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Abstract: Three coatings suitable for biomedical applications, including the dispersion coating com-
posed of multi-wall carbon nanotubes (MWCNTs), MWCNTs/TiO2 bi-layer coating, and MWCNTs-
Cu dispersion coating, were fabricated by electrophoretic deposition (EPD) on Ti Grade II substrate.
Optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and nanoin-
dentation were applied to study topography, chemical, and phase composition, roughness, hardness,
Young’s modulus, plastic, and elastic behavior. The results showed that the best mechanical proper-
ties in terms of biomedical application were achieved for the MWCNTs coating with titania outer
layer. Nevertheless, both the addition of nanocopper and titania improved the mechanical resistance
of the base MWCNTs coating. Compared to our previous experiments on Ti13Nb13Zr alloy, a general
tendency is observed to form more homogenous coatings on pure metal than on the alloy, in which
chemical and phase compositions are more complex.

Keywords: carbon nanotubes; coatings; nanohardness; Young’s modulus

1. Introduction

The carbon nanotubes (CNTs) belong to highly promising functional materials due
to their extraordinary properties as electrical semiconductivity, high mechanical stiffness,
tensile strength, high elasticity, significant thermal conductivity, and, in certain conditions,
superconductivity [1,2]. The CNTs may appear in different forms as single-, double-,
and multi-wall carbon nanotubes (MWCNTs) [3], nanohorns, and nanobuds [1]. They
find applications in different fields as many branches of nanotechnology, nanomedicine,
membranes and biosensors, electrochemical, piezoelectric and gas sensors, capacitors, and
transistors in electronics [3], and high-performance batteries [4,5]. In particular, in medicine,
they are proposed for drug targeting, cancer diagnosis, and treatment, as antibacterial and
antifungal structures [2], and as gene carriers [6].

The most popular development direction of CNTs is their application in multi-component
materials. The typical recent examples include cellulose—CNTs for methylene adsorption [7],
nitrogen-doped graphene—CNTs for microwave absorption [8], polypyrrole—CNTs for
storage devices [9], ZnO—CNTs dispersed in PU for better anti-corrosion resistance [10],
cement [11,12], and Al alloy reinforced with CNTs [13]. The specific optical and electrical
properties, high specific surface area, high chemical activity, and significant mechani-
cal behavior are the reasons for the development of a great number of such composite
materials [14,15].

CNTs can also form coatings, layers, or films. They have been, rather seldomly,
proposed as single coating, e.g., to enhance the adsorption of albumins on Ti [16], in
condensation heat transfer systems [17], to enhance biotribological resistance of Ti al-
loy [18], to mitigate biofouling [19], and in environmental protection [20]. However, they
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are more often used as one of the layers in sandwich (hybrid) coatings, or as one of the
components of the coating. The most frequently studied composite coatings are those
based on CNTs and CNTs reinforced hydroxyapatite (HAp) [21–23], and HAp substi-
tuted by (Sr + Mg + Zn) [24], Hap-collagen-MWCNTs [25], and Hap-titanium-CNTs [26].
Other research focused on composite coatings such as tantalum oxide-CNTs [27], collagen-
CNTs [28], collagen-CNTs-acrylic acid [29], CNTs-polysiloxane [30], and Al3Ti-Cu-SiC-
CNTs [31]. As concerns the noble metals, it is important to note the electrodes obtained
by atomic layer deposition and composed of MWCNTs, TiO2, and Pt [32]. The possibility
of interaction of Ni, Ti, Pd, and Au with CNTs was shown for different forms of carbon
nanotubes [33]. Nanochitosan capped gold nanoparticles were also obtained [34]. The
important role of nanogold in the immobilization of proteins associated with SARS-CoV-2
was shown by Yokohama et al. [35,36].

The use of noble or semi-noble metals is justified by their antibacterial properties.
However, if silver is assumed to be a safe element to human cells [37], the higher potential
risk comes from the use of nanocopper than two-valent copper ions, related to different
mechanisms of their toxic effects [38]. On the other hand, rGO (reduced graphene oxide)—
nanoCu scaffolds demonstrated high antibacterial efficiency [39]. The nanogold was shown
to eliminate pathogenic bacteria and even cancer cells [40], but no data about the side
effects of this element are known.

The research studies described in this article are aimed at determining several proper-
ties of some new promising multi-component systems for medicine, which are based on
MWCNTs. The titanium dioxide is added to the MWCNTs-based coating to enhance its
mechanical behavior, while nanocopper is implemented to create the antibacterial activity
of titanium implants. The MWCNTs-titanium oxide systems were developed for differ-
ent purposes as nanocomposites obtained by sol-gel technique [41], by high energy ball
milling [42], and by atomic layer deposition of titania on MWCNTs [43]. Nanocopper was
a component of several coatings: HAp-nanoCu [44,45] and polyelectrolyte-nanoCu [46].
However, there is no sufficient research or knowledge on such material systems, which
are potentially promising in the development of antibacterial, bioactive, and mechanically
strong coatings for titanium implants.

2. Materials and Methods
2.1. Materials

The Ti Grade II (EkspresStal, Luboń, Poland) was used as a substrate. Specimens
in form of 40 mm in diameter and 4 mm thick slices were cut from the rod and divided
into quarters using a precision cutter (Brillant 220, ATM GmbH, Mammelzen, Germany).
The surface was ground using abrasive paper SiC up to grit # 800 on a metallographic
grinding machine (Saphir 330, ATM GmbH, Mammelzen, Germany). Then, specimens
were rinsed with acetone (Chempur, Piekary Śląskie, Poland), distilled water, dried in the
air, and pickled in 5% HF (Chempur, Piekary Śląskie, Poland) for 30 s to remove oxide
layers from the surface, and finally rinsed with distilled water.

The multi-wall carbon nanotubes (MWCNTs) had an outer diameter of 10–15 nm, an
inner diameter of 2–6 nm, a length of 1–10 µm, and the number of walls 3–15 (3D-Nano,
Krakow, Poland). Nanocopper (nanoCu) had a mean grain size of 80 nm (Hongwu Inter-
national Group Ltd., Guangzhou, Guangdong, China). Titanium dioxide (TiO2) of rutile
structure (3D-Nano, Krakow, Poland), possessed a grain size in the range of 1 to 2 nm.

2.2. Fabrication of the Bi-Layer MWCNTs/TiO2 Coating and MWCNTs_Cu Dispersion Coating

The electrophoretic deposition (EPD) method was used to prepare coatings, for which
synthesis parameters are shown in Table 1. The Ti Grade II substrate was used as an anode
and stainless steel as a counter-electrode for the MWCNTs coating, and inversely for both
other coatings. The electrodes were placed parallel to each other within a distance of
5 mm and connected to the DC power source (MCP/SPN110-01C, Shanghai MCP Corp.,
Shanghai, China).
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Table 1. Parameters of synthesis of coatings.

Coating Substrate Deposited Materials Content of Component
in a Bath (wt. pct.)

EPD Time
(min)

EPD Voltage
(V)

MWCNTs Ti Grade II MWCNTs 0.25 1 20

MWCNTs_TiO2 Ti Grade II
(I) MWCNTs 0.25 1 20

(II) TiO2 0.30 4 50

MWCNTs/Cu Ti Grade II MWCNTs + nanoCu 0.25
0.0125 4 50

The EPD process was conducted at parameters selected based on the preliminary
studies. The bi-layer coating MWNCTs_TiO2 was prepared in two steps. First, the elec-
trophoretic suspension of 0.1 g MWCNTs in 40 mL of distilled water was prepared and
the EPD process on Ti Grade II substrate proceeded (designation: MWCNTs). Second, the
same samples were deposited in suspension consisted of 0.15 g TiO2 dispersed in 50 mL of
isopropanol together with 0.5 mL of surfactant -Polysorbate 20 (Tween 20, Sigma-Aldrich,
Poznan, Poland).

To prepare the dispersion coating MWCNTs_Cu, 0.1 g of MWCNTs, 0.005 g of nanoCu,
and 0.5 mL of Polysorbate 20 were dispersed in 40 mL of distilled water and deposited
using the EPD method on Ti Grade II substrate.

2.3. Structure and Morphology

To study the surface topography, the optical microscope (VHX Keyence, Keyence
International (Belgium) NV/SA, Mechelen, Belgium) was used. The average roughness
index Sa values were estimated based on 512 lines made in the area of approximately
150 µm × 140 µm. Additionally, the atomic force microscopy (NaniteAFM, Nanosurf AG,
Liestal, Switzerland) at a non-contact mode of testing with a 20 nN force was applied for
the same purpose. Tests were made on the surface of dimensions 50 µm × 50 µm and the
Sa parameter was estimated based on 256 lines (time for a single line of 2 s).

The specimens’ surfaces and cross-sections were observed using a high-resolution
scanning electron microscope (SEM) (JSM-7800F, JOEL, Tokyo, Japan) with a LED detector,
at 5 kV acceleration voltage.

The chemical composition of the coatings was investigated by the X-ray energy dis-
persive spectrometer (EDS) (Octane Elite 25, EDAX Ametek, Berwyn, PA, USA).

2.4. Nanoindentation Studies

Nanoindentation tests were performed with the NanoTest™ Vantage (Micro Materials,
Wrexham, Great Britain) equipment, except for the MWCNTs reference coating which
was measured with the nanoindentation tester NHT3 (Anton Paar, Buchs, Switzerland),
equipped with an optical microscope. All samples were tested using a Berkovich three-
sided pyramidal diamond probe. The combined samples: the MWCNTs/TiO2 and the
MWCNTs_Cu coatings were measured in twenty-five (5 × 5) points, while the MWCNTs
reference coating was tested in the best place, based on optical microscopy observation.
The measurements were carried out according to a test method following the ISO 14577
standard (the maximum applied force: 10 mN, the loading and unloading rate: 20 s, the
dwell period at maximum load: 10 s). The distances between the subsequent indents were
20 µm. The load-displacement curve was determined by the Oliver and Pharr method,
and surface hardness (H), reduced Young’s modulus (Er), elastic and plastic deformation
energies were calculated using the integrated software. Young’s modulus (E) parameter
was estimated based on the reduced Young’s modulus (Er) parameter and the Poisson’s
ratio (v). Assuming the MWCNTs/TiO2 and MWCNTs_Cu coatings as unidirectional
composite materials, the values of v, E, and H parameters were calculated from the Halpin-
Tsai (H-P) model, explained in our previous publication [47]. The volume fraction was
calculated according to [48] and assuming densities of 2.10 g/cm3 [49], 4.23 g/cm3 [50],
and 8.94 g/cm3 [51] for MWCNTs, TiO2, and nanoCu, respectively.
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The v values of 0.254 and 0.251 were assessed for the MWCNTs/TiO2 and MWC-
NTs_Cu coating, respectively.

3. Results
3.1. Structure and Morphology

The surface topographies of the MWCNTs, MWCNTs/TiO2, and MWCNTs_Cu coat-
ings are shown in Figure 1. The reference MWCNTs coating is characterized with high ups
and downs, while for the MWCNTs/TiO2 and the MWCNTs_Cu coatings, the roughness is
higher, but the distance between ups and downs is lower. The surface of the MWCNTs_Cu
coating is significantly leaned—the left side of the sample is higher than the other, which
could be the reason for an unevenly put force during the grinding process or the difference
in the MWCNTs_Cu coating thickness on both sides of the sample. The values of the
roughness parameter (Sa) calculated both with the optical microscope and the atomic force
microscope are demonstrated in Table 2. It could be observed that the Sa parameter is
higher for all surfaces when using the atomic force microscopy, which could be attributed
to the use of the non-contact mode AFM and thus lower accuracy.
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Figure 1. Surface topography based on optical microscopy tests for (A) the MWCNTs coating, (B) the MWCNTs/TiO2

coating, and (C) the MWCNTs_Cu coating.

Table 2. Surface roughness of the deposited coatings.

Sample Roughness Sa Based on Optical
Microscopy Tests (µm)

Roughness Sa Based on Atomic
Force Microscopy Tests (µm)

MWCNTs 0.29 * 0.353 ± 0.107
MWCNTs/TiO2 0.56 * 1.033 ± 0.107
MWCNTs_Cu 0.36 * 0.495 ± 0.034

* the experimental error has been estimated as less than 0.05 µm.

Figure 2 shows the AFM images for tested surfaces, confirming the roughness Sa
parameter values shown in Table 2. The surface of the MWCNTs/TiO2 demonstrates
the highest ups and downs, which is caused by the TiO2 agglomerates deposited on the
MWCNTs surface, while the MWCNTs surface is the smoothest, as assumed.

Figure 3 demonstrates the SEM images of the surface topography of the MWCNTs,
MWCNTs/TiO2, and MWCNTs_Cu coatings at different resolutions. The surface of
the MWCNTs coating shows uniformly distributed carbon nanotubes. There are light
points/areas for high ups, as demonstrated in Figure 1A, supposedly places where the coat-
ing is thicker. There are many agglomerates on the combined MWCNTs/TiO2 and MWC-
NTs_Cu coatings, however the structure of agglomerates is different. The MWCNTs/TiO2
contains uniformly positioned angular particles of TiO2, which adhere to the surface of the
MWCNTs coating, while the Cu agglomerates in the MWCNTs_Cu coating are built into
the MWCNTs structure. Therefore, they are almost invisible, but nevertheless influence
mechanical properties of the coating, as previously observed in [47]. The areas, where the
SEM image of the MWCNTs_Cu coating is blurred, are probably spaces in which the cracks
of the MWCNTs coating occur.
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The EDS spectra of the examined coatings are shown in Figure 4, confirming the
appearance of the MWCNTs, MWCNTs/TiO2, and MWCNTs_Cu coatings. There are
also present some impurities (silicon, chlorine, sodium, and fluorine) that result from the
samples preparation.
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Moreover, the ASTM D3359-97 pressure-sensitive tape test was carried out on every
single coating to check the thickness and the adhesion to the substrate. None of the
examined coatings was removed during the test, which gives us valuable information of
significantly strong coatings’ adhesion to the Ti grade II substrate.

3.2. Nanoindentation Studies

The results of the nanoindentation test are illustrated as the load-displacement hys-
teresis curves in Figure 5. There are three stages distinguished in the nanoindentation test,
which are pointed in the graph. Firstly, the increasing curve shows the force raising during
the test until the maximum load is achieved. Secondly, the horizontal line demonstrates
the pause, where the probe is stabilized at maximum depth. The third stage is the result
of temperature drift, adjusted at the end of the nanoindentation measurement. The dis-
placement, and thus maximum indent depth, was observed for the MWCNTs coating. Both
the metal and metallic oxide additions to the MWCNTs based coating made it harder, as
confirmed by mechanical properties (Table 3).
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Table 3. Mechanical properties and maximum indent depth for the substrate and tested coatings.

Sample Nanohardness
H (GPa)

Reduced Young’s
Modulus Er (GPa)

Young’s
Modulus E

(GPa)

Maximum
Indent

Depth hmax (µm)

Plastic
Deformation
Energy (nJ)

Elastic
Recovery

Energy (nJ)

MWCNTs1 0.032 ± 0.0003 4.5 ± 0.05 3.41 ± 0.03 3.58 ± 0.04 7.06 ± 0.07 0.958 ± 0.0096
MWCNTs/TiO2 0.183 ± 0.0572 13.4 ± 3.20 10.11 ± 2.42 1.55 ± 0.28 5.01 ± 0.87 0.644 ± 0.0664
MWCNTs_Cu 0.079 ± 0.0354 4.7 ± 2.40 3.51 ± 1.84 2.55 ± 0.69 19.23 ± 6.83 6.821 ± 2.0237
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Table 3 demonstrates the mean values and standard deviations of several mechanical
properties of the MWCNTs, MWCNTs/TiO2, and MWCNTs_Cu coatings. The hybrid and
composite coatings have higher hardness and Young’s modulus, and lower maximum
indent depth compared to the reference MWCNTs coating, as the addition of nanoceramics
and nanometals, in general, improves mechanical properties. However, we can observe
the nanohardness increase when Young’s modulus decreases (regarding the reference
MWCNTs coating), differently than in our previous research [47], in which the same
coatings have been deposited on Ti alloy substrate. The mechanical properties of the
MWCNTs_Cu coating are pretty close to the reference sample, except plastic and elastic
properties, while different for the MWCNTs/TiO2 coating.

The elastic recovery and plastic deformation energies are also shown by an area under
load-displacement curves during the nanoindentation test.

Figure 6 shows the comparison of elastic recovery and plastic deformation energy
of the examined coatings. The MWCNTs_Cu coating was the most both plastically and
elastically deformed, comparing to the others. It can be attributed to the nanoCu presence
in the crossover sections of carbon nanotubes, which influences the coating’s properties,
whereas the MWCNTs/TiO2 coating achieved better properties. After the nanoindentation
test, the material was the least deformed both plastically and elastically, even less than
the reference sample, which was certainly caused by hard TiO2 particles strengthening the
MWCNTs coating.
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Other crucial parameters, further explaining mechanical properties of the MWC-
NTs, MWCNTs/TiO2, and MWCNTs_Cu, are the ratio of the nanohardness to reduced
elastic modulus (H/Er), which shows the coating ability to accommodate substrate deflec-
tions under load (the coating endurance for chipping off under substrate bending), and
the yield pressure (H3/Er

2), determining the resistance to plastic deformation under the
nanoindenter probe load (the distortion of the coating material during nanoindentation
test), as previously discussed in [47] for the Ti alloy. The addition of nanoceramics and
nanometals to the MWCNTs coating improves its ability to accommodate the substrate
deformation under applied load as the H/Er parameter for both composite coatings is
higher than that of the MWCNTs as illustrated in Figure 7A. In particular, the resistance to
plastic deformation was significantly increased for coating implemented with hard ceramic
nanotitania particles.



Appl. Sci. 2021, 11, 7862 8 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15 
 

higher than that of the MWCNTs as illustrated in Figure 7A. In particular, the resistance 
to plastic deformation was significantly increased for coating implemented with hard ce-
ramic nanotitania particles. 

 
Figure 7. The diagrams for the H/Er (A) and the H3/Er2 parameter (B), calculated for the MWCNTs, MWCNTs/TiO2 bi-
layer, and the MWCNTs_Cu dispersion coating, examined under indentation load of 10 mN. 

Figure 7B shows the best ability to resist plastic deformation under nanoindenter tip 
load for the MWCNTs/TiO2 coating, as also demonstrated in Figure 6, where the same 
coating was the least plastically deformed. The MWCNTs_Cu coating was significantly 
less susceptible to plastic deformation under nanoindenter tip action (Figure 7B) than the 
MWCNTs coating with the TiO2 addition. Figure 6 shows the MWCNTs_Cu coating as 
the most elastically deformed during the nanoindentation test (the coating partially re-
turned to its shape). 

4. Discussion 
The results can be discussed in two aspects. At first, the change in surface properties 

due to surface modification by either of the two tested coatings can be attributed to dif-
ferent phenomena and determinants. Secondly, the influence of substrate surface on ob-
served topography and mechanical appearance can be considered. To summarize, two 
variables, the coating microstructure and composition, and substrate composition are two 
variables to discuss. 

The ceramic-carbon coating has roughness greater than the MWCNTs layer (Figures 
1 and 2, and Table 2). It is a hybrid coating with inner CNTs and an outer titania layer. 
Highly rough topography is observed (Figure 3) with many separated nanoparticles of 
titanium dioxide or their aggregates. Figure 4 justifies the real presence of titanium in the 
layer. Unfortunately, the authors have failed to obtain a homogenous coating by simulta-
neous deposition of MWCNTs and TiO2. On the other hand, the design and preparation 
of such bi-layer coatings on the titanium alloys appears a highly fruitful strategy if the 
inner layer is elastic (soft) and allows cracks to bridge, deviate or passivate, or absorb 
energy [52]. In other words, the layered structure (hybrid or sandwich structure) of a coat-
ing permits the simultaneous creation of the hard outer layer and the elastic, impact and 
high stress absorbent, resistant-to-damage inner layer. The last phenomenon results from 
preventing the occurrence of cracks and, in particular, their movement across the whole 
coating. There are opinions [53] that such a two-stage deposition process offers more flex-
ibility in the composition of the coatings, but as it has been shown here, the EPD mecha-
nisms are in such a case becoming complex, and to develop the coatings with optimal 
characteristics is difficult and needs several attempts, which will be made in the future for 
the most promising MWCNTs/TiO2. In particular, an aggregation of nanoparticles is an 

Figure 7. The diagrams for the H/Er (A) and the H3/Er
2 parameter (B), calculated for the MWCNTs, MWCNTs/TiO2

bi-layer, and the MWCNTs_Cu dispersion coating, examined under indentation load of 10 mN.

Figure 7B shows the best ability to resist plastic deformation under nanoindenter tip
load for the MWCNTs/TiO2 coating, as also demonstrated in Figure 6, where the same
coating was the least plastically deformed. The MWCNTs_Cu coating was significantly
less susceptible to plastic deformation under nanoindenter tip action (Figure 7B) than the
MWCNTs coating with the TiO2 addition. Figure 6 shows the MWCNTs_Cu coating as the
most elastically deformed during the nanoindentation test (the coating partially returned
to its shape).

4. Discussion

The results can be discussed in two aspects. At first, the change in surface properties
due to surface modification by either of the two tested coatings can be attributed to different
phenomena and determinants. Secondly, the influence of substrate surface on observed
topography and mechanical appearance can be considered. To summarize, two variables,
the coating microstructure and composition, and substrate composition are two variables
to discuss.

The ceramic-carbon coating has roughness greater than the MWCNTs layer (Figures 1 and 2,
and Table 2). It is a hybrid coating with inner CNTs and an outer titania layer. Highly
rough topography is observed (Figure 3) with many separated nanoparticles of titanium
dioxide or their aggregates. Figure 4 justifies the real presence of titanium in the layer.
Unfortunately, the authors have failed to obtain a homogenous coating by simultaneous
deposition of MWCNTs and TiO2. On the other hand, the design and preparation of such
bi-layer coatings on the titanium alloys appears a highly fruitful strategy if the inner layer
is elastic (soft) and allows cracks to bridge, deviate or passivate, or absorb energy [52].
In other words, the layered structure (hybrid or sandwich structure) of a coating permits
the simultaneous creation of the hard outer layer and the elastic, impact and high stress
absorbent, resistant-to-damage inner layer. The last phenomenon results from preventing
the occurrence of cracks and, in particular, their movement across the whole coating. There
are opinions [53] that such a two-stage deposition process offers more flexibility in the
composition of the coatings, but as it has been shown here, the EPD mechanisms are in
such a case becoming complex, and to develop the coatings with optimal characteristics
is difficult and needs several attempts, which will be made in the future for the most
promising MWCNTs/TiO2. In particular, an aggregation of nanoparticles is an unnecessary
phenomenon that should be avoided or eliminated by chemical functionalization, solvent
exchange, ultrasonication, or in another way [54,55].

The composite carbon-metal coating also has roughness greater than the MWCNTs
coating (Table 2), but lower than that of the hybrid coating, and a more homogenous surface
(Figure 3). The Cu nanoparticles are well dispersed in the matrix, and in such a manner
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they do not seriously contribute to the roughness. Figure 4 proves the real presence of
copper in the layer.

When comparing the mechanical values for both tested coatings, the difference be-
tween hybrid MWCNTs-titania and composite MWCNTs_Cu coatings is apparent. The
MWCNTs-oxide coating has greater hardness and Young’s modulus than the carbon
nanotube-metal coating. The first coating may be then considered in such applications in
which the coating opposes high stresses and must be resistant to wear or cracking. The
second coating, which includes antibacterial metal, can be recommended for particular
coatings that should actively kill bacteria in their neighborhood [56], but with no excessive
loads during surgery and further use of the implant.

The obtained results are similar to those previously obtained for Ti alloy [47], but to
some extent only. For hybrid coating, the network of carbon nanotubes forms an elastic
sub-layer that immobilizes the titania nanoparticles; in such a way, the hardness is similar
to that of titanium dioxide. Such a formula gives hard coating, but presumably, due to
nanoform and the existence of inner layer, it is also not prone to brittle cracking which
appears often in the case of ceramic coatings. For composite coating, low hardness can
be attributed to small, relatively soft metallic nanoparticles, well-positioned in the CNTs
network. Therefore, in this case, they do not play an important role in creating hardness
and strength.

As concerns Young’s modulus value, it is close to the values observed for human bones:
about 19 GPa for cortical bone [57] and 6 GPa for mature bone [58]. It may be expected
that the hardness and Young’s modulus either both increase or decrease as observed for
CNTs-Ti6Al4V nanocomposite [59], MWCNTs-graphene-Al alloy [60], and HAp-CNTs
on Ti [61].

The mechanical behavior can also be characterized by the elastic recovery energy, plas-
tic deformation energy, a ratio of the nanohardness to the reduced elastic modulus (H/Er),
and the yield pressure (H3/Er

2). The deep plastic deformation during the nanoindentation
test is, based on these results, observed for composite coating MWCNT_Cu.

The thickness of obtained coatings has not been here determined, but comparing to
previous reports and applied voltage and time of deposition it is likely to be in the range
of 50–80 µm [53]. Therefore, the nanoindentation results have not been influenced by
the substrate.

Finally, it is interesting to assess whether the chemical and phase composition of a
substrate may affect the mechanical appearance after deposition of coatings at the same
conditions. The appropriate values are listed in Table 4. Considering the above results,
almost all of them can be satisfactorily explained. In particular, the higher hardness, the
greater Young’s modulus. However, it is true only for the same substrate, either titanium
or its alloy, and with the exception of MWCNTs-titania coating, likely due to the highly
nonhomogeneous surface. More importantly, the chemical and phase composition for sub-
strate seems to play a significant role. For titanium substrate, the MWCNTs-oxide coating
has a greater hardness, Young’s modulus, and lower indent depth than the MWCNTs-
nanocopper coating. For Ti alloy, the opposite relation was observed. These results might
be considered as not fully reliable as the standard deviations approach even 30–50%. There-
fore, this issue needs further experiments. On the other side, observed phenomena can
be explained by: (i) deposition of coating dependent on surface characteristics, and (ii)
interaction between nanoindenter tip and substrate (size effect) [62].

The mechanical properties of hybrid carbon-ceramic coatings on both substrates are,
within the limits of an experimental error, close to one another. It is acceptable, as the
MWCNTs are deposited in both cases as inner layers, and become adherent to the surface
by chemical bonding and physical adsorption. They both depend on surface chemical
composition [18]. The weaker coating observed on the Ti alloy as a substrate may be
attributed to a general tendency to form more homogenous coatings on pure metals than
on alloys with their chemical segregation and two or more phase constituents. The elastic
and plastic resistances indicate that the outer titania layer is strong and brittle, which may
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be expected for the ceramic layer. The opposite effect is observed for composite coatings.
It is postulated that, in this case, the much harder surface for coating deposited on the
alloy, as compared to the pure titanium, may contribute to the hardness value at relatively
deep indents.

Table 4. Comparison of mechanical properties of two coatings deposited on different substrates: Ti (present work) and
Ti13Nb13Zr (previous research [47]).

Coating Substrate Sa (µm) H (GPa) E (GPa) hmax (µm) PDE (nJ) ERE (nJ) H/Er 10(6)

MWCNTs Ti 0.29 0.032 3.41 3.58 7.06 0.958 7.1
MWCNTs Ti13Nb13Zr 0.34 0.101 14.17 2.07 3.88 0.378 5.3

MWCNTs_TiO2 Ti 0.56 0.183 10.11 1.55 5.01 0.644 13.7
MWCNTs_TiO2 Ti13Zr13Nb 0.65 0.137 7.69 1.81 5.87 0.722 13.1
MWCNTs/Cu Ti 0.36 0.079 3.51 2.55 19.23 6.821 16.8
MWCNTs/Cu Ti13Zr13Nb 0.41 0.213 10.83 1.43 3.53 0.688 14.7

Table 4 shows the mechanical parameters of coatings obtained on two different sub-
strates. The values to compare the previous results to those obtained in the present work
have not been found in the literature, except the MWCNTs coating. The elastic mod-
ulus of MWCNTs ranged between 270 and 2400 GPa [55], while in other work it was
467–507 GPa [63]. For TiO2 reinforced with CNTs composites [64], hardness was about
250 GPa and elastic modulus about 190 GPa, and for fluorapatite-TiO2 and fluorapatite-
TiO2-CNT(Cu) coatings hardness was only 0.72 and 0.58 GPa, and Young’s modulus 14.5
and 19.3 GPa, respectively [65]. As regards composites with carbon nanotubes and copper,
hardness was determined as above 600 GPa for CNTs-1Cu composites in [66], hardness
was of 1.1–1.4 GPa and Young’s modulus 96–108 GPa in CNTs-Cu nanocomposites [67],
and H of 85–96 MPa and E of 9–10 GPa in other work of the same team was reported [68],
copper-based hybrid nanocomposites with 4 wt. pct. of SiC and MWCNTs showed hard-
ness increased from 0.96 to 1.61 GPa, and Young’s modulus from 98 to 120 GPa for pure
copper and nanocomposite, respectively [69], for Cu-10MWCNTs the hardness was about
1 GPa and Young’s modulus about 100 GPa in [70] and for HAp-CNTs (20 wt. pct.) the
hardness and Young’s modulus were 13.3 GPa and 189.5 GPa, respectively [71]. Here,
determined values of hardness and Young’s modulus are lower than the above-reported
values which may be attributed to the specific microstructure of tested coatings, relatively
thick and containing not closely packed carbon nanotubes.

Figure 8 shows the comparison between the yield pressure parameter for each coating
deposited, both on Ti and Ti alloy substrate. It could be observed that also, in this case,
different relationships for coatings deposited either on Ti or Ti alloy appear. For Ti alloy,
the nanocopper addition improved the resistance to plastic deformation under indenter tip
load, but it also caused cracking in the MWCNTs coating. For Ti substrate, the cracks were
invisible, but the MWCNTs-nanocopper coating achieved a lower yield pressure parameter
than for the MWCNTs-titania coating. This shows that the substrate affects the properties
of deposited coatings.

Both coatings have been developed for the medical implantology field, for long-term
titanium implants. It is well-known that high mechanical stresses may appear during
implantation surgery. Therefore, the coatings need to be both elastic and resistant to plastic
deformation, well adjacent to the titanium surface, and possess Young’s modulus close to
that of a bone. The present results show that the MWCNTs-titania coating, never before
investigated at the present setting, is especially plausible for such application.
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5. Conclusions

The best mechanical, plastic, and elastic properties were achieved for the multi-wall
carbon nanotubes coating combined with titania particles. This coating possesses the
highest Young’s modulus, close to that of natural human bone, and the best resistance to
plastic deformation so that it substantially improved the capability of the MWCNTs coating
to accommodate stresses appearing under applied load during surgery or further use of
an implant. The addition of nanocopper to the MWCNTs coating made the material more
susceptible to plastic deformation; nevertheless, it also improved the MWCNTs coating
resistance to chipping off under deflection loading.

There is a general rule that more homogenous coatings form on pure metals than
on their alloys. The latter materials are more complex in terms of chemical and phase
composition, but also demonstrate a much harder surface compared to the pure titanium.
Therefore, the observed different mechanical behavior of coatings on the different substrates
is related to the difference in surface composition of the substrate and its influence on the
EDP process, mainly on the adhesion of the coating.

The applications of obtained coatings may be different, but they can be considered
plausible as coatings for implants for orthopedic applications. Such coatings need to
be both elastic and resistant to relatively high stresses during implantation surgery and
possess Young’s modulus close to that of a bone. From a mechanical point of view, the
tested coatings, in particular MWCNTs–titania nanocomposite structure, can be particularly
considered useful for medical implantology if biological properties become appropriate.
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