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Face with Mask Detection in Thermal

Images Using Deep Neural Networks.

Sensors 2021, 21, 6387. https://

doi.org/10.3390/s21196387

Academic Editor: Italo Zoppis

Received: 22 August 2021

Accepted: 22 September 2021

Published: 24 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; jacek.ruminski@pg.edu.pl
* Correspondence: natalia.glowacka@pg.edu.pl

Abstract: As the interest in facial detection grows, especially during a pandemic, solutions are sought
that will be effective and bring more benefits. This is the case with the use of thermal imaging,
which is resistant to environmental factors and makes it possible, for example, to determine the
temperature based on the detected face, which brings new perspectives and opportunities to use
such an approach for health control purposes. The goal of this work is to analyze the effectiveness of
deep-learning-based face detection algorithms applied to thermal images, especially for faces covered
by virus protective face masks. As part of this work, a set of thermal images was prepared containing
over 7900 images of faces with and without masks. Selected raw data preprocessing methods were
also investigated to analyze their influence on the face detection results. It was shown that the use of
transfer learning based on features learned from visible light images results in mAP greater than 82%
for half of the investigated models. The best model turned out to be the one based on Yolov3 model
(mean average precision—mAP, was at least 99.3%, while the precision was at least 66.1%). Inference
time of the models selected for evaluation on a small and cheap platform allows them to be used for
many applications, especially in apps that promote public health.

Keywords: thermal images; face detection; face with mask detection; deep neural networks

1. Introduction

Face detection in thermal images using deep neural networks is still a challenge
because of small amount of thermal images needed for algorithms learning. The biggest
advantages of using the thermal domain is possibility of detecting during night and
day and independence from weather and illumination condition. The advantages of
using thermal images are used, among others, for face detection and tracking [1], face
recognition [2], analysis of local temperature changes [3,4] or estimation of biomedical
signals [5,6]. Low resolution thermal cameras become more available and the features
obtained from such thermal images can be improved using deep-learning-based algorithms
such as super-resolution algorithms [7] or transformers [8].The use of thermal imaging in
conjunction with deep learning, using available and cheap thermographic cameras and
small modules containing GPU, will allow quickly analyzing images and create low-cost
systems, for example for remote health control.

1.1. Literature Review

There are some algorithms developed primarily for face detection in thermal
images—Projection Profile Analysis (PPA) [9] or Eye Corner Detection (ED) [10]. These
algorithms are well suited for detecting in images where the person is dominant object in
the image and its whole head and upper part of torso are visible.

In computer vision tasks, face detection is one of basic, the most popular and well
known issue. In visible light images spectrum are a lot of solutions for this task, including
many of them are based on deep neural networks. Of course, there are also traditional
solutions, including Viola-Jones [11], but now classical methods are often replaced by newer
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solutions based on deep learning. Zhang et al. [12] designed face detector named FaceBoxes.
This convolutional neural network model was created to have superior performance on
both speed and accuracy. The speed of FaceBoxes is unchanging to the number of faces in
the picture. It achieves a good accuracy in comparing with another face detection methods.
Face detection can also be performed on the basis of well-known models designed for
object detection. Yang and Jiachun [13] applied YOLO model to face detection. The model
was trained on WIDER FACE data set [14]. Using YOLO the speed of detection can meet
real-time detection requirements. From the other side, face detection can be performed
in conjunction with a face recognition task. This multi-task solution was used in F-DR
Net [15]. F-DR Net has a parallel architecture and detection network based on FaceBoxes
model. This method was evaluated on several face detection and recognition datasets and
it has better recognition and detection accuracy than other methods. Several deep-learning-
based approaches focused on face and face mask detection have been investigated in [16].
The study was based on visible light images demonstrating high classification accuracy
using the fine-tuned VGG-16 model.

For face detection in thermal images, such as in the visible spectrum, algorithms or
machine learning-based approaches can be used. In [17], authors compare five algorithms
which have been successfully applied for face detection in visible light images with algo-
rithms especially designed for detection in thermal images. The Haar cascade classifier [11],
Histograms of Oriented Gradients (HOG) [18] and the other can be used for detection
in thermal images if trained with a well-fitting database. On the other hand, when deep
neural networks are more efficient, it is naturally to use this solution for face detection.
Attempts to adapt the neural networks used with visible light images have brought many
successes. One of the models commonly used for face detection in thermal imaging is
Yolov3 [19]. This model was made for object detection and its most salient feature is making
detection at three different scales—small objects can be well detected because of preserving
the fine grained features. Yolov3 was adopted for face detection in thermal images for
in-vehicle monitoring of passengers in [20]. The results of authors experiments on their
test set show an AP50 of 99.7% and an AP of 78.5%. In [1], the authors analyze using deep
learning algorithms for face detection in low resolution thermal sequences. The Inception
v3 model [21] was used—it is a great model for object classification, but it was trained on
visible light images. To resolve this problem, transfer learning technique can be used for
re-training the Inception v3. The model returns only class probabilities, so its last layer
should be modified for object detection task. The changes introduced to the model allowed
it to be successfully adapted to detection on thermal images. Thermographic images are
also used for tasks other than face detection. Peng et al. in [22] created NIRFaceNet—a
convolutional neural network modified from GoogLeNet [23]. It has fewer parameters than
previously designed AlexNet [24], but model achieving higher accuracy. The experimental
results compared to other solutions—such as Local Binary Pattern + Principal Component
Analysis (LBP + PCA) [25] or GoogLeNet, demonstrate that the proposed architecture has
an overall advantage, especially when image has blur or noise. In the other hand, thermal
images are used for face authentication [26]. The proposed neural network architecture
consists of 12 sequential layers, which takes as input one channel image. The data set
used includes faces in different positions, lightning conditions and emotions, that gives the
model the ability to recognize in any condition. In compared to state-of-the-art thermal face
recognition algorithms (like NIRFaceNet or GoogLeNet), the proposed method achieves
better recognition accuracy (99.6%). Another algorithm created for thermal face recognition
tasks was made by Wu et al. [2]. Proposed model optimizes the neural network structure
through the local receptive field, power sharing and sampling. Using the RGB-D-T face
database [27] for CNN testing and comparing with other methods such as LBP, HOG in
categories: head rotation, expression, and illumination are conditions. In all categories,
the method created by us has the best thermal recognition accuracy.
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1.2. Contribution

In this paper, we explored whether and how the face detection algorithms designed
for detecting in visible light can be adapted for thermal images of a face with and without
a virus protective mask work. We analyzed four face detection algorithms with different
base models using about 8000 thermal images that we collected with four different thermal
cameras. Additionally, we analyzed the role of different thermal raw data preprocessing
methods on face detection quality metrics. We check whether using a cheap and small
module equipped with a GPU, it is possible to achieve a satisfactory inference time for use
in everyday applications (e.g., for remote temperature control). Finally, we investigated the
role of transfer learning using features learned on visible light images.

2. Materials and Methods

Due to the lack of access to a large number of thermal images of the face especially
with virus protective masks, we decided to create our own image database. The database
contains thermal images of the face and their descriptions (location in the image and
information on whether the person wear face mask, face visor or be without them). The ex-
periment was performed with permission of local Committee for Ethics of Research with
Human Participants of 02.03.2021.

2.1. Description of Cameras

Thermal sequences were collected using several cameras to obtain more varied dataset.
The descriptions of used cameras are shown below in Table 1.

Table 1. Descriptions of cameras.

Model Manufacturer Spatial Resolution Dynamic Range Frame Rate

A320G FLIR Systems 320 × 240 16 bit 60 fps
A655SC FLIR Systems 640 × 480 16 bit 50 fps
SC3000 FLIR Systems 320 × 240 14 bit 50 fps
Boson FLIR Systems 640 × 512 14 bit 8 fps

2.2. Image Acquisition Methods

Using various types of cameras, we recorded thermal sequences from which individual
images was extracted. These sequences depicts people who’s entering the building (these
people should wear different types of masks, but also can be without them), people moving
towards the camera, and the faces of people with and without a mask making head
movements (a side-to-side and an up-and-down movements) at two different distances
from the cameras (60 cm and 250 cm). Due to different types of recordings, the faces
shown in the pictures are in different positions and in different scales. Recorded thermal
sequences contain both good and poor quality images. Examples of such images are shown
in Figure 1.

2.3. Dataset

The dataset consisted of 7920 images. It contains 7285 images where people are
wearing a mask and 635 images where people are without one. The created dataset is not
balanced, because we were interested in images with masks and images without masks
only for reference. The entire dataset includes 10,555 face labels, since some images had
more than one face. Among the collected images, women accounted for 42% of participants
in the experiment, and men for 58%. The average age of people was 26.42 years. The created
dataset was divided into training (90%) and test sets (10%). The test set includes images
captured by each camera and images with and without masks.

From test set we extracted two smaller sets—one containing images with mask and
second containing images without. The first one include 6% of collected images and the second
one—4%. After that, we obtained three test sets—original, with mask and without mask.
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(a) (b)

Figure 1. Examples of two types of images included in dataset: (a) good quality image and (b) poor
quality image.

2.4. Annotations of Images

After collecting thermal sequences, we extract some frames of every sequences.
For FLIR A655SC and SC3000 frame offset was set to 20 (which means that every 8th
frame was annotated), for FLIR Boson to 10 and for FLIR A320G to 8. To describe them,
we have created a web application that allows to create annotations, which was based on
websocket technology. For showing frames from a sequence, every frame was converted
using normalization to 0–255 range, next saved as grayscale image and shown during
annotation. For each frame, the description includes the location of each faces in the image
and information whether a face mask (or face visor) is or not on the face. The criteria for
annotating the face were: marking the regions with rectangles that include the forehead,
the chin and the cheeks, and a region could be marked if a minimum of 50% of its area
and two eyes were visible. When describing the images, if the annotator was unsure that
the face mask was on, it should mark that the person has not it on the face. Additionally,
to mark the region with ‘face mask’ label, the face mask should cover at least mouth.
Annotation of images was made by eight people. Face is relatively easy to recognize by the
experts, so we assume that annotations of faces were done correctly.

2.5. Data Preprocessing

Recorded sequences were saved as raw data. This type of saving sequences allows for
extensive preprocessing of data that will be used for model training and testing. The first
step is to normalize the entire range of raw data values to 0–255 for each frame. The second
version of data preprocessing is to change the contrast of images using Contrast Limited
Adaptive Histogram Equalization with 8x8 window. This type of histogram equalization
is added to images with original values range of raw data, which are next normalize
to 0–255 range (like in first type). The last one type of image preprocessing is to use
image colorization to the images in dataset. All of analyzed algorithms were designed to
work with images registered in visible light. Image colorization of thermal images should
increase accuracy achieved by the models. It was done with the use of a solution proposed
by the authors of the article [28]. An example of three data preprocessing cases are shown
in Figure 2.

Due to the use of three different data preprocessing methods, the original test set was
also presented in three versions: original (normalized), with CLAHE and with colorization.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2021, 21, 6387 5 of 16

(a) (b)

(c) (d)
Figure 2. Example of three types of preprocessing: (a,b) images with normalized range of raw data,
(c) image is image (a) after changing contrast using CLAHE and (d) image is image (b) after colorization.

2.6. Adaptation of Deep Learning Models

We have decided to analyze four deep learning face detection models with different
base models, which originally was designed to detect faces in visible light images. This
will allow us to analyze the effectiveness of deep-learning-based face detection algorithms
applied to thermal images, especially for faces covered by virus protective face masks.

First of chosen models is UltraLight model [29]. This model was designed for face
detection and for being lightweight for using in edge computing devices. The authors
provided two versions of model: version-slim (with network backbone simplification,
slightly faster) and version-RBF (with the modified RFB module and higher precision).
The size of the model is approximately 1MB. For these two versions, the hyperparameters
were the same and are listed in Table 2. For this model, learning rate was reduced by 0.1
after 95 and 150 epoch.

Table 2. Models hyperparameters.

Model Name Base Model Number of Epochs Batch Size Optimizer Initial Learning Rate

UltraLight version-slim 200 24 SGD 0.01version-RBF

RetinaFace MobileNet-0.25 250 32 SGD 0.001ResnNet-50 200 24

Yolov3 - 200 16 SGD 0.01

LFFD - 32 SGD 0.1

RetinaFace [30] is the second model selected for testing. This model was originally
created using Mxnet library, but we use its implementation in PyTorch [31]. The authors
provided two versions of backbone net—MobileNet-0.25 and ResNet-50. Base models
hyperparameters are shown in Table 2 below. The models was trained using SGD as
optimization method with 0.9 momentum, weight decay at 0.0005. Initial learning rate was
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divided by 10 at 190 and 220 epoch in Mobilenet-0.25 version and at 150 and 190 epoch in
ResNet-50 version.

The next one was the Yolov3 model [19]. Before starting the selection of the type
of Yolo model, preliminary tests for thermal images were carried out between versions:
3, 4, and 5. As the best results were obtained for the Yolo model in version 3, it was
selected for analysis. Its implementation in PyTorch was used. The optimization method
is SGD with 0.937 Nesterov momentum and 0.0005 weight decay. The remaining model
hyperparameters are included in Table 2. At the beginning of the training process, a warm-
up (3 epochs) is performed. The learning rate is changed with cosine function.

LFFD: A Light and Fast Face Detector for Edge Devices [32] was the last selected for
testing. This detector balancing both accuracy and running efficiency. The testing task
will use the second version (v2) of the model (not presented in the article). In this version,
detection scale is 10–320 and the backbone is modified for faster inference compared to
the version presented in the paper. SGD with 0.9 momentum was used as optimization
method and 0.00001 weight decay. The model was trained over 1,000,000 iterations, and the
learning rate was reduced by dividing by 10 the current value at the 300,000, 600,000 and
900,000th iterations.

Each model additionally introduces its own image preprocessing. The Yolov3 model
uses a random change of perspective and random changes in color, hue, saturation,
and brightness. The LFFD model also uses random changes in saturation and brightness,
but also in contrast, random horizontal and vertical flip, and blur. Classic preprocessing,
like brightness, contrast, saturation, and hue random changes, is used by RetinaFace too.
In addition, image cropping, mirroring or resizing to a given dimension are also used. The
last model—the Ultra Light model—uses the same methods as in the RetinaFace model,
but also randomly adds noise to the image.

2.7. Models Testing Scenario

We decided to carry out two different approaches to testing selected models. Figure 3
shows the framework model of the testing scenario. The first approach was to see how
each model performs face detection in thermal images when it was trained on the visible
images dataset. In our case it was the WIDER FACE dataset for all models. The second
approach involves the use of already acquired knowledge while training models on a set
of visible images—transfer learning. In this case, we use a model that has already been
trained and we fine-tuned it using the database created by us. The use of transfer learning
consists of taking a model previously trained on a set of visible images (in our case on
WIDER face database), then we use freezing the layers of the basic model and train the last
layers to adapt model to work with thermal images.

For each of the approaches, each model will be evaluated on the three created test sets.
The last element of the evaluation of selected models will be to measure the inference

time to check if it is satisfactory enough to use the models in applications in everyday
life. The inference time will be measured for images with two resolutions—640 × 480
and 320 × 240 pixels, using the NVIDIA Jetson Nano module (with NVIDIA Maxwell
architecture) and DGX-1 station (on one NVIDIA Tesla V100 SXM2 32GB GPU).

2.8. Metrics

To measure the performance of the analyzed models we have choose three metrics:
mean Average Precision (mAP) [33], precision, and recall [34] . They are a popular metrics
for measuring accuracy of object detectors. Precision measures accuracy of predictions
(percentage of correct predictions), while recall measures the number of correct positive
prediction in all positive prediction. Average precision combines precision and recall
(calculating the area under the curve (AUC) of the Precision x Recall curve) and the higher
the score is, the higher performance the model has.
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Figure 3. The framework model of the testing scenario.

3. Results

Tables 3–6 show the results obtained for each test scenario. The results obtained
for each model and test set are the average of three test approaches in order to avoid
randomness of the obtained results. The use of models learned only on images recorded
in visible light does not give particularly high and desirable results in the case of thermal
images. Compared to other models, the Yolov3 model is distinguished by a particularly
high value of the mean average precision (mAP), precision, and recall. Moreover, for the
remaining models, the collected metrics for the original test set with faces only in masks
were significantly lower than for the mixed sets, and for the set with images of faces without
masks, they reached the highest values.

Table 3. Results obtained for testing model trained on WIDER FACE dataset.

Trained on WIDER FACE

Model Dataset mAP Precision Recall

UltraLight

version-slim

original 0.165 0.514 0.144

with CLAHE 0.207 0.514 0.196

with colorization 0.216 0.530 0.209

original with mask 0.107 0.436 0.105

original without mask 0.267 0.598 0.210

version-RBF

original 0.166 0.514 0.180

with CLAHE 0.200 0.535 0.192

with colorization 0.222 0.539 0.260

original with mask 0.096 0.398 0.121

original without mask 0.286 0.640 0.281
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Table 3. Cont.

Trained on WIDER FACE

Model Dataset mAP Precision Recall

RetinaFace

MobileNet-0.25

original 0.315 0.565 0.285

with CLAHE 0.337 0.594 0.297

with colorization 0.296 0.475 0.325

original with mask 0.218 0.487 0.209

original without mask 0.467 0.648 0.416

ResNet-50

original 0.233 0.464 0.245

with CLAHE 0.274 0.528 0.261

with colorization 0.231 0.434 0.254

original with mask 0.125 0.353 0.172

original without mask 0.392 0.597 0.373

Yolov3

original 0.994 0.638 0.997

with CLAHE 0.996 0.634 0.997

with colorization 0.996 0.621 0.997

original with mask 0.994 0.625 0.998

original without mask 0.994 0.663 0.996

LFFD

original 0.163 0.461 0.168

with CLAHE 0.220 0.562 0.206

with colorization 0.172 0.439 0.193

original with mask 0.090 0.360 0.119

original without mask 0.287 0.570 0.252

The use of transfer learning has shown satisfactory results for the UltraLight, LFFD,
and RetinaFace models. Using the original training set, the best results are achieved by the
Ultra Light model, comparable for the slim and RBF versions. When the contrast enhanced
image set using CLAHE was selected as the training set, in addition to the Yolov3 model,
the Ultra Light model performs well with face recognition, especially for the RBF version,
where the mAP is over 80%. The use of the training set with CLAHE, compared to the basic,
original training set, resulted in an improvement of the mAP metric for the RetinaFace
model—using the MobileNet model and for the Ultra Light model in the RBF version.

Table 4. Results obtained for testing model trained on own original dataset.

Transfer Learning—Original Training Set

Model Dataset mAP Precision Recall

UltraLight version-slim

original 0.839 0.802 0.829

with CLAHE 0.795 0.788 0.749

with colorization 0.828 0.799 0.829

original with mask 0.836 0.793 0.834

original without mask 0.844 0.820 0.822
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Table 4. Cont.

Transfer Learning—Original Training Set

Model Dataset mAP Precision Recall

version-RBF

original 0.829 0.826 0.819

with CLAHE 0.764 0.818 0.713

with colorization 0.836 0.835 0.818

original with mask 0.831 0.810 0.826

original without mask 0.827 0.855 0.807

RetinaFace

MobileNet-0.25

original 0.473 0.674 0.444

with CLAHE 0.347 0.543 0.353

with colorization 0.399 0.655 0.375

original with mask 0.333 0.577 0.352

original without mask 0.662 0.798 0.609

ResNet-50

original 0.516 0.755 0.515

with CLAHE 0.435 0.655 0.478

with colorization 0.474 0.721 0.496

original with mask 0.437 0.703 0.433

original without mask 0.618 0.823 0.654

Yolov3

original 0.996 0.716 0.997

with CLAHE 0.994 0.727 0.997

with colorization 0.996 0.718 0.997

original with mask 0.996 0.691 0.998

original without mask 0.993 0.764 0.996

LFFD

original 0.688 0.748 0.667

with CLAHE 0.608 0.743 0.555

with colorization 0.685 0.753 0.659

original with mask 0.722 0.749 0.715

original without mask 0.645 0.743 0.585

Table 5. Results obtained for testing model trained on own dataset with CLAHE.

Transfer Learning—Training Set with CLAHE

Model Dataset mAP Precision Recall

UltraLight version-slim

original 0.780 0.805 0.778

with CLAHE 0.780 0.802 0.794

with colorization 0.771 0.803 0.775

original with mask 0.795 0.805 0.792

original without mask 0.759 0.803 0.758
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Table 5. Cont.

Transfer Learning—Training Set with CLAHE

Model Dataset mAP Precision Recall

version-RBF

original 0.843 0.852 0.770

with CLAHE 0.843 0.839 0.786

with colorization 0.823 0.847 0.741

original with mask 0.840 0.840 0.771

original without mask 0.850 0.872 0.776

RetinaFace

MobileNet-0.25

original 0.506 0.704 0.472

with CLAHE 0.507 0.700 0.476

with colorization 0.494 0.716 0.437

original with mask 0.386 0.622 0.385

original without mask 0.675 0.805 0.623

ResNet-50

original 0.469 0.729 0.494

with CLAHE 0.565 0.767 0.562

with colorization 0.438 0.745 0.450

original with mask 0.385 0.666 0.416

original without mask 0.605 0.815 0.629

Yolov3

original 0.994 0.727 0.997

with CLAHE 0.995 0.725 0.997

with colorization 0.994 0.731 0.997

original with mask 0.994 0.711 0.998

original without mask 0.994 0.761 0.996

LFFD

original 0.511 0.729 0.497

with CLAHE 0.671 0.743 0.682

with colorization 0.507 0.726 0.499

original with mask 0.492 0.703 0.496

original without mask 0.556 0.779 0.499

The use of colorization of images to resemble images recorded in visible light has
not worked for every of analyzed model. The improved metrics are noticeable for the
Retina Face model and for the Ultra Light model in the RBF version (compared to the
original training set). The Yolov3 model shows a similar mean average precision, regard-
less of the training set used, but the precision of this model is lower when used images
after colorization.

Figure 4 shows the losses obtained for the training and validation sets during the
transfer training of the Yolov3 model using the original set and the CLAHE data set.
The loss function shown in the charts is the localization loss, which illustrates the error
between the predicted boundary box and the ground truth. On the basis of these two
examples, it can be seen that for the training set, both in the original set and in the CLAHE
set, it decreases with successive epochs. For the validation subset of these two datasets,
the loss is higher, but over the course of almost the entire learning cycle, it decreases with
subsequent epochs.
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(a) (b)

Figure 4. Example of localization loss change during transfer learning for Yolov3 model: (a) on the
own original dataset (b) on the CLAHE dataset.

Tables 7 and 8 present the results of the measured inference time for images with two
resolutions—640 × 480 and 320 × 240 pixels. These are two of the resolutions of the images
that were collected in the created dataset. When analyzing the obtained results, it can be
seen that for the Jetson Nano module, the UltraLight, RetinaFace and LFFD models achieve
satisfactory inference times. The use of a relatively cheap and small module can be used
when creating applications that will be used in everyday life. Compared to the measured
inference time on the DGX-1 computer, the times achieved by the Jetson Nano module are
very satisfactory and confirm the possibility of using this solution without large wastage
of time (both for low and high resolution). The Yolov3 model, despite achieving the best
evaluation metrics, does not have the best inference time. In practical applications, models
with a lower inference time will be more desirable—this will allow for faster image analysis
and obtaining the result.

Table 6. Results obtained for testing model trained on own dataset with colorization.

Transfer Learning—Training Set with Colorization

Model Dataset mAP Precision Recall

UltraLight

version-slim

original 0.813 0.822 0.796

with CLAHE 0.758 0.844 0.684

with colorization 0.800 0.821 0.787

original with mask 0.817 0.810 0.801

original without mask 0.810 0.843 0.790

version-RBF

original 0.833 0.815 0.795

with CLAHE 0.779 0.825 0.702

with colorization 0.828 0.818 0.787

original with mask 0.831 0.800 0.800

original without mask 0.834 0.840 0.790
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Table 6. Cont.

Transfer Learning—Training Set with Colorization

Model Dataset mAP Precision Recall

RetinaFace

MobileNet-0.25

original 0.484 0.695 0.454

with CLAHE 0.375 0.534 0.393

with colorization 0.468 0.702 0.438

original with mask 0.335 0.592 0.345

original without mask 0.687 0.807 0.644

ResNet-50

original 0.532 0.707 0.541

with CLAHE 0.403 0.587 0.459

with colorization 0.537 0.724 0.560

original with mask 0.406 0.627 0.458

original without mask 0.691 0.825 0.682

Yolov3

original 0.995 0.643 0.997

with CLAHE 0.993 0.639 0.997

with colorization 0.995 0.642 0.997

original with mask 0.994 0.616 0.998

original without mask 0.995 0.699 0.996

LFFD

original 0.568 0.729 0.546

with CLAHE 0.568 0.729 0.546

with colorization 0.665 0.733 0.667

original with mask 0.677 0.749 0.690

original without mask 0.682 0.794 0.589

Table 7. Inference time for images with a resolution of 640 × 480.

Inference Time in Milliseconds—640 × 480 Images

Model Jetson Nano DGX-1 Station

UltraLight
version-slim 28.57 5.80

version-RBF 37.42 6.99

RetinaFace
MobileNet-0.25 37.16 29.74

ResNet-50 58.52 20.07

Yolov3 685.11 3.82

LFFD 69.04 20.18
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Table 8. Inference time for images with a resolution of 320 × 240.

Inference Time in Milliseconds—320 × 240 Images

Model Jetson Nano DGX-1 Station

UltraLight
version-slim 34.44 7.34

version-RBF 35.50 9.10

RetinaFace
MobileNet-0.25 35.63 9.04

ResNet-50 57.95 15.26

Yolov3 325.47 4.85

LFFD 63.23 16.83

4. Discussion

The use of transfer learning had a positive impact on the obtained results. For all
models, they improved compared to those achieved for models trained only on the set
of visible images. When analyzing the impact of preprocessing on the results obtained,
the use of CLAHE also had a positive effect on the Ultra Light model in the RBF version
and on the RetinaFace model with MobileNet backbone. Applying colorization to thermal
images was to help check whether, for models designed to work with images made in
visible light, it would help to increase the measures achieved by the models. However, it
did not bring much improvement, perhaps due to the fact that the colors were not perfectly
matched, many of the images were not of high quality and then the colorization was not
accurate (blurred boundaries did not allow separating the entity well).

To improve the results, it would be worth considering collecting more data and
training the model from scratch. In such a case, the models could achieve better parameters.
Collecting only good quality data would certainly also improve the results, while in the
created dataset there was both good and poor quality images (people were recorded in
motion; the images had blurred edges).The prepared data set includes images of different
resolutions. Certainly, the use of only high resolution images would improve the results
achieved by the models.

The analyzed models were designed to operate on images recorded in visible light.
In our case, we test thermal images, mostly with masked faces (92% of the images in the
dataset had faces covered with masks). Using transfer learning on models that have been
learned in images with uncovered faces, some of the information that is used by them (e.g.,
nose, mouth—characteristic features of a face) is not visible in the images from our set.

Another approach would be to create a model dedicated to face recognition in thermal
images, for example based on one of the models that works well for detecting them in
visible images. Adjusting and fine-tuning such a solution would certainly result in better
measures achieved by the model.

The use of the dataset that was created to test this approach and creating or fine-tuning
of any existing models will be applied if we use such a model in situations where people will
be wearing masks (e.g., checking at the entrance to the building or in places where wearing
masks is mandatory). If the model were to be more universal, more thermal images with
marked faces should be collected, where people’s faces are not hidden. Additionally, face
detection in thermal images can be used to determine body temperature due to the benefits
of thermography. This approach will be especially useful when monitoring entrances to
buildings and will allow for early detection of people with increased body temperature.
With this application or in crowded places, cheap and small platforms, that allow for quick
image analysis combined with good precision and sensitivity achieved by the model, can
be successfully used.

In [20], the authors demonstrated the possibility of using the Yolov3 model for face
detection in thermal images, but without the faces with masks. They achieved an average
precision on face detection of 78.5%. They also used transfer learning to adapt the Yolov3
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model to work with thermographic images. In our case, the same model was also tested for
use with this type of images and in our case the mAP value was higher, up to 99.3%, but we
used a larger set of images. A version of the Yolov3 model with added the SE attention
mechanism module and SPP module to the Yolov3 was used in [35]. The solution tested
by us for the same model also achieves higher mAP values by 17.4% and 22.8% compared
to the solutions proposed by the authors, even though in our case most of the faces in the
images are partially covered by the virus protective mask.

In [20], authors used 5361 labelled thermal face images captured using one type of
a camera. Similarly in [36] 4200 images were used to creation a database, using only
one type of a camera. In our work, 7920 thermal images of a face were collected with
10,555 face labels. It is a significant contribution since it is one of the first databases that
contains thermal images with faces covered by protective masks collected using four types
of thermal cameras.

5. Conclusions

In this work, we addressed the problem of face (with protective masks) detection in
thermal images. A similar problem for visible light images was well researched. The use
of thermal images is very convenient for skin temperature evaluation with better privacy
preservation of subjects than for visible light images (especially when defocused/smoothed
images are collected). To analyze the problem, we originally collected a set of approximately
8000 images using four different thermal cameras. Each image was annotated manually
and used in face detection studies. To our knowledge it is the largest set of data with
the above-mentioned characteristics. We adapted and analyzed a set of face detection
algorithms that proved to be efficient for visible light images. Using standard metrics, we
demonstrated that the Yolov3-based model showed the best results with mAP at least 99.3%.
We also presented that almost all the analyzed face detection deep models trained only
on visible light images are not suitable for face with mask detection from thermal images.
We showed that most of the analyzed algorithms and related data preprocessing methods
require additional training using thermal datasets. Without such training, the mAP was
typically less than 30%. Transfer learning significantly improved the obtained mAP values.
For example, for the very time efficient UltraLight model (e.g., 35 ms per frame) the mAP
improved from about 20% to about 80%. We also showed that special data preprocessing
like CLAHE, false colorization, masking, etc. is not crucial to improve the precision of face
detection from thermal images.

It is possible to use thermal images for face detection in conjunction with models
created and trained on images recorded in visible light. The results obtained for models
that have been trained only in the WIDER FACE set are much lower than in the case of
using transfer learning of these models with the data collected in our own data set. Data
preprocessing, such as CLAHE or image colorization, also has positive effects, depending
on the model used. A model that is good at working with thermal images, even if trained
only on the set of visible images, is the YOLOv3 model, which can be successfully used to
work with such images.

Future work should focus on improving the algorithms to improve the precision while
keeping at least the same values of mAP/recall. It will be important to extend the dataset
with new images, as well as attempt to train the model from scratch, also using various
types of preprocessing. Another goal should be to create a dedicated model to work with
thermal images and face detection with and without masks.
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