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Abstract: The fundamental relationship of traffic flow and bivariate relations between speed and
flow, speed and density, and flow and density are of great importance in transportation engineering.
Fundamental relationship models may be applied to assess and forecast traffic conditions at uninter-
rupted traffic flow facilities. The objective of the article was to analyze and compare existing models
of the fundamental relationship. To that end, we proposed a universal and quantitative method for
assessing models of the fundamental relationship based on real traffic data from a Polish expressway.
The proposed methodology seeks to address the problem of finding the best deterministic model
to describe the empirical relationship between fundamental traffic flow parameters: average speed,
flow, and density based on simple and transparent criteria. Both single and multi-regime models
were considered: a total of 17 models. For the given data, the results helped to identify the best
performing models that meet the boundary conditions and ensure simplicity, empirical accuracy, and
good estimation of traffic flow parameters.

Keywords: traffic flow models; fundamental relationship of traffic flow; uninterrupted traffic flow;
traffic conditions analysis; single-regime models; multi-regime models

1. Introduction

Traffic flow models describe vehicle flows using three basic parameters: average speed
(v), density (k), and flow (q). When traffic flow is considered a stationary phenomenon,
the parameters are linked with one another using a relationship (1), which is known as the
fundamental relationship.

q = kv (1)

The relationship (1) and bivariate relations between speed and flow, speed and density,
and flow and density are of great importance in transportation engineering. They are used
in planning, design and redesign, operation, and control of transportation facilities; they
help to determine the actual capacity of an existing road, assess its traffic conditions or
select the cross-section for a new road depending on forecasted traffic volumes.

The relations between speed, flow, and density have been proved empirically in many
studies over the last nine decades, starting from Greenshields in the 1930s [1]. Since then,
researchers have been exploring ways to offer the best possible mathematical description
of the relations. Historically, these were established either empirically by looking for
mathematical models that fit the observed data or derived from microscopic traffic flow
characteristics or from the analogy to the movement of fluid. The models proposed in the
literature are predominantly deterministic and describe the average behavior of a traffic
stream. The output of the model is fully determined by the initial conditions and the
parameters. Since they are simple to use, interpret, and determine traffic characteristics,
the models have a wide variety of applications, including methods for forecasting and
assessing traffic conditions.

In 1995, Castillo and Benitez [2] concluded that while the literature includes a number
of proposed solutions, a mathematical deterministic model still has not been found to
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give a sufficiently good description of the fundamental relationship for all facility types
and ranges of traffic density. Later literature studies also suggest that the problem is still
open [3,4]. Similarly, it is not clear from the literature, which of the existing models can be
perceived as the best and what the criteria would be. The latter are not commonly agreed,
and even if used, the assessment or benchmarking of the models is often a subjective
matter.

The problem of selecting traffic flow model has practical implications. The models
representing the relationship between speed, flow, and density serve as a basis for traffic
conditions forecasts and assessments such as in the case of United States’ HCM [5] or
Germany’s HBS [6]. Thus, it was also one of the problems to be solved in the context of
the recent development of a new Polish method for highway capacity analyses. How to
choose the right model for this purpose? What expectations should be given? How to
assess whether the model performs well or not? These questions motivated us to the work
presented in the paper.

The main objective of the article is to review and compare existing models of the
fundamental relationship using empirical data from Polish roads. In particular, the article
aims to: (1) Identify the criteria to be met by a good model of the fundamental relationship;
(2) Develop a transparent and quantitative method for assessing fundamental relationship
models based on identified criteria; (3) Assess, compare, and rank the existing models of
the fundamental relationship.

The paper is organized as follows: Section 2 gives an overview of deterministic math-
ematical models of the fundamental relationship and criteria and methods for assessing
them. Section 3 discusses the proposed methodology for assessing models of the funda-
mental relationship. Section 4 presents an application of the methodology for field data.
The results are discussed in Section 5.

2. Theoretical Background
2.1. Modeling Equilibrium Traffic Flow Relationships

Fundamental relationship models are divided into single-regime and multi-regime
models, depending on how traffic conditions are described. Single-regime models describe
the relationship using a single mathematical function for an entire range of traffic conditions.
Multi-regime models use two or more mathematical functions for this purpose, each
representing different conditions of traffic.

An important feature of speed–flow–density relationships is the presence of character-
istic, boundary values of the particular relations (boundary points, extremes, and points of
inflection):

• Boundary points: free flow speed (vsw) occurs theoretically when volume and density
approach zero (k→ 0 , q→ 0); maximal density (kmax) occurs when flow and speed
approach zero (q→ 0 , v→ 0);

• Extremes and points of inflection of the function: maximal flow (qmax) and the corre-
sponding optimal speed (vopt) and optimal density (kopt).

The values of these parameters define the particular traffic regimes: free-flow con-
ditions when density increases, flow rises from zero until the maximal value is reached
(q→ qmax ), and speed decreases from the maximal value (vsw) until the optimal value is
reached (v→ vopt ); congested conditions when density keeps increasing until it reaches
the maximal value (k→ kmax ), causing speed and flow to decrease to zero (v→ 0 , q→ 0).
The characteristics helps to identify the boundary values of the fundamental relationship
(further referred to as BC1 and BC2): (a) at zero density, the speed is equal to the free
flow speed, (b) at maximum density (jam density), the speed is zero. These conditions are
referred to as static properties of traffic flow [2].
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2.1.1. Single-Regime Traffic Flow Models

Conducted nearly ninety years ago, Greenshields’ work [1] was followed by a number
of models of the fundamental relationship, which differed on functional form, the number
of parameters, and the relationship they represented. Table 1 lists selected models.

Table 1. List of selected single-regime models.

Author (Year of Publication) Basic Function Parameters

Greenshields (1935) v = vsw

(
1− k

kmax

)
vsw, kmax

Greenberg (1959) v = vopt ln
(

kmax
k

)
vopt, kmax

Underwood (1960) v = vsw exp
(
− k

kopt

)
vsw, kopt

Newell (1961) v = vsw

(
1− exp

(
− a

vsw

(
1
k −

1
kmax

)))
vsw, kmax, a

Pipes-Munjal (1967) v = vsw

(
1−

(
k

kmax

)n)
vsw, kmax, n

Northwestern(1967) v = vsw exp
(
− 1

2

(
k

kopt

)2
)

vsw, kopt

Drew (1965) v = vsw

(
1−

(
k

kmax

)n+ 1
2

)
vsw, kmax, n

Krystek (1980) v = vsw

(
1− k

kmax

)4 vsw, kmax

Kerner and Konhäuser (1995) v = vsw

 1

1+exp

( k
kmax

−0.25
0.06

) − 3.72× 10−6

 vsw, kmax

Del Castillo and Benitez (1995) v = vsw(1− exp
(
|Cj|
vsw

(
1− kmax

k

))
vsw, kmax, Cj

Van Aerde (1995) k = 1
c1+

c2
vsw−v +c3v vsw, c1, c2, c3

MacNicholas (2008) v = vsw

(
kn

max−kn

kn
max+mkn

)
vsw, kmax, n, m

Wang (2011) v = vmin +

 vsw−vmin(
1+exp

(
k−kopt

a

) )b

 vsw, vmin, kopt, a, b

Kucharski and Drabicki (2017)
v = vsw

1+a
(

k
kopt

)b
vsw, kopt, a, b

While Greenshields’ linear model [1] is very simple to use, it comes with a limitation
that is evident in almost every study, namely its inconsistency with the field data for any
facility types and ranges of traffic density. Greenberg [7] applied empirical data from
Lincoln’s tunnel and matched them with a logarithmic function derived from hydrody-
namic analogy [8]. The model’s downside is that it does not meet BC1—when density
tends to zero, speed tends to infinity. In response to the limitation in Greenberg’s model,
Underwood [9] proposed an exponential model. The issue here is that the model does
not have a finite density value and as a result fails to satisfy BC2. The literature offers a
modification to both models, i.e., Greenberg’s and Underwood’s, using Taylor’s series [10].
Pipes [11] suggested a modification of Greenshields’ model by adding a new parameter
deduced from the car-following theory. Depending on its value, the relationship v(k) takes
a concave or convex form or when n = 1, and it is transformed to Greenshields’ model. A
similar approach was proposed by Krystek [12] and Drew [13]. Developed from urban
arterial data, Krystek’s model modification of Greenshields’ model involves the use of an
exponent of 4. Drew’s model [13] is similar to Pipes–Munjal’s model where the n parameter,
which is the exponent, is replaced with the expression n + 1

2 .
There are other more complex models where the function v(k) is reverse S-shaped. The

outcome is a better representation of the nature of the phenomenon of how vehicle flows
move. Northwestern’s was the first such model [14]; it was a modification of Underwood’s
model that was built by adding constants that change the shape of the relation v(k) to that
of a bell. The model comes with a limitation similar to that of Underwood’s model (failure
to satisfy BC2) and just as previously can only be solved by using Taylor’s series. Similarly
to Underwood or Drake, the exponential function was also applied by Newell, Del Castillo
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and Benitez [2], and Kerner and Konhäuser [15]. Newell’s exponential model, similarly
to Pipes’ model, was deduced from the car-following theory. The model satisfies both
BC1 and BC2. Speed in the model falls rapidly as density increases, which is considered a
limitation [4]. Del Castillo and Benitez [2] assumed that vehicle flow is strongly affected by
the parameter of kinematic wave speed at jam density Cj—the parameter was included
in the model. Kerner and Konhäuser [15] proposed a model based on two parameters
extended by three constant numerical values that cannot be interpreted in terms of physical
parameters and may be seen as a downside. Van Aerde’s model [16] was derived from a
microscopic model of following the leader and combines Pipes’ and Greenshields’ model
into a single-regime model [17]. The advantage of the model is that it ensures a good
match to data for a wide variety of facility types and for entire ranges of densities. Its
disadvantage is that it is computationally complex (c1, c2, c3 are parameters that must
be determined), and variable k is used as a dependent variable, which makes the model
inconvenient to use [18]. MacNicholas [18] offered a simpler alternative to Van Aerde’s
model. His own model reported comparable empirical accuracy to Van Aerde’s model.
Wang [4] proposed using the logistic function to describe the relationship v = f(k). He
assumed that even when traffic is very dense, vehicles move at a finite minimal speed vmin.
In the model, a, b are shape parameters. The outcome of modeling is a sigmoid curve
v(k) with a very good match to empirical data [4]. On the downside, speed never reaches
zero in the model and density never reaches a finite value, which is inconsistent with BC2.
One of the recent models is the four-parameter v = f(k) model proposed by Kucharski and
Drabicki [19] built based on a BPR speed–flow equation [20] and overcoming its limitation
to represent only a free-flow traffic regime. The downside is that the model fails to satisfy
BC2.

Figure 1 graphically shows how the relationship v = f(k) is represented by selected
models. The evolution from the simplest linear form to the relationship being represented
by an S-shaped curve can be seen from the figure.
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There is also a group of models (with v = f(q) BPR function [20] as an example) that
represent the speed–flow–density relationship for a free-flow regime only and do not
consider traffic flow characteristics after the maximum flow and corresponding optimum
density are reached. It is not a limitation if the purpose is to analyze traffic under free-flow
conditions; however, to estimate values of traffic flow parameters at the maximum flow
(qmax, kopt, vopt), some initial assumptions regarding the boundary of the free-flow regime
need to be made. As a result of these reasons, these kinds of models are not included in
Table 1.

2.1.2. Multi-Regime Traffic Flow Models

Researchers proposed multi-regime models primarily for their empirical accuracy.
However, this can only be obtained at the cost of a more complicated functional form and
much more complicated calibration with field data. The main problem with multi-regime
models is determining the boundaries of the particular traffic conditions described by
separate functions and determining the points of transition from one state to another.
Table 2 lists selected two-regime models.

Table 2. List of selected multi-regime models.

Author (Year of Publication) Basic Function Parameters

Edie (1961) v =

 vsw exp
(
− k

kopt

)
k < k1

vopt ln
(

kmax
k

)
k ≥ k1


vsw, kopt,

vopt, kmax,

k1

Smulders (1989) v =

{
vsw − αk k ≤ k1

d
(

1
k −

1
kmax

)
k > k1

}
, where d =

vsw−αkopt
1

kopt
− 1

kmax

vsw,α, kopt,

kmax,k1

Triangular q =

{
vswk k < k1

qmax −
k−kopt

kmax−kopt
qmax k ≥ k1

} vsw,qmax,

kopt, kmax,k1

Daganzo (1997) q =


vswk k < k1

vswk1 k1 < k < k2

qmax − k−k2
kmax−k2

qmax k ≥ k2


Wu (2002) q =

 k(1−
(

k
k1

)l−1
vsw +

(
k
k1

)l−1
vopt v > vopt

voptk1 − k−k1
kmax−k1

vswk1 k ≥ k1

 vsw, vopt,

kmax, l, k1

where: k1, k2—boundary values of density at which there is a transition between traffic flow regimes.

Edie was one of the first researchers to suggest a description of the relationship
between volume and density using a non-continuous curve. In 1961, he presented a two-
regime traffic model making the distinction between free-flow and congested operation.
The model is a combination of Greenberg’s and Underwood’s models [7,9]. Smulders [21]
proposed a two-regime model where speed falls linearly in free-flow traffic as density
increases. In congested traffic, volume falls linearly as density increases. The triangular
model is very popular in urban traffic control. It represents the relationship q(k) by two
straight lines. Following a modification by Daganzo, the model is a truncated triangle
where the same relationship is represented by three straight lines [22,23]. Wu proposed
a two-regime model of volume variability q relative to density k, where the shape of the
curve in free-flow will depend on the number of lanes l [23].

Figure 2 presents how the models summarized above represent the relationships.
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2.2. Criteria and Methods for the Comparison of Traffic Flow Models

The need to compare models becomes evident when scientists or practitioners must
decide which model will work best for their data and select the best from several models.
There are a number of criteria that may be used for assessment and comparison of computa-
tional models [24]: goodness of fit (which is the empirical accuracy of the model), simplicity
or complexity (regarding models’ functional form and number of parameters), generaliz-
ability (ability to use the model for forecasting future observations), faithfulness (whether
the model represents the regularities that are the basis of the phenomenon being modeled),
interpretability (whether the model’s parameters are clear and linked to the phenomena
being modeled), explanatory adequacy (whether the model’s theoretical representation
is sufficient to understand the data being observed), and falsifiability (whether potential
observations exist that are inconsistent with the model). As pointed out by Myung and
Pitt [24], among these, the most important and the most widely used are criteria lending to
quantification (i.e., goodness of fit, simplicity). However, qualitative criteria may provide a
relevant and valuable complement to model assessment. It is the researcher’s decision to
select criteria to match those features of the model that they consider most important.

Most of the above criteria can also apply to models of the fundamental relationship.
What makes a good traffic flow model? According to Wang et al. [4], it should have a simple
functional form (be “mathematically elegant”), fit the data well, have interpretable param-
eters, and allow the entire range of traffic conditions to be modeled. The latter suggests
that a single-regime model is preferred over a multi-regime model, which is confirmed
in the works of MacNicholas and Underwood [9,18]. In principle, the criteria given by
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MacNicholas and Underwood are consistent with those identified by Wang. MacNicholas
mentions an additional aspect of having to meet boundary conditions. Underwood, on the
other hand, points out that the model should easily lend itself to mathematical analysis
and that its limitations should be known in advance.

A review of the above works suggests that researchers are in agreement as to what
criteria should be met by the fundamental relationship model. As a result, the criteria they
identified may be used to assess and compare models of the fundamental relationship.
This type of comparison in the literature usually has an expert basis rather than concrete
criteria and measures to assess the criteria. The criteria researchers refer to most often
include goodness of fit, which is a quantitative measure. In addition, faithfulness of the
model is often assessed by checking how the model fits in with the empirical data and how
the phenomena are represented on the fundamental diagram. An example is the work of
Gaddam and Rao [25], who assess models matching data from two sections of an urban
arterial in Delhi with goodness of fit, using root mean square error, average relative error,
and cumulative residual plots for the assessment. To complement the criterion assessment,
expert judgement on the properties of the models on the speed–density diagrams is applied.
To assess existing models for a 55 mph motorway section, May [26] used two quantitative
measures: goodness of fit, measured by mean deviation, and parameter value, which is
assessed by checking if they are consistent with the ranges established from empirical
data. It is not clear from the publication how these ranges were identified. The same
criterion was used by Rakha [27] for the same data and the same ranges of parameters
as May [26], comparing known single and multi-regime models with Van Aerde’s model.
Cheng et al. [28] compared 10 single-regime models using goodness of fit and tested
the models’ stability by comparing how the same model parameters change on different
sections of the same road. In many other studies, models are compared with a qualitative
assessment only, e.g., a visual check is made of the match between the models and empirical
data, limitations are identified, and model properties are assessed [4,17,29].

The conclusion from the review of the literature is that while researchers are in
agreement about the criteria of a good model of the fundamental relationship, there is
no agreement as to how traffic flow models should be assessed or compared. There
are no commonly agreed criteria that would apply to the assessment, comparison, or
benchmarking of traffic flow models. Similarly, ways to assess particular criteria are not
agreed, and it is usually up to the individual interpretation of the researcher.

3. Materials and Methods
3.1. Data

To develop and apply the methodology, the data were sourced from a section of the S6
express road located in Gdansk, Poland (54◦25′ N, 18◦29′ E). The section is part of a dual
carriageway with four lanes running within the conurbation. The speed limit for passenger
cars is 120 km/h and 80 km/h for heavy goods vehicles. The share of trucks in overall
traffic is 9% on average. Annual average daily traffic is 74,000 vehicles per day. During
peaks of traffic (summer holidays), volumes are observed to exceed 100,000 vehicles per
day.

The data [30] come from a continuous traffic measurement station which is operated
by a double induction loop. Vehicles crossing the station are automatically detected by
devices installed on each lane, which register the time a vehicle is detected, ascertain its
spot speed, and identify the type of vehicle and lane it is using.

The data cover a period of 36 months between 2014 and 2017 on the southbound
carriageway. A total of 37.5 million vehicles were recorded over that period.

Structured Query Language (SQL) was used for data processing and initial analysis.
The data processing was divided into the following stages:

1. Raw traffic data that were provided by the national road authority (General Director
for National Roads and Motorways, GDDKiA) in the text file format were imported
to the database on the installed SQL server.
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2. The data were verified in terms of empty rows, zero values, vehicle speeds beyond the
expected range, and unusual vehicle lengths. The problem of zeros or unusual values
concerned approximately 2% of registered vehicles and had marginal impact on the
number of registered vehicles—the records were excluded from further processing.

3. Individual vehicle headways were calculated for each record.
4. The data were aggregated into 5 min intervals generating information about traffic

volume, space-mean speed, share of heavy goods vehicles, or average headways.
The traffic volume was calculated into flow rate using passenger car equivalents [5].
Traffic density was determined from the relation (1).

The database was extended with weather information (condition and intensity of
precipitation, condition of road surface, horizontal visibility), conditions of natural lighting
(dusk, day, dawn, night), and presence of road events (road works, collisions, accidents,
stationary vehicles, etc.). Precipitation, wet or snow-covered/icy road surface, lack of
natural lighting, and visibility below 200 m were proved to have a significant impact on
space-mean speed [31]. Thus, periods of road events and adverse weather and lighting
conditions were excluded from further analyses.

3.2. Method

Empirical data are shown in the fundamental diagram (Figure 3). They are repre-
sented by the scattered cloud of empirical data for the entire range of traffic conditions. The
phenomena are reported by many studies and explained by e.g., heterogeneity of drivers,
non-stationary dynamical features of traffic flow, randomness in individual driving be-
haviors, and errors in measurement methods or data processing [32–35]. The existence of
the scatter raises some questions: What should be the functional form of the deterministic
model to ensure the highest empirical accuracy? Should it be represented by a single or
multi-regime model? How to estimate boundary parameters and what should be their
values?
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To answer the questions, work was divided into the following stages: (stage I) data
preparation and determination of expected values of boundary parameters, (stage II)
selection of criteria for model assessment and adoption of detailed principles for criteria
assessment and criteria acceptance levels, (stage III) model calibration, (stage IV) model
assessment and comparison.

3.2.1. Preparation of the Data and Determination of Expected Parameter Values

The scatter on the empirical fundamental diagram may make model assessment and
the identification of real boundary traffic parameters more difficult. The classical definition
of the fundamental relationship assumes that traffic is stationary and homogeneous, which
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means that vehicles behave the same way in similar traffic circumstances [22]. This suggests
that for the same traffic density, vehicles in a stream will move with the same speed.
Building on this, an averaged representation of traffic conditions was determined from
the data. This helps to significantly reduce the number of points in the diagram, making a
visual assessment easier. It will be possible to state whether the actual traffic conditions
are correctly represented in the model. In the proposed approach, observed densities
are divided into narrow ranges e.g., 0.1 pc/km wide. The empirical mean of the other
parameters, i.e., speed and flow rate, are computed. A similar approach can be found
in the works of Rakha and Arafeh and Zheng et al. [36,37]. Figure 4 presents the data
averaged against density. As we can see, the scatter has been significantly reduced with
only the congested traffic still represented by a cloud of points. This may be partly due to a
much smaller sample of observed congested traffic—from nearly 110,000 of analyzed time
intervals, only 3000 represented densities above 20 pc/h/lane (as a result for high traffic
densities, the parameters are averaged on the basis of just a few time intervals).
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Once aggregated, the data may also be used to determine expected ranges of boundary
parameters. However, to determine parameters within the maximal flow area (qmax, kopt, vopt),
the data must represent both free-flow and congested traffic. The expected ranges of
boundary parameters are determined as follows (Table 3):

• vsw, by determining the 5th and 95th percentiles of speed (v5, v95) under conditions of
low traffic volume, i.e., for corresponding volumes of q ≤ 500 pc/h/lane;

• qmax, by determining the 95th and 99th percentiles of traffic volume (q95, q99);
• vopt, by determining the 5th and 95th percentiles of speed (v5, v95) under conditions

of high traffic volume, where qmax1
≤ q ≤ qmax2

and in free-flow traffic, i.e., assuming
that v ≥ 60 km/h (to exclude the effect of vehicle stream speed in congested traffic);

• kopt, by determining the 5th and 95th percentiles of density (k5, k95) occurring in the
expected range of optimal speeds (vopt1

≤ v ≤ vopt2
).

With the 5th and 95th percentile as the boundary values of the range vsw, vopt, kopt it
is possible to determine areas that include the value of the given parameter with a 90%
certainty. This approach helps to exclude the effects of extreme values and outliers on the
results (meaning parameter ranges). In the case of qmax, using the 95th percentile helps to
identify the lower boundary of the expected range, which determines 5% of the highest
traffic volumes; the 99th percentile in the upper boundary of the range helps to exclude the
effects of 1% of the highest values on the expected parameter ranges.

In the case of maximal density, which is difficult to spot in empirical data, results from
a Polish study [38] were used to identify the expected range kmax. Aerial observation of
traffic flows (an aeromobile platform about 400 m high covering a section of about 1.5 km)
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helped to register jams on a selected dual carriageway and four lane sections of Polish
motorways. The closest to a maximal traffic flow density was when a platoon consisting
exclusively of passenger cars was moving at an average speed of 3.1 km/h, when the
average traffic density per lane was 96.6 veh/km/lane. Building on the study, we can
assume that the lower boundary of the range kmax is 100 pc/km/lane. According to this
definition and the research quoted before, when density is in the order of 100 pc/km/lane,
speed should be equal to zero or be close to zero. The upper boundary may be determined
based on average vehicle length and minimal headways; for an average vehicle length of
5 m and minimal headway of 5.5 m, maximal density will be about 150 pc/km/lane.

Table 3. Determining the expected range of boundary parameter values from an averaged representation of traffic conditions.

Par. The Lower Range Limit The Upper Range Limit Condition The Expected Range
(Field Data)

vsw vsw1 = v5 vsw2 = v95 q ≤ 500 pc/h/lane 107÷ 113 km/h
qmax qmax1

= q95 qmax2
= q99 4175÷ 4386 pc/h

vopt vopt1
= v5 vopt2

= v95
qmax1

≤ q ≤ qmax2 72÷ 86 km/h
v ≥ 60 km/h

kopt kopt1
= k5 kopt2

= k95 vopt1
≤ v ≤ vopt2

47÷ 58 pc/km

kmax
based on aerial
measurements

calculated assuming minimal
headways of 5.5 m n.a. 200÷ 300 pc/km

3.2.2. Selection of Criteria and Adoption of Rules for Model Assessment

Based on the literature review, the proposed solution is to adopt the following criteria
for model assessment:

1. Boundary conditions are met. A model representing the full range of traffic conditions
should meet the following conditions: BC1: v→ vsw when k→ 0 and q→ 0 BC2:
v→ 0 when k→ kmax and exclusively in the case of two-regime models: BC3:
vsw1 = vsw2, vopt1

= vopt2
, kopt1

= kopt2
,qmax1

= qmax2
, kmax1 = kmax2 The third

boundary condition applies to identical values of boundary parameters in free-flow
and congested traffic (input boundary parameters from the free-flow model can be
input into the congested traffic model as constant values). Please note that BC3
excludes non-continuous models (with BC3, it is possible to compare single and
two-regime models).

2. Simplicity, which is measured with the number of parameters and equations in the
model. It was assumed that the fewer the equations and parameters, the simpler,
more practical, and more adaptable the model will be for the given road and traffic
conditions.

3. Empirical accuracy, which is measured with absolute and relative measures of good-
ness of fit, the RMSE, and MAPE, which are classical accuracy measures. The RMSE is
expressed with units of a dependent variable, which means that it will be possible to
establish the average difference in km/h between real and estimated values of speed.
The MAPE expresses the average percentage difference between a real and estimated
value.

4. Values of boundary parameters are assessed mainly by comparing estimated bound-
ary parameters with expected ranges as determined. If the value of an estimated
parameter fits in within the expected range, we can say that the model is a good
estimator of the particular parameter.

3.2.3. Model Calibration

The models’ boundary parameters and others were determined using the non-linear
method of the least squares with Levenberg–Marquardt algorithm for non-linear optimiza-
tion [39]. Starting from the given initial values of the parameters, the algorithm iteratively
reduces the sum of squares of errors between real and modeled values of the explanatory
value by sequentially updating model parameters. All model parameters were estimated.
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The initial values of boundary parameters were treated as the centers of the expected
ranges of values that were determined during data preparation. The boundary density
for traffic conditions in two-regime models was set as the middle value from the range of
expected kopt values.

3.2.4. Model Assessment and Comparison

Given the criteria that were used, we must ensure that the models under comparison
are related to the same dependent variable. The assessment was conducted for general
models (2) or models transformed to a general form (2), where speed is a function of
density, of parameters related to the traffic flow (boundary parameters), and of other
non-dimensional parameters.

v = f(k, boundary parameters, non-dimensional parameters) (2)

From the models listed in Tables 1 and 2, all but Van Aerde’s model meet the require-
ment. Unless the condition is met, the model cannot be transformed directly to (2). As a
result, the model cannot be analyzed further.

A two-stage assessment procedure was adopted as presented in Figure 5. In the first
stage, the model is assessed for whether it meets the boundary conditions (criterion 1).
If it does, the assessment continues with criteria 2, 3 and 4. If it does not, the model’s
analysis is discontinued. The procedure allows for a conditional acceptance, if the model
does not meet the boundary conditions. This may be the case when, given the objective of
the analysis, representing a specific condition of traffic is not relevant (in case of failure to
meet BC1 or BC2) or when we agree that the model will meet the requirements if within
the expected range of kmax, speeds are close to zero, even though density does not take a
finite value (in case of failure to meet BC2).
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Criteria 2, 3 and 4 are assessed using indicators determined in accordance with Table 4.
The model’s final assessment is a weighted average of scores for the particular criteria. The
weights help to address the essence of the criteria, i.e., the objective of the analysis.
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Table 4. Formulas for model assessment and comparison—criteria 2, 3 and 4.

Criterion Equation Explanation

2 Simplicity ca2 = w21

(
max(np)−npi

max(np)−min(np)

)
+ w22ne−1

i

np—number of parameters
ne—number of equations

i—the analyzed model
w21, w22—weights (sum up to 1)

3 Empirical accuracy
ca3 = max(MAPE)−MAPEi

max(MAPE)−min(MAPE)
or

ca3 = max(RMSE)−RMSEi
max(RMSE)−min(RMSE)

i—the analyzed model

4 Traffic flow parameters ca4 = nvei
5

nvei—number of the parameters of model i,
which are estimated correctly

Final assessment ca = w2ca2 + w3ca3 + w4ca4 w1, w2, w3—weights (sum up to 1)

4. Results

To facilitate comparisons between the models, single-regime models were divided into
two groups: group 1 includes the simplest models with two to three parameters, group 2
contains models that represent the relation v(k) with S-shaped curves. Finally, a group of
two-regime models was distinguished. All models that meet criterion 1 unconditionally
were cumulatively assessed for criteria 2, 3 and 4 (Table 5).

Group 1, single-regime models. The models do not give a correct representation of
any of the traffic conditions. In free-flow traffic relative to the empirical fall, speed falls
rapidly as density and flow increase. Where the flow is maximal, the estimated speed is
significantly underrepresented (Figure 6). From the analyzed models, those not meeting the
boundary conditions are Greenberg’s (BC1, BC2), Krystek’s (BC2), and Underwood’s (BC2)
models. The other models in the group show major errors in estimations and incorrectly
estimate the values of nearly all boundary parameters (Table 5).

Group 2, single-regime models. Group 2 models offer a much better representation
of the empirical relation with the S-shaped curve performing significantly better for charac-
teristics of traffic flow both for free flow and congested traffic (Figure 7). The models by
Northwestern, Wang, Kerner and Konhäuser, and Kucharski and Drabicki do not meet
BC2; hence, as set out in the assessment procedure (Figure 5), they are not included in
further analysis. From those left, the two models by Newell and Del Castillo in the chart
are practically the same, and the estimated boundary parameters are almost identical
(Table 5). The models that are the best at meeting the criteria and have the highest scores
are Newell’s and MacNicholas’ models. However, both do not seem to give a good enough
representation of the area of maximal traffic (Figure 7).

Two-regime models. Edie’s model is non-continuous, and the boundary parameters
in free-flow and congested traffic are not consistent (Figure 8). As a result, BC3 is not
satisfied. The triangular model does not represent the actual traffic patterns at all. In visual
terms, Smulders’s and Wu’s models perform the best with a relatively small error and an
assessment of criterion 4 comparable with that of group 2 models. In the case where model
simplicity is not a priority, both models can compete with the best single-regime models
that have been analyzed.

The results of the analyses show that group 2 single-regime models offer the best
characteristics and give the best representation of real traffic conditions. However, none of
them are able to correctly represent the area of maximal traffic, and the values they produce
are too low for qmax and vopt (Table 5).

Given the situation, models that do not satisfy BC2 could be included in the analysis
conditionally. They may be applied e.g., in methods for traffic condition assessment where
our main focus is on free-flowing traffic before the road reaches its capacity.
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Table 5. Assessment and comparison of traffic flow models for the field data.

Assessment Criteria
Single-Regime Models—Group 1 Single-Regime Models—Group 2 Two-Regime Models

Greenshields Drew Pipes-Munjal Newell Del Castillo MacNicholas Smulders Triangular Wu

1 Satisfied boundary conditions
BC1 + + + + + + + + +
BC2 + + + + + + + + +
BC3 n.a. n.a. n.a. n.a. n.a. n.a. + + +

2 Simplicity
No. of parameters 2 3 3 3 3 4 3 3 7
No. of equations 1 1 1 1 1 1 2 2 2
ca2 1.00 0.90 0.90 0.90 0.90 0.80 0.65 0.65 0.25

3 Empirical accuracy
RMSE (km/h) 7.95 7.86 5.64 6.29 6.29 6.04 6.00 22.58 6.85
MAPE (%) 13.91 14.12 14.12 10.56 10.56 9.93 10.06 35.27 11.72
ca3 0.84 0.83 0.83 0.98 0.98 1.00 0.99 0.00 0.93

4 Parameter value (expected value)
vsw (km/h) 121 109 118 109 109 110 114 100 120
vopt (km/h) 60 69 66 67 65 69 90 99 86
kmax (pc/km) 138 - 134 160 160 370 221 383 182
kopt (pc/km) 69 49 67 56 62 58 45 47 49
qmax (pc/h) 4153 4010 4198 4001 4005 4010 4080 3936 4214
ca4 0.00 0.20 0.20 0.40 0.20 0.40 0.20 0.20 0.40

Final assessment 0.61 0.64 0.64 0.76 0.69 0.73 0.61 0.28 0.53

* The highlighted cells (criterion 4) mean that the estimated values of the parameters are consistent with the expected value ranges (Table 3). ** Weights for the criteria assessment were adopted as follows:
w21 = w22 = 0.5, w2 = w3 = w4 = 0.33.
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Figure 8. Fundamental diagram represented by two-regime models.

If we accept the failure to satisfy BC2, Kerner and Konhäuser’s, Wang’s, and Kucharski
and Drabicki’s models are worth considering. The first two perform relatively well on
qmax, traffic parameter representation, which is a feature other BC2 models did not meet
(Table 6). However, all come with some limitations. Kerner and Konhäuser’s model carries
a relatively big estimation error. Kucharski and Drabicki’s model has one of the lowest
estimation errors; however, it underestimates the values of qmax and vopt. The problem
with Wang’s model is that traffic volume increases significantly for densities of the order
of 150 pc/km and that speed does not tend to zero; instead, it tends to a certain minimal
value which in the case if the field data is 12 km/h (Figure 7). In turn, this goes against
Polish studies that have shown that for densities of the order of 50 pc/km/lane, vehicle
stream speed does not exceed 10 km/h, and for densities of the order of 100 pc/km/lane,
the speed is close to zero.
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Table 6. Assessment and comparison of traffic flow models (unsatisfied BC2).

Single-Regime Models—Group 1 Single-Regime Models—Group 2

Assessment Criteria Krystek Underwood Northwestern Kerner & Konhäuser Wang Kucharski & Drabicki

1 Satisfied boundary conditions
BC1 + + + + + +
BC2 - - - - - -
BC3 n.a. n.a. n.a. n.a. n.a. n.a.

2 Simplicity
No. of parameters 2 2 2 2 4 4
No. of equations 1 1 1 1 1 1
ca2 1.00 1.00 1.00 1.00 0.80 0.80

3 Empirical accuracy
RMSE (km/h) 9.16 7.74 6.53 8.58 6.47 6.02
MAPE (%) 15.25 11.30 11.28 15.14 10.99 9.88
ca3 0.79 0.95 0.95 0.79 0.96 1.00

4 Parameter value (expected value)
vsw (km/h) 127 141 111 107 110 109
vopt (km/h) 52 52 67 75 78 69
kmax (pc/km) - - - - - -
kopt (pc/km) 78 79 61 59 50 49
qmax (pc/h) 4060 4071 4095 4407 4116 4010
ca4 0.00 0.00 0.20 0.40 0.60 0.40

Final assessment 0.60 0.65 0.72 0.73 0.79 0.73

* The highlighted cells (criterion 4) mean that the estimated values of the parameters are consistent with the expected value ranges (Table 3). ** Weights for the criteria assessment were adopted as follows:
w21 = w22 = 0.5, w2 = w3 = w4 = 0.33.
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5. Discussion

Considering the need to prepare the Polish Highway Capacity Manual, the objective
of the article was to analyze existing models of the fundamental relationship, compare
them, and select the best performing ones that could be used as a basis for the Polish
method.

The problem that we encountered when reviewing the literature was that there is
no agreement of researchers on how to assess and compare traffic flow models. Many
comparisons have an expert basis rather than a quantitative approach [4,17,29]. The most
widely used in quantitative assessment is the model fitness to empirical data [25–28]. The
models’ simplicity, compatibility with boundary conditions, and parameter values validity
are rarely considered. On the other side, visual assessment of the models is hampered by
the existence of the scatter in the real data explained by stochastic characteristics of traffic
in real world [32–35], which is revealed by many speed values corresponding to the same
density. Taking these issues into account, we proposed a universal and quantitative method
for assessing models of the fundamental relationship. Based on the literature [4,9,18,24],
we adopted four criteria for traffic flow models assessment and comparison: simplicity,
empirical accuracy, correct estimation of model parameters, and meeting the boundary
conditions; the criteria were quantified and assessed in a two-stage procedure. The final
assessment is a weighted average of criteria assessment.

A detailed analysis using the method confirms the conclusions from the literature re-
view, which is that no model fully meets the requirements the researchers [4,9,18] expected
of the fundamental relationship models. This suggests and comes as a confirmation of Del
Castillo and Benitez’s conclusion [2] that the problem of finding the best model remains
open. This is the most important conclusion from the study that encourages a search for a
new model that could be applied to represent the empirical relations of traffic flow.

Analysis results show that the simplest two and three-parameter models do not
represent traffic flow characteristics well. While two-regime models offer a much better
empirical accuracy, they do so at the cost of model simplicity. The best representation of
empirical relations with a relatively simple mathematical function is offered by models
that represent the relation v = f(k) with an S-shaped curve. This observation was picked
by Wang [4], who proposed a model that uses a sigmoidal curve to represent the relation.
Similarly, Drake et al. [14] proposed a model based on a bell-shaped curve. Thanks to the
shape, it is possible to include the empirical data pattern where in the initial phase speed,
it falls slowly until maximal flow is reached and starts falling much faster afterwards. The
pace of the fall slows for low speeds. It also helps to take account of the break point where
k = kopt. However, most of these models fail to represent the area of maximum flow, and
this is probably caused by the inevitable scatter in data that occurs at the highest flows and
in congested traffic regime.

We observed that some of the models (with the S-shaped curve representing the
relation v = f(k)) that fail to meet boundary conditions (Wang et al., Kerner and Konhäuser)
seem to give a good representation of traffic flow, even in the intractable area of maximum
flow. This raises some questions: Does the BC2 boundary condition have to be absolutely
satisfied? Is failure to meet BC2 conditionally acceptable, and if so, under what condition?
If our interest is solely in a free-flow regime before the maximum flow is reached (e.g., in
methods for traffic condition assessment), is it crucial to meet BC in the congested regime?
There are no obvious answers to these questions, and a lot will depend on the purpose of
modeling. The results of a Polish study of maximal density [38] suggest that a conditional
acceptance of a model that does not satisfy BC2 may be possible if within the expected
range of maximal density (app. 100÷ 150 pc/km/lane), speed is close to zero (≤ 5 km/h)
and diminishes as density continues to increase. This possibility is included in the proposed
methodology (Figure 5).

The research comes with some limitations that we are aware of. The proposed method-
ology was tested on one site (permanent traffic counting station) and, thus, requires further
investigation and validation with data from other sites. Another limitation is that the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2021, 11, 9914 18 of 19

models cannot be assessed if they have a different form and are not transformed to (2).
One example is Van Aerde’s four-parameter model [16], which is well received in the
literature [17,40] and used as the basis for Germany’s method for motorway traffic assess-
ment [6]. This leads to the question: Would this model provide a better representation of
the empirical relation compared with the analyzed models? Another limitation is that the
assessment of a model’s simplicity does not address its functional form. As a consequence,
Greenshields’ linear model and Greenberg’s logarithmic model are given equal scores.
How to include this issue in the assessment of model simplicity? All these issues should be
considered in further work.

Author Contributions: Conceptualization, A.R. and K.J.; methodology, A.R.; validation, A.R. and
K.J.; formal analysis, A.R.; investigation, A.R.; resources, A.R.; data curation, A.R.; writing—original
draft preparation, A.R.; writing—review and editing, K.J.; visualization, A.R.; supervision, K.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in MostWiedzy
repository at https://doi.org/10.34808/8xkq-7714 (accessed on 18 October 2021), reference num-
ber [30].

Acknowledgments: The study is part of a doctoral thesis [31] and was delivered under the RID
2B project which is designed to develop methods for estimating capacity and assessing traffic
conditions on Poland’s dual carriageways. The outcome of the project is the Polish Highway Capacity
Manual, with procedures for assessing traffic conditions and identifying the capacity of rural and
agglomeration roads [38].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Greenshields, B.D. A study of traffic capacity. In Proceedings of the Fourteenth Annual Meeting of the Highway Research Board,

Washington, DC, USA, 6–7 December 1934; Highway Research Board: Washington, DC, USA, 1935; pp. 448–477. Available online:
http://pubsindex.trb.org/view.aspx?id=120649 (accessed on 6 September 2021).

2. Castillo, J.M.D.; Benítez, F.G. On the functional form of the speed-density relationship—I: General theory. Transp. Res. Part B
Methodol. 1995, 29, 373–389. [CrossRef]

3. Wang, H.; Li, J.; Chen, Q.-Y.; Ni, D. Speed-Density Relationship: From Deterministic to Stochastic. In Proceedings of the 88th
Transportation Research Board Annual Meeting, Washington, DC, USA, 11–15 January 2009.

4. Wang, H.; Li, J.; Chen, Q.-Y.; Ni, D. Logistic modeling of the equilibrium speed-density relationship. Transp. Res. Part A 2011, 45,
554–566. [CrossRef]

5. Transportation Research Board. Highway Capacity Manual 6th Edition: A Guide for Multimodal Mobility Analysis; Transportation
Research Board of the National Academies: Washington, DC, USA, 2016.

6. Baier, M.M.; Brilon, W.; Hartkopf, G.; Lemke, K.; Maier, R.; Schmotz, M. HBS2015 Handbuch für die Bemessung von Straßen-
verkehrsanlagen. Teil A - Autobahnen; Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV), Kommission Bemessung
von Straßenverkehrsanlagen: Köln, Germany, 2015.

7. Greenberg, H. An analysis of traffic flow. Oper. Res. 1958, 7, 79–85. Available online: http://links.jstor.org/sici?sici=0030-364X%
28195901%2F02%297%3A1%3C79%3AAAOTF%3E2.0.CO%3B2-7 (accessed on 6 September 2021). [CrossRef]

8. Lighthill, M.J.; Whitham, G.B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. A Math. Phys.
Eng. Sci. 1955, 229, 317–345. [CrossRef]

9. Underwood, R.T. Speed, volume and density relationships. In Quality and Theory of traffic Flow; Bureau of Highway Traffic, Yale
University: New Haven, CT, USA, 1960; pp. 141–188. Available online: http://tft.eng.usf.edu/greenshields/docs/Greenshields_
Quality_and_Theory_of_Traffic_Flow_1961.pdf (accessed on 14 August 2018).

10. Ardekani, S.A.; Ghandehari, M.; Nepal, S.M. Macroscopic speed-flow models for characterization of freeway and managed lanes.
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