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Email: mateusz.czyzniewski@pg.edu.pl, rafal.langowski@pg.edu.pl

Abstract—A control problem of an inverted pendulum on a
cart has been addressed in this paper. In particular, a synthesis
of alternative sliding mode control for stabilisation of an inverted
pendulum at an upper equilibrium point has been investigated.
Hence, the feasibility of implementing the developed control
system, taking into account primarily the friction of the cart
against the gantry and the limited length of the gantry, in a real
plant has been given. The proposed control system has been tested
by simulation in Matlab/Simulink environment and satisfactory
performance of its operation has been obtained.

I. INTRODUCTION

An inverted pendulum on a cart (linear inverted pendulum
– IP) is one of the widespread benchmarks of non–linear
and under–actuated systems, which are characterised by non–
minimal phase as well as chaotic behaviour, and sensitiveness
of parameters uncertainty [1], [2]. Thus, an IP is used as a
popular application for a synthesis of control systems, and
estimation purposes. The main goal of an IP control is its
stabilisation at an upper equilibrium point (upper position),
and often lifting up a pendulum arm to the neighbourhood of
this position (swing–up mechanism). Taking into account the
above–mentioned features of an IP, designing a relevant con-
trol system is a challenging task. This causes many approaches
to solving the IP control problem to be found in the literature.
These include approaches using separate controllers to swing–
up a pendulum arm and its stabilisation at the upper position
completed by a switching condition between regulators as well
as a single controller, which is able to realise both phases. In
the first group, for example, various configurations of PID
controllers [3], [4], state–feedback–based controllers [3], [5],
[6] or sliding mode control techniques (SMC) [7]–[10] are
used to the IP stabilisation. Whereas, typically the swing–
up mechanism and switching condition are based on well
established energetic approach [2], [10], [11]. In turn, the
second group includes methods using SMC [7], fuzzy control
strategy [12] or neural networks [13]. In the further part of
the paper, a control system consisting of SMC and swing–up
mechanism (SU) with switching condition (SC) is considered.
In general, SMC is very often associated with preceding non–
linear coordinate transformation, due to obtaining controlla-
bility canonical form [14], [15]. Hence, SMC is synthesised
by utilising approximated feedback linearisation based on the
change of coordinate [10], [16], [17].

The main aim of this paper is the synthesis of a robust,
(hybrid) control system, which includes SMC for upper po-
sition stabilisation and SU with SC. However, the focus has
been primarily on stabilising the IP using SMC. Thus, the
main topic is to establish the sliding mode algorithm, robust
to external disturbances and uncertainties in internal dynamics.
Compared to the work performed in, e.g., [8]–[10], provided
a synthesis of the control system for a more sophisticated IP
mathematical model. More specifically, the IP model includes
the friction phenomenon of the cart against the gantry and
expanded the IP geometry by adding a load to the end of
the pendulum’s arm [2]. Therefore, to develop the invoked
methodology, an extended analysis of the IP model for the
control system synthesis purposes, and a different transforma-
tion of coordinate are investigated. Moreover, the analysis of
the usage of approximation system is more extended than in
[8]–[10]. Also, during simulations, the actuator with control
signal saturation and sensor subsystems are considered. It
is because the devised control system should potentially be
implementable in a real plant from [2].

The paper is organised as follows. Section II includes the
problem formulation. The analysis of the IP model from the
point of view of control system design needs is presented in
section III. In section IV the synthesis of the IP control system
is given. Next, simulation results are described in section V.
The paper is concluded in section VI.

II. PROBLEM FORMULATION

The considered IP is illustrated in Fig. 1 [2]. This IP is
composed of the following elements. The cart is mounted to
the gantry consisting of two guide shafts. The arm is mounted
on the cart at the joint. The arm includes two elements, i.e., the
rod and the load. The IP is fastened on a supporting element,
so–called the base. The particular symbols in Fig. 1 stand
for: Θ(t) - angular displacement of the pendulum arm; s(t)
- linear displacement of the cart; Z(t) ∈ Z ⊂ R - external
disturbance (uncontrolled force) applied to the pendulum arm;
F (t) ∈ F ⊂ R - force (control signal) applied to the cart;
T (t) ∈ T ⊂ R - friction force between the cart and the
gantry; mc - mass of the load; mp - mass of the rod; mw -
mass of the cart.

As already mentioned, the main purpose of this paper is
to design SMC to stabilise the IP at an upper equilibrium
point. Clearly, the operation of control system is desired to
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Fig. 1. Graph of the considered IP [2].

stabilise the IP at the upper position
(
starting from the bottom

position, i.e. xdown =
[
0 0 0 ±π

]T ∈ X ⊂ R4
)
, and

also placing the cart in the middle of the gantry, which is
exactly described as tracking the following operating point
xop =

[
0 0 0 0

]T
, which is associated with the following

vector of state variables x(t) ∈ X ⊂ R4:

x(t) =
[
s(t) ṡ(t) Θ(t) Θ̇(t)

]T
=
[
x1(t) x2(t) x3(t) x4(t)

]T
,

(1)

where ˙(·) is the derivative with respect to t.
Moreover, the synthesis of the control system includes the

external disturbance occurrences (Z(t)), and also problem of
parametric uncertainty, which is associated with not exactly
known mass of the load attached to the end of the pendulum
arm, i.e. mc ≤ mc ≤ mc, where mc and mc are the lower
and upper bound of the load mass, respectively. Also, for
the design of the control system, it is assumed that all state
variables are measurably available (or are estimated). In turn,
the actuator consisting of a DC motor with a gearbox is treated
as a subsystem of the IP control system, whose dynamics
can be neglected (by comparing it with the dynamics of the
IP). It is worth adding, however; that in the general case, the
actuator’s dynamics can significantly affect the performance
of the control system. This problem can be solved by using
an internal control system in the form of an open–loop
proportional regulator or a PID type controller to control the
DC motor current.

III. MODEL OF THE IP FOR CONTROL SYSTEM SYNTHESIS

It is known that a suitable (utility) IP model is required for
SMC synthesis. This model is usually based on a cognitive
model that predicts the real behaviour of the IP. In the
literature three main approaches to the IP modelling, i.e., via
Euler–Lagrange equation, Kane’s method, or Newton’s laws
of motion can be found [18]. In this paper, the model derived
in [2] is used, based on the third approach, of the form:

s̈(t)
[
mw

(
I +mrl

2
)

+mrI +m2
r l

2 sin2 θ(t)
]

=

−ṡ(t)kT
(
I +mrl

2
)

+mrlθ̇
2(t)

(
I +mrl

2
)

sin θ(t)

−0.5 (mclc +mplp)mrlg sin (2θ(t))

+F (t)
(
I +mrl

2
)

+Z(t)
[(
I +mrl

2
)
−mrllc cos2 θ(t)

]
, (2)

θ̈(t)
[
mw

(
I +mrl

2
)

+mrI +m2
r l

2 sin2 θ(t)
]

=

(mr +mw) (mclc +mplp) g sin θ(t)

+ṡ(t)kTmrl cos θ(t)− 0.5m2
r l

2θ̇2(t) sin (2θ(t))

−F (t)mrl cos θ(t)

+Z(t) [mwlc +mr (lc − l)] cos θ(t)

. (3)

where: (̈·) denotes the second derivative with respect to t;
lc, lp stand for the distances from the beginning of the arm to
centres of gravity of load and rod, respectively, and lc = 2lp;
l is the distance from the beginning of the arm to centre of
gravity of the arm, determined by:

l = lp

(
1 +

mc

mr

)
; (4)

mr denotes the mass of arm, determined by:

mr = mp +mc; (5)

I is the moment of inertia for the arm, defined as [2]:

I = l2p

[
mp

(
1

3
+
m2

c

m2
r

)
+mc

m2
p

m2
r

]
; (6)

kT signifies the friction coefficient between the cart and the
gantry; g is the gravitational acceleration.

The affine non–linear form of (2) and (3), after introducing
the state vector x(t), is as follows [15], [19]:

ẋ1(t) = x2(t)

ẋ2(t) =
F1(x(t))

D(x(t))
+

B1(x(t))

D(x(t))
F (t) +

G1(x(t))

D(x(t))
Z(t)

ẋ3(t) = x4(t)

ẋ4(t) =
F2(x(t))

D(x(t))
+

B2(x(t))

D(x(t))
F (t) +

G2(x(t))

D(x(t))
Z(t)

x(t0) = x0

,

(7)
where the smooth vector fields expressions, which mapping
from connected and analytical X to tangent space TxX , used
for dynamics presentation (7) are given as:

D(·) = (mr +mw)(I +mrl
2)− (mr cos(x3(t)))2,

F1(·) = (I +mrl
2)(mrlx

2
4(t) sin(x3(t))− kTx2(t))

− (mplp +mclc)mrlg sin(x3(t)) cos(x3(t)),

F2(·) = (mw +mr)g(mclc +mplp) sin(x3(t))

−mrl cos(x3(t))(mrlx
2
4(t) sin(x3(t))− kTx2(t)),

B1(·) = I +mrl
2, B2(·) = G1(·) = mrl cos(x3(t)),

G2(·) = (mwlc +mr(lc − l)) cos(x3(t)),
(8)

where D(·) and B1(·) 6= 0 ∀t ∈ T.
By invoking to the methodology of control system synthesis

presented in [8]–[10], the SMC design must be preceded by
performing additional artificial substitution under the control
signal F (t) a signal of FSMC(t) ∈ F ⊂ R. In general, for the
pendulum systems, this particular procedure is established by
proposing the control signal as one which makes the second
differential equation from (7) dependent to only new control
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signal u(t) ∈ U ⊂ R, and also makes the fourth differential
equation from (7) significantly simplified. Hence, FSMC(t) can
be introduced as:

FSMC(t) =
D(·)
B1(·)

u(t)− F1(·)
B1(·)

. (9)

Moreover, the control signal is bounded due to physical
properties of the actuator subsystem, and saturation function
is given as: SATF[·] with symmetric saturation – supremum
of control signal. Hence, (9) is replaced by:

F SAT
SMC(t) = SATF

[
D(·)
B1(·)

u(t)− F1(·)
B1(·)

]
. (10)

However, performing the above–introduced procedure on
model (7) leads to a very complicated unserviceable form
of the ‘new’ fourth differential equation. Therefore, cognitive
model (7) cannot be directly used for SMC synthesis purposes.
In fact, the obtained form of the transformed model can be
used in the next steps of synthesis, however; taking into
account that the considered SMC must be a robust controller,
the whole issue may be solved in an alternative way. It is
easy to notice that, the model (7) is very detailed, thus certain
simplifications can be performed to effective control system
synthesis. Assuming that the mass of load can be neglected,
i.e. mc = 0, (4), (5), and (6) take forms:

l = lp, mr = mp, I =
1

3
l2pmp. (11)

This involves the possibility of transforming model (7) into
simplified version, which not include exact expressions for
moment of inertia – I , mass of arm – mr, and distance – l.
These parameters are not considered implicitly in the model,
since they can be expressed by the other parameters (11).
Hence, taking into account the above considerations, (9), and
neglecting external disturbance Z(t), the simplified dynamics
in affine non–linear form is as follows:

ẋ(t) =


x2(t)

0
x4(t)

3g sin(x3(t))

4l


︸ ︷︷ ︸

f(x(t))

+


0
1
0

3 cos(x3(t))

4l


︸ ︷︷ ︸

g(x(t))

u(t), (12)

where: f(·) and g(·) are introduced as smooth vector fields
which maps X into TxX .

Model (12) is used as the utility model for SMC synthesis
purposes. Also, it is worth adding that, assumption (11) holds
for the SU problem.

IV. SYNTHESIS OF THE CONTROL SYSTEM

In this section, the synthesis of the control system is
presented, with the main focus on the design of SMC to
stabilise the IP at the upper position.

A. Synthesis of the SMC

The first stage of the SMC synthesis is associated with
performing feedback linearisation [14], [19]. This operation is
based on coordinate transformation, due to obtaining control-
lability canonical form of the approximated system’s dynamics
(12), sliding mode surface, and derivation of non–continuous
control law. According to [8]–[10], the classical way of single
input performing feedback linearisation cannot be established
in this case. It is because, the control distribution calculated
by using model (12) is not involutive (near the operating
point) at all [15], [19]. Therefore, the method based on using
controllable approximate of the original system has been
incorporated from [10], [16]. Due to the fact, that the ‘output’
function h(x(t)) related to state coordinate transformation is
associated with suspecting the relative degree of the ‘output’
equal to the dimension of the system, the full state coordinate
transformation can be performed. Thus, the new involutive
distribution ∆ must be calculated by using Lie brackets of
the vector fields f(·) and g(·). After that, terms associated
with non–zero g(·) related Lie derivatives must be neglected.
Hence, the control distribution ∆, which has rank equals three
in the neighbourhood of xop is calculated as follows:

∆ = span {g(·), [f(·), g(·)] , [g(·), [f(·), g(·)]]} , (13)

where [·, ·] denotes the Lie bracket of two vector fields.
By invoking to the Frobenius’ theorem, the output function

related to (one–dimensional) co–distribution span {dh(x(t))}
must be defined as the annihilator of (13) [15], [19]:

span {dh(x(t))} = ∆⊥, (14)

where the operator (·)⊥ is an annihilator of vector field.
Therefore, by solving the set of three linear, homogenous

partial differential equations derived from condition (14), the
output function can be proposed as:

h(x(t)) =
1

4
x1(t) +

1

3
lln

(
1 + sin(x3(t))

cos(x3(t))

)
. (15)

The coordinate transformation mapping Φ : x → ξ must
be defined as a local diffeomorphism Φ(0n×1) = 0n×1, and
induces the approximation model of the original simplified
model (12) given in controllability canonical form as:

ξ̇1(t) = ξ2(t) = Lfh
(
Φ−1(ξ)

)
,

ξ̇2(t) = ξ3(t) = L2
fh
(
Φ−1(ξ)

)
,

ξ̇3(t) = ξ4(t) = L3
fh
(
Φ−1(ξ)

)
,

ξ̇4(t) = fξ(x(t)) + gξ(x(t))u(t)

= L4
fh
(
Φ−1(ξ)

)
+ LgL

3
fh
(
Φ−1(ξ)

)
u(t),

(16)

where gξ(x(t)) 6= 0 ∀t ∈ T and fξ(x(t)) are scalar functions
calculated as subsequent Lie derivatives L(·)

(·)(·) of the output
function h(x(t)).

However, the output function (15) does not induce the
relative degree equals the dimension of the system due to
the fact, that function LgL

2
fh = −0.5x4(t) tan(x3(t)) is not

equal to zero ∀t ∈ T. Arising of this situation can be claimed
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as a consequence of obtaining the involutive distribution ∆.
Hence, to perform feedback linearisable form of model (12),
by invoking to the methodology presented in [10], [16],
[17], indicated component is neglected and the coordinate
transformation can be defined as:

Φ1(x(t)) =
1

4
x1(t) +

1

3
lln

(
1 + sin(x3(t))

cos(x3(t))

)
,

Φ2(x(t)) =
1

4
x2(t) +

lx4(t)

3 cos(x4(t))
,

Φ3(x(t)) =
4l sin(x3(t))x24(t) + 3g cos(x3(t)) sin(x3(t))

12 cos2(x3(t))
,

Φ4(x(t)) =
8lx33(t) + 9gx4(t) cos(x3(t))

12 cos2(x3(t))

+
−6gx4(t) cos3(x3(t))− 4lx34(t) cos2(x3(t))

12 cos2(x3(t))
.

(17)

By using (17), the non–lienar functions fξ(x(t)) and
gξ(x(t)) from (16) are calculated as:

fξ(x(t)) =
sin(x3(t))(96l2x43(t) + 27g2 cos2(x3(t)))

48l cos4(x3(t))

+
sin(x3(t))(−16l2x43(t) cos2(x3(t)))

48l cos4(x3(t))

+
sin(x3(t))(−36glx24(t) cos3(x3(t)))

48l cos4(x3(t))

+
sin(x3(t))(144glx24(t) cos(x3(t)))

48l cos4(x3(t))

+
sin(x3(t))(−18g2 cos4(x3(t)))

48l cos4(x3(t))
,

gξ(x(t)) =
6g cos3(x3(t))− 9g cos(x3(t))− 24lx24(t)

16l cos2(x3(t))

+
12lx24(t) cos2(x3(t))

16l cos2(x3(t))
.

(18)

In order to check that the coordinate transformation is the
local diffeomorphism near the operating point xop, the Jacobi
matrix of the coordinate transformation:

∂Φ

∂x

∣∣∣∣
x(t)=xop

=


0.25 0 0.33l 0

0 0.25 0 0.33l
0 0 0.25g 0
0 0 0 0.25g

 , (19)

must be non–singular. Quadratic Jacobi matrix (19) has a full
rank ∀t ∈ T due to the fact, that its determinant is equal to
0.0039g2 > 0. Hence, the coordinate transformation impose a
local diffeomorphism in a neighbourhood of operating point
xop, what make feedback linearisation control law applicable.

When the controllability canonical form was obtained, the
SMC can be synthesised [14], [19]. Taking into account, that
the single input feedback linearisation based SMC is able to
track only one dimensional reference signal yd(t) ∈ Y ⊂ R,
the original problem of IP stabilising at xop must be refor-
mulated in the view of tracking yd(t) = Φ1(xop) = 0. Since
the all of the states are controllable, not only full stabilisation

of the internal dynamics is possible, but also tracking of the
desired trajectories by all of the states. The operating point
is equivalent to the upper equilibrium point of the IP internal
dynamics, it is only needed to check how the transformed
desired signal yd(t), and its derivatives y(1)d (t), y(2)d (t) and
y
(3)
d (t) behave in time:

Φ(x(t))
∣∣
x(t)=xop

=
[
yd y

(1)
d y

(2)
d y

(3)
d

]T
= 04×1. (20)

According to the methodology of tracking polynomial con-
trol theory [15], all of the derivatives of the yd(t) are always
equal to zero. For the desired trajectory yd(t), the tracking
error is defined as e(t) , h(x(t))− yd(t).

By defining S =
{
x(t) ∈ X ⊂ R4 | s(x(t), t) = 0

}
as a

sliding surface which is a proper manifold, the sliding mode
variable is introduced as:

s(x(t), t) = e(3)(t) + 3λe(2)(t) + 3λ2e(1)(t) + λ3e(t), (21)

where (·)(der)(t), der ∈ N+ indicates the der degree deriva-
tive operator, and λ ∈ R+ is a tuning parameter which
selection is justified in [20].

Thus, by two–sided differentiation of (21):

ṡ(x(t), t) = e(4)(t) + 3λe(3)(t) + 3λ2e(2)(t) + λ3e(1)(t)

= fξ(x(t)) + gξ(x(t))u(t) + 3λy(3)(t)

+ 3λ2y(2)(t) + λ3y(1)(t) = 0,
(22)

the following control law u(t) is obtained:

u(t) , usw(t) + ueq(t),

usw(t) = −Ksgn(s(x(t), t)),

ueq(t) =
−fξ(x(t)) + 3λy(3)(t) + 3λ2y(2)(t) + λ3y(1)(t)

gξ(x(t))
,

(23)

where: usw(t) ∈ U ⊂ R is non–continuous sliding mode term;
ueq(t) ∈ U ⊂ R is continuous equivalent control term; K ∈
R+ is gain coefficient; sgn(·) stands for the signum function.

The stability of the devised SMC can be proved by using
direct Lyapunov method [14].

For chattering phenomenon avoidance, the signum function
from (22) must be replaced by its approximation function [14].
For this purposes, the proposed function is as follows:

sign(s(x(t), t)) ≈ s(x(t), t)

|s(x(t), t)|+ ε
, (24)

where ε ∈ R+ is a tuning parameter.

B. Synthesis of the SU with SC

The synthesis of the SU with SC controller is based on util-
isation of the energy–based approach [2], [10], [11]. The total
mechanical energy of angular motion E(t) ∈ R+ of the IP in
any time t ∈ T, and the total mechanical energy of angular
motion appointed in lower equilibrium point E(t)

∣∣
xdown

, E0

are given as:

E(t) = mrgl cos(x3(t)) + 0.5x24(t), E0 = mrgl. (25)
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Hence, the swing–up control law FSU(t) ∈ F ⊂ R and its
saturated version F SAT

SU (t) ∈ F ⊂ R are defined as [2]:

FSU(t) = kSU(E(t)− E0)sign(x4(t) cos(x3(t))),

F SAT
SU (t) = SATF [FSU(t)] ,

(26)

where kSU > 0 signifies the swing–up mechanism parameter.
To guarantee proper action of the entire (SMC–SU–SC)

control system, the switching condition must include not only
the performance of the robust SMC and SU regulators but
also some physical constraints of control signal F (t). Thus,
to establish the operating regions of both SMC and SU, the
analysis of h(x(t)) function is performed. Taking into account
that, a significant part of h(x(t)) is based on natural logarithm
function, the interior of ln(·) from (15) must be bigger than
zero ∀t ∈ T. Further considering that for the IP stabilisation at
the upper position, the third state variable must be contained in
x3(t) ∈ Ω1 = [−π, π] ⊂ X , the new set Ω2 ⊂ X is introduced
as Ω2 = {x3(t) ∈ Ω1 | cos(x3(t)) 6= 0} = {−0.5π; 0.5π}.
By taking interior function of ln(·) from (15), the following
inequalities are derived:

(1 + sin(x3(t)))/(cos(x3(t))) > 0
∣∣ · (cos(x3(t)))2,

sin(x3(t)) cos(x3(t)) > − cos(x3(t)),

sin(2x3(t)) > −2 cos(x3(t)).

(27)

Assuming that the potential solutions of (27) are contained
in Ω1 \ Ω2, the potential operating region must be Ω3 =
(−0.5π, 0.5π) ⊂ Ω1. Hence, taking into account potential
constraints on the SU performance, the final operating region
ΩSMC must be established as contained in Ω3. Thus, based on
experimental results, the SC is determined as:

F (t) =

{
FSMC(t) for |x3(t)| < Ψ

FSU(t) for |x3(t)| ≥ Ψ
, (28)

where angle Ψ has been determined as Ψ = π/6 [rad].
Hence, for x3(t) operating regions of SMC and SU reg-

ulators are as follows: ΩSMC = (−Ψ,Ψ) ⊂ X , ΩSU =
[−Ψ,−π) ∪ [Ψ, π) ⊂ X .

Remark 1. As it has been mentioned in previous sections,
the entire control system includes not only SMC–SU–SC, but
also important subsystems of actuator and measuring device
(see [2]). Taking into account that, the performance of both
subsystems is sufficient, the developed solution is feasible to
implement in a real plant, as confirmed by the simulation
studies in the next section.

V. SIMULATION RESULTS

The devised control system has been implemented in Mat-
lab/Simulink environment. The values of the main parameters
of the IP are as follows: mw = 0.762 [kg], mp = 0.178 [kg],
lp = 0.18 [m], and kT = 7.5 [Ns/m]. Both these values and
the implemented subsystems of the actuator and measuring
device have been taken from [2]. In turn, the selected values of
the parameters of the designed control system are as follows:
K = 5, λ = 5, ε = 0.1, and kSU = 20. These have been

supplemented with SATF[·] = 7 [N] and the load mass of 0
and 0.1 [kg] during experiments 1 and 2, respectively.

The simulation results for experiment 1 are presented in
Fig. 2. As can be noticed, after about 5 [s] the IP arm has been
stabilised at the upper position and the cart is in the middle of
the gantry. Moreover, this effect is obtained with control sig-
nals respecting the saturation value – for comparison, Fig. 2a
shows the trajectories of control signals without saturation. In
addition, fulfilling the control goal required about 0.4 [m] of
the gantry, which meets the technological constraints of the
plant (the length of gantry equals 1 [m] – see [2]).

The second experiment tested the robustness of the control
system, i.e. the ability to reject external disturbance Z(t) and
the robustness to uncertainty in the parameters – change in
mass mc. The results obtained are given in Fig. 3. They show
that the control performance is maintained, thus the designed
control system meets the requirements imposed on it.

VI. CONCLUSIONS

In this paper, the control problem of an inverted pendulum
on a cart has been investigated. The devised control system

(a) Trajectories of control signals - experiment 1
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(b) Trajectory of x1(t) - experiment 1
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(c) Trajectory of x3(t) - experiment 1

Fig. 2. Trajectories of control signals and state variables - experiment 1.
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(a) Trajectory of Z(t) - experiment 2

(b) Trajectories of control signals - experiment 2
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(c) Trajectory of x1(t) - experiment 2
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(d) Trajectory of x3(t) - experiment 2

Fig. 3. Trajectories of control signals, external disturbance and state variables
- experiment 2.

includes the sliding mode controller for stabilisation of the
inverted pendulum at the upper equilibrium point and the
energy–based swing–up mechanism bringing the pendulum
arm to the neighbourhood of this point with switching condi-
tion between regulators. The designed control system allows
external disturbance rejection and coping with uncertainty in
parameters as well as respects the technological constraints
of the real plant. The efficiency of this structure has been
discussed and analysed by performing proper simulations in
Matlab/Simulink environment.
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