orthonormal basis {|i) } where (i|j) = &;;.
Since any convex combination of two states of the system px € Z() and py € B(H)
is again a proper normalized quantum state, i.e. (1 —o)px +apx € B(H)(0 <o < 1), the
set S > p of all possible states of the system is a convex set. Thus, a geometrical analysis
of sets of quantum states comes down to studying geometry of convex sets to a great extent

[13]. Further, all extreme points 2 of the set S are one-dimensional projectors of the form

P=1[9)(¢].

Example 2.1.5 We will consider now a two-dimensional quantum system - a qubit which
state can be represented by a 2 X 2 positive Hermitian matrix. It should be noted that the
Pauli matrices (generators of SU(2) group) create a complete orthogonal basis for all density

matrices p € %(C?) representing a qubit state:

10 01 0 —i 1 0
oo=1[2=<0 1>,m=<1 0),02=<i O’>,a3:<0 _1> (2.18)

2 An extreme point of a convex set cannot be represented as a non-trivial convex combination of other
extreme points, i.e. so that 0 < o < 1.
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with an inner product meeting the condition V; j Tro;0; = 28;; where &;; stands for the

Kronecker delta. Then, the qubit density matrix can be represented as follows:

1 3 1 L.
p—E(H2+;xiGi)—§(H2+x'G)7 (2.19)
xi=Tr(oip) €eR (2.20)

where X - G is a scalar product and X = col(x1,x,x3) is called a Bloch vector. The matrix
p represents a state of a physical system if besides being Hermitian, satisfies the positivity
condition which occurs when the vector indicates a point inside the unit sphere (it represents

a pure state if the Bloch vector is a unit vector).

2.2 Composite systems

A pure state of a composite system AjA; ... A, is represented by a state vector in a tensor
Hilbert space, i.e. |¥) € H4, ® Hn, - & Ha,.

Let us consider a bipartite system AB. If a state of A is characterized by a vector
D)4 =Y, 0i|0); € 74 and |W)p =Y Bi|y); € #5 for B subsystem, then the tensor product

is defined as follows:

[@)a @ |®)s =) cifj|00) ® ;) (221
ij
If the basis in J%; is B4 = {|0),|1),...,]i)} and for %3 is Bg = {|0),|1),...,|/)}, then
S, @ Az is spanned by the basis Bsg = {|0) ® |0),]0) @ [1),...,|i) ®|j)}. It implies:
dim s} ® s = dim ¢, - dim 7. In many cases, the tensor sign will be omitted and the
element |i) ® |j) will be replaced by |ij). As a consequence, the scalar product of tensor
vectors is:

(01| @ (D2|[y1) @ |y2) = (d1|y1) (92| y2) (2.22)

A local state of a subsystem A, that is a part of a larger system AB, is determined by
the reduced matrix: e.g. when the state of the bipartite system is represented by the density
matrix pap € B(H#) @ H3), then a state of the A-subsystem is represented by the reduced
density matrix py € (). This means that Alice possessing A system does not have any
complete knowledge about the global state p4p. The matrix of the reduced system is defined
by means of the partial trace operator [19-21]:

Definition 2.2.1 Let pyp € B(.7#4 ® H3) be a state of bipartite system AB, then the state

of A-subsystem is represented by the reduced matrix pys = Trppap which elements are
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determined by the partial trace operation:

pa(i,j) = Y, (ilalklzpagli)alk)s, (2.23)
%

where vectors |-)4 (and |-)g) form an orthonormal basis in 7} (and H3).

For a system consisting of n subsystems A1A3..A,,, we can generalize the above definitions
distinguishing between two subsets A =A...Ayand B=A;, ... Ay (1 <k <n—1)applying
the same procedure of deriving the reduced states. As an example, let us consider the state
pap acting on J% @ % where 7 = C3 and 77 = Cc

3 Ao Ao1 A,
pap=Y lilalil®Ai;= | A} A An (2.24)
" Al Al Ap

where A;; is a matrix of dimension N X N and for the Hermiticity of pag, A;j = Aj.l.. The
the reduced states of A and B are:

pa = Trepag =X, Tr(Aij)]i)a(Jl

2.25
pp = Trapap = Y; Aii (2:29)

3
Pas =Y |ia(j| ®Aij = {
i,j

Extensions and purifications of quantum states
We will now consider extensions of a quantum state psp and its special case - purification:

Definition 2.2.2 An extension of a bipartite state pap € B(H4 @ HE) to E-system is any
such a state pap € B(H4 @ Hp R HE) so that Trppape = Pap. A pure extension |WYapg) €
T R Hp R HE of a state pap is called its purification.

In general, for any py € Z(#,) we can always find its purification as an extension |¥4p) €
J6) ® F¢p so that after tracing out the ancillary system B, one gets again:

Pa = TI’B’lPABM\PAB’. (2.26)
Noteworthily, one can find infinitely many purifications \‘?AB) of a given state p4 since:
(Wag) = [[® Up)|Pap) = pa = Trp|Wap)(¥an| = Trs|WPagp)(Pasl. (2.27)

where Up is a unitary operation acting on B-part of the system and |¥43) is an arbitrarily

chosen purification of p4. The most frequent purification procedure is based on a spectral
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decomposition of a mixed state p:

M M
p =) 0ilon)(il — [¥) =) ailgn]i), (2.28)
i i
where |i) form an orthogonal basis for the ancillary system.

No-cloning principle

Classical information theory allows the precise copying of information which is applied
by classical computers in the instance of copying files. According to quantum information
theory one can also copy states but only the base ones {|0),|1),...} (which actually can
represent the classical states), however, it prohibits cloning of non-orthogonal states which is

claimed in the following theorem [170]:

Theorem 2.2.3 There does not exist an unitary operation U € () which could clone an

‘unknown’ state |¥) € S so that: U|¥) ®(0) = |¥) @ |¥).

Proof. Assume that there exists an operator U copying the states ideally |¥), |®) € 7, i.e.:

{ Ul¥)®[0) =|¥)®|P) (2.29)

Ul®) ©|0) = [@) @|P)
Since U is unitary, we can derive the scalar products:
(Fo¥[@ed) = ((PP)’ = (0] (F|UTUP)®|0) = (¥|®)(0/0) = (¥|P). (2.30)

which is a contradiction when 0 < (¥|®) < 1 (for non-orthogonal |¥) and |®)). [

As previously noted, the no-cloning principle does not preclude cloning of orthogonal
states, i.e. the cloning machine (device performing the operation U) can clone orthogonal
states. As an example may serve the quantum gate CNOT (a quantum equivalent of the

classic gate of a controlled negation) working on qubits with the matrix representation:

1 000
0100
CNOT = : 2.31)
0 0 01
0010
which clones basis states |¢) € {|0), |1)}:
CNOT[9)©10) = [9) ©|9). (2.32)
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2.3 Completely positive maps

After considering the static properties of quantum states, the question arises about the
dynamics of quantum composite systems. We can state the following question: textitwhat
operations on quantum states are physically allowed? This is an indirect question about
the kind of quantum evolution that is allowed for a quantum system which is addressed by
the well-known postulate about its unitarity: the evolution of a closed quantum system is
determined by a unitary operator U. A state |¥) € S of a system at time t| is mapped into
a state |\P) € A at time t,: |¥) = U|P).

The above postulate determines the dynamics of closed systems and allows operation of
unitary operators only. However, the issue appears in the case of analysis of an evolution
of open systems that can interact with other systems. The issue boils down to finding a
mathematical representation of the physical processes that will be further identified with
the allowed quantum operations on quantum systems. To solve this problem, it is assumed
initially that the system in a state pg, which evolution we are studying, is in a product state
with its environment ps ® pg (i.e. totally uncorrelated with the environment). Thus, the
evolution of the whole system is unitary (under assumption that the whole system S® E is
now a closed system) in accordance with the above postulate and the state of the system after

interaction with the environment is:

ps = Tre[U(ps ® pe)UT]. (2.33)

It is worth mentioning that the expectation value of any observable A acting on S does
not depend on whether we consider only ps or the whole composite system including the
environment, i.e. (A) = Tr[Aps] = Tr[A®I[U(ps ® pg)U']]>. The latter is a fundamental
observation about the nature of operations on systems and their extensions reflecting the fact
that any quantum operation on a local subsystem maps the global state again to a proper
quantum state. The local observer performs measurements on the environment in the selected
environment database by means of partial trace operation on the environment and then forgets
measurement results. Consequently, the state of a local system is a statistical mixture of
states corresponding to the measurement results on the environment.

The analysis of operators A performing the mapping: ps — ps = A(ps) is a subject of
completely positive (CP) maps theory. Namely, all quantum operations are characterized as a
set of mappings A : B(#1) — PB(s43) meeting the following axioms:

(1) Ais alinear operation,

3Vide sec. Quantum measurements and operations.
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(2) Ais completely positive [115],
(3) A does not increase trace, i.e. Tr[A(p)] < 1.

Complete positivity [115] reflects the aforementioned fact of mapping a proper quantum

state into a proper quantum state (where an operation can be on the subsystem):

Definition 2.3.1 * A linear map A : B(4) — B(H5) is completely positive if and only if
for any ancillary system on ¢, and any operator Q € B(H @ ;) there holds:

Q>0= (AR)Q >0, (2.34)

where I is the identity operator acting on B( ;).

If the operator preserves the trace we call it completely positive trace-preserving (CPTP),
otherwise, it decreases the trace and is just completely positive(CP) - in this case the process
is probabilistic, i.e. A-process occurs with probability py = Tr[A(p)].

2.4 Quantum measurements and operations

The measurement results on quantum systems are classical values and as such have to be
represented by real numbers which is a subject of the quantum mechanics postulate: Any
measurable physical property can be represented by an observable - a positive Hermitian
operator M € B(H). The allowed measurement results are real eigenvalues of M. Thus a
physical system can be completely characterized by the Banach tensored algebra of potential
observables that can act on it. This statement is of a very deep physical and philosophical
meaning about what is real and when the gathered information about the system is objective.
Before we start considering properties of observables, it is worth mentioning that classical
systems can be characterized by commutative observable algebras which is not the case for
general quantum states.

Due to the assumption that the measurement results have to be real numbers, the eigen-
vectors |y;) and eigenvalues A; for an observable M are in relation:

Mly;) = Ailyi), (2.35)

and in degenerate case one eigenvalue A; corresponds to many eigenvectors |l//lk) spanning
the eigenspace V), :
M|y = 2| wE) k=1,2,.... j,. (2.36)

“For operators A i B it holds: A > B, if Viyyer (WIA—Bly)>0.
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Eigenvectors span an orthonormal basis in .7#, thus:

Jn
(Wil =86 and Y. Y [wi)(wf|=1
Tl

(2.37)

Note that the projective operator on j,-dimensional subspace V C .7 can be decomposed

as a sum of one-dimensional projectors on basis vectors in this subspace:

P:i&
i=1

and such an operator is a multi-dimensional projector.
Now, for any observable A we can find a spectral decomposition:

A = JAI

= LLMIMAT Y v
1 = T =
:ZfZ§WWWWWWﬂ

i k=1 j I=I

Since (y¥ ]A|l//j> =2 (yk W/j> = Aj0k0;j (Where \l//§> are eigenvectors of A), then:

jﬂ .]Wl

A =YY Y Y 4846w (v

i k=1 j I=1
Jn
NI A
i k=1
= Zliﬁiv

where P, = ¥ [vf) (yf].
The expectation value® of an observable A on a state p € () is:

(A) = TrlAp).

(2.38)

(2.39)

(2.40)

(2.41)

SFor a smooth wave function |¥(x)), the expectation value of observable A is defined as: (A) =

J(P(x)|A[¥(x))dx.
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It is easy to derive that Tr[A|¥) (¥|] = (¥|A|¥P), then for p = |¥)(¥|:

(A) = (PIA|P) (2.42)
= Y uwpw)

= TS AL ()

k=1

ik

_ z’g”l Al ) P,

where Z,’;": L [{wF|P)|? is a probability that a measurement on a state |¥) generates a result A;
corresponding to the projector on a subspace spanned by |l;/lk>

Note that for a composite system pap € ZB(74 @ #4) measurement of the expectation
value I' on B-subsystem gives:

(I) =Tra[I®T)pag] = Tr(Tps), (2.43)

where pp = Trypap, i.e. measuring the subsystem of a composite system is equivalent to
measuring the subsystem after performing the measurements on the rest of the global system
in its basis (that of the rest) and forgetting this knowledge.

In general, any quantum operation can be represented by a linear operator A : () —
AB(H%) where dim 7] = d) and dim 7% = d, with which one can associate a set of d» X d;
complex matrices {M,,}_, where Y~_, M} M,, =1,,. The matrices are called Kraus

operators and the decomposition of quantum operation A is called a Kraus decomposition:

N
Alp) =Y MupM;, (2.44)

m=1
The M,, operation transforms p into p,, state with probability p,, = Tr[M,,pM,]:

M,,pM,

— _mPm 2.45
Tr[Mu,p M) (243

P —Pm

A special case of operation is a von Neumann measurement when the Kraus operators are
just projectors. In general setup, for this type of measurements we measure an observable
O =Y, 0;P; where V. ; o; # oj and i < dims?. The measurement results belong to the set
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of results related to the projectors P; and the state is mapped as follows:

~ _ Y.PpPh

p—p= W (2.46)

And for the composite system in a state pap € B(H4 ® Hp) a measurement on its
subsystem, say for A, leads to the transformation:

Y.i(P; ®Ip)pap(P @ Ip)
Tr[¥L;(P;®1p)pas(P @ 1Ip)]

PaB — Pap = (2.47)

One more important class of quantum measurements is called POVMs (positive-operator
valued measurements) where we are not interested in the form of the output state but rather
in the probability p,, = Tr[M,pM; | = Tr[M!M,,p] of the m-th result with which we can
associate POVM element E,, = M, M,,. This means that the protocol is built on measuring
the probability distribution P(M = m) = Tr|E,,p] of the random variable M. In practice,
the POVM is performed by coupling with the ancilla and then performing e.g. projective
measurements on the ancillary system.

To summarize discussion about quantum operations and measurements as completely
positive (CP) maps, it is very informative to remind that all classes of operations are derived
from the fundamental postulate about unitary evolution of quantum systems, which is
articulated in the following theorem:

Theorem 2.4.1 Any quantum operation A on a quantum system A in a state py can be
performed by three elementary operations:

1. Adding of an ancillary system R (called also the reference system) in a state pg:
PA — PA D PR (2.48)
2. Performing an unitary operation U on the composite system A @ R:
pa@pr — Upa @ prU" (2.49)
3. Tracing out the ancillary system R:
Upa @ prUT — Trg[Ups @ prU"] (2.50)

This simple theorem is a powerful tool for many crucial theorems in quantum information
theory, especially in reference to symmetric extensions of quantum systems and quantum

channels.
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In particular, we define LOCC operations as a finite composition of local quantum operations
and classical communication. For Alice and Bob sharing the state pyp € B(74) R H#3) we
distinguish the following types of LOCC:

1. Zero-way LOCCyp where no classical communication is allowed between the par-
ties, only local trace-preserving CP maps Ay : B(H#4) — B(H#4) and Ap : B(HB) —
PB(Hp):

Ap(paB) = Aa @ Ap(paB) (2.51)

2. One-way LOCC_, where classical communication is allowed only in one direction,
either from Alice to Bob or from Bob to Alice:

A (pap) = ) Ay @ Ap(Pas) (2.52)

where for one-way communication from Alice to Bob, Tr[¥; A} ®1(pap)] < 1 (trace non-
increasing operations on Alice’s side) and trace-preserving operations on Bob’s side are
allowed, i.e. Tr[Y,;1® Afg(pAB)] = 1. For the direction of classical communication from Bob
to Alice, we assume trace non-increasing operations on Bob’s side and trace-preserving on
Alice’s side.

3. Two-way LOCC,, operations can be viewed as a composition of local operations and
classical communication in both directions, thus can be represented as a composition of trace
non-increasing operations on both sides of Alice and Bob.

It is vital to note that for operations not preserving the trace of p4p, the correct output

state is pap = A(pag)/Tr[A(pag)]-

2.5 Quantum channels

A quantum channel is a completely positive trace-preserving map (CPTP) A : B(5,) —
PB(Hyy ) acting on an input state p;, € B(H;,) and resulting with the output state p,,, =
A(pin). This concept is inherited from the classical information theory where the discrete
source generates a signal that is transmitted through the noisy channel e.g. by the wire.

There holds a fundamental channel-state duality between quantum channels and states
called as Choi-Jamiolkowski isomorphism [36, 37, 111]. The Choi-Jamiolkowski isomor-
phism is an isomorphism between linear maps A : B(.,) — PB(H#,,;) and states living in
the tensor product space B(.7, @ H oyt ):

Theorem 2.5.1 [36, 37] Consider the map A : M,(C) — #y(C), then the following

statements are equivalent:
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Alice Alice
N
| +)(‘P +| P
Y > —
Bob

Fig. 2.1 Alice starts with a bipartite singlet state |¥;) and sends one of the subsystem
to Bob through the channel A. Alice and Bob after this operation share a state pap =
[Ia @ AJ[¥) (P4

1. Ais completely positive,
2. N is n-positive, i.e. AR lcn is a positive map,
3. For any orthonormal basis {|e;)} in C" the nd x nd matrix is positive (known as Choi
matrix of A):
Aller)(er]) -+ Aller)(enl)
Dy = : : (2.53)

Allen)(er]) - Allen)(enl)

Namely, assume that a quantum state pap € H(#4 ® 3) is shared between two parties
Alice and Bob. The isomorphism states that it can be achieved if Alice holds initially a
maximally entangled bipartite state |V, ) = Zfl:_()] ﬁ\ii) (a singlet, d = dim.,) and sends
[111] one part of it to Bob through the channel A : (%) — B(3) [Fig. 2.1]:

pag = [La @ AJ[W ) (¥ ] (2.54)

Every physical quantum system is a subject of interactions with the environment and
decoherence which can be interpreted as an influence of noise. Quantum noise, in similar to

the classical concept of noise, transforms the input state by means of a quantum channel A
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characterizing the noise process. In general, it is assumed that noise is spatially local and
Markovian. The former means that there are not spatial correlations between the operators
introducing noise to the system and the latter means that they are not temporally correlated.
Obviously, one can analyze other models of noise but for needs of these thesis, whenever we
use the term 'noise’, we think about local and Markovian noise.

As already observed, there are a couple of alternative representations of quantum chan-
nels. We have already used the famous Choi-Jamiolkowski isomorphism and the Kraus
representation for quantum operations. We can also define quantum channels by means of
the Stinespring dillation [156] which inherits its intuition on the aforementioned observation
that any quantum operation on a quantum state p of a system can be perceived as an action of
a unitary operation on the larger extended system extended with the auxiliary system, which

1s traced out after this action.

Theorem 2.5.2 (Stinespring Theorem) Let A : B(H°) — B(H) be a linear map. Then A
is completely positive if and only if it has the form:

A(A) = V' (A (2.55)

for some unital x-homomorphism® 1t : A — %(K) on a Hilbert space K and for some
bounded linear map 'V : 7 — K.

Then, for every quantum channel A : Z(5,) —> ZB (), there exist a unitary matrix
U, some auxiliary space K and the state yp such that:

par =A(ps) = TrgU[ps @ 1)U (2.56)

Below we present important examples of quantum channels.

Pauli channels

In a Pauli qubit channel A : Z(C?) — %(C?) every error (i.e. X, Y, Z) can occur with
an arbitrary probability. Thus the input state will be not changed with probability 1 — p =
1 — (p1+ p2+ p3) (i.e. with this probability the channel will act with identity mapping I on

the state) and its representation is:

Alp)=(1—p)p+p1XpX + p2YpY + p3ZpZ, (2.57)

67 is a unital *-homomorphism, i.e. is linear, multiplicative, and preserves the *-operation - an involution

that is conjugate-linear and anti-multiplicative.
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It can be represented in the formalism of linear operators A; (so-called Kraus operators) as:

Ao =/1=pl, Ay =/p1X, Ay = \/p2Y, A3 = \/p3Z, (2.58)
Particular types of Pauli random channels are:
A bit flip channel:
Ao=+/1—-pl, A =/pX. (2.59)
A phase flip channel:
Ag=+/1—pl, Aq :\/]_?Z. (2.60)
A bit and phase flip channel:
Ao=+/1—-pl, A =/pY. (2.61)
A depolarizing channel:
1
Alp) = p5+(1=p)p, (2.62)

which generates pure noise as a maximally mixed state % with probability p. It has an

operator representation:

3 X Y Z
A():1/1——p1,A1=\/ﬁ—,A2=\/1_9—,143:\/5—, (2.63)
4 2 2 2
which is derived from:

I 1
5= Z(p +XpX +YpY +ZpZ). (2.64)

Amplitude damping channel

This channel models dissipation of energy when e.g. an excited atom in a state |1) during a

process of spontaneous emission transitions to the ground state |0) having emitted a photon

(1 o0 (o ¥
A0_<O m),A1_<O o)' (2.65)

Noteworthily, this channels, as opposed to Pauli channels, do not preserve the identity

(A() #1).

with probability v:
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2.6 Quantum entanglement and separability of quantum

states

Quantum mechanics allows the existence of composite systems spatially separated, in a
global state |y) € S, yet locally none of their sub-systems can have a pure state assigned.
These "exotic" states called entangled states manifest a fundamental difference of correlations

between classical and quantum world.

Theorem 2.6.1 (The Schmidt decomposition [107]) Let dim 5] = m and dim 74 = n and
\W) be a normalized vector in 74 ® 5, and p = |Y) (Y|,

p1=Trp, pp =Tr1p. Then:

(1) the reduced matrices py i py have the same positive eigenvalues Ay, ..., A, (with the
same multiplicity) and every additional dimension of these matrices is "built’ with a

zero-eigenvalue (note that then k < min(m,n)).

(2) |W) is represented as:

k o~
%) =Y Vale) |f), (2.66)
i=1

where &) (and | f;)) are orthonormal eigenvectors of py € B(H) (and p, € B(H5)),
Zi/ﬂti =1 and 7L,' Z 0.

The \/A; are so-called Schmidt coefficients and the number of non-zero coefficients in
Schmidt decomposition of | ) is called the Schmidt rank of the state | ).

Example 2.6.2 As an example let us consider a state ¥ € 7, @ #; = C* @ C?, in that
case the Schmidt decomposition can consist of at most two coefficients. The state is a
product vector lf\/T[ =0and /A =1 o0r /A =1 and \/2; = 0. A state with coefficients
VA =V = \/LE is maximally entangled in 74 ® 5 (maximal entanglement means
that quantum correlations are maximal in relation to a given entanglement measure [137]
as shown in the following chapters). Maximally entangled states in a computation basis
{10), 1)} are the Bell states (which span the maximally entangled basis in C* @ C?):

|#%) = 5 (I01) £[10))
(%) = 55(100) £ [11)).

S

(2.67)

Sl

Note that the Schmidt decomposition is unique because there do not exist two different
decompositions of a given state with different number of A;. Moreover, if the Schmidt rank is

more than 1 then the state is entangled and the subsystems are in mixed states.


http://mostwiedzy.pl

A\ MOST

2.6 Quantum entanglement and separability of quantum states 21

In general, any separable state (in terms of density matrix) can be decomposed to product
elements as a convex combination of separable states (i.e. any convex combination of
separable states is again a separable state which is not always true for entangled states -
e.g. one can find a decomposition of a noise state of a bipartite system in the Bell basis,
B(C@C?) 3 pap = g1 = (¥ (P + ¥ )|+ [@F)(F]+ |7 ) (D7)

Applying the results by R. Werner [167], we remind now a definition of quantum separa-
bility:

Definition 2.6.3 The state pap € B(H#4 ® Hp) is separable if and only if it can be repre-

sented as a convex combination of product states:

k
PAB = ZPiPﬁx ®pp, 0<pi <1, Zpi =1, (2.68)
i=1 i=1

k
or if it can be approximated by separable states in a trace norm’. Otherwise, the state is

called entangled or non-separable.

Remark. Approximation in this case means that there exists such a series of separable states
{p,?} where p,'® =Y, p;pf @ p? so that lim,, .. || p;® — pag| = 0.

The aforementioned definition states clearly that any separable state pap = Y, pile;) (€i| ®
| fi) (fi| shared between two parties Alice and Bob can be prepared by means of LOCC (local
operations and classical communication) which is not possible for any entangled state. For
such a setup, Alice generates states |e;) with probability p; locally and Bob generates |f;)
with probability p; correspondingly, however, for generation of classical correlations between
the local states they can use classical communication medium like e.g. a phone.

Quantum entanglement is one of central concepts in quantum information theory and as
such is a subject of very extensive research, especially as a resource for quantum computation
and quantum cryptography. For many years one of the main open problems was to define
necessary and sufficient conditions for separability of all quantum states, that would be also
operationally efficient (i.e. could be calculated quickly e.g. by semi-definite programming
or analytically for a given state). To date we have known a couple of such conditions for
different classes of states, however, this research field is still open. Below we recall key
conditions and in the following chapters, a reader will see that symmetric extendibility is
also a central concept for this field. The very first complete characterization of such a test in
terms of necessary and sufficient conditions was based on a concept of completely positive

maps:

A trace norm is defined as ||A| 7, = Tr|A|.
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Theorem 2.6.4 [99] The state pap € B(H#4 @ Hp) is separable if and only if for any
positive map A : B(Hp) —> B(H3), an operator (L& A)pap is positive.

We introduce also a partial transposition operator I'p acting on B-part (or any subsystem of
the composite state) of state pap:

Definition 2.6.5 The partial transposition [143] on B-subsystem of the composite system
AB in a state pap € B(H) Q@ HB) is:

I's(pag) = (Ia ® Tp)pas (2.69)

where transposition Tg : B(7B) —> B () acts only on B-part.

For matrix elements the I" operation acts as follows:

Ts(pas) =Ts()_ aijulij)ki]) =Y aijulil) (k] (2.70)
ikl ikl

The Peres citerion [143] of separability based on the above operation is:

Theorem 2.6.6 Any separable state pap € B(H#4 Q Hp) is PPT:

Ip(pag) >0 (2.71)

i.e. Tp(pap) has non-negative eigenvalues.

and it does not matter if we consider I'p or ['4. As a consequence of the above theorems,
for 2®2 and 2 ® 3 systems it is sufficient to check their partial transpositions and verify
if the output state is positive (PPT) or negative (NPT). For the first case one immediately
finds the PPT state separable, for the latter (NPT) entangled. This observation is stated in the

following lemma:

Lemma 2.6.7 [99] A state p € B(C*>®C?) or p € B(C*®C?) is separable if and only if

['(p) is a positive operator.

Of a great importance is an observation that although all separable states are PPT, not every
entangled state is NPT. There exists a broad class of en