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Abstract
Coupled cell systems associated with a coupled cell network are determined
by (smooth) vector fields that are consistent with the network structure. Here,
we follow the formalisms of Stewart et al (2003 SIAM J. Appl. Dyn. Syst. 2
609–646), Golubitsky et al (2005 SIAM J. Appl. Dyn. Syst. 4 78–100) and Field
(2004 Dyn. Syst. 19 217–243). It is known that two non-isomorphic n-cell cou-
pled networks can determine the same sets of vector fields—these networks are
said to be ordinary differential equation (ODE)-equivalent. The set of all n-cell
coupled networks is so partitioned into classes of ODE-equivalent networks.
With no further restrictions, the number of ODE-classes is not finite and each
class has an infinite number of networks. Inside each ODE-class we can find a
finite subclass of networks that minimize the number of edges in the class, called
minimal networks. In this paper, we consider coupled cell networks with asym-
metric inputs. That is, if k is the number of distinct edges types, these networks
have the property that every cell receives k inputs, one of each type. Fixing the
number n of cells, we prove that: the number of ODE-classes is finite; restrict-
ing to a maximum of n(n − 1) inputs, we can cover all the ODE-classes; all
minimal n-cell networks with n(n − 1) asymmetric inputs are ODE-equivalent.
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We also give a simple criterion to test if a network is minimal and we conjecture
lower estimates for the number of distinct ODE-classes of n-cell networks with
any number k of asymmetric inputs. Moreover, we present a full list of repre-
sentatives of the ODE-classes of networks with three cells and two asymmetric
inputs.

Keywords: coupled cell network, asymmetric inputs, minimal network, network
ODE-class
Mathematics Subject Classification numbers: Primary: 34C20, 05C90, 05C30,
Secondary: 15A36.

1. Introduction

In this paper, we consider (coupled cell) networks as formalized by Stewart et al [28], Golubit-
sky et al [16] and Field [15]. A network is a directed graph together with label types on cells and
edges (couplings). Any such directed graph can be represented by a set of adjacency matrices,
one for each edge type. Note that the number of networks grows exponentially with the number
of cells and the number of edges. Each network, schematically, represents a set of dynamical
systems (the cells) and their dependencies (the couplings). We consider that each cell represents
a system of ordinary differential equations (ODEs) where multi-couplings and auto-couplings
(self-loops) are allowed. A collection of ODE’s for the different cells of a network that respects
the network topology is a coupled cell system associated with that network.

The main motivation for our work is the fact that it is possible to partition the set of networks
into classes according to the different types of dynamics they can support. More concretely,
in [16], Golubitsky et al remark that some non-isomorphic networks support exactly the same
coupled cell systems. Those networks are said to be ODE-equivalent. From the modeling point
of view, this implies that some dynamics can be modeled in more than one way, and that the set
of dynamics is smaller than the set of networks. Dias and Stewart [14] show that two networks
are ODE-equivalent if and only if they are linearly equivalent, i.e., the real linear subspaces
generated by the adjacency matrices of each network coincide, for some cell renumbering. In
[8] Aguiar and Dias introduce minimal networks as the networks with the minimal number of
edges among the networks in an ODE-class (a set of all ODE-equivalent networks to a given
network). They also provide an algorithm to obtain the minimal networks of a given ODE-class.

In this work we consider networks with k asymmetric inputs—networks with k coupling
types and where each cell receives exactly one input of each type—and provide methods
towards their ODE-classification. In particular, we get that classification through the determi-
nation of the minimal representatives for the ODE-equivalence classes. Networks with asym-
metric inputs are homogeneous—there is only one cell type and every cell receives exactly the
same number of inputs. The term asymmetric is used to refer that the inputs to a given cell
are of different type and not that the types of cells are different. In recent years a number of
works on networks with asymmetric inputs have given a major contribution to the study of the
dynamics and bifurcations of such networks. For example, it is proved by Aguiar et al [4] that
these networks can support robust heteroclinic cycles, even in low dimension. The synchrony
lattice of networks with asymmetric inputs is studied by Aguiar [3]. Bifurcation problems have
been considered by Rink and Sanders [24, 25], Nijholt et al [19–21] and Aguiar et al [9].

Towards the classification of networks with asymmetric inputs, and considering the above,
we achieve the following:

(a) We give an enumeration of the minimal three-cell networks with one and two asymmetric
inputs, up to ODE-equivalence.
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(b) We prove that a minimal n-cell network has at most n(n − 1) asymmetric inputs and that
there is only one ODE-class of n-cell networks with n(n − 1) asymmetric inputs.

(c) We show that a representative minimal n-cell network with n(n − 1) inputs can be obtained
combining n(n − 1) feed-forward networks with one input.

(d) We give two methods for the explicit construction of n(n − 1) ODE-distinct minimal n-cell
networks with one input.

Concerning (a), the list of the six ODE-distinct minimal three-cell networks with one input
was obtained by Leite and Golubitsky [17]. Here, we provide the complete list of the 48 ODE-
distinct minimal networks with three cells and two inputs (theorem 5.2 and tables 3–6). In
particular, this list contains the ten ODE-classes of strongly connected networks, with three
cells, two asymmetric inputs and one or two two-dimensional synchrony subspaces, consid-
ered in Aguiar et al [4] and the seven networks with a monoid symmetry with three elements
given by Rink and Sanders [24]. The networks with a monoid symmetry are called funda-
mental networks. Surprisingly, two of the ODE-distinct three cell networks have the same
monoid symmetry with three elements (remark 5.7). The enumeration of the ODE-distinct
three-cell networks with two inputs already illustrates the complexity in the ODE-classification
of networks.

In view of the large number of possible networks, different authors have focused their atten-
tion on networks with a low number of cells and inputs. These small networks can be viewed as
building blocks of complex networks which are usually called motifs [18]. Small networks also
appear as quotient networks when considering the restriction of coupled cell systems to syn-
chrony subspaces. The study of the dynamics of smaller networks is not only feasible but can
also contribute to the understanding of the dynamics of bigger networks. When the synchrony
pattern has three or less distinct synchronies, we end up with a network with three or fewer
cells. Therefore, the study of the networks with three cells or fewer, allow us to understand any
pattern with three or less distinct synchronies. In a follow-up work, we study the steady-state
bifurcation problems of the 48 networks listed here [10].

In (b), we prove that the maximum number of asymmetric inputs in a minimal network
with n cells is n(n − 1) (theorem 6.3). Thus any n-cell network is ODE-equivalent to an n-
cell network with at most n(n − 1) inputs. That is, there is a finite number of ODE-distinct
networks with asymmetric inputs, for a fixed number of cells. So, we can repeat the method
presented in section 5 for three cell networks and enumerate all ODE-distinct minimal n-cell
networks with k asymmetric inputs, where k runs from 1 to n(n − 1). Alternatively, we can
start with a list of every network with n(n − 1) asymmetric inputs and then reduce it to a list
of minimal representative networks. This contrasts with the case of minimal homogeneous
networks with one type of symmetric inputs where there is no bound on the number of inputs.
See, for example, Aldosray and Stewart [11] for the enumeration of homogeneous networks
with symmetric inputs and an arbitrary number of inputs. Furthermore, we remark that all
minimal networks of n-cells with n(n − 1) asymmetric inputs are ODE-equivalent (corollary
6.4).

In (c), we present a minimal n-cell network with n(n − 1) asymmetric inputs (theorem
7.5). Surprisingly, this representative is given by the union of n(n − 1) one-input feed-forward
networks. Feed-forward networks are those where cells arranged in layers and such that the
information moves only in one direction, forward, from the input nodes (first layer), through
the hidden nodes (middle layers), and to the output nodes (last layer). Moreover some of these
n(n − 1) feed-forward networks given the minimal representative are ODE-equivalent. How-
ever, for the three cells case, we see that we can use six ODE-distinct three-cell networks
to obtain a minimal network with three cells and six asymmetric inputs (example 6.2). We
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note that feed-forward networks have been addressed by different authors, see for example
[5, 6, 20, 22, 23, 26, 27].

Finally, in (d), we prove that the set of minimal networks with n cells and one input con-
tains, at least, n(n − 1) ODE-distinct networks (theorem 8.7). In fact, we provide algorithms
to construct these ODE-distinct minimal networks using networks with fewer cells.

The manuscript is organized as follows. Sections 2 and 3 recall some definitions and known
results about coupled cell networks and coupled cell systems. In section 4, we give a criterion
for minimal networks with asymmetric inputs using the known fact that two networks are ODE-
equivalent if and only if they are linear equivalent. Section 5 contains the classification of the
three-cell networks with two asymmetric inputs. In section 6, we prove that a minimal network
with n cells has at most n(n − 1) asymmetric inputs. In section 7, a minimal n-cell networks
with n(n − 1) asymmetric inputs is given by the union of n(n − 1) feed-forward networks. In
section 8, we describe two algorithms to obtain ODE-distinct minimal n-cell networks with one
input using smaller networks. Section 9 includes some final conclusions where, in particular,
we present two conjectures about the number of minimal networks.

2. Preliminary definitions

In this section, we recall a few definitions and results concerning coupled cell networks, cou-
pled cell systems and ODE-equivalence of networks. We follow the coupled cell network
formalism of Stewart et al [28] and Golubitsky et al [16].

Definition 2.1. A (coupled cell) network G consists of a finite non-empty set C of cells and
a finite non-empty set E = {(c, d) : c, d ∈ C} of edges. Each pair (c, d) ∈ E represents an edge
from cell d to cell c and the cells c, d are called, respectively, the head and tail cell. Cells and
edges can be of different types.

A network can be represented by a directed unweighted graph, where the nodes represent
the cells and the edges are depicted by directed arrows. Different types of cells and edges are
indicated in the graph, respectively, by different shapes of nodes and different edge arrowheads.

Definition 2.2. A network is said to be homogeneous if the cells have all the same type, that
is, they are identical, and receive the same number of input edges per edge type. The valency
is the number of inputs that each cell receives.

Definition 2.3. A network with one input is an homogeneous network with one edge type
where each cell receives exactly one edge of that type. A network with k asymmetric inputs,
for an integer k > 1, is an homogeneous network with k edge types where each cell receives
exactly one edge of each type.

Example 2.4. In figure 1, we present three-cell networks with one and two asymmetric
inputs.

Definition 2.5. Given a network with set of cells C, we say there is a directed path con-
necting a sequence of cells (c0, c1, . . . , ck−1, ck) of C, if there is an edge from c j−1 to c j, for
j ∈ {1, . . . , k}. If, for every j ∈ {1, . . . , k}, there is an edge from c j−1 to c j or from c j to c j−1,
we say that there is an undirected path connecting the sequence of cells (c0, c1, . . . , ck−1, ck).
A network is connected if there is an undirected path between any two cells. And a network is
strongly connected if there is a directed path from c to d for every pair of cells (c, d) ∈ C × C.

The coupling structure of a network with set of cells C = {1, . . . , n} and k edge types can be
described through k adjacency matrices Al := (a(l)

i j ) ∈ Mn,n(R), with rows and columns indexed
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Figure 1. Networks with three cells and asymmetric inputs: in the left and the mid-
dle networks every cell receives one input; in the right network every cell receives two
asymmetric inputs of the same type.

by the cells in C and 1 � l � k. Each entry a(l)
ij corresponds to the number of edges of type

l from cell j to cell i. If the network has asymmetric inputs then its adjacency matrices have
valency one, i.e., the entries are 0 or 1 and the row-sum is equal to one.

Example 2.6. The three-cell network on the right in figure 1 has two asymmetric inputs. Its
coupling structure can be represented by the following two 3 × 3 adjacency matrices (corre-
sponding, respectively, to the adjacency matrices of the networks on the left and the middle of
figure 1):

A1 =

⎛⎝1 0 0
1 0 0
1 0 0

⎞⎠ , A2 =

⎛⎝1 0 0
1 0 0
0 1 0

⎞⎠ .

According to the definition of union of graphs, we have the following definition for the
union of two networks with the same set of cells but having different edge types.

Definition 2.7. Given k networks Gi with the same set of cells C, and sets of edges Ei, for
i = 1, . . . , k, we define the union network G1 ∪ . . . ∪ Gk, to be the network with set of cells C
and set of edges to be the disjoint union E1 ∪ . . . ∪ Ek. The set of adjacency matrices of the
union network is the disjoint union of the corresponding sets of adjacency matrices.

Example 2.8. A network with k asymmetric inputs is the union of k networks with one
input. The network on the right of figure 1 is the union of the networks on the middle and the
left.

Feed-forward and n-cycle are relevant examples among the networks with one input.

Definition 2.9. Let N be a connected network with n cells and one input.

(a) The network N is an n-cycle if there is the directed path (1, 2, . . . , n, 1), up to a reordering
of cells.

(b) The network N is a feed-forward network, if we can renumber the cells such that, for every
edge (i, j) ∈ E, we have i < j or i = j = 1. In this case, a cell with a self-loop is a root
and a tail with length k is a directed path with k connections from a root cell to a cell with
no outgoing connections.

Example 2.10. The networks on the left and middle of figure 1 are feed-forward with one
input. The network on the left has two tails with length one and the network on the middle has
one tail with length two.
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2.1. Coupled cell systems

Let G be an n-cell network with k asymmetric inputs, say of types 1, . . . , k. Following
[16, 28], we take a cell to be a system of ODEs and we consider the class of coupled cell sys-
tems that have structure consistent with the network G. All the cells have the same phase space,
say V = R

m for some m > 0, the same internal dynamics and, for each cell i, the dynamics is
governed by the same smooth function f , evaluated at the starting cells of the edges targeting
that cell. Thus, for i = 1, . . . , n, we have that the evolution of cell i is given by the set of ODEs

ẋi = f
(
xi; xi1 , . . . , xik

)
, (2.1)

if the input set of cell i is {i1, . . . , ik}, where i j is the tail cell of the edge with type j and head
cell i. The function f : Vk+1 → V is assumed to be smooth. We say that coupled cell systems
with cells governed by equations of the form (2.1) are G-admissible.

Example 2.11. Consider the networks on the left and the right of figure 1. Coupled cell
systems with structure consistent with these, have the following form, respectively:⎧⎪⎪⎨⎪⎪⎩

ẋ1 = f (x1; x1)

ẋ2 = f (x2; x1)

ẋ3 = f (x3; x1)

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = g(x1; x1; x1)

ẋ2 = g(x2; x1; x1)

ẋ3 = g(x3; x1; x2)

for any smooth functions f : (Rm)2 → R
m and g : (Rm)3 → R

m, if cell phase spaces are chosen
to be Rm.

2.2. Network synchrony subspaces

A network synchrony subspace Δ is a subspace of the network total phase space defined by
certain equalities of cell coordinates (a polydiagonal subspace) which is left invariant under
the flow of every network admissible coupled cell system. In that case, if xi = x j is one of the
cell coordinates defining Δ, then a solution of any system given by (2.1) with initial condition
in Δ have cells i, j synchronized (i.e., xi(t) = x j(t)) for all time t. One of the consequences of
theorem 6.5 of [28] is that a polydiagonal space Δ is a synchrony subspace if and only if it is
left invariant under the network adjacency matrices. So, a polydiagonal space is a synchrony
subspace for a union network if and only if it is a synchrony subspace for each network.

Example 2.12. Consider the networks of figure 1. The diagonal space defined by x1 = x2 =
x3 is a synchrony subspace for the three networks. In fact, any polydiagonal is a synchrony sub-
space for the network on the left and the subspace defined by x1 = x2 is a synchrony subspace
for the middle network. Thus that subspace, x1 = x2, is a synchrony subspace for the network
in the right.

3. ODE-equivalence of networks

It was noted in [28] that different networks with the same number of cells can have the same
set of admissible equations for any choice of cell phase spaces. As an example of that, consider
the two networks in figure 2. Note that the corresponding coupled cell systems with structure
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Figure 2. Two networks with three cells and asymmetric inputs that are ODE-equivalent.
On the left network, every cell receives one input. On the right network, every cell
receives two asymmetric inputs.

consistent with these, have the following form, respectively:⎧⎪⎪⎨⎪⎪⎩
ẋ1 = f (x1; x1)

ẋ2 = f (x2; x1)

ẋ3 = f (x3; x1)

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = g(x1; x1; x1)

ẋ2 = g(x2; x1; x1)

ẋ3 = g(x3; x1; x1)

for any smooth functions f : (Rm)2 → R
m and g : (Rm)3 → R

m, if cell phase spaces are chosen
to be R

m. Trivially, given f we can define g in the following form: g(x, y, z) = f (x, y). Also,
given g, we can define f such that f (x, y) = g(x, y, y). Thus, we have two networks where the
associated sets of vector fields coincide.

The next definition corresponds to definitions 5.1 and 6.2 in [14]. There is also the more
combinatorial approach presented by Agarwal and Field [1, 2].

Definition 3.1. [14] Two n-cell networks G1 and G2 are ODE-equivalent when there is a
bijection map between their sets of cells such that, for any choice of their cells phase spaces
preserving this bijection between the sets of cells, they define the same set of admissible cou-
pled cell systems. If this holds for the set of linear admissible coupled cell systems, then G1

and G2 are said to be linearly equivalent.

Re-enumerating the cells of G1(or G2), we can consider that the bijection between the set
of cells in the previous definition is the identity. The following theorem, which corresponds to
theorem 7.1 and corollary 7.9 of [14], relates the two concepts of ODE-equivalence and linear
equivalence on networks:

Theorem 3.2. [14] Two n-cell networks G1 and G2 are ODE-equivalent if and only if they
are linearly equivalent when the cell phase spaces are R.

It follows from the previous result a more practical definition of ODE-equivalence. Two
n-cell networks, G1 and G2, are ODE-equivalent if and only if there exists a re-enumeration
of the cells such that the two linear subspaces of Mn×n(R) generated by Idn, A1, . . . , Ak1 and
Idn, B1, . . . , Bk2 coincide, where A1, . . . , Ak1 and B1, . . . , Bk2 are the adjacency matrices, after
re-enumeration, of G1 and G2, respectively.

Example 3.3. In figure 2, note that the network on the right has two edge types represented
by the same adjacency matrix. Trivially, using the linear equivalence criterion, the two networks
in figure 2 are ODE-equivalent.
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4. Criterion for minimality of networks with asymmetric inputs

Fixing the number n of cells, and given an n-cell network G, the ODE-class of G, denoted by
[G], is the set of all n-cell networks that are ODE-equivalent to G, which is in general non-finite.
In Aguiar and Dias [8], it was introduced the notion of minimal networks of an ODE-class of
a network G, which are the networks with the minimal number of edges among the networks
in the set [G].

Example 4.1. As noted above, the two networks in figure 2 are ODE-equivalent. We see
that each cell in the network on the left receives a unique input. It follows that this network is
minimal. In fact, from proposition 5.11 of Aguiar and Dias [8], we have that, up to permutation
of the cells, the network on the left is the unique minimal network in the ODE-class of both
networks of figure 2.

In [8], it was proved that, in general, fixing a network ODE-class, there are several networks
which are minimal. Moreover, it was obtained a method to describe all the minimal networks
of the class—that method, is precisely obtained making use of theorem 3.2. We are interested
in networks with asymmetric inputs that are minimal. The next result follows from proposition
5.11 in [8].

Proposition 4.2. [8] Let G be an n-cell network with m asymmetric inputs where
A1, . . . , Am are the associated adjacency matrices. The network G is minimal if and only if
the m + 1 matrices Idn, A1, . . . , Am are linearly independent.

Let Minm,n denote the set of minimal n-cell networks with m asymmetric inputs.

4.1. Minimal n-cell networks with one input

Consider that G is an n-cell network with one input and adjacency matrix A such that
A �= Idn. Trivially, we have that Idn and A are linearly independent. Thus, a direct consequence
of proposition 4.2 is that G ∈ Min1,n. Moreover, two networks in Min1,n are ODE-distinct (not
ODE-equivalent) unless there is a re-enumeration of the cells such that the two networks are
the same. The next result states this and it also follows from proposition 5.11 and theorem 9.3
of [8].

Proposition 4.3. Let G1 and G2 be two minimal n-cell networks with one input and adja-
cency matrices Ai �= Idn, for i = 1, 2. Then [G1] = [G2] if and only if G1 and G2 are equal up
to permutation of cells. Equivalently, [G1] = [G2] if and only if it exists an n × n permutation
matrix P such that A1 = PA2P−1.

The number of networks with one input, up to permutation of cells, is given by theorem 8.3
of Aldosray and Stewart [11]. Roughly speaking, the number of networks with n cells and one
input, up to permutation of cells, is equal to

1
n!

∑
p=(p1,...,pn)∈Pn

Cp

n∏
k=1

φ(k, p)pk ,

where Pn is the set of partitions of n and (p1, . . . , pn) ∈ Pn if p1 + · · ·+ npn = n, Cp is the
number of permutations having a cycle partition equal to p andφ(k, p) is the number of possible
ways to fill the row p1 + · · ·+ (k − 1)pk−1 + 1 of an adjacency matrix compatible with the
partition p and row sum equal to one. Aldosray and Stewart calculated this number for n � 6
and obtained that there are 1, 3, 7, 19, 47 and 130 networks with one input and 1, 2, 3, 4, 5 and 6
cells, respectively. See [11] for details. With the exception of the network with adjacency matrix
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given by the identity, the networks with one input are minimal and ODE-distinct between them,
up to permutation of cells. Thus, the number of ODE-distinct networks in Min1,n is 1, 2, 6, 18,
46 and 129 for n = 1, . . . , 6, respectively.

4.2. Minimal n-cell networks with two asymmetric inputs

For the particular case of a network G with two asymmetric inputs, the result in proposition 4.2
states that G is minimal if and only if the adjacency matrices A1 and A2 of G and the identity
matrix (of the same dimension) are linearly independent. We get then the following corollary
of proposition 4.2:

Corollary 4.4. A network G with two asymmetric inputs given by the valency one adjacency
matrices Ai �= Idn, for i = 1, 2, where A1 �= A2 is minimal.

Proof. By proposition 4.2, G is not minimal if and only if the matrices Idn, A1, A2 are linearly
dependent. As the matrices A1 and A2 have valency one and are not the identity matrix, then
Idn, A1 are linearly independent and Idn, A2 are linearly independent. Thus if Idn, A1, A2 are
linearly dependent, then there are nonzero real entries a, b, c such that

aIdn + bA1 + cA2 = 0n×n.

Without loss of generality, we assume that A2 is a linear combination of Idn and A1. Thus, there
are real numbers α and β such that

A2 = αIdn + βA1.

As A1 �= Idn, the matrices A1 and Idn have at least one row i such that two entries differ and so,
we can find j with j �= i such that (A1)i j = 1 and (A1)ii = 0. We obtain two linear equations:
taking k1 = (A2)i j and k2 = (A2)ii,{

(A2)i j = α(Idn)i j + β(A1)i j

(A2)ii = α(Idn)ii + β(A1)ii

⇔
{

0α+ 1β = k1

1α+ 0β = k2

.

Thus β = k1 ∈ {0, 1} and α = k2 ∈ {0, 1}. Therefore we have one of the following cases
A2 = Idn + A1, A2 = A1, A2 = Idn or A2 = 0. Since A2 has row-sum equal to 1 and it is different
from A1 and Idn, the previous cases are impossible. Thus Idn, A1, A2 are linearly independent
and G is minimal. �

It follows from corollary 4.4 that an n-cell network with two asymmetric inputs is not min-
imal if and only if the two inputs are equal. In this case the network is ODE-equivalent to an
n-cell network with one input.

4.3. Minimal n-cell networks with k asymmetric inputs

By proposition 4.2 and theorem 3.2, it also follows that:

Corollary 4.5. Let G be an n-cell network with k asymmetric inputs and adjacency matrices
A1, . . . , Ak. If p denotes the dimension of the linear space generated by Idn and A1, . . . , Ak, then
G is ODE-equivalent to a minimal n-cell network with p − 1 asymmetric inputs.

Remark 4.6. Under the conditions of corollary 4.5, any set of p− 1 adjacency matrices
of G, say A1, . . . , Ap−1, such that Idn, A1, . . . , Ap−1 are linearly independent, define a minimal
network with p− 1 asymmetric inputs in the ODE-class [G].
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5. Classification of three-cell networks with two asymmetric inputs

Using the fact that a network with k asymmetric inputs is the union of k networks with one input,
we have a way of enumerating networks with k asymmetric inputs using the enumeration of net-
works with one input. This list is large and the concept of minimality and ODE-equivalence of
networks can be used to restrict this list. We illustrate this method with networks with three cells
and two asymmetric inputs. That is, we obtain all the minimal three-cell connected networks
with two asymmetric inputs, up to ODE-equivalence.

We start by classifying the three-cell minimal networks with one input.

5.1. Classification of three-cell networks with one input

We state and prove a well known classification of the ODE-classes of the minimal three-
cell networks with one input. See, for example, Leite and Golubitsky [17]. We include this
classification for completeness as it will be used in the next sections. We also include the
two-dimension synchrony subspaces of those minimal representative networks.

Lemma 5.1. There are only seven ODE-classes of three-cell networks with one input. One
of these classes corresponds to the disconnected three-cell network, without edges. The other
six classes are represented by the six minimal networks in table 1.

Proof. Let G be a three-cell network with one input and adjacency matrix A �= Id3.

(a) If every cell of G sends some input then: either G is the three-cycle and it has no two-
dimensional synchrony subspaces, see network A of table 1; or G has a cell i with a
self-loop and a two-cycle and it has exactly one two-dimensional synchrony subspace,
Δi = {x : x j = xkwhere j, k �= i}, see network B of table 1. Moreover, there are no more
two-dimensional synchrony subspaces since cell i cannot synchronize with only one of
the two other cells.

(b) If two cells of G do not send any input to the other cells, then the third cell has to send all the
three edges including a self-loop and G has three two-dimensional synchrony subspaces.
Equivalently, every two cells can synchronize. See network C of table 1.

(c) If exactly one cell of G does not send any input to the other cells, then it must receive
an edge from a second cell. If this second cell does not send another edge, then the third
cell must send two edges including a self-loop. Thus, in this case G is the network D of
table 1 and has exactly one two-dimensional synchrony subspace. If the second cell sends
another edge, then the second and third cell must send each an edge between them. In this
case, they can send self-loops corresponding to network E of table 1 or form a two-cycle
corresponding to network F of table 1. Moreover, the networks E and F have exactly two
two-dimensional synchrony subspaces. �

5.2. Classification of three-cell networks with two asymmetric inputs

We obtain now all the minimal three-cell connected networks with two asymmetric inputs, up
to ODE-equivalence.

As stated before, every three-cell network with two asymmetric inputs is the union of two
three-cell networks with one input. Since, in the union of two such networks, the order of the
cells matters, we list in table 2 all the three-cell networks with one input and adjacency matrix
A �= Id3, which are obtained from the networks in table 1 by permutation of the three cells.
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Table 1. Three-cell networks with one input and adjacency matrix A �= Id3, up to re-enumeration of the cells. Note that the networks C and D are
feed-forward.

Network
2D synchrony

subspaces
Adjacency

matrix Network
2D synchrony

subspaces
Adjacency

matrix

—

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ Δ1

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

Δ1

Δ2

Δ3

⎡
⎣1 0 0

1 0 0
1 0 0

⎤
⎦ Δ3

⎡
⎣1 0 0

1 0 0
0 1 0

⎤
⎦

Δ2

Δ3

⎡
⎣1 0 0

0 1 0
1 0 0

⎤
⎦ Δ1

Δ3

⎡
⎣0 1 0

1 0 0
1 0 0

⎤
⎦
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Table 2. Three-cell networks with one input obtained from the networks in table 1 by
permutation of cells.

Network
2D syn

subspace Network
2D syn

subspace Network
2D syn

subspace

— —

Δ1 Δ2 Δ3

Δ1

Δ2

Δ3

Δ1

Δ2

Δ3

Δ1

Δ2

Δ3

Δ3 Δ2 Δ1

Δ3 Δ2 Δ1

Δ2

Δ3

Δ1

Δ2

Δ1

Δ3

Δ1

Δ2

Δ1

Δ3

Δ2

Δ3

Δ1

Δ3

Δ2

Δ3

Δ1

Δ2

Δ1

Δ3

Δ2

Δ3

Δ1

Δ2
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Table 3. Three-cell networks with two asymmetric inputs and no two-dimensional
synchrony subspaces.
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By corollary 4.4, a three-cell network with two asymmetric inputs is not minimal if and only
if the two inputs are equal. In this case the network is ODE-equivalent to a three-cell network
with one input.

Theorem 5.2. Up to ODE-equivalence, there are 48 minimal three-cell connected networks
with two asymmetric inputs. See tables 3–6.

Proof. Excluding the network where each cell receives only one self-loop, there are 26 net-
works with three cells and one input, which are listed in table 2 and obtained by permuting the
cells on the networks in table 1. It follows then, from corollary 4.4, that there are 26 × 25 = 650
minimal networks with three cells and two asymmetric inputs. Since we are interested in min-
imal networks, up to ODE-equivalence, we consider the networks up to interchange of the
edge types, which gives 325 networks. Among the networks with one input in table 2, there
are two (networks A1 and A2) with Z3-symmetry, six (networks Bi and Ci, with i = 1, 2, 3)
with Z2-symmetry and the remaining 18 networks have no symmetry. If we apply the same
permutation on the two inputs, we obtain ODE-equivalent networks. So, the symmetries of
a network exclude some cases. For example, taking the symmetries of A1, we see that the
networks A1 & B1, A1 & B2 and A1 & B3 are ODE-equivalent. Taking a permutation that trans-
forms A1 into A2, we see that A1 & B1 and A2 & B1 are ODE-equivalent. Moreover, we can see
that every network with one input A and one input B are ODE-equivalent. When considering
the union of networks A with networks A, B, C, D, E, F, since we are interested in networks
up to re-enumeration of the cells, we can consider only the union of network A1 with net-
works A2, B, C, D, E, F. Given the Z3-symmetry of A1, the Z2-symmetry of networks B and C
and no symmetry of networks D, E, F, up to re-enumeration of the cells, we get, respectively,
1, 1, 1, 2, 2, 2 networks. When considering the union of networks B with networks B, C, D, E, F,
since we are interested in networks up to re-enumeration of the cells, we can consider only the
union of network B1 with networks B2, B3, C, D, E, F. Given the Z2-symmetry of networks
B and C and no symmetry of networks D, E, F, up to re-enumeration of the cells, we get,
respectively, 1, 2, 3, 3, 3 networks. When considering the union of networks C with networks
C, D, E, F, since we are interested in networks up to re-enumeration of the cells, we can con-
sider only the union of network C1 with networks C2, C3, D, E, F. Given the Z2-symmetry of
networks C and no symmetry of networks D, E, F, up to re-enumeration of the cells, we get,
respectively, 1, 3, 3, 3 networks. When considering the union of networks D with networks
D, E, F, since we are interested at networks up to re-enumeration of the cells, we consider only
the union of network D1 with networks D2, D3, D4, D5, D6, E, F. Since the networks D, E, F
have no symmetry we get, respectively, 5, 6, 6 networks. Analogously, making the union of net-
works E with networks E, F we get, respectively, 5, 6 networks and making the union networks
F with networks F we get 5 networks. Thus, among the 325 networks with two asymmetric
inputs, up to re-enumeration of the cells, there are 64 networks. From the set of these 64 net-
works, we find the bigger subset of no ODE-equivalent networks using MATLAB. Following
theorem 3.2, we implemented a program in MATLAB that checks if two triplets {Id3, M1, M2}
and {Id3, M3, M4} span the same linear space, where M1, M2, M3 and M4 are valency one adja-
cency matrices. Applying this code to every pair of the 64 networks, we obtain the 48 minimal
three-cell networks with two asymmetric inputs listed in tables 3–6. �

Theorem 5.3. Among the 48 minimal three-cell connected networks with two asymmetric
inputs given by theorem 5.2, there are 19 networks with no two-dimensional synchrony sub-
spaces (see table 3), 21 networks with one two-dimensional synchrony subspace (see table 4),
7 networks with two two-dimensional synchrony subspaces (see table 5) and one network with
three two-dimensional synchrony subspaces (see table 6).
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Table 4. Three-cell networks with two asymmetric inputs and one two-dimensional
synchrony subspace.

Proof. Let G be a minimal three-cell connected network with two asymmetric inputs. Then,
G = G1 ∪ G2 with G1 and G2 three-cell networks with one input, both in table 2. The network
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Table 5. Three-cell networks with two asymmetric inputs and two two-dimensional
synchrony subspaces.

Table 6. Three-cell network with two asymmetric inputs and three two-dimensional
synchrony subspaces.

G has a synchrony subspace Δi if and only if Δi is a synchrony subspace for both networks
G1 and G2. Using the information in table 2, we obtain the information above stated concern-
ing the synchrony spaces of the minimal three-cell connected networks with two asymmetric
inputs. �

Remark 5.4. In [4], Aguiar et al consider the strongly connected networks of three cells and
two asymmetric inputs that have one or two two-dimensional synchrony subspace. If, among
the 48 minimal three-cell connected networks with two asymmetric inputs given by theorem
5.2, we consider only the strongly connected ones, that have one or two two-dimensional
network synchrony subspaces, then we see that there are only eight networks with one two-
dimensional synchrony subspace (C1 & D6, D1 & F5, D1 & F4, E6 & F3, E6 & F4, B1 & F1,
F1 & F3, F1 & F6 from table 4) and two networks with two two-dimensional synchrony
subspaces (C1 & F3, F1 & F4 from table 5).
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5.3. ODE-distinct three-cell two-input asymmetric networks with the same hidden
symmetries

Rink and Sanders [19, 25] show that networks with asymmetric inputs have hidden symme-
tries which influence the network dynamics and moreover, can be used to study the dynamics.
When the network has a semigroup structure, Rink and Sanders in [25] have calculated normal
forms of coupled cell systems and in [24] have used the hidden symmetries of the network
to derive Lyapunov–Schmidt reduction that preserves hidden symmetries. In [19], Nijholt et
al have introduced the concept of fundamental network which reveals the hidden symmetries
of a network. A fundamental network is a Cayley graph of a monoid (semigroup with unity).
The dynamics associated to a fundamental network can be studied using the revealed hidden
symmetries and be related with the dynamics associated to the original network which does
not need to be fundamental [24, theorem 3.7 & remark 3.9].

In section 7 of [24], it is considered fundamental networks with two or three cells and their
possible generic codimension-one steady-state bifurcations that can occur assuming that the
cell phase spaces are one-dimensional. It is remarked that these systems are fully characterized
by their monoid symmetry, moreover, their semigroup representations split as the sum of mutu-
ally nonisomorphic indecomposable representations. In their classification, in case of monoid
networks with three cells, it is used the fact that, there are up to isomorphism, precisely seven
monoids with three elements (see [12]).

In this section, we make two observations. We first remark that from the 48 networks with
three cells and two asymmetric inputs obtained in theorem 5.2, there are only eight networks
which have symmetry monoids with three elements. Moreover, only seven of these are funda-
mental networks, where all the possible seven monoids with three elements occur in this list of
eight networks. The other 40 networks have symmetry monoids with more than three elements.
The second remark concerns the fact that there are ODE-distinct three-cell networks with the
same symmetry monoid of three elements.

In what follows, a three-cell network with two asymmetric inputs denoted by G1 & G2, has
each edge type j, for j = 1, 2, represented by a function σ j : {1, 2, 3}→ {1, 2, 3} such that
σ j(l) = al, for l = 1, 2, 3, and we represent it by σ j = [a1 a2 a3]. Thus, if we take the edge type
j and σ j(l) = al, then there is an edge of the type j from cell al to cell l which corresponds to
an edge from cell al to cell l in the network G j. The multiplication operation is given by the
composition of such functions.

Proposition 5.5. From the 48 networks with three cells and two asymmetric inputs obtained
in theorem 5.2, only eight have symmetry monoids with three elements: A2 & A1, E6 & E4,
C1 & D1, C1 & B1, E6 & F5, C1 & C2, C1 & E3 and C1 & E6. Each corresponds to one of the
seven distinct possible symmetry monoids with three elements, except the last two that have
the same symmetry monoid. See tables 7 and 8.

Proof. The symmetry monoid of each G1 & G2 in the list of the 48 networks with three cells
and two asymmetric inputs in tables 3–6 is determined by three functions: σ0 = Id3 and σ1, σ2

corresponding to the subnetworks with one input, G1 and G2, respectively. Except for the eight
networks (A2 & A1, E6 & E4, C1 & D1, C1 & B1, E6 & F5, C1 & C2, C1 & E3 and C1 & E6), the
set Σ = {σ0, σ1, σ2} is not closed for the composition. In fact, for those 40 networks, at least
one of the products σ1σ2 or σ2σ1 does not belong to Σ. Now, for the other eight networks,
we see that Σ = {σ0, σ1, σ2} is closed under multiplication (composition) and we have all the
possibilities for the productsσiσ j where i, j �= 1, 2. See tables 7 and 8 for the matching between
each of the eight networks and the corresponding symmetry monoid. As an example, if we take
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Table 7. The eight ODE-distinct networks with three cells and two asymmetric inputs
which have symmetry monoids with three elements, and the corresponding symmetry
monoids. The monoids Σi for i = 1, . . . , 7 appear in table 8. Except C1 & E6, they are
fundamental networks. Here, σ0 represents the dependence of each cell on its own state
which we omit in the network representation.

Network Monoid symmetries Monoid structure

A2 & A1 σ0 = [1 2 3] , σ1 = [2 3 1] ,σ2 = [3 1 2] Σ6

E6 & E4 σ0 = [1 2 3] , σ1 = [1 1 3] ,σ2 = [1 3 3] Σ5

C1 & D1 σ0 = [1 2 3] , σ1 = [1 1 1] ,σ2 = [1 1 2] Σ1

C1 & B1 σ0 = [1 2 3] , σ1 = [1 1 1] ,σ2 = [1 3 2] Σ7

E6 & F5 σ0 = [1 2 3] , σ1 = [1 1 3] ,σ2 = [3 3 1] Σ2

C1 & C2 σ0 = [1 2 3] ,σ1 = [ 1 1 1] ,σ2 = [2 2 2] Σ4

C1 & E3 σ0 = [1 2 3] , σ1 = [1 1 1] ,σ2 = [1 2 2] Σ3

C1 & E6 σ0 = [1 2 3] , σ1 = [1 1 1] ,σ2 = [1 1 3] Σ3

the network A2 & A1, we have that

σ0 = [1 2 3] , σ1 = [2 3 1] , σ2 = [3 1 2] .

It follows that Σ = {σ0, σ1, σ2} is a monoid. Moreover, as σ2
1 = σ2, σ2

2 = σ1 and
σ1σ2 = σ2σ1 = σ0, we have that the multiplication table for Σ corresponds to Σ6 in table
8 (it corresponds to the Σ6 in section 7 of [24]). �

Remark 5.6. The eight three-cell networks with symmetry monoids with three elements
have the following properties according to the number of nontrivial synchrony spaces: A2 & A1

has no nontrivial synchrony space (from table 3); E6 & E4, C1 & D1 and C1 & B1 have one
nontrivial synchrony space (from table 4); E6 & F5, C1 & E6 and C1 & E3 have two nontrivial
synchrony spaces (from table 5); C1 & C2 has three nontrivial synchrony spaces (from table 6).

Remark 5.7. The networks C1 & E3 and C1 & E6 are ODE-distinct and have the same sym-
metry monoid. Thus they have the same fundamental network. Which in this case is the network
with set of three cellsΣ = {σ0, σ1, σ2} and the asymmetric inputs can be read off from the mul-
tiplication table of Σ3 in table 8 (recall that σ̃ j encodes the left-multiplicative behaviour of σ j):

σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 2 3] .

In fact, this three-cell fundamental network with asymmetric inputs σ̃1 and σ̃2 corresponds to
an isomorphic network of C1 & E3. Thus C1 & E3 is a fundamental network and C1 & E6 is not.
The other six networks are fundamental networks. See table 9 for the asymmetric inputs for
each of the fundamental networks Σ̃i associated with each of the monoids Σi in table 8.

Remark 5.8. More generally, Aguiar et al [7, theorem 5.16] present a set of necessary and
sufficient conditions (on the topology of the network) for a network with asymmetric inputs to
be a fundamental network. One of such properties is the backward connectivity of the graph
(i.e., there exists a cell such that any other cell has a directed path ending in that cell). We remark
that the network C1 & E6 mentioned in the previous remark is not backward connected.
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Table 8. Up to isomorphism, there are seven monoids with three elements [12].

Σ1 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ1

σ2 σ2 σ1 σ1

Σ2 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ2

σ2 σ2 σ2 σ1

Σ3 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ1

σ2 σ2 σ1 σ2

Σ4 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ1

σ2 σ2 σ2 σ2

Σ5 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ2

σ2 σ2 σ1 σ2

Σ6 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ2 σ0

σ2 σ2 σ0 σ1

Σ7 σ0 σ1 σ2

σ0 σ0 σ1 σ2

σ1 σ1 σ1 σ1

σ2 σ2 σ1 σ0

Table 9. The seven fundamental networks with three cells and two asymmetric inputs
corresponding to the symmetry monoids with three elements in table 8. Here, σ̃0
represents the dependence of each cell on its own state.

Fundamental network Monoid symmetries

Σ̃1 σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 2 2]
Σ̃2 σ̃0 = [1 2 3] , σ̃1 = [2 2 3] , σ̃2 = [3 3 2]
Σ̃3 σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 2 3]
Σ̃4 σ̃0 = [1 2 3] , σ̃1 = [2 2 3] , σ̃2 = [3 2 3]
Σ̃5 σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 3 3]
Σ̃6 σ̃0 = [1 2 3] , σ̃1 = [2 3 1] , σ̃2 = [3 1 2]
Σ̃7 σ̃0 = [1 2 3] , σ̃1 = [2 2 2] , σ̃2 = [3 2 1]

6. Why the number n(n − 1) of inputs for an n-cell network with asymmetric
inputs is special?

As a first step towards obtaining a classification, in terms of ODE-classes, of the n-cell networks
with asymmetric inputs, for a fixed n, we show next that for every ODE-class of n-cell networks
with asymmetric inputs, the minimal networks have at most n(n − 1) asymmetric inputs.

5648

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nonlinearity 34 (2021) 5630 M Aguiar et al

Given a positive integer n, consider the n2-dimensional real linear space of the n × n matri-
ces Mn×n(R) with the usual operations of sum of matrices and scalar product of matrices by
reals. Denote by V1,n, the subspace of Mn×n(R) generated by the valency one n × n matrices
(with integer entries 0, 1).

Theorem 6.1. For n � 1, the dimension of the linear subspace V1,n of Mn×n(R) is
n(n − 1) + 1.

Proof. Let dn = n(n − 1) + 1. We show that V1,n has dimension dn. Note that Mn×n(R) has
dimension n2. We first observe that V1,n has dimension at most dn. There are N = nn valency
one square matrices of order n, say B1, . . . , BN . Using the isomorphism between Mn×n(R) and
R

n2
mapping A = [ai j] to the column vector (a11, . . . , a1n, . . . , an1, . . . , ann)T , take the n2 × N

matrix B whose columns correspond to those N matrices. It follows that, the sum of the n first
rows of B is the row (11 . . .1), and the same row sum is obtained for the following groups each
with n rows. Thus the rank of the matrix B is at most dn = n2 − (n − 1). We show now that
there are indeed dn linearly independent matrices Bi. There is a specific choice of valency one
adjacency matrices Bi, such that we get the n2 × dn submatrix B of B with the following block
structure:

Here the blocks I, L1 are n × (n − 1) and L2 is n × n having the form:

I =

[
Idn−1

01,n−1

]
, L1 =

[
0n−1,n−1

11,n−1

]
, L2 =

[
0n−1,n

11,n

]
.

Using the elementary operations on the columns of B, for i = n + 1, . . . , dn, replacing the
column Ci by Ci − Cn, we obtain the matrix:

where

I∗ =

[
Idn−1

−11,n−1

]
.

Clearly, the rank of S is n + (n − 1)(n − 1), that is, dn = n(n − 1) + 1. �
In this and the following section, we will use and study matrices with the same construction

as matrices B and B in the proof above.

Example 6.2. To illustrate the above result, we consider the three-cell networks with asym-
metric inputs. As we have showed, the dimension d3 of the linear subspace V1,3 of M3,3(R),
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generated by the valency one 3 × 3 matrices, is 7. We take the following 3 × 3 valency one
matrices:

M1 =

⎡⎢⎢⎣
1 0 0

0 0 1

0 0 1

⎤⎥⎥⎦ , M2 =

⎡⎢⎢⎣
0 1 0

0 0 1

0 0 1

⎤⎥⎥⎦ , M3 =

⎡⎢⎢⎣
0 0 1

0 0 1

0 0 1

⎤⎥⎥⎦ ,

M4 =

⎡⎢⎢⎣
0 0 1

1 0 0

0 0 1

⎤⎥⎥⎦ , M5 =

⎡⎢⎢⎣
0 0 1

0 1 0

0 0 1

⎤⎥⎥⎦ , M6 =

⎡⎢⎢⎣
0 0 1

0 0 1

1 0 0

⎤⎥⎥⎦ ,

M7 =

⎡⎢⎢⎣
0 0 1

0 0 1

0 1 0

⎤⎥⎥⎦

(a) Using the isomorphism M3×3(R) → R
9 mapping A = [ai j] to the column vector

(a11 a12 . . . a33)t, we can form the 9 × 7 matrix whose columns correspond to the above
7 matrices:

This matrix is the submatrix B in the proof of theorem 6.1, when n = 3. Thus the matrices
M1, . . . , M7 form a basis of V1,3.

(b) Consider now the seven three-cell networks with one input and adjacency matrices
M1, . . . , M7, say G1, . . . , G7, respectively. We have that [G1] = [G5], [G2] = [G4] and
[G6] = [G7], and that G1, G2, G3, G6 are minimal representatives of four distinct ODE-
classes.

(c) We have

A =

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦ = −M3 + M4 + M7

and so {A, M1, M2, M3, M4, M5, M6} is also a basis of V1,3. Similarly, we have

B =

⎡⎣1 0 0
0 0 1
0 1 0

⎤⎦ = A + M1 − M4.
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Thus {A, B, M1, M2, M3, M5, M6} is also a basis of V1,3. Finally, we have that
Id3 = M1 − M3 + M5. We get then that {Id3, A, B, M1, M2, M3, M6} is also a basis of V1,3.
We saw in lemma 5.1 that A, B, M1, M2, M3, M6 are adjacency matrices of representatives
of the (six) distinct ODE-classes of the three-cell networks with one input. The networks
M1, M2, M3, M6 need to be re-enumerated to obtain, respectively, the networks E, D, C, F
in table 1. Recall that the re-enumeration of the cells of a network does not change its
ODE-class.

Theorem 6.3. If G is an n-cell network with k asymmetric inputs which is minimal then
k � n(n − 1).

Proof. By the previous theorem, V1,n has dimension dn = n2 − (n − 1). The result follows
trivially, as if G is an n-cell network with k asymmetric inputs given by the valency one
adjacency matrices A1, . . . , Ak, by proposition 4.2, G is minimal if and only if the matrices
Idn, A1, . . . , Ak are linearly independent. Thus, in particular, Ai �= Idn, for i = 1, . . . , k and k is
at most dn − 1 = n(n − 1). �

Corollary 6.4. An n-cell network with asymmetric inputs is ODE-equivalent to an n-cell
network with at most n(n − 1) asymmetric inputs.

We have then that if G is an n-cell minimal network with m asymmetric inputs then
m � n(n − 1). In particular, we have that for all k > n(n − 1),

Mink,n = ∅.

As remarked before, if there is no restriction on the inputs, then the number of distinct
ODE-classes of n-cell networks is not finite. However, if we restrict to networks with asym-
metric inputs, as the number of n-cell networks with asymmetric inputs with at most n(n − 1)
asymmetric inputs is finite, it also follows from corollary 6.4 that:

Theorem 6.5. The number of distinct ODE-classes of n-cell networks with asymmetric
inputs is finite.

Example 6.6. Consider the set of two-cell networks with asymmetric inputs. We have by
corollary 6.4 that any such network is ODE-equivalent to a two-cell network with at most 2
asymmetric inputs. Moreover, by theorem 6.3, the linear space V1,2 generated by the 2 × 2
valency one matrices (with integer entries 0, 1) is three-dimensional. For example Id2 and

A1 =

[
1 0
1 0

]
, A2 =

[
0 1
1 0

]
form a basis of V1,2. We can check that, up to ODE-equivalence, there are only 4 classes of two-
cell networks with asymmetric inputs, with the following representative networks: the two-cell
network with no inputs, two 1-input networks given by A1 and A2, and one network with two
asymmetric inputs given by A1, A2.

7. The ODE-class of the n-cell networks with n(n − 1) asymmetric inputs

In this section, we start by observing that there is a unique ODE-class of the n-cell networks
with n(n − 1) asymmetric inputs. We then address the issue of finding a minimal representative
of that class.
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As a direct consequence of theorem 6.1, we have that:

Corollary 7.1. If n is a positive integer then all networks in Minn(n−1),n are ODE-equivalent.

Proof. Given two (minimal) networks G1, G2 ∈ Minn(n−1),n, with adjacency matrices Ai and
Bi, respectively, for i = 1, . . . , n(n − 1), we have that Idn, A1, . . . , An(n−1) are linearly indepen-
dent. Similarly, Idn, B1, . . . , Bn(n−1) are linearly independent. Thus both sets form a basis of
V1,n, that is, G1 and G2 are ODE-equivalent. �

Given an n-cell network G with adjacency matrix AG and given a permutation π ∈ Sn on its
set of cells {1, . . . , n}, we denote by πG the network obtained from G by permuting the cells
according to π. Thus the adjacency matrix of πG is P−1

π AGPπ, where Pπ is the permutation
matrix corresponding to π.

Note that any representative of the ODE-class Minn(n−1),n is the union network of n(n − 1)
networks in Min1,n. In the next section, we show that Min1,n has at least n(n − 1) distinct
ODE-classes. It might seem natural that selecting any network in each of those classes, then
their union would be a minimal network in Minn(n−1),n. The following example shows that this
depends on the networks in Min1,n that we select.

Example 7.2. Fix n = 3 and consider the six distinct ODE-classes of the three-cell mini-
mal networks with one input, given by lemma 5.1. As remarked in example 6.2 the adjacency
matrices of the representatives of the six distinct ODE-classes, the networks A, . . . , F in table
1 are linearly independent together with the identity matrix Id3. Thus, the union of the six
networks A, . . . , F is a minimal network in Min6,3. However, if we consider instead the rep-
resentatives A, π1B, π2C, π3D, π3E, π2F, where π1, π2, π3, are the cell permutations given by
π1 = (321), π2 = (213) and π3 = (312), then the subspace generated by the corresponding
adjacency matrices, together with Id3, has dimension 4 �= 7. It follows that the union of the
networks A, π1B, π2C, π3D, π3E, π2F is not a minimal network in Min6,3.

For the case n = 4, if we select randomly twelve ODE-distinct classes in Min1,4, we have
noticed that we will not obtain a representative of Min12,4. However, the next example shows
that, we may find two such representatives of Min12,4 using distinct ODE-classes in Min1,4.

Example 7.3. We present below two 16 × 13 matrices with rank 13, each corresponding to a
different choice of networks in Min1,4. The first column of each of those matrices corresponds
to the matrix Id4 and the other twelve columns to the adjacency matrices of the networks in the
corresponding subset:

For each matrix, its columns correspond to networks with one input which are not ODE-
equivalent.
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On the other hand, it would be unexpected that the union of a set in Min1,n of networks
where most are ODE-equivalent would be a network representative of Minn(n−1),n. We prove
indeed that one such representative is given by considering n − 1 feed-forward networks and
their orbits under the cyclic permutation group on the n cells.

Lemma 7.4. Given n ∈ N, up to permutation of the cells, the number of n-cell feed-forward
networks with one input having at most one tail with length greater than one is n − 1.

Proof. An n-cell feed-forward network with one input having at most one tail with length
greater than one satisfies one of the following: every tail has length one or one tail has length
k > 1 and the other tails have length one. A tail with length k consists of k + 1 cells. So, if
a network has one tail with length k and the other tails with length one, then the network has
n − k tails. Up to permutation of the cells, two networks of the type above are the same if and
only their longest tail have the same length. Note that k can be equal to 1, 2, . . . , or n − 1. Thus,
up to permutation of the cells, there are n − 1 such networks. �

Denote by Zn the cyclic subgroup of Sn generated by the n-cycle permutation
πn = (12 . . .n). Define the following sets

ZnG =
{
π j

nG : j = 0, 1, . . . , n − 1
}

, ZnAG =
{

P−1
π

j
n

AGP
π

j
n

: j = 0, 1, . . . , n − 1
}
.

Theorem 7.5. Given n ∈ N, consider the n − 1 feed-forward networks, F1, F2, . . . , Fn−1,
with n − 1, n − 3, n − 4, . . . , 0 length one tails, respectively, as in lemma 7.4. The n-cell
network with n(n − 1) asymmetric inputs given by the union network

n−1⋃
i=1

ZnFi

is a representative of the minimal class Minn(n−1),n.

Proof. Consider the n − 1 feed-forward networks in the conditions of lemma 7.4,
F1, F2, . . . , Fn−1, with n − 1, n − 2, n − 3, . . . , 1 tails. Without loss of generality, we can con-
sider that the cells in each Fi are enumerated such that the cell 1 receives a self-input, the cells
2, . . . , n − i + 1 receive an edge from cell 1 and the cells n − i + 2, . . . , n, when i > 1, receive
an edge, respectively, from the cells n − i + 1, . . . , n − 1.

Following the construction given in the proof of theorem 6.1, consider the matrix B
whose columns 1 + (i − 1)n, . . . , n + (i − 1)n correspond to the matrices in the sets ZnAFi , for
i = 1, . . . , n − 1, by row. We have that, the rows 1 + (i − 1)n, . . . , n + (i − 1)n, for
i = 1, . . . , n, of B, correspond to the inputs that cell i receives from cells 1, . . . , n, respectively,
in the networks of ZnFi for i = 1, . . . , n − 1.

We have the following observations: among the networks in ZnFi, for i = 1, . . . , n − 1, there
is only one network, F1, such that cell n receives its input from cell 1. Thus, there is one row
of B with the entry in the first column equal to 1 and all the other entries equal to 0. Using
the permutations in Zn, there is one row of B with the entry in column k equal to 1 and all the
other entries equal to 0, for k = 2, . . . , n. Among the networks in ZnFi, for i = 1, . . . , n − 1,
there are only two networks, F1 and F2, such that cell n − 1 receives its input from cell 1.
Thus, there is one row of B with the entries in columns 1 and n + 1 equal to 1 and all the other
entries equal to 0. Using the permutations in Zn, for k = 2, . . . , n, there is one row of B with the
entries in columns k and (k + n) equal to 1 and all the other entries equal to 0. This reasoning
applies recursively, until cell 3. Among the networks in ZnFi, for i = 1, . . . , n − 1, there are
only n − 2 networks, Fi, i = 1, . . . , n − 2, such that cell 3 receives its input from cell 1. Thus,
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Figure 3. The networks C1, C2, C3, D1, D3, D5 from table 2 whose union represent a
minimal network in the class Min6,3.

there is one row of B with the entries in columns 1 + (i − 1)n, for i = 1, . . . , n − 2, equal to 1
and all the other entries equal to 0. Using the permutations in Zn, for each k = 2, . . . , n, there
is one row of B with the entries in the columns k + (i − 1)n, for i = 1, . . . , n − 2, equal to 1
and all the other entries equal to 0. Finally, for the cell 1, we have that, among the networks in
ZnFi, for i = 1, . . . , n − 1, there are only n − 1 networks, Fi, i = 1, . . . , n − 1, such that cell
1 has a self-loop. Thus, there is one row of B with the entries in columns 1 + (i − 1)n, for
i = 1, . . . , n − 1, equal to 1 and all the other entries equal to 0. Using the permutations in Zn,
for each k = 2, . . . , n, there is one row of B with the entries in the columns k + (i − 1)n, for
i = 1, . . . , n − 1, equal to 1 and all the other entries equal to 0.

Taking the above observations into account, we conclude that there is a permutation of the
rows of matrix B such that B is row-equivalent to a matrix with the following lower triangular
block form: ⎡⎢⎢⎢⎢⎣

Idn 0 0 . . . 0
Idn Idn 0 . . . 0
. . . . . . . . . . . . . . .
Idn Idn Idn . . . Idn

Idn ∗ ∗ . . . ∗

⎤⎥⎥⎥⎥⎦
It follows that the matrix B has rank (n − 1)n and, thus, that the (n − 1)n matrices in ZnAFi ,

for i = 1, . . . , n − 1, are linearly independent. We conclude that the network given by the union
of networks,

⋃n−1
i=1 ZnFi, is a representative of the minimal class Minn(n−1),n. �

In the next example, we illustrate theorem 7.5 when n is equal to 3.

Example 7.6. Up to permutation of the cells, there are two three-cell feed-forward networks
with one input, one having two tails of length one each and the other having just one tail with
length two. See networks C ≡ F1 and D ≡ F2, respectively, in table 1. Consider, also, the
networks in the sets Z3F1 = {C1, C2, C3} and Z3F2 = {D1, D3, D5} , where the networks Ci

and D j appear in table 2. By theorem 7.5, the three-cell network with 6 asymmetric inputs given
by the union of the networks in Z3F1 ∪ Z3F2 (see figure 3) is a representative of the minimal
class Min6,3 (see figure 4).
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Figure 4. A representative of the minimal class Min6,3.

Remark 7.7. For an integer n � 2, consider the n − 1 feed-forward networks, F1, F2, . . . ,
Fn−1, with n − 1, n − 3, n − 4, . . . , 0 length one tails, respectively, as in lemma 7.4. We remark

that, for each k � n(n − 1), the

(
n(n − 1)

k

)
networks with k asymmetric inputs defined by the

union of the possible combinations of k networks in the set {ZnFi : i = 1, . . . , n − 1} are min-
imal networks representing ODE-classes. However, they can represent the same ODE-classes.
For example, the minimal networks F1 and πnF1 represent the same ODE-class. Therefore the
number of distinct ODE-classes in Min1,n given by those feed-forward networks is n − 1.

Nevertheless, we believe that the number of distinct classes in Mink,n can be lower bounded
by the number of k-combinations from n(n − 1) elements. In the next section, we prove that
this lower bound is valid when k = 1.

8. More on n-cell networks with one asymmetric input

Observe that for n = 3 and n = 2, the number of distinct ODE-classes of the network set Min1,n

is equal to n(n − 1). However, this is not true for n � 4. For example, from the results obtained
by [11], we have that, up to permutation of cells, the set Min1,4 contains 18 networks and
n(n − 1) = 12 when n = 4. More generally, from the results of [11], we have that the number
of distinct ODE-classes in Min1,n increases quite fast with n and it is bigger than n(n − 1) for
n � 4. We present below an algorithm that provides n(n − 1) networks belonging to n(n − 1)
distinct ODE-classes in Min1,n constructed from networks in distinct ODE-classes in Min1,l

for l < n.
By explicit computation, we can see that Min1,1 has no networks and Min1,2 has two ODE-

distinct networks. Also, from table 1, we know that Min1,3 has six distinct ODE-classes of
networks. We describe now explicitly some of the distinct ODE-classes of Min1,n, for n > 3.

Algorithm 8.1. Input: a representative network G of an ODE-class in Min1,n−1 with adja-
cency matrix AG, where n > 3 is an integer. Let k be the number of cells of the largest cycle of
the network.

Output: a representative network G̃ with adjacency matrix ÃG̃ of an ODE-class in Min1,n

where k + 1 is the number of cells of the largest cycle of the network.

(a) Choose a representative network G ∈ Min1,n−1 and consider its adjacency matrix AG. Let
k be the number of cells of the largest cycle of the network.

(b) Re-enumerate the cells if necessary so that the matrix AG has the form:

AG =

[
Ck 0
B D

]
,
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where Ck is the adjacency matrix of the k-cycle, B is a (n − 1 − k) × k matrix and D is a
(n − 1 − k) × (n − 1 − k) matrix.

(c) Take the network with n cells by the following adjacency matrix

ÃG̃ =

[
Ck+1 0

B 0 D

]
,

where 0 is a column of zeros and Ck+1 is the adjacency matrix of the (k + 1)-cycle.
(d) Output the network with adjacency matrix ÃG̃.

Proposition 8.2. Algorithm 8.1 applied to a set of representatives of the distinct ODE-
classes in Min1,n−1, where n > 3 is an integer, provides a set of ODE-distinct networks in
Min1,n.

Proof. We follow the notation of algorithm 8.1. Take two graphs G1 and G2 in Min1,n−1 with
adjacency matrices A1 and A2 and consider the two networks in Min1,n obtained as output in
algorithm 8.1 with adjacency matrices Ã1 and Ã2. We need to check that if Ã1 and Ã2 define
ODE-equivalent networks then A1 and A2 define ODE-equivalent networks. Suppose that Ã1

and Ã2 define ODE-equivalent networks, i.e., there exists a permutation matrix P such that
Ã1P = PÃ2. Note that the largest cycle of both networks, as it stems from the (not necessarily
unique) largest cycles of G1, G2 enlarged by one cell, is unique and it consists of the same
number of cells, say k + 1. In particular both adjacency matrices are of the form

Ãi =

[
Ck+1 0

Bi 0 Di

]
,

for i = 1, 2 after re-enumeration of the cells. Then the permutation P must permute cells in the
largest cycle with cells in the largest cycle and has the following form:

P =

[
P1 0
0 P2

]
,

where P1 is a (k + 1) × (k + 1) matrix and P2 is a (n − 1 − k) × (n − 1 − k) matrix. If Ã1P =
PÃ2, then Ck+1P1 = P1Ck+1. By theorem 3.1.1 of [13], we know that P1 = Cl

k+1 for some
integer 0 � l � k.

Let P̂ be the permutation matrix given by

P̂ =

[
Cl

k 0
0 P2

]
.

Next, we check that Ã1P = PÃ2 implies that A1P̂ = P̂A2. It is clear that CkCl
k = Cl

kCk and
D1P2 = P2D2. We need to see that B1Cl

k = P2B2. It follows from Ã1P = PÃ2 that [B1|0]Cl
k+1 =

P2[B2|0] and

([B1|0])i( j−l+k+1) =

n−k−1∑
a=1

(P2)ia(B2)aj = (P2B2)i j, 0 < j < l

0 = ([B1|0])ik+1 = (P2B2)i j, j = l

([B1|0])i( j−l) =
n−k−1∑

a=1

(P2)ia(B2)aj = (P2B2)i j, l < j < k + 1

([B1|0])i(k+1−l) = ([B2|0])ik+1 = 0, j = k + 1
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Table 10. Six ODE-distinct four-cell networks with one input which are minimal build
from the six ODE-distinct three-cell minimal networks with one input.

where |0 is a column of zeros and 1 � i � n − k. Then [B1|0] = [X|0|Y|0] and [P2B2|0] =
P2[B2|0] = [Y|0|X|0], where X is a (n − k) × (k − l) matrix and Y is a (n − k) × (l − 1) matrix.
Thus P2B2 = [Y|0|X] = B1Cl

k. �

Example 8.3. Table 10 illustrates the application of algorithm 8.1 to a set of ODE-distinct
networks in Min1,3 (taken from table 1) by increasing for each network the largest cycle by one
cell, obtaining six ODE-distinct networks in Min1,4.

Algorithm 8.4. Input: the feed-forward networks F1, with n − 1 cells and only one tail with
length n − 2, and F2, with n − 2 cells and only one tail with length n − 3, respectively, where
n > 3 is a positive integer.

Output: 2(n − 1) ODE-distinct feed-forward networks in Min1,n.

(a) Taking the feed-forward network F1 with n − 1 cells, we add one new cell which receives
a connection from the cells in F1. There are n − 1 different possible connection, one for
each cell in F1.

(b) Taking the feed-forward network F2 with n − 2 cells, we add two new cells which receive
a connection from the same cell in F2, except the cell in F2 without outgoing edges. There
are n − 3 different possible connections, one for each cell in F2 minus one.

(c) Taking the feed-forward network F1 with n − 1 cells, we add one new cell with a self-
loop. Taking the feed-forward network F2 with n − 2 cells, we add two new cells with a
self-loop.
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Table 11. Six ODE-distinct four-cell networks with one input which are minimal build
from a three-cell and two-cell minimal feed-forward networks with one input.

In algorithm 8.4, we provide n − 1 + n − 3 + 2 = 2(n − 1) feed-forward networks in
Min1,n, where n > 3 is a positive integer. Trivially, we have that:

Proposition 8.5. The 2(n − 1) feed-forward networks outputted from algorithm 8.4, where
n > 3 is a positive integer, are ODE-distinct.

Example 8.6. Table 11 illustrates the construction given in algorithm 8.4 for the case n = 4
providing six ODE-distinct 4-cell networks in Min1,4 which are feed-forward.

Theorem 8.7. Let n be a positive integer. The difference between the number of distinct
ODE-classes in Min1,n and in Min1,n−1 is at least 2(n − 1). Furthermore, the number of distinct
ODE-classes in Min1,n is at least n(n − 1).
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Proof. Recall that Min1,1 has no networks, Min1,2 has two ODE-distinct networks, and that
from table 1, we see that Min1,3 has six distinct ODE-classes of networks. So both assertions
are true for n � 3. Assume now that n > 3. From algorithm 8.1 and proposition 8.2, we obtain
ODE-distinct networks in Min1,n from ODE-distinct networks in Min1,n−1. From algorithm 8.4
and proposition 8.5, we obtain 2(n − 1) ODE-distinct feed-forward networks in Min1,n. As the
feed-forward networks are not ODE-equivalent to those networks obtained from extending the
largest cycle because the largest cycle of the networks has different dimension, we have proved
that the difference of the number of distinct ODE-classes between Min1,n and Min1,n−1 is at
least 2(n − 1) for n > 1.

By induction, we assume that the number of distinct ODE-classes in Min1,n−1 is greater than
(n − 1)(n − 2) and using the previous claim we see that the number of distinct ODE-classes in
Min1,n is greater than n(n − 1). Thus, the second part of the theorem follows. �

9. Final conclusions

In this work, we prove that the set Mink,n of minimal n-cell networks with k asymmetric inputs
is empty for k > n(n − 1) and that there is a unique ODE-class in Minn(n−1),n. Note that the min-
imal representative of the unique ODE-class in Minn(n−1),n obtained in theorem 7.5 is given by
the union of n(n − 1) networks in Min1,n from solely (n − 1) distinct ODE-classes. Neverthe-
less, as we have illustrated for the case of networks with three and four cells, it is natural to
expect that there exists a minimal representative of Minn(n−1),n such that each asymmetric input
corresponds to a different ODE-class in Min1,n. We recall that a network with k asymmetric
inputs is the union of k networks with one (asymmetric) input.

Moreover, we conjecture that the union of every subset of k such networks, with
k < n(n − 1), will correspond to a minimal representative of a distinct ODE-class for the net-
works with k asymmetric inputs. Therefore, we conjecture that the binomial coefficient, below,
is a lower bound for the number of distinct ODE-classes in Mink,n:(

n(n − 1)
k

)
=

(n(n − 1))!
k! (n(n − 1) − k)!

, k < n(n − 1).

Nevertheless, we describe two algorithms to construct at least n(n − 1) distinct ODE-classes
with one input and n cells. Therefore, the conjecture above holds for k = 1. It also holds trivially
for k = 0 and k = n(n − 1). We believe that the algorithms presented here can be generalized
for bigger numbers of asymmetric inputs. Since these algorithms use the minimal representa-
tive networks with less cells, we hope that those generalized algorithms lead to a proof of the
conjecture for k � n(n − 1)/2. For the values of k on the second half, we conjecture that the
number of ODE-classes is symmetric. Specifically, we conjecture that the number of ODE-
classes in Mink,n is equal to the number of ODE-classes in Minn(n−1)−k,n. The orthogonality of
subspaces in the space generated by all adjacency matrices can lead to a proof of this conjecture.
Note that the binomial coefficient is strictly lower than the number of ODE-classes in the cases
(n, k) = (3, 2) and (n, k) = (4, 1).
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