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A B S T R A C T

We discuss connections between the strong ellipticity condition and the infinitesimal instability within the
nonlinear strain gradient elasticity. The strong ellipticity (SE) condition describes the property of equations of
statics whereas the infinitesimal stability is introduced as the positive definiteness of the second variation of
an energy functional. Here we establish few implications which simplify the further analysis of stability using
formulated SE conditions. The results could be useful for the analysis of solutions of homogenized models of
beam-lattice materials at different scales.
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1. Introduction

Recently the strain gradient elasticity found various applications
in modelling of composite materials with high contrast in mechanical
properties, such as beam-lattice materials. Indeed, a homogenization
of such discrete structures leads to enhanced models of continua in-
cluding the strain gradient elasticity, see e.g. [1–6] and the references
therein. Due to high flexibility of these materials one can face certain
nstabilities observed at both micro- and macroscales [7–9]. Obviously,
icroscale instabilities may essentially change the material response

t the macroscale. For example, buckling of cell walls of elastomeric
oams results in a plateau in a loading diagram similar to plastic
ehaviour [10]. So homogenized models should also capture some
aterial instabilities.

Considering a material instability phenomenon it is worth to note
he strong ellipticity (SE) condition as a constitutive inequality. Indeed,
n nonlinear elasticity of simple materials it is known that SE relates
o an infinitesimal stability and vice versa [11–13]. In case of more
omplex models of continua the analysis of infinitesimal stability of
olids and structures may result in rather complex systems of partial dif-
erential equations (PDEs), which can demonstrate unusual behaviour,
ee e.g. [14,15] for micropolar elasticity. In particular, a homogeniza-
ion of pantographic beam-lattice materials results in so-called gradient
ncomplete strain gradient models with a particular potential energy
ensity [3,16–18]. As a result, the corresponding system of PDEs is nor
trongly elliptic neither elliptic, the corresponding differential proper-
ies relate to hypoelliptic operators [19]. A general theory for ellipticity
nd stability is also crucial even for linear problems for the following

reason: sometimes for complex domains it is possible to reduce the
problem under consideration to system of singular integral equations
using some transformation techniques, see e.g. [20,21]. Unfortunately,
their form allows one usually to define only some properties such as
the total index but not the partial indices and definitely does not allow
to prove the compactness of operators. In this case the preliminary
knowledge on the ellipticity and stability gives a chance to clarify the
missing information.

Nevertheless, the analysis of strong ellipticity conditions is still
meaningful as it relates to solution of algebraic problems, more pre-
cisely, to some inequalities given in a point. This analysis could be
simpler than the solution of the corresponding complete boundary-
value problem. On the other hand it may bring some information about
possible instabilities.

So the aim of this paper is to introduce ellipticity conditions for
strain gradient elasticity and connect them with the ones for material
instabilities. The paper is organized as follows. In Section 2 we briefly
introduce the basic equations of the strain gradient elasticity for solids
undergoing finite deformations. Hereinafter we use the direct (index-
free) tensor calculus as defined in [11,22,23]. In Section 3 we give
definitions of strong ellipticity (SE) conditions. The SE conditions are
given for the both cases, i.e. for simple and non-simple materials.
Section 4 addresses the main results related to ellipticity and stability.
Similar to nonlinear elasticity [11–13], here we discuss two impli-
cations which clarify the close relations between SE conditions and
infinitesimal stability within the framework of the nonlinear strain
gradient elasticity.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2021.103782&domain=pdf
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2. Strain gradient elasticity

In the framework of nonlinear elasticity deformations of an elastic 
body  is described through a smooth enough one-to-one mapping from
a reference placement into a current one as

𝐱 = 𝐱(𝐗), (1)

where 𝐱 and 𝐗 are position vectors of a material particle in  in the
reference and current placements, respectively. As usual, we assume
that 𝐱 is a differentiable function, so we introduce its gradients

𝐅 = ∇𝐱, 𝐆 = ∇∇𝐱 ≡ ∇𝐅, etc.

Here ∇ is the Lagrangian nabla-operator [11,22,23].
Within the strain gradient elasticity constitutive relations depend on

𝐅 and 𝐆 [3,24,25], whereas within the nonlinear elasticity of simple
materials the latter depend on 𝐅 only [11,12,26]. For a hyperelastic
solid there exists a potential energy density introduced as a function of
𝐅 and 𝐆

𝑊 = 𝑊 (𝐅,𝐆). (2)

The principle of material frame indifference [11,26] requires the fol-
lowing invariance of 𝑊

𝑊 (𝐅,𝐆) = 𝑊 (𝐅 ⋅𝐐,𝐆 ⋅𝐐) (3)

for any orthogonal tensor 𝐐, 𝐐−1 = 𝐐𝑇 . Here ‘‘⋅’’ stands for the dot
product. Eq. (3) results in various representations of 𝑊

= 𝑊̃ (𝐂,𝐊) = ̃̃𝑊 (𝐂, 𝐊̃), etc.,

= 𝐅 ⋅ 𝐅𝑇 , 𝐊 = 𝐆 ⋅ 𝐅𝑇 , 𝐊̃ = 𝐆 ⋅ 𝐅−1.

s we are interesting in a mathematical properties of corresponding
oundary-value problems in the following we use form (2). Let us split

𝑊 into two parts as follows

𝑊 = 𝑊0(𝐅) +𝑊1(𝐅,𝐆), 𝑊1(𝐅, 𝟎) = 0, (4)

where

𝑊0 = 𝑊 (𝐅, 𝟎), 𝑊1(𝐅, 𝟎) = 𝑊 (𝐅,𝐆) −𝑊 (𝐅, 𝟎).

Obviously, Eq. (4) includes simple nonlinear materials as a particular
ase with 𝑊1 = 0. So one can treat (4) as a certain regularization of
onstitutive relations of simple materials.

The Lagrangian equations of equilibrium take the form

⋅
(

𝐏0 − ∇ ⋅ 𝐏1
)

+ 𝜌𝐟 = 𝟎, (5)

here

0 =
𝜕𝑊
𝜕𝐅

, 𝐏1 =
𝜕𝑊
𝜕𝐆

re first Piola–Kirchhoff stress and double stress tensors, respectively,
is a referential mass density and 𝐟 is a vector mass forces. For

simple materials 𝐏1 = 𝟎 and (5) transforms into the classic equilibrium
equation [11]

∇ ⋅ 𝐏0 + 𝜌𝐟 = 𝟎. (6)

In what follows, we consider an undistorted reference placement,
.e. energy density and stresses vanish when deformation is absent:
(𝟏, 𝟎) = 0, 𝐏0(𝟏, 𝟎) = 𝟎, and 𝐏1(𝟏, 𝟎) = 𝟎. Here 𝟏 is the 3D unit tensor.

n addition we assume that the double stresses vanish if 𝐆 = 𝟎:

1(𝐅, 𝟎) = 𝟎. (7)

q. (7) seems to be a natural assumption as 𝐏1 is conjugated to 𝐆 and
hould vanish if the second deformation gradient is zero.
. Strong ellipticity

Eqs. (5) and (6) constitute systems of nonlinear partial differential
quations of fourth- and second-order, respectively. Using the general
heory of partial differential equations [27,28], we can characterize
he properties of PDEs under consideration introducing the following
trong ellipticity (SE) conditions

𝐤⊗ 𝐚) ∶ 𝜕2𝑊
𝜕𝐅2

∶ (𝐤⊗ 𝐚) ≥ 𝐶0(𝐤 ⋅ 𝐤)(𝐚 ⋅ 𝐚), (8)

(𝐤⊗ 𝐤⊗ 𝐚) ⋮ 𝜕2𝑊
𝜕𝐆2

⋮ (𝐤⊗ 𝐤⊗ 𝐚) ≥ 𝐶1(𝐤 ⋅ 𝐤)2(𝐚 ⋅ 𝐚), (9)

𝐤, 𝐚,

here 𝐤 and 𝐚 are constant vectors, 𝐶0 and 𝐶1 are positive constant
ndependent on 𝐤 and 𝐚, ‘‘⊗’’, ‘‘∶’’, and ‘‘⋮’’ are dyadic, double dot,
nd triple dot products respectively. For example for dyads, triads, and
etrads these products result in

𝐚⊗ 𝐛) ∶ (𝐜⊗ 𝐝) = (𝐚 ⋅ 𝐜)(𝐛 ⋅ 𝐝),
𝐚⊗ 𝐛) ∶ (𝐜⊗ 𝐝⊗ 𝐞) = (𝐚 ⋅ 𝐜)(𝐛 ⋅ 𝐝)𝐞,
𝐜⊗ 𝐝⊗ 𝐞) ∶ (𝐚⊗ 𝐛) = (𝐚 ⋅ 𝐝)(𝐛 ⋅ 𝐞)𝐜,
𝐚⊗ 𝐛⊗ 𝐜) ⋮ (𝐝⊗ 𝐞⊗ 𝐟 ) = (𝐚 ⋅ 𝐝)(𝐛 ⋅ 𝐞)(𝐜 ⋅ 𝐟 ),
𝐚⊗ 𝐛⊗ 𝐜) ⋮ (𝐝⊗ 𝐞⊗ 𝐟 ⊗ 𝐠) = (𝐚 ⋅ 𝐝)(𝐛 ⋅ 𝐞)(𝐜 ⋅ 𝐟 )𝐠,
𝐝⊗ 𝐞⊗ 𝐟 ⊗ 𝐠) ⋮ (𝐚⊗ 𝐛⊗ 𝐜) = (𝐚 ⋅ 𝐞)(𝐛 ⋅ 𝐟 )(𝐜 ⋅ 𝐠)𝐝,

where 𝐚, 𝐛, 𝐜, 𝐝, … are arbitrary vectors.
Eq. (8) is the strong ellipticity condition used in nonlinear elastic-

ity [11–13], whereas (9) is the strong ellipticity condition within the
strain gradient elasticity, see e.g. [29]. Obviously, since the strong ellip-
ticity is determined by highest-order differential terms, both definitions
are independent. In other words, (9) does not imply (8) and vice versa.
Within the strain gradient elasticity we call (8) the first-order strong
ellipticity condition and (9) the second-order strong ellipticity one.

Inequalities (8) and (9) can be written as a certain convexity con-
ditions

𝐵0(𝐤, 𝐚) ≡
𝑑2

𝑑𝑡2
𝑊0(𝐅 + 𝑡𝐤⊗ 𝐚)

|

|

|

|𝑡=0
≥ 𝐶0(𝐤 ⋅ 𝐤)(𝐚 ⋅ 𝐚), (10)

𝐵1(𝐤, 𝐚) ≡
𝑑2

𝑑𝑡2
𝑊1(𝐅,𝐆 + 𝑡𝐤⊗ 𝐤⊗ 𝐚)

|

|

|

|𝑡=0

≥ 𝐶1(𝐤 ⋅ 𝐤)2(𝐚 ⋅ 𝐚). (11)

o one can see that (8) and (9) or (10) and (11) relate to positivity
f the second variation of the potential energy density on particu-
ar perturbations, i.e. perturbations in the form of dyads and triads,
espectively. Moreover, (10) and (11) relate from the more general
ondition

(𝐤, 𝐚) ≡ 𝑑2

𝑑𝑡2
𝑊 (𝐅 + 𝑡𝐤⊗ 𝐚,𝐆 + 𝑡𝐤⊗ 𝐤⊗ 𝐚)

|

|

|

|𝑡=0
> 0, (12)

∀ 𝐤, 𝐚 ≠ 𝟎.

evertheless, the inequalities (10) and (11) do not imply (12) as well
as (12) does not imply the latter, in general. In fact, from (12) it follows
only a weak form of (11) that is the inequality

𝐵1(𝐤, 𝐚) ≥ 0, ∀ 𝐤, 𝐚, (13)

which has a sense of Hadamard’s inequality in nonlinear elasticity [11–
13]. If 𝐵1 is degenerated for some 𝐤, then 𝐵0 should be positive for the
same value of 𝐤. In other words, from (12) it follows that 𝐵1 is non-
negative. Moreover, if 𝐵1(𝐤, 𝐚) = 0 for some 𝐤 = 𝐤⋆ then 𝐵0(𝐤⋆, 𝐚) >
0.

4. Ellipticity and stability

In the framework of nonlinear elasticity of simple materials it
is known that the strong ellipticity condition relates to infinitesimal
stability [11–13]. Indeed, we have implications
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ergy functional implies the weak form of strong ellipticity (SE),
i.e. Hadamard’s inequality;

• the strong ellipticity implies the infinitesimal stability of affine 
deformations of a homogeneous body with clamped boundary.

Let us discuss the strong ellipticity and stability within the strain
gradient elasticity.

4.1. Infinitesimal stability

In what follows let us restrict ourselves to conservative external
forces, couples, double forces and other admissible type of loads. In
other words, we assume that there exists a functional  such that its
first variation 𝛿 gives the work of external loadings. Thus equilibrium
of the solid can be described by the Lagrange variational principle for
admissible displacements

𝛿 ≡ 𝛿 − 𝛿 = 0,  = ∫𝑉
𝑊 𝑑𝑉 .

It states that under certain conditions a solution of a corresponding
boundary-value problem is a stationary point of  and vice versa. Here
𝑉 ⊂ R3 is a volume which  occupies in the reference placement. Static
tability of a solution is based on the analysis of the second variation
f . The second variation takes the form

𝛿2 =𝛿2(𝐯) = ∫𝑉
𝛿2𝑊 𝑑𝑉 , (14)

2𝑊 = 𝑑2

𝑑𝑡2
𝑊 (𝐅 + 𝑡𝛿𝐅,𝐆 + 𝑡𝛿𝐆)

|

|

|

|𝑡=0

=𝛿𝐅 ∶ 𝜕2𝑊
𝜕𝐅2

∶ 𝛿𝐅 + 𝛿𝐆 ⋮
𝜕2𝑊
𝜕𝐆𝜕𝐅

∶ 𝛿𝐅

+ 𝛿𝐅 ∶ 𝜕2𝑊
𝜕𝐅𝜕𝐆

⋮ 𝛿𝐆 + 𝛿𝐆 ⋮
𝜕2𝑊
𝜕𝐆2

⋮ 𝛿𝐆

=∇𝐯 ∶ 𝜕2𝑊
𝜕𝐅2

∶ ∇𝐯 + ∇∇𝐯 ⋮
𝜕2𝑊
𝜕𝐆𝜕𝐅

∶ ∇𝐯

+ ∇𝐯 ∶ 𝜕2𝑊
𝜕𝐅𝜕𝐆

⋮ ∇∇𝐯 + ∇∇𝐯 ⋮
𝜕2𝑊
𝜕𝐆2

⋮ ∇∇𝐯, (15)

where 𝐯 = 𝛿𝐱. In what follows we consider 𝐯 as a twice differentiable
functions, 𝐯 ∈ 𝐶2(𝑉 ). Note that in this definition we have explicitly
assumed that 𝛿2 = 0. In the following we assume that a part 𝑆0 of the
boundary 𝑆 = 𝜕𝑉 is clamped. We call a solution stable if

𝛿2(𝐯) > 0, ∀ 𝐯 ≠ 𝟎 ∶ 𝐯
|

|

|

|𝑆0

= 𝟎, 𝜕𝐯
𝜕𝑛

|

|

|

|𝑆0

= 𝟎, (16)

here 𝜕∕𝜕𝑛 denotes the normal derivative.
Let 𝐱 = 𝐱0 be a stable solution. So (15) takes the form

2𝑊 =∇𝐯 ∶ 𝐂0(𝐗) ∶ ∇𝐯 + ∇∇𝐯 ⋮ 𝐂1(𝐗) ⋮ ∇∇𝐯

+ ∇∇𝐯 ⋮ 𝐂2(𝐗) ∶ ∇𝐯 + ∇𝐯 ∶ 𝐂3(𝐗) ⋮ ∇∇𝐯, (17)

here

0 =
𝜕2𝑊
𝜕𝐅2

|

|

|

|𝐅=𝐅0 ,𝐆=𝐆0

, 𝐂1 =
𝜕2𝑊
𝜕𝐆2

|

|

|

|𝐅=𝐅0 ,𝐆=𝐆0

,

2 =
𝜕2𝑊
𝜕𝐆𝜕𝐅

|

|

|

|𝐅=𝐅0 ,𝐆=𝐆0

, 𝐂3 =
𝜕2𝑊
𝜕𝐅𝜕𝐆

|

|

|

|𝐅=𝐅0 ,𝐆=𝐆0

re continuous tensor-valued functions, and 𝐅0 = ∇𝐱0, 𝐆0 = ∇𝐅0.
Let us show that for any point 𝐗0 ∈ 𝑉 , 𝐗0 ∉ 𝑆 ≡ 𝜕𝑉 , inequality

(16) implies (13). Applying the partition of unity technique [27] we
an prove that the problem under consideration reduces to the problem
ith coefficients ‘‘frozen’’ at 𝐗 = 𝐗0. So we consider

2𝑊 =∇𝐯 ∶ 𝐂0(𝐗0) ∶ ∇𝐯 + ∇∇𝐯 ⋮ 𝐂1(𝐗0) ⋮ ∇∇𝐯

+ ∇∇𝐯 ⋮ 𝐂2(𝐗0) ∶ ∇𝐯 + ∇𝐯 ∶ 𝐂3(𝐗0) ⋮ ∇∇𝐯. (18)
Now let us consider a vector-valued function 𝐯 with finite support,
𝐯 = 𝐯𝜀, supp 𝐯𝜀 = 𝑉𝜀 ≡ {𝐗 ∶ |𝐗 − 𝐗0| ≤ 𝜀}, where 𝜀 is a small positive 
number. We can take 𝐯𝜀 as follows

𝐯𝜀 = 𝑓

(

𝑋1 −𝑋0
1

𝜀

)

𝑓

(

𝑋2 −𝑋0
2

𝜀

)

𝑓

(

𝑋3 −𝑋0
3

𝜀

)

𝐚,

where 𝐚 is a constant vector, and 𝑓 (𝑋) is an even function in 𝐶∞
0 [−1, 1],

uch that
1

−1
𝑓 (𝑋) 𝑑𝑋 = 1, 𝑓 (±1) = 0, 𝑓 ′(±1) = 0.

or example, the bump function

(𝑋) =

{

exp
(

1
𝑋2−1

)

, |𝑋| ≤ 1,
0, |𝑋| > 1.

could be taken.
As a result, 𝛿2 takes the form

𝛿2(𝐯) =∫𝑉𝜀

[

∇𝐯𝜀 ∶ 𝐂0(𝐗0) ∶ ∇𝐯𝜀

+∇∇𝐯𝜀 ⋮ 𝐂1(𝐗0) ⋮ ∇∇𝐯𝜀
]

𝑑𝑉 . (19)

Changing variables in (19) as follows 𝐲 = 𝜀−1(𝐗 − 𝐗0), we get

𝛿2(𝐯) = 𝜀𝐽0(𝐯) + 𝜀−1𝐽1(𝐯), (20)

where

𝐽0(𝐯) = ∫𝑉1
∇𝐯 ∶ 𝐂0(𝐗0) ∶ ∇𝐯 𝑑𝑉 ,

𝐽1(𝐯) = ∫𝑉1
∇∇𝐯 ⋮ 𝐂1(𝐗0) ⋮ ∇∇𝐯 𝑑𝑉 ,

and 𝐯 = 𝐯𝜀
|

|

|𝜀=1
, 𝑉1 = 𝑉𝜀

|

|

|𝜀=1
, ∇𝑦 = 𝜀−1∇. So we can conclude that (16) it

ollows that 𝐽1(𝐯) ≥ 0 for all 𝐯. Moreover, if there exists such 𝐯 = 𝐯⋆ ≠ 𝟎
hat 𝐽1(𝐯⋆) = 0 then 𝐽0(𝐯⋆) > 0 otherwise (16) will be violated. As we
onsider 𝐗0 as an arbitrary point in 𝑉 , we conclude that

1(𝐯) ≡ ∫𝑉
∇∇𝐯 ⋮ 𝐂1(𝐗) ⋮ ∇∇𝐯 𝑑𝑉 ≥ 0, (21)

∀𝐯 ∶ 𝐯
|

|

|

|𝑆
= 𝟎, 𝜕𝐯

𝜕𝑛
|

|

|

|𝑆
= 𝟎.

Finally, let us show that (21) results in (13). Let us assume the opposite,
i.e. that there is a point 𝐗0 such that 𝐵1(𝐤⋆, 𝐚) < 0 for some 𝐤 = 𝐤⋆.
Since 𝐂1 is a continuous function there is a neighbourhood 𝑉𝜀 ≡ {𝐗 ∶
|𝐗 − 𝐗0| ≤ 𝜀} for a small 𝜀 > 0, such that for all 𝐗 ∈ 𝑉𝜀 𝐵1(𝐤⋆, 𝐚) < 0.
Let us consider 𝐯 = cos(𝜆𝐤⋆ ⋅ (𝐗 − 𝐗0))𝜑(𝐗)𝐚, where 𝜑(𝐗) ia a smooth
function with finite support, supp𝜑 ⊂ 𝑉𝜀, 𝐚 is a constant vector, and 𝜆
is a positive number. Then we can see that

𝐽1(𝐯) = 𝜆4𝐵1(𝐤⋆, 𝐚)∫𝑉𝜀
𝜑2(𝐗) cos2(𝜆𝐤⋆ ⋅ (𝐗 − 𝐗0)) 𝑑𝑉 + 𝑜(𝜆4).

Considering a large enough 𝜆 we see that 𝐽1(𝐯) < 0 that contradicts
(21). Thus we come to (13).

4.2. Stability of affine deformations

In order to analyse the converse statement, that is the ellipticity
implies some stability results, let us consider a particular class of
deformations and boundary conditions. An affine deformation is given
by

𝐅 = 𝐅0 = const, 𝐆 = 𝟎 (22)

of a homogeneous body with the kinematic boundary conditions on the
whole boundary

𝐯
|

| = 𝟎, 𝜕𝐯 |
| = 𝟎. (23)
|

|𝑆 𝜕𝑛 |
|𝑆
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From (7) and (22) it follows that 𝐏1 = 𝟎 and

𝜕2𝑊
𝜕𝐅𝜕𝐆

= 𝜕2𝑊
𝜕𝐆𝜕𝐅

= 𝟎.

So 𝛿2𝑊 became a quadratic form with constant coefficients

𝛿2𝑊 =∇𝐯 ∶ 𝐂0 ∶ ∇𝐯 + ∇∇𝐯 ⋮ 𝐂1 ⋮ ∇∇𝐯, (24)

𝐂0 =
𝜕2𝑊
𝜕𝐅2

|

|

|

|𝐅=𝐅0 ,𝐆=𝟎
, 𝐂1 =

𝜕2𝑊
𝜕𝐆2

|

|

|

|𝐅=𝐅0 ,𝐆=𝟎
.

For 𝐯 satisfying (23) we can extend it to the whole space as follows

(𝐗) =
{

𝐯(𝐗), 𝐗 ∈ 𝑉 ;
𝟎, 𝐗 ∈ R3∖𝑉 .

o we get

2 = ∫R3

(

∇𝐮 ∶ 𝐂0 ∶ ∇𝐮 + ∇∇𝐮 ⋮ 𝐂1 ⋮ ∇∇𝐮
)

𝑑𝑋1 𝑑𝑋2 𝑑𝑋3. (25)

Here we extend the proof given in [11] or in general form in [27].
e use the Fourier transform of 𝐮 and the Plancherel theorem, see

.g. [30]. The direct and inverse transforms are given by

𝐮̂(𝐤) = 1
(2𝜋)3∕2 ∫R3

𝑒−𝐤⋅𝐗𝐮(𝐗) 𝑑𝑋1 𝑑𝑋2 𝑑𝑋3,

(𝐗) = 1
(2𝜋)3∕2 ∫R3

𝑒𝐤⋅𝐗𝐮̂(𝐤) 𝑑𝑘1 𝑑𝑘2 𝑑𝑘3,

here 𝑖 is the imaginary unit, 𝑖2 = −1. The Plancherel theorem states
hat for two functions 𝑓 (𝑥), 𝑔(𝑥) ∈ 𝐿2(R) ∩ 𝐿1(R) we have

R
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 = ∫R

𝑓 (𝑘)𝑔(𝑘) 𝑑𝑘.

ereinafter the overbar stands for the complex conjugate quantities
nd 𝐿𝑝 denotes the Lebesgue spaces [31]. Using the technique [11] we

replace 𝛿2 by

𝛿2 =∫R3

[

(𝐤⊗ 𝐮̂(𝐤)) ∶ 𝐂0 ∶ (𝐤⊗ 𝐮̂(𝐤))

+(𝐤⊗ 𝐤⊗ 𝐮̂(𝐤)) ⋮ 𝐂1 ⋮ (𝐤⊗ 𝐤⊗ 𝐮̂(𝐤))
]

𝑑𝑘1 𝑑𝑘2 𝑑𝑘3. (26)

Using symmetries of 𝐂0 and 𝐂1 and (8) and (9) we came to the
inequality

𝛿2 ≥∫R3

[

𝐶0(𝐤⊗ 𝐮̂(𝐤)) ∶ (𝐤⊗ 𝐮̂(𝐤))

+𝐶1(𝐤⊗ 𝐤⊗ 𝐮̂(𝐤)) ⋮ (𝐤⊗ 𝐤⊗ 𝐮̂(𝐤))
]

𝑑𝑘1 𝑑𝑘2 𝑑𝑘3

=∫R3

[

𝐶0∇𝐮 ∶ ∇𝐮 + 𝐶1∇∇𝐮 ⋮ ∇∇𝐮
]

𝑑𝑘1 𝑑𝑘2 𝑑𝑘3

=∫𝑉

[

𝐶0∇𝐯 ∶ ∇𝐯 + 𝐶1∇∇𝐯 ⋮ ∇∇𝐯
]

𝑑𝑉 . (27)

hus, using both SE conditions we have proven the infinitesimal stabil-
ty of an affine deformations. In other words (8) and (9) play a role of
onditions which are sufficient for stability. In other words, within the
train gradient elasticity SE condition (9) does not imply stability, in
eneral.

In fact, SE condition (8) could be violated. Indeed, from (23) it
ollows that ∇𝐮||

|𝑆
= 𝟎 and one can apply Friedrichs’ inequality [31]

∇𝐮‖𝐿2(𝑉 ) ≤ 𝐶3‖∇∇𝐮‖𝐿2(𝑉 )

ith a positive constant 𝐶3 which depends on 𝑉 . So for the positive
efiniteness of 𝛿2 it is enough to require the inequality 𝐶0 > −𝐶3.

Moreover, considering the given proof one can see that even 2nd
E condition could be also violated. Indeed, we replace (8) and (9) by

their combination

(𝐤⊗ 𝐚) ∶ 𝜕2𝑊
𝜕𝐅2

∶ (𝐤⊗ 𝐚)

+ (𝐤⊗ 𝐤⊗ 𝐚) ⋮ 𝜕2𝑊
𝜕𝐆2𝐹

⋮ (𝐤⊗ 𝐤⊗ 𝐚) ≥ 𝑃 (𝐤)(𝐚 ⋅ 𝐚), (28)
here 𝑃 (𝐤) is a polynomial of 𝐤 = (𝑘1, 𝑘2, 𝑘3) such that

(𝐤) = 𝐴𝑚𝑛𝑘𝑚𝑘𝑛 + 𝐵𝑚𝑛𝑝𝑡𝑘𝑚𝑘𝑛𝑘𝑝𝑘𝑡 ≥ 𝛼𝑗𝑘
2
𝑗 + 𝛽𝑗𝑘

4
𝑗 (29)

ith coefficients 𝐴𝑚𝑛 and 𝐵𝑚𝑛𝑝𝑡. Here 𝛼𝑗 and 𝛽𝑗 , 𝑗 = 1, 2, 3, are positive
onstants which cannot be both vanished, 𝛼𝑗 + 𝛽𝑗 > 0 for each 𝑗. For
xample, such 𝑃 is admissible

= 𝛼1𝑘
2
1 + 𝛽2𝑘

4
2 + 𝛽3𝑘

4
3.

bviously, inequality (28) with (29) do not constitute a condition of
strong ellipticity. Nevertheless, under certain conditions the uniqueness
of a solution can be proven even in this case using the anisotropic
Sobolev spaces, see [19] for details. In other words, within the strain
gradient elasticity (9) is not a necessary condition for infinitesimal
tability, in general.

onclusions

We have formulated two inequalities (8) and (9) of strong ellipticity
of a simple elastic material and its extension towards a strain gradient
material, respectively. For nonlinear strain gradient elasticity we call
these conditions first- and second-order strong ellipticity conditions (1st
SE and 2nd SE). We have proven three implications:

• infinitesimal stability, i.e. the positive definiteness of 𝛿2 , implies
weak 2nd SE condition;

• 1st SE and 2nd SE conditions imply infinitesimal stability of
affine deformations of a homogeneous body  with Dirichlet-
type boundary conditions. So 1st SE and 2nd SE are sufficient
conditions;

• under certain conditions even without 1st SE condition, 2nd SE
condition may result in infinitesimal stability of deformations
described above in the previous case.

Let us note that the first case has the same form as in nonlinear
elasticity, whereas other implications present more complex picture of
interrelations between SE and stability. Nevertheless, unlike nonlinear
elasticity the relation between SE condition and infinitesimal stability
is not straightforward. Indeed, stability could be proven even for not
strongly elliptic systems.

These implications mean that both SE conditions may be useful for
the analysis of material instabilities in solids modelled within the strain
gradient elasticity as they may guarantee stability of some deformations
whereas their violation may indicate some instabilities. In particular, a
strain gradient regularization may eliminate some instabilities observed
within the model of simple materials. In a certain sense this phe-
nomenon is similar to strain localization with strain gradient plasticity,
see e.g. [24,32,33].
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