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Abstract: This paper deals with the local loss of stability (wrinkling) problem of a thin facing of a
sandwich panel. Classical solutions to the problem of a facing instability resting on a homogeneous
and isotropic substructure (a core) are compared. The relations between strain energy components
associated with different forms of core deformations are discussed. Next, a new solution for the
orthotropic core is presented in detail, which is consistent with the classic solution for the isotropic
core. Selected numerical examples confirm the correctness of the analytical formulas. In the last
part, parametric analyses are carried out to illustrate the sensitivity of wrinkling stress to a change in
the material parameters of the core. These analyses illustrate the possibility of using the equations
derived in the article for the variability of Poisson’s ratio from −1 to 1 and for material parameters
strongly deviating from isotropy.

Keywords: sandwich panels; local instability; strain energy; wrinkling; orthotropic core

1. Introduction

In a typical sandwich element, the two facings are joined to each other by a relatively
thick but deformable core. The deformations and stresses in the sandwich panel are caused
by the acting loads (wind, snow, self-weight, live load), but they are also largely due to
thermal loads. As a result of these interactions, the facing can be compressed, and because
it is connected to a susceptible substructure (a core), it very often experiences local loss of
stability (wrinkling).

Wrinkling is undoubtedly one of the most common damage mechanisms of a sand-
wich element. For this reason, the correct estimation of the stress leading to the loss of
facing stability is a key issue that has been undertaken by many researchers using various
approaches: analytical, numerical, experimental, or mixed (or some combination of these
approaches). Numerical methods allow for solving many complex problems, and the
performed experiments allow for the verification of the obtained results. Nevertheless,
analytical solutions should also be treated as very valuable, even if they are obtained with
significant simplifications. Simple formulas are easy for engineering application and allow
for a very quick (and continuous) assessment of the sensitivity of the solution to a change
in design parameters.

With full awareness of the new challenges related to the sandwich structures
(anisotropy [1], influence of extreme excitations [2], new production technologies [3],
and many others), this work is an attempt to take a deeper look at the known classical
solutions to the local instability problem [4–6]. The presented solution for an orthotropic
core is based on the work of [7], in which sandwich columns under compression were
considered, and the solution was presented in the form of hyperbolic functions. It also
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clearly refers to the classic solution for an isotropic core [6], where a facing and a core were
assumed as infinite and the differential equation written for the facing was used.

The above-mentioned classic approaches to the problem of facing instability are
constantly being used and extended to more and more complex issues. The analytical
model that leads to wrinkling of the orthotropic face layer supported by a transversely
isotropic core was presented in [8]. Wrinkling of a composite-facing sandwich panel under
biaxial loading was discussed in [9]. Article [10] presents the solution to the symmetrical
face sheet wrinkling problem using the energy method. The approach focused on a
3D case of wrinkling of orthotropic face sheets was presented in [11]. The analytical
approach to the problem of anisotropic facing instability was presented in the works [12,13].
Wrinkling in sandwich structures with a functionally graded core was discussed in [14]. The
papers [15–17] are examples of work on wrinkling, in which the core was modeled using
higher-order theories, which allowed, among others, to take into account the influence of
the core transverse compressibility.

This paper is divided into three parts. In the first one, we present some relations
between the classical solutions to the analyzed problem of wrinkling. We believe that they
will shed a slightly different light on known solutions. This applies to the conditions of
reaching the critical stress, the influence of the Poisson ratio on the wrinkling stress, and
the relationship between strain energy components. In the second part, the solution for
the orthotropic core is derived and discussed, and we focus on the interpretation of the
solution and the question of the conditions for obtaining it. In the third part, a parametric
analysis of the solution for the orthotropic core is presented, illustrating the sensitivity of
the solution (especially the wrinkling stress) to a change in some material parameters. In
our opinion, this is essential for the optimal design of layered structures. By assuming
certain constraints on material parameters, we can specify a solution with the maximum
value or the minimum sensitivity.

2. Formulation of the Problem

We are considering a sandwich panel consisting of two thin facings and a thick but
deformable core. Due to the bending of the composite panel, considerable compressive
stresses may be generated in its facing, resulting in a local loss of stability. The instability
has the form of wrinkling. In general, due to the variety of support and load conditions, the
problem can be very complex; however, in practical civil engineering problems, a facing is
usually compressed unidirectionally [18].

The wrinkling phenomenon may be considered as a compression effect of a thin facing
(treated as a beam or plate) supported by a continuous elastic core (Figure 1). The facing in
tension is ignored because the deformation of the core quickly disappears as the distance
from the compressed facing increases. It is convenient to assume that the compressed facing
is infinitely long and the core extends to infinity on one side of the facing. The wrinkling is
associated with short waves of buckling of the facing. Figure 1 shows a fragment of the
deformed facing supported by the core.

It is assumed that the face layer is in a uniform stress and strain state. The deformations
of the facing, which are infinite and periodic, induce strain and stress in the core. Core
deformations quickly decay as the variable z increases, and the rate of this decay depends
on the assumed displacement field.

The core and facing materials are homogeneous. Suppose the core is isotropic or or-
thotropic with one of the orthotropic axes coinciding with the direction of the compression.
The facing material could be orthotropic if its axes were aligned with the material axes
of the core. These are quite strong assumptions, but they give analytical results that are
relatively easy to interpret.
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3. Classical Solutions of the Wrinkling Problem
3.1. Energy Method—Linear Decay Function

Following the proposition of Hoff and Mautner [4], the core is affected only in a
small zone with depth h (smaller than the thickness of the core). The shape of the face
deformation is assumed in the sinusoidal form (Figure 1), and the core deformation field
vanishes linearly with coordinate z:

wC = wF
(h− z)

h
= W

(h− z)
h

sin
πx
l

, (1)

where wC, wF, and W denote the vertical displacement of the core, face, and the displace-
ment amplitude, respectively. The term l is a half wavelength of the wrinkles. Comparing
the sum of strain energy of the core and the facing (per half wavelength) with the ex-
ternal work done by an applied work, the expression on the compressive stress in the
facing is obtained:

σx =
ECl2

π2tFh
+

hGC
3tF

+
π2EF

12

(
tF
l

)2
. (2)

Symbols EC and GC denote the modulus of elasticity and shear modulus of the
isotropic core material, respectively. The thickness of the facing is tF, whereas the modulus
of elasticity of the isotropic facing material is EF.

The minimum value of the compressive stress (2) corresponds to the critical (wrinkling)
stress, and it can be found by using derivatives of σx with respect to h and l:

σw =
3

√
3
4
· 3
√

ECGCEF ∼= 0.909 · 3
√

ECGCEF. (3)

It is worth noting that reaching the wrinkling stress corresponds to a situation in
which each term on the right-hand side of Equation (2) is equal to each other.

3.2. Energy Method—Exponential Decay Function

Plantema [5] assumed the displacement field of the exponential form

wC = wFe−kz = We−kz sin
πx
l

, (4)

where k ≥ 0 is an auxiliary constant (with the unit inverse to the unit of variable z). The
use of the strain energy of the core makes it possible to represent the compressive stress of
the facing as

σx =
ECkl2

2π2tF
+

GC
2ktF

+
π2EF

12

(
tF
l

)2
. (5)
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The wrinkling stress is obtained from the conditions of zeroing the derivatives of σx
with respect to k and l. As we can see, a slightly different assumption of the displacement
field leads to a different result. First of all, the condition for reaching the extreme (minimum)
stress σx is different. Again, when the critical stress is reached, each term of Equation (5)
has the same value. The wrinkling stresses (3) and (6) are independent of the Poisson ratio
of the core material.

σw =
3

2 · 3
√

6
· 3
√

ECGCEF ∼= 0.825 · 3
√

ECGCEF (6)

3.3. Differential Equation Method

The solution based on the differential equation method was presented by Allen [6].
Stresses in the elastic isotropic medium can be defined using the Airy stress function F (x,z).
The strain compatibility in the x–z plane leads to the bi-harmonic differential equation.

∂4F
∂z4 + 2

∂4F
∂x2∂z2 +

∂4F
∂x4 = 0. (7)

Equation (7) is satisfied by the function

F(x, z) = A sin
πx
l
(1− Bz)e−

πz
l , (8)

where A and B are constants. Constant B can be found by using the condition that the
x-displacements and strains at the surface of the core (z = 0) are equal to zero. Constant
A can be expressed by the amplitude W of the z-displacement at z = 0. By using Allen’s
method, nearly the entire mechanical field is obtained, which depends on x and z variables.
If the state of plane stress is assumed, then displacements u, v, and w, strains εx, εy, εz, and
γxz, and stresses σx, σy, and τxz are non-zero.

The equilibrium differential equation for the facing has the form

BF
d4w
dx4 + P

d2w
dx2 = σz, (9)

where the stress σz is the effect of the interaction between the facing and the core (see
Figure 1). The symbol BF denotes the face bending stiffness per unit width. For the beam
theory (as used here), BF = EFt3

F/12; in the case of the plate theory, BF = EFt3
F/12

(
1− ν2

F
)
.

Using the function of the facing displacement

w = W sin
πx
l

, (10)

and the parameter m = l/tF, the compressive stress in the facing can be expressed as

σx =
π2EF

12m2 +
a
π

m = σ1 + σ2, (11)

where
a =

2EC
(1 + νC)·(3− νC)

(12)

is the material constant. The two terms of the solution for (11) are denoted as σ1 and
σ2, respectively.

From the condition for the extreme, dσx/dm = 0, we can find m = π · 3
√

EF/6a and
the minimum critical (wrinkling) stress:

σw = 3

√
9

2(1 + νC) · (3− νC)
2 ·

3
√

ECGCEF = r · 3
√

ECGCEF. (13)
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If we assume the facing stiffness as for the plate, BF = EFt3
F/12

(
1− ν2

F
)
, the modulus

EF should be replaced by EF/
(
1− ν2

F
)
.

It is interesting that for the minimum value of σx (11), the second expression (σ2) is ex-
actly two times higher than the first (σ1) [19]. From some literature sources, e.g., [6] p. 159,
Figure 8.3, it can be drawn incorrectly that both of these values are equal. The value of the
first root (r) depends only on the Poisson ratio of the core material νC, but for the typical
range of this parameter, the root r reaches the value from 0.780 to 0.794. It is also worth
noting that as the Poisson ratio tends to −1, the critical stress would increase to infinity,
although this is a rather theoretical situation.

3.4. Comparison of Classical Solutions
3.4.1. Influence of the Poisson Ratio

Let us return first to Allen’s solution. The result (13) was obtained for a plane stress
state. Assuming a plane strain state, the procedure is analogous; however, the functions of
stresses, strains, and displacements are different. Equation (11) is valid, but:

a =
2EC(1− νC)

(1 + νC)·(3− 4νC)
, (14)

σw = 3

√√√√ 9(1− νC)
2

2(1 + νC) · (3− 4νC)
2 ·

3
√

ECGCEF = s · 3
√

ECGCEF. (15)

Of course, the value of s in (15) is different than r in (13). To compare Allen’s solutions
in the case of the plane stress and plane strain states, see Figure 2.
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Figure 2. Comparison of Allen’s solution in the case of the plane stress (r) and plane strain (s) states.

It should come as no surprise that for vC = 0, the coefficients r and s are identical and
equal to 0.794. For negative values of vC, the coefficients r and s take similar values that are
much higher than 0.794. For vC tending to −1, the values of r and s, and hence the critical
stress values, tend to infinity. In the range of vC (−1; +0.5), the critical stresses in the plane
strain state are higher than in the plane stress state, but the greatest differences between
r and s appear for vC close to 0.5. This is obvious because in a plane state of stress, the
material has the potential to deform in the y-direction (perpendicular to the plane), which
facilitates the deformation of the facing. The plane strain condition limits the deformation
(in the y-direction) and makes it difficult to buckle the facing. The greater the Poisson ratio,
the greater the significance of this effect. For some order, let us remind you that the Poisson
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ratio of the core material does not affect the critical stresses in the case of the solutions
given by Hoff and Mautner (3) and Plantema (6).

3.4.2. Assumptions and Strain Energy Considerations

The Hoff–Mautner and Plantema solutions are based on an energy approach. The
assumption of a specific displacement field turns out to be very effective and quickly
leads to a solution. However, it is worth noting that in contrast to Allen’s solution, the
assumed displacement fields ((1) or (4)) result in non-fulfillment of most of the differential
equilibrium equations of a solid (mass forces were omitted in Equation (16)):

σji,j = 0. (16)

Let us return to the solution presented by Allen [6]. In the case of a plane stress state,
constant B is

B = −π

2l
(1 + νC), (17)

and the stresses in the core are expressed as the corresponding derivatives of the function
F (x,z). By using commonly known physical and geometric relationships, we determine the
fields of strain and displacement. Therefore, we can calculate the appropriate components
of the strain energy of the core, obtaining, respectively:

1
2

∫ ∞

0

∫ l

0
σxεxdxdz =

1
16

A2

EC

π3

l2 (1 + νC)
(

1− ν2
C

)
, (18)

1
2

∫ ∞

0

∫ l

0
σzεzdxdz =

1
16

A2

EC

π3

l2 (1 + νC)
(

13− 4νC − ν2
C

)
, (19)

1
2

∫ ∞

0

∫ l

0
τxzγxzdxdz =

1
16

A2

EC

π3

l2 (1 + νC)
(

10− 4νC + 2ν2
C

)
. (20)

For vC = 0, the ratio of energies expressed in (18)–(20) is 1:13:10. Let us recall that under
the condition of loss of stability, the elastic energy in the facing is half of the elastic energy
in the core. Commenting on the relations between the energies in the core, we can say that
the share of energy (18) resulting from the deformation of the core along the x-direction (εx)
is small, which can justify the omission of this term in classical energy methods. For the
sake of order, we note that the fulfillment of the condition of loss of local stability for each
of the previously discussed classical energy methods means that the energy components
on the left side of Equations (19) and (20) are equal to each other, and the integral (18) is
equal to zero.

An additional point requires clarification. Each of the presented classical methods
differs in the final result, but only because of different assumptions and not because of the
method itself. For example, this is easily demonstrated by using Allen’s mechanical fields
for the energy approach. Then, it turns out that the obtained expression for the critical
stress is identical to (13).

For an illustration of the assumptions made in Allen’s solution, Figure 3 presents the
displacement fields w(x, z) (perpendicular to the facing i.e., along the z-axis) and u(x, z)
(along the x-axis). The values are given assuming the constant A = 1, see (8). The isotropic
material of the core EC = 4 MPa, vC = 0.05 and a facing with a thickness of tF = 0.5 mm made
of an isotropic material EF = 210 GPa were assumed. The range of the x-axis corresponds to
2l = 74 mm, while the z-coordinates are given in millimeters. In Figure 3a, for z = 0, we can
see a full sinusoid with an extreme equal to 3.248× 10−5, which disappears with increasing
z. The amplitude of the sinusoid decreases 10 times for z = 36 mm. In Figure 3b, according
to the assumption, for z = 0, the horizontal displacements are equal to zero. The variability
of the function u(x, z) in the x-direction is described by the cosine function, the extreme
value of 4.253 × 10−6 is reached for z = 12 mm; at a distance of z = 60 mm, the function
value is 10 times smaller than the extreme. The rapid disappearance of displacements
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with the increment of the z-coordinate, and the values of w(x, z) being one order greater
than u(x, z), are both noteworthy, as they, among other things, justify the omission of
longitudinal deformations in classical energy methods.
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4. Solution for the Orthotropic Core
4.1. Differential Equation

A certain solution to the problem of facing wrinkling resting on an orthotropic elastic
substructure and loaded on the edge (in the facing plane) was presented in [7]. A similar
approach was used in [8]. The following is a detailed solution, which is an extension of [6],
formally based on [7,8], but it differs in some nuances. Efforts were made to present the
solution precisely in order to also discuss the conditions for obtaining this solution.

Suppose we have an orthotropic core, in which orthotropic axes coincide with the axes
of the element. The facing is compressed uniaxially, and the load direction is according
to the material axes of the core. Such a situation is very common in practice [20]. The
constitutive relation for the orthotropic core material is:
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εx

εy

εz

εxy

εxz

εyz


=



1/Ex −νyx/Ey −νzx/Ez 0 0 0

−νxy/Ex 1/Ey −νzy/Ez 0 0 0

−νxz/Ex −νyz/Ey 1/Ez 0 0 0

0 0 0 1/2Gxy 0 0

0 0 0 0 1/2Gxz 0

0 0 0 0 0 1/2Gyz





σx

σy

σz

τxy

τxz

τyz


. (21)

In the case of a 2D problem, relation (21) can be simplified to:

εx = axxσx − axzσz
εz = −axzσx + azzσz
εxz = (1/2Gxz)τxz

. (22)

In the case of plane stress state, material constants axx, azz, and axz are:

axx = 1/Ex
azz = 1/Ez

axz = νxz/Ex

, (23)

whereas for the plane strain state, we have:

axx =
1−νxyνyx

Ex

azz =
1−νyzνzy

Ez

axz =
νxz+νxyνyz

Ex

. (24)

The compatibility of strains in the x–z plane requires:

∂2εx

∂z2 +
∂2εz

∂x2 – 2
∂2εxz

∂x∂z
= 0. (25)

After introducing the Airy stress function F (x, y) such that

σx =
∂2F
∂z2 , σz =

∂2F
∂x2 , τxz = −

∂2F
∂x∂z

, (26)

condition (25) takes the following form:

azz
∂4F
∂x4 + 2

(
1

2Gxz
− axz

)
∂4F

∂x2∂z2 + axx
∂4F
∂z4 = 0. (27)

By using substitution
η = εz =

(
4
√

azz/axx

)
z, (28)

we obtain
∂4F(x, η)

∂x4 + 2κ
∂4F(x, η)

∂x2∂η2 +
∂4F(x, η)

∂η4 = 0, (29)

where κ is a dimensionless quantity and depends only on the material parameters of
the core,

κ =
1√

axxazz

(
1

2Gxz
– axz

)
. (30)

For an isotropic material, κ = 1.
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4.2. Solution of the Differential Equation

To find a solution of (29), we separate variables:

F(x, η) = G(x)H(η) (31)

and assume the sinusoidal form of function G (A1 is a constant)

G(x) = A1 sin
πx
l

(32)

which leads to
d4H
dx4 − 2κ

(π

l

)2 d2H
dη2 +

(π

l

)4
H = 0. (33)

By assuming that the function H(η) = eλη is a general solution of Equation (33), we
obtain a solution in the form of a linear combination of this function:

H(η) = C1eλ1η + C2eλ2η + C3eλ3η + C4eλ4η , (34)

where
λ1 = +π

l

√
κ −
√

κ2 − 1 , λ2 = −π
l

√
κ −
√

κ2 − 1

λ3 = +π
l

√
κ +
√

κ2 − 1 , λ4 = −π
l

√
κ +
√

κ2 − 1

}
. (35)

The positive solutions for λ have to disappear to allow an exponential decrease in the
stresses in the thickness direction z. Therefore, C1 = 0, C3 = 0, and

F(x, y) =
[

C2e−
π
l

√
κ−
√

κ2−1εz + C4e−
π
l

√
κ+
√

κ2−1εz
]

A1 sin πx
l =[

B1e−
π
l

√
κ−
√

κ2−1εz + B2e−
π
l

√
κ+
√

κ2−1εz
]

sin πx
l ,

(36)

where B1 = C2 A1 and B2 = C4 A1 are constants. These constants can be calculated with the
following boundary conditions:

εx(z = 0) =0, (37)

which reflects the observation that the face material is typically much stiffer than the core
material, and

σz(z = 0) = A sin
πx
l

, (38)

because the stress at the interface in the z-direction is distributed as a sine wave with a
certain amplitude A corresponding to the assumed wave deformation. From the assumed
boundary conditions, we obtain:

B1 = −A
(

l
π

)2 axz+axxε2(κ+
√

κ2−1)
2axxε2

√
κ2−1

B2 = A
(

l
π

)2 axz+axxε2(κ−
√

κ2−1)
2axxε2

√
κ2−1

. (39)

It is easy to note that B1 + B2 = −A
(

l
π

)2
.

The equilibrium differential equation for the facing has the same form as (9). By inte-
grating εz (22), we can find the following expression for the facing displacement wF = w(z = 0)

w(z = 0) =
π

l
sin

πx
l

[
axzB1ε

√
κ −

√
κ2 − 1 + axzB2ε

√
κ +

√
κ2 − 1 + azzB1

1

ε
√

κ −
√

κ2 − 1
+ azzB2

1

ε
√

κ +
√

κ2 − 1

]
. (40)
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By performing some additional algebraic transformations as suggested by Allen [6],
one can arrive at the analogy of (11) with

a =

√
κ2 − 1√

κ +
√

κ2 − 1−
√

κ −
√

κ2 − 1

2axxε

2axxaxzε2 − a2
xz + axxazz(2κ + 1)

. (41)

From the condition for the extreme dσx/dm = 0, we have as before

m = π · 3

√
EF
6a

(42)

and the minimum critical (wrinkling) stress is obtained (the solution is consistent with (13)):

σw =
3

2 3
√

6
· 3
√

a2EF. (43)

It is easy to prove that again, σ2 = 2σ1 (see also Figure 4).
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Based on the quick analysis of Equation (41), it can be concluded that for a, which has
the nature (and the measurement unit) of the stiffness modulus (of the core), the condition κ
> 1 must be satisfied to reach real values. With smaller values of κ, the roots in Equation (41)
are complex numbers. However, it is somewhat surprising that despite the complex roots
in (41), the value of a,

a =

√
κ + 1

2
2axxε

2axxaxzε2 − a2
xz + axxazz(2κ + 1)

, (44)

is real if the condition κ > −1 is satisfied. In order for parameter m to be positive, the
denominator in expression (41) must be positive (the nominator is positive). When the
denominator in (41) approaches 0+, a and consequently also σw tend to infinity.

Let us take a moment to analyze the value of κ in a plane stress state. According to
(30), we have

κ =
√

ExEz

(
1

2Gxz
− νxz

Ex

)
. (45)

Modules Ex, Ez, and Gxz must be positive. In this situation, if νxz is negative, then κ
will always be positive. If νxz = 0.5, then κ is positive when Ex > Gxz; if νxz = 1, then κ is
positive when Ex > 2Gxz. Let us recall that in the case of orthotropic materials, the condition
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for the stability of the material behavior is not only the positive values of the Ex, Ez, and
Gxz modules, but also, among others [21],

|νxz| <
√

Ex/Ez. (46)

5. Examples
5.1. Analytical Solutions

The first example concerns the facing with a thickness of tF = 0.5 mm made of an
isotropic material (EF = 210 GPa) placed on an isotropic core (EC = 4 MPa, νC = 0.05;
therefore GC = EC/2(1 + νC ) = 1.905 MPa). According to the approach of Hoff–Mautner (3),
Plantema (6), and Allen (13), we will obtain the following wrinkling stresses, respectively:
σH-M = 106.32 MPa, σP = 96.49 MPa, and σA = 92.36 MPa.

Now let us consider the same facing (tF = 0.5 mm EF = 210 GPa) supported by an
orthotropic substructure (Ex = 10 MPa, Ez = 4 MPa, νxz = 0.05, Gxz = 3 MPa).

We assume a plane state of stress in the x–z plane and look for the critical stress
that will cause the wrinkling of the facing. According to (28), (30), and (41), we will get
ε = 1.257, κ = 1.022, and a = 3.256 MPa. The wrinkling stress is achieved for m = 69.336
(see (42)) and according to (43), σw = 107.8 MPa. Figure 4 shows the dependence of the
critical stress (solid line) on the m parameter. The blue and brown lines show both stress
components (11).

5.2. Numerical Solutions

Numerical analysis of the instability problems of all kinds of structures is an intriguing
and fascinating task, but it is not easy. First of all, it should be realized that numerical
models are often much more complex than analytical models. This is due to the fact that
commercial software (using, for example, the finite element method) allows for a relatively
quick creation of spatial models. However, the problem is that the appropriate model class
requires boundary conditions corresponding to this model. Therefore, these conditions
are usually different than in the analytical model, which makes it difficult to compare the
solutions. This issue was pointed out by numerous researchers [22–24]. This problem
also arises when it comes to determining the critical stresses in a thin facing resting on a
susceptible substructure.

The numerical analysis of the discussed issue was prepared using ABAQUS, which
is a software suite for finite element analysis and computer-aided engineering. The prob-
lem was solved using two different classes of numerical models: 2D and 3D. A detailed
description of the 3D model is presented below. The results obtained for the 2D model are
presented at the end of the subsection.

The three-dimensional model was created in order to fully analyze the phenomenon
of loss of stability in conditions close to the plane stress state. Of course, we also tried to
make the numerical model as close as possible to the analytical model. The model space is
not infinite, but the dimensions have been defined so that the displacements, strains, and
stresses at the edge of the model are relatively small; the core body was 1.2 m long and
0.3 m high. The core thickness was 0.05 m, which should provide a freedom of deformation
along the y-axis. A facing strip 0.5 mm thick and 0.7 m long rests on such a substructure.
The geometry of the system is shown in Figure 5.
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which causes the displacements of nodes of one surface to be identical to the displace-
ments of nodes on the other surface. The size of the finite element mesh was constant and 
equal to 0.01 m. It is worth mentioning that the problem of facing wrinkling is mesh-de-
pendent. The mesh should be dense enough to allow deformation of the core and facing. 
Thus, the mesh size is dependent on the finite element itself (a shape function) as well as 
the properties of the facing and core materials. In the case of S4 finite elements (doubly 
curved general purpose shell, finite membrane strains), it is sufficient if there are two finite 
elements per half-wavelength l. In our case, the half-wavelength was in the order of 0.035–
0.038 m; therefore, the size of the finite elements turned out to be small enough (0.01 m). 

Since the phenomenon of face wrinkling is associated with the local deformation of 
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the model’s initial imperfections as a linear combination of buckling modes of the 

Figure 5. Numerical model of the problem of compression of a thin facing resting on a
susceptible substructure.

In order to compress the facing, an area of 0.10 m × 0.05 m was determined on its
two ends, to which a uniform pressure p was applied in the x-direction (tangent to the
facing, opposite at the two ends). The load application area is distant from the edge of
the substructure (0.25 m). The decision was made to apply the load distributed over the
surface because the attempt to load the system in the form of a linear load applied to the
edge of the facing caused too much local disturbance. As the system had to be supported,
after several attempts, it was decided to support the bottom surface of the substructure.
The displacement conditions uy = 0, uz = 0 were assumed on the entire bottom surface,
and additionally, ux = 0 was assumed in the middle of this surface, which is shown in
Figure 5. This support had a small influence on the behavior of the system, while ensuring
its necessary stabilization. When trying to limit the displacements on the sides of the
substructure, it turned out that these limitations affect the behavior of the system and cause
stress disturbances. The attempt to define the boundary conditions identical to those in the
analytical model was unsuccessful. The assumption that the horizontal displacement of
the facing equals zero made it practically impossible to induce the appropriate stress state
in this facing. The description of the model shows that despite all efforts, the numerical
model has some deviations from the theoretical model in which the core (substructure) is
an infinite elastic half-space.

The material parameters of the 3D numerical model corresponded to the analytical
model. The facing material was assumed to be isotropic elastic (EF = 210 GPa, νF = 0.3). In
the case of an isotropic core, it was assumed EC = 4 MPa, νC = 0.05. When the case with
the orthotropic core was analyzed, its parameters were defined as follows: Ex = 10 MPa,
Ey = 10 MPa, Ez = 4 MPa, νxy = νxz = νyz = 0.05, Gxy = Gxz = Gyz = 3 MPa. The 3D model
uses C3D8 solid elements (core) and S4 shell elements (facing), in which there is no reduced
integration. Interaction between the facing and the core was defined using a TIE connection,
which causes the displacements of nodes of one surface to be identical to the displacements
of nodes on the other surface. The size of the finite element mesh was constant and equal to
0.01 m. It is worth mentioning that the problem of facing wrinkling is mesh-dependent. The
mesh should be dense enough to allow deformation of the core and facing. Thus, the mesh
size is dependent on the finite element itself (a shape function) as well as the properties
of the facing and core materials. In the case of S4 finite elements (doubly curved general
purpose shell, finite membrane strains), it is sufficient if there are two finite elements per
half-wavelength l. In our case, the half-wavelength was in the order of 0.035–0.038 m;
therefore, the size of the finite elements turned out to be small enough (0.01 m).

Since the phenomenon of face wrinkling is associated with the local deformation of
the compressed face, a geometrically nonlinear static analysis and the Riks method were
used. Due to the symmetry of the problem, it turned out to be beneficial to introduce into
the model’s initial imperfections as a linear combination of buckling modes of the structure.
The buckling modes were solved independently. The size of the introduced imperfections
was very small. The sum of four modes multiplied by 0.00001 was introduced, which
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meant that the positions of the model nodes were disturbed about 0.025 mm. This means
that the amplitude of the imperfection was 5% of the facing thickness.

The load applied to the model could increase to the value of 2000 kPa, which corre-
sponds to a compressive force of 10 kN and a compressive stress in the facing of 400 MPa.
Obviously, such a load value was never realized because the facing had previously buckled.
The applied load level was determined on the basis of the LPF (Load Proportionality
Factor) value.

Another interesting challenge of numerical analysis is the question of recognizing
when a structure loses stability and when it does not. Unfortunately, as in real conditions,
and unlike in analytical solutions, in a numerical solution, there is usually no unambiguous
parameter indicating the state of the system (stable–unstable). Wrinkles in the compressed
facing appear very quickly, which is illustrated in Figure 6a (only the facing was presented).
A certain determinant of instability may be the appearance of a nonlinear relationship
between LPF and arc length factor (Figure 6b), indicating the nonlinear nature of the
process [25]. One should also pay attention to the difference between the compressive
stress in the facing in the x-direction calculated on the basis of the currently applied force
divided by the facing cross-section area and the stress obtained in the FE model that takes
into account nonlinear effects, i.e., local deformations. The comparison of these stresses for
the first eight load increments is presented in Table 1. The stress values estimated at the FE
nodes are much higher due to the effect of the load acting on the distance resulting from
the deformation of the facing. Since the material was originally assumed to be perfectly
elastic, the stresses in the model can be very high.
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Table 1. The comparison of compressive stress in the facing for the load increments of the
numerical model.

Load Increment
The Percentage

Completion of the
Load Step (LPF)

Theoretical
Compressive Stress

σx [MPa]

Extreme
Compressive Stress
Read in the Model

Nodes σx [MPa]

1 0.0156 6.24 6.72
2 0.0313 12.52 13.52
3 0.0547 21.88 23.88
4 0.0898 35.92 39.99
5 0.142 56.80 66.62
6 0.213 85.20 129.5
7 0.238 95.20 263.8
8 0.241 96.40 330.4

This situation, which is complex for evaluation, definitely changes after assuming that
the facing material is perfectly elastic–plastic. Assuming the yield point fy = 270 MPa (the
value is consistent with the characteristics of typical steel sheets used for the production of
sandwich panels), in the ninth load increment, for LPF = 0.239, the LPF–arc length diagram
breaks down (Figure 7), which corresponds to the theoretical facing compression stress
0.239 × 400 = 95.6 MPa.
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A very similar relationship can be observed in the analysis of the problem with the
orthotropic core. A breakdown of the LPF–arc length relationship occurred for LPF = 0.284,
which corresponds to the theoretical stress 113.6 MPa. Of course, the stresses in the nodes
of the model are different and reach the yield point of the material.

The obtained numerical results (95.6 MPa and 113.6 MPa) are close to the theoretical
values (92.36 MPa and 107.8 MPa). Introduction of the yield stress for the facing material
facilitates the interpretation of the numerical results. It is also worth paying attention to
the fact that for the seventh or eighth load increment (Table 1), the stresses in the core reach
the values close to the strength of typical core materials.

A number of numerical analyses were also carried out using the 2D model. The
geometry and boundary conditions of this model corresponded to the geometry and
boundary conditions of the 3D model. The main difference between the models was that
they used plane (not spatial) finite elements: CPS4 for the core and B23 beam elements for
the facing. It turned out that the 2D model behaves very similarly to the 3D model. Among
other things, there are similar difficulties in interpreting the moment of loss of stability. This
situation changes after assuming that the facing material is perfectly elastic–plastic. For
the isotropic core, the LPF–arc length relationship is very similar to the relation presented
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in Figure 7, but the breakdown occurs for LPF = 0.227, which corresponds to the facing
compression stress 0.227 × 400 = 90.8 MPa. For the orthotropic core, the extreme LPF value
is 0.259, which corresponds to the stress of 103.6 MPa. These values are similar to the
analytical results, although they are slightly lower than in the case of the 3D model.

6. Parametric Analysis
Description of the Models

Using the derived formulas, the influence of the material parameters of the orthotropic
core on the value of the wrinkling stress was calculated and illustrated (Figure 8). Modulus
Ex = 10 MPa was assumed as constant. The modules Ez and Gxz are variable. Moreover,
each of the graphs corresponds to a different value of the Poisson ratio νxz, namely −1.0,
0.0, 0.5, and 1.0. For additional illustration of the problem, the graphs of the parameter κ
are also presented in Figure 8.

The basic conclusions from the analysis of the graphs are quite obvious and consistent
with the case of the isotropic core: the greater the stiffness of the core, the higher the
wrinkling stress. It gets more interesting when νxz = 1, because with large Ez and Gxz the
parameter κ approaches −1 and the parameter a increases strongly. In the case when νxz
= −1, the parameter κ takes values in the typical range (positive values), but with large
values of Ex and Gxz, the parameter a (44) reaches much higher values and grows faster
than the parameter m drops (42). It should be emphasized that for the presented range of
variability, κ > −1 and a is a positive value.
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7. Conclusions

The first part of the article contained a short survey of the classical solutions to the
problem of instability of a facing resting on a homogeneous and isotropic substructure
(core). It was presented how the assumptions concerning the displacement field affect
the solution of the problem. Next, the dependence of the solution [6] on the value of the
Poisson ratio was presented, and strain energy analyses were carried out to investigate the
relationships between the individual components of the deformation energy of the core. In
the second part of the paper, the derivation of the formula for the critical stress in the case of
uniaxial compression of the thin facing resting on the orthotropic core was presented. The
conditions for the existence of the solution were discussed, which in principle are met for a
wide range of variability of material parameters. The numerical example confirming the
compliance of the selected analytical solution with the numerical one was also presented.
The article discussed the applied models in detail and explained the difficulties associated
with determining the load and support boundary conditions. The presented numerical
model has not been experimentally verified, although a similar model was verified in [19]
for a core with the Poisson ratio ranging from 0 to 0.3. The third part of the article presented
the results of the parametric analysis, i.e., the effect of changing the material parameters of
the orthotropic core on the wrinkling stress. This type of analysis can be of great importance
in the optimal design of sandwich systems where local loss of stability plays a significant
role. The developed solution can be easily introduced into the optimization procedure.

The presented work confirms that the further development of analytical methods
in solving the discussed problem is advisable and important, both from a scientific and
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engineering point of view. Undoubted benefits also come from the possibility of numerical
analysis of the issue under discussion. The applied FE models revealed that due to the local
loss of stability, the stresses in the facing locally increase to the yield point, and the stresses
in the core reach values similar to the strength of the core material. This means that if we
want to accurately understand the stress state in the facing and the core, a relatively simple
and attractive analytical approach should be supplemented with a numerical solution.
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