
An isogeometric finite element formulation for geometrically exact
Timoshenko beams with extensible directors

Myung-Jin Choia,∗, Roger A. Sauerb,c,d, Sven Klinkela

aChair of Structural Analysis and Dynamics, RWTH Aachen University, Mies-van-der-Rohe Str. 1, 52074 Aachen,
Germany

bAachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University,
Templergraben 55, 52062 Aachen, Germany
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Abstract

An isogeometric finite element formulation for geometrically and materially nonlinear Timoshenko beams

is presented, which incorporates in-plane deformation of the cross-section described by two extensible

director vectors. Since those directors belong to the space R3, a configuration can be additively up-

dated. The developed formulation allows direct application of nonlinear three-dimensional constitutive

equations without zero stress conditions. Especially, the significance of considering correct surface loads

rather than applying an equivalent load directly on the central axis is investigated. Incompatible linear

in-plane strain components for the cross-section have been added to alleviate Poisson locking by using

an enhanced assumed strain (EAS) method. In various numerical examples exhibiting large deforma-

tions, the accuracy and efficiency of the presented beam formulation is assessed in comparison to brick

elements. We particularly use hyperelastic materials of the St. Venant-Kirchhoff and compressible Neo-

Hookean types.

Keywords: Timoshenko beam, geometric and material nonlinearity, extensible directors, surface loads,

EAS method, isogeometric analysis

1. Introduction

A rod (or rod-like body) can be regarded as a spatial curve, to which two deformable vectors, called

directors are assigned. This curve is also called directed or Cosserat curve. The balance laws can be

stated directly in terms of the curve velocity and director velocity vectors, and their work conjugate force

and director force vectors, which eventually yields the equations of motion in the one-dimensional (curve)

domain (Green and Laws, 1966). Since we actually deal with a three-dimensional continuum, one can
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consistently derive the equations of motion of the rod from those of the full three-dimensional continuum.

This dimensional reduction, or degeneration procedure is based on a suitable kinematic assumption, and

this dimensionally reduced theoretical model is referred to as beam model. An exact expansion of the

position vector of any point of the beam at time t is given as (Antman and Warner, 1966)

xt =

∞∑
p=0

p∑
q=0

(ξ1)
p−q

(ξ2)
q
d(p−q,q)(ξ3, t), (1)

where ξγ (γ = 1, 2) denote the two coordinates in transverse (principal) directions of the cross-section

plane, ξ3 denotes the coordinate along the central axis, and

d(p−q,q)(ξ3, t) :=
1

(p− q)!q!

(
∂pxt

∂(ξ1)
p−q

∂(ξ2)
q

)
. (2)

Using the full conservation laws of a three-dimensional continuum as a starting point, applying the

kinematics in Eq. (1) offers an exact reparameterization of the three-dimensional theory into the one-

dimensional one (Antman and Warner, 1966; Green et al., 1968). However, this theory has infinite

number of equations and unknowns, which makes it intractable for a finite element formulation and

computation. The first order theory assumes the position vector to be a linear function of the coordinates

ξγ , i.e. (Volterra, 1956; Antman and Warner, 1966)

xt = ϕ(ξ3, t) +

2∑
γ=1

ξγdγ(ξ3, t), (3)

where ϕ(ξ3, t) ≡ d(0,0)(ξ3, t) denotes the position of the beam central axis, and two directors are denoted

by d1(ξ3, t) ≡ d(1,0)(ξ3, t) and d2(ξ3, t) ≡ d(0,1)(ξ3, t). This approximation simplifies the strain field; it

physically implies that planar cross-sections still remain planar after deformation, but allows for constant

in-plane stretching and shear deformations of the cross-section. This implies that the linear in-plane

strain field in the cross-section due to the Poisson effect in bending mode cannot be accommodated in

the first order theory2, which consequently increases the bending stiffness. This problem is often referred

to as Poisson locking, and the resulting error does not reduce with mesh refinement along the central

axis since the displacement field in the cross-section is still linear (Bischoff and Ramm, 1997). One

may extend the formulation in Eq. (3) to quadratic displacement field in the cross-section by adding the

second order terms about the coordinates ξγ in order to allow for a linear in-plane strain field. There

are several theoretical works on this second order theory including the work by Pastrone (1978) and

on even higher N -th order theory by Antman and Warner (1966). Since shell formulations have only

one thickness direction, higher-order formulations are simpler than for beams. Several works including

Parisch (1995), Brank et al. (2002), and Hokkanen and Pedroso (2019) employed second order theory

in shell formulations. In beam formulations, several previous works considering the extensible director

kinematics, which allows in-plane cross-section deformations, can be found. A theoretical study to derive

balance equations and objective strain measures based on the polar decomposition of the in-plane cross-

sectional deformation can be found in Kumar and Mukherjee (2011). Further extension to initially curved

2One can find an analytical example and discussion on this in section 6 of Green et al. (1967).
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beams was proposed in Genovese (2014), where unconstrained quaternion parameters were utilized to

represent both in-plane stretching and rotation of cross-sections. In those works, constitutive models

are typically simplified to the form of quadratic strain energy density function. Durville (2012) also

employed a first order theory in frictional beam-to-beam contact problems, where the constitutive law

was simplified to avoid Poisson locking. Coda (2009) employed second order theory combined with an

additional warping degree-of-freedom. However, it turns out that the linear in-plane strain field for the

cross-section is not complete, so that the missing bilinear terms may lead to severe Poisson locking.

In order to have a linear strain field in the cross-section with the increase of the number of unknowns

minimized, one may extend the kinematics of Eq. (3) to

x = ϕ(ξ3) + ξ1
(
1 + a1ξ

1 + a2ξ
2
)
d1(ξ3) + ξ2

(
1 + b1ξ

1 + b2ξ
2
)
d2(ξ3), (4)

where four additional unknown coefficient functions aγ = aγ(ξ3) and bγ = bγ(ξ3) (γ = 1, 2) are in-

troduced. Here and hereafter, the dependence of variables on time t is usually omitted for brevity of

expressions. This enrichment enables additional modes of the cross-sectional deformation (see Fig. 1 for

an illustration), which are also induced in bending deformation due to the Poisson effect. Eq. (4) recovers

(a) Linear strain due to quadratic terms (b) Linear strain due to bilinear terms

Figure 1: Illustration of in-plane deformations of the cross-section with linear strain field. The dashed and

solid lines represent the undeformed and deformed cross-sections, respectively. (a) The through-the-thickness

stretching strain is linear along the ξ1 and ξ2 directions in case of a1 6= 0 and b2 6= 0, respectively. (b) The

through-the-thickness stretching strain is linear along the ξ2 and ξ1 directions in case of a2 6= 0 and b1 6= 0,

respectively. Note that the deformed cross-sections have trapezoidal shapes.

5

the kinematic assumption3 in Coda (2009) if a2 = b1 = 0, which means the absence of bilinear terms,

so that the trapezoidal cross-section deformation, shown in Fig. 1b, cannot be accomodated. Therefore,

Poisson locking cannot be effectively alleviated. In this paper, we employ the enhanced assumed strain

(EAS) method to circumvent Poisson locking in the first order theory. In order to verify the significance

of those bilinear terms in Eq. (4), in a numerical example of section 6.3, we compare two different EAS10

formulations based on five and nine enhanced strain parameters, respectively. The formulation of five

enhanced strain parameters is obtained by ignoring the incompatible modes of trapezoidal cross-section

deformation, i.e., it considers only the incompatible modes of Fig. 1a. The other one with nine enhanced

3In this paper, we focus on in-plane deformation of cross-section, although additional warping degrees-of-freedom was

considered in the work of Coda (2009). This restricts the range of application to compact convex cross-sections, where the

warping effect is not pronounced.
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strain parameters considers the whole set of incompatible linear cross-section modes, i.e., it considers

both of the incompatible modes of Fig. 1a and 1b.15

The enhanced assumed strain (EAS) method developed in Simo and Rifai (1990) is based on the three-

field Hu-Washizu variational principle. As the independent stress field is eliminated from the variational

formulation by an orthogonality condition, it becomes a two-field variational formulation in terms of

displacement and enhanced strain fields. Further, the enhanced strain parameters can be condensed

out on the element level; thus the basic features of a displacement-based formulation are preserved.20

This method was generalized in the context of nonlinear problems in Simo and Armero (1992) in which

a multiplicative decomposition of the deformation gradient into compatible and incompatible parts is

used. One can refer to several works including Büchter et al. (1994), Betsch et al. (1996), Bischoff and

Ramm (1997), and Brank et al. (2002) for EAS-based shell formulations. In this paper, we apply the

EAS method to the beam formulation. Beyond previous beam formulations based on the kinematics of25

extensible directors, our work has the following highlights:

� Consistency in balance equations and boundary conditions: The director field as well as the central

axis displacement field satisfy the momentum balance equations and boundary conditions consis-

tently derived from those of the three-dimensional continuum body. In the formulation of Coda

(2009) and Durville (2012), there are no detailed expressions of balance equations, beam strains,30

and stress resultants. To the best of our knowledge, in those works, the finite element formula-

tion can be obtained by substituting the beam kinematic expression of the current material point

position into the deformation gradient of three-dimensional elasticity. This solid-like formulation

yields an equivalent finite element formulation through a much more simplified derivation process.

However, in addition to the possibility of applying mixed variational formulations in future works,35

the derivation of balance equations, beam strains, and stress resultants turns out to be significant

in the interpretation of coupling between different strain components (for examples, see sections

6.2.1 and 6.2.2.)

� We employ the EAS-method, where the additional strain parameters are statically condensed out,

so that the same number of nodal degrees-of-freedom is used as in the pure displacement-based40

formulation. Each of the enhanced in-plane transverse normal strain components is linear in both

of ξ1 and ξ2, which is in contrast to the strains obtained from the kinematic assumption in Coda

(2009). In the numerical example of section 6.3, it is verified that this further enrichment alleviates

Poisson locking more effectively.

� Significance of correct surface loads: The consistently derived traction boundary condition shows45

that considering the correct surface load leads to an external director stress couple term that turns

out to play a significant role in the accuracy of analysis.

� Incorporation of general hyperelastic constitutive laws: As we consider the complete six stress

components without any zero stress condition, our beam formulation naturally includes a straight-

forward interface for general three-dimensional constitutive laws.50
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� Verification by comparison with brick element solution: We verify the accuracy and efficiency of

our beam formulation by comparison with the results from brick elements.

It turns out that if linear shape functions are used to interpolate the director field, an artificial thickness

stretch arises in bending deformations due to parasitic strain terms, and it eventually increases the

bending stiffness. This effect is called curvature thickness locking. Since the parasitic terms vanish at the55

nodal points, the assumed natural strain (ANS) method interpolates the transverse normal (through-the-

thickness) stretch at nodes instead of evaluating it at Gauss integration points (Betsch and Stein, 1995;

Bischoff and Ramm, 1997). For membrane and transverse shear locking, there are several other existing

methods, for examples, selective reduced integration method in Adam et al. (2014), Greville quadrature

method in Zou et al. (2021), and mixed variational formulation in Wackerfuß and Gruttmann (2009,60

2011). However, since curvature-thickness, membrane, and transverse shear locking issues become less

significant by mesh refinement or higher-order basis functions, especially in low to moderate slenderness

ratio of our interests, no special treatment is implemented in this paper (see the investigation on those

locking issues in section 6.2.5). Further investigation on the application of existing method remains

future work.65

If we restrict the two directors in Eq. (3) to be orthonormal, which physically means that the cross-

section is rigid, large rotations of the cross-section can be described by an orthogonal transformation. In

planar static problems, Reissner (1972) derived the force and moment balance equations, from which the

strain-displacement relation is obtained via the principle of virtual work and work conjugate relations.

Since this approach poses no assumption on the magnitude of deformations, it is often called geometrically70

exact beam theory. This work was extended to three-dimensional dynamic problems by Simo (1985),

which was followed by the finite element formulation of static problems in Simo and Vu-Quoc (1986).

An additional degree-of-freedom related to torsion-warping deformation was added in Simo and Vu-Quoc

(1991), and this work was extended by Gruttmann et al. (1998) to consider eccentricity with arbitrary

cross-section shapes. There have been a number of works on the parameterization of finite rotations,75

and the multiplicative or additive configuration update process. One may refer to the overviews on this

given by Meier et al. (2014) and Crisfield and Jelenić (1999). In Crisfield and Jelenić (1999), it was

pointed out that the usual spatial discretization of the strain measures in Simo and Vu-Quoc (1986)

leads to non-invariance of the interpolated strain measures in rigid body rotation, even though the strain

measures in continuum form are objective. This non-objectivity stems from the non-commutativity,80

i.e., non-vectorial nature of the finite rotation. To retain the objectivity of strain measures in the

underlying continuum formulation, the isoparametric interpolation of director vectors is used instead

of interpolating the rotational parameters (see for example Betsch and Steinmann, 2002; Romero and

Armero, 2002; Eugster et al., 2014), and the subsequent weak form of finite element formulation is

reformulated. As those beam formulations still assume rigid cross-sections, the orthonormality condition85

of the director vectors should be satisfied. Several methods to impose the constraint can be found

in the literature, examples are the Lagrange multiplier method (Betsch and Steinmann, 2002; Eugster

et al., 2014), and the introduction of nodal rotational degrees-of-freedom (Betsch and Steinmann, 2002;

Romero and Armero, 2002). In order to preserve the objectivity and path-independence in the rotation
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interpolation, several methods have been developed; for examples, orthogonal interpolation of relative90

rotation vectors (Crisfield and Jelenić, 1999; Ghosh and Roy, 2009), geodesic interpolation (Sander, 2010),

interpolation of quaternion parameters (Zupan et al., 2013). Romero (2004) compared several rotation

interpolation schemes in perspective of computational accuracy and efficiency. A more comprehensive

review on geometrically exact finite element beam formulations can be found in Meier et al. (2019). In

the isoparametric approximation of directors, employed in our beam formulation, the director vectors95

belong to R3, that is, no orthonormality condition is imposed. This means that the cross-section can

undergo in-plane deformations like transverse normal stretch and in-plane shear deformations. Further,

it enables us to avoid the rotation group, which is a nonlinear manifold, in the configuration space of

the beam, and consequently complicates the configuration and strain update process (Durville, 2012).

Coda (2009) and Coda and Paccola (2011), who employed an isoparametric interpolation of directors100

without orthonormality condition, presented several numerical examples showing the objectivity and

path-independence of the finite element formulation.

Classical beam theories introduce the zero transverse stress condition based on the assumption that

the transverse stresses are much smaller than the axial and transverse shear stresses. Thus, six stress

components in the three-dimensional theory reduce to three components including the transverse shear105

components in the Timoshenko beam theory. However, this often complicates the application of three-

dimensional nonlinear material laws, and requires a computationally expensive iteration process. Global

and local iteration algorithms to enforce the zero stress condition at Gauss integration points were de-

veloped in De Borst (1991) and Klinkel and Govindjee (2002), respectively. One can also refer to several

recent works on Kirchhoff-Love shell formulations with general three-dimensional constitutive laws, where110

the transverse normal strain component can be condensed out by applying the plane stress condition in

an analytical or iterative manner, for example, for hyperelasticity by Kiendl et al. (2015) and Duong et al.

(2017), and elasto-plasticity by Ambati et al. (2018). There are several other finite element formulations

to dimensionally reduce slender three-dimensional bodies and incorporate general three-dimensional con-

stitutive laws. The so-called solid beam formulation uses a single brick element4 in thickness direction.115

To avoid severe stiffening effects typically observed in low-order elements, a brick element was developed

based on the EAS method in geometrically nonlinear problems (Klinkel and Wagner, 1997). A brick

element combined with EAS, ANS, and reduced integration methods in order to alleviate locking was

presented in Frischkorn and Reese (2013). The absolute nodal coordinate (ANC) formulation uses slope

vectors as nodal variables to describe the orientation of the cross-section. The fully parameterized ANC120

element enables straightforward implementation of general nonlinear constitutive laws. A comprehensive

review on the ANC element can be found in Gerstmayr et al. (2013), and one can also refer to a com-

parison with the geometrically exact beam formulation in Romero (2008). Wackerfuß and Gruttmann

(2009, 2011) presented a mixed variational formulation, which allows a straightforward interface to ar-

bitrary three-dimensional constitutive laws, where each node has the common three translational and125

three rotational degrees-of-freedom, as the additional degrees-of-freedom are eliminated on element level

4This is sometimes called a solid element.
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via static condensation.

Isogeometric analysis (IGA) was introduced in Hughes et al. (2005) to bridge the gap between

computer-aided design (CAD) and computer-aided engineering (CAE) like finite element analysis (FEA)

by employing non-uniform rational B-splines (NURBS) basis functions to approximate the solution field130

as well as the geometry. IGA enables exact geometrical representation of initial configuration in CAD to

be directly utilized in the analysis without any approximation even in coarse level of spatial discretiza-

tion. Further, the high-order continuity in NURBS basis function is advantageous in describing the

beam and shell kinematics under the Kirchhoff-Love constraint, which requires at least C1-continuity in

the displacement field. IGA was utilized for example in Kiendl et al. (2015), Duong et al. (2017), and135

Ambati et al. (2018) for Kirchhoff-Love shells, and in Bauer et al. (2020) for Euler-Bernoulli beams. For

geometrically exact Timoshenko beams, an isogeometric collocation method was presented by Marino

(2016), and it was extended to a mixed formulation in Marino (2017). An isogeometric finite element for-

mulation and configuration design sensitivity analysis were presented in Choi and Cho (2019). Recently,

Vo et al. (2020) used the Green-Lagrange strain measure with the St. Venant-Kirchhoff material model140

under the zero stress condition. There have been several works to develop optimal quadrature rules for

higher order NURBS basis functions to alleviate shear and membrane locking, for examples, a selective

reduced integration in Adam et al. (2014), and Greville quadrature in Zou et al. (2021). Since our beam

formulation allows for additional cross-sectional deformations from which another type of locking due to

the coupling between bending and cross-section deformations appears, it requires further investigation145

to apply those quadrature rules to our beam formulation, which remains future work.

There are many applications where one may find deformable cross-sections of rods or rod-like bodies

with low or moderate slenderness ratios. Although one can find many beam structures with open and

thin-walled cross-sections in industrial applications, which requires to consider torsion-warping deforma-

tions, we focus on convex cross-sections in this paper, and the incorporation of out-of-plane deformations150

in the cross-section remains future work. Our beam formulation is useful for the analysis of beams with

low to moderate slenderness ratios, where the deformation of cross-section shape is significant, for exam-

ples, due to local contact or the Poisson effect. For example, our beam formulation can be applied to the

analysis of lattice or textile structures where individual ligaments or fibers have moderate slenderness

ratio, and coarse-grained modeling of carbon nanotubes and DNA. Those applications are often charac-155

terized by circular or elliptical cross-section shapes. For highly slender beams, it has been shown that the

assumption of undeformable cross-sections and shear-free deformations, i.e., Kirchhoff-Love theory, can

be effectively and efficiently utilized (Meier et al., 2019), since it enables to further reduce the number

of degrees-of-freedom and avoid numerical instability due to the coupling of shear and cross-sectional

deformations with bending deformation. This formulation was successfully applied to contact problems,160

for example, contact interactions in complex system of fibers (Meier et al., 2017). As the slenderness

ratio decreases, the analysis of local contact with cross-sectional deformations becomes significant. One

example is the coupling between normal extension of the cross-section and bending deformation that

can be found in the works of Naghdi and Rubin (1989) and Nordenholz and O’Reilly (1997). Especially,

Naghdi and Rubin (1989) illustrated that the difference in the transverse normal forces on the upper165
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and lower lateral surfaces leads to flexural deformation via the Poisson effect. They also showed that

the consideration of transverse normal strains plays a significant role to accurately predict a continuous

surface force distribution. Another example that can lead to significant deformation of the beam cross

section is local contact and adhesion of soft beams. For example, in Sauer (2009), the adhesion mecha-

nism of geckos was described by beam-to-rigid surface contact, where no deformation through the beam170

thickness was assumed, even though local contact can be expected to have a significant influence on

beam deformation. Olga et al. (2018) applied the Hertz theory to incorporate the effect of cross-section

deformation in beam-to-beam contact, where the penalty parameter in the contact constraint was ob-

tained as a function of the amount of penetration. Another interesting application can be found in the

development of continuum models for atomistic structures like carbon nanotubes. Kumar et al. (2011)175

developed a beam model for single-walled carbon nanotubes that allows for deformation of the nanotube’s

lateral surface in a one-dimensional framework, which can be an efficient substitute to two-dimensional

shell models.

The remainder of this paper is organized as follows. In section 2, we present the beam kinematics

based on extensible directors. In section 3, we derive the momentum balance equations from the balance180

laws of a three-dimensional continuum, and define stress resultants and director stress couples. In section

4.1, we derive the beam strain measures that are work conjugate to the stress resultants and director stress

couples. Further, the expression of external stress resultants and director stress couples are obtained

from the surface loads. In section 4.2 we detail the process of reducing three-dimensional hyperelastic

constitutive laws to one-dimensional ones. In section 5, we present the enhanced assumed strain method185

to alleviate Poisson locking. In section 6, we verify the developed beam formulation in various numerical

examples by comparing the results with those of IGA brick elements. For completeness, appendices to

the beam formulation and further numerical examples are given in Appendices A and B, respectively.

2. Beam kinematics

The configuration of a beam is described by a family of cross-sections whose centroids5 are connected

by a spatial curve referred to as the central axis. An initial (undeformed) configuration of the central

axis C0 is given by a spatial curve parameterized by a parametric coordinate ξ ∈ R1, i.e., C0 : ξ →

ϕ0(ξ) ∈ R3. The initial configuration of the central axis is reparameterized by the arc-length parameter

s ∈ [0, L] ⊂ R1, that is, C0 : s → ϕ0(s) ∈ R3. L represents the length of the initial central axis.

This reparameterization is advantageous to simplify the subsequent expressions due to
∥∥ϕ0,s

∥∥ = 1. The

cross-section A0 ⊂ R2 is spanned by two orthonormal base vectors Dγ(s) ∈ R3 (γ = 1, 2), which are

called initial directors, aligned along the principal directions of the second moment of inertia of the

cross-section. Further, D3(s) is defined as a unit normal vector to the initial cross-section. In this paper,

it is assumed that the cross-section is orthogonal to the central axis in the initial configuration, so that

we simply obtain D3(s) := ϕ0,s(s), which is tangent to the initial central axis. Here and hereafter, (•),s

5In this paper, the centroid refers to the mass centroid. If we assume a constant mass density, it coincides with the

geometrical centroid.
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denotes the partial differentiation with respect to the arc-length parameter s. The current (deformed)

configuration of the central axis is defined by the spatial curve Ct : s → ϕ(s, t) ∈ R3, where t ∈ R+

denotes time. In the current configuration, the cross-section At ⊂ R2 is defined by a plane normal to the

unit vector d3(s, t) ∈ R3, and the plane is spanned by two base vectors dγ(s, t) ∈ R3 (γ = 1, 2), which

are referred to as current directors. In contrast to the initial configuration, those current directors are

not necessarily orthogonal to each other or of unit length. Their length only needs to satisfy

λγ(s, t) := ‖dγ(s, t)‖ > 0 for s ∈ [0, L]. (5)

Furthermore, in the current configuration, the cross-section remains plane but not necessarily normal to

the tangent vector ϕ,s(s, t), due to transverse shear deformation. d3(s, t), which is normal to the current

cross-section, can be obtained from the current directors as

d3 =
d1 × d2

‖d1 × d2‖
where ‖d1 × d2‖ 6= 0. (6)

Note that the condition ‖d1 × d2‖ 6= 0 precludes the physically unreasonable situation of infinite in-plane

shear deformation of the cross-section. We also postulate the condition

ϕ,s · (d1 × d2) > 0, (7)

which precludes the unphysical situation of infinite transverse shear deformation. We define {e1, e2, e3}

as a standard Cartesian basis in R3. Fig. 2 schematically illustrates the above kinematic description of

the initial and current beam configurations. We define a reference domain B := (0, L) × A, where A

Figure 2: A schematic illustration of the beam kinematics in the initial and current configurations.

Figure 3: An example of the reference domain B in the case of rectangular cross-section with dimension h1 × h2.

denotes the open domain of coordinates ξ1 and ξ2. For example, for a rectangular cross-section with

dimension h1 × h2 we have (ξ1, ξ2) ∈ A := (−h1/2, h1/2)× (−h2/2, h2/2), see Fig. 3 for an illustration.

The location of each point in the reference domain is expressed in terms of the coordinates ξ1, ξ2, and ξ3

9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


in the standard Cartesian basis in R3 denoted by E1, E2, and E3. We then define two mappings from

the reference domain to the initial configuration B0 and to the current configuration Bt respectively by

x0 : B → B0 and xt : B → Bt. The deformation from the initial to the current configuration is then

expressed by the mapping

Φt := xt ◦ x0
−1 : B0 → Bt. (8)

The initial (undeformed) configuration is expressed by

x0 = x0(ξ1, ξ2, ξ3) := ϕ0(s) + ξγDγ(s), (9)

where ξ3 ≡ s. We note that the coordinates ξ1, ξ2, ξ3 are chosen to have dimension of length, and so

the director vectors d1 and d2 are dimensionless. Here and hereafter, unless stated otherwise, repeated

Latin indices like i and j imply summation over 1 to 3, and repeated Greek indices like α, β, and γ

imply summation over 1 to 2. Also, it is noted that the parameter s is often replaced by ξ3 for notational

convenience. We define a covariant basis Gi := ∂x0/∂ξ
i (i = 1, 2, 3), which then follows as

G1(ξ1, ξ2, ξ3) = D1(s),

G2(ξ1, ξ2, ξ3) = D2(s),

G3(ξ1, ξ2, ξ3) = D3(s) + ξγDγ,s(s).

(10)

The Fréchet derivative of the initial configuration is then written as

Dx0 := Gi ⊗Ei, (11)

where Ei ≡ Ei. From the orthogonality condition Gi ·Gj = δji , where the Kronecker-delta symbol is

defined as

δji =

 0 if i 6= j,

1 if i = j,
(i, j = 1, 2, 3), (12)

we obtain a contravariant (reciprocal) basis as

Gi := Dx0
−TEi (i = 1, 2, 3). (13)

For convenience, here we recall the expression of current position vector of any point of the beam at time

t from Eq. (3)

xt = xt(ξ
1, ξ2, ξ3, t) = ϕ(s, t) + ξγdγ(s, t). (14)

A covariant basis, defined as gi := ∂xt/∂ξ
i, is expressed by

g1(ξ1, ξ2, ξ3, t) = d1(s, t),

g2(ξ1, ξ2, ξ3, t) = d2(s, t),

g3(ξ1, ξ2, ξ3, t) = ϕ,s(s, t) + ξγdγ,s(s, t).

(15)

The Fréchet derivative of the mapping xt(ξ
1, ξ2, ξ3, t) is written as

Dxt := gi ⊗E
i. (16)
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From the orthogonality condition gi · gj = δji we obtain the contravariant basis as

gi := Dxt
−TEi (i = 1, 2, 3). (17)

The deformation gradient tensor of the mapping is obtained by

F := DΦt = DxtDx0
−1 = gi ⊗G

i. (18)

The Jacobian of the mapping Φt is then given by

Jt := detF =
jt
j0
, (19)

where det[•] denotes the determinant. Here, j0 and jt respectively define the Jacobians of the mappings

x0(ξ1, ξ2, ξ3) and xt(ξ
1, ξ2, ξ3, t), and can be expressed in terms of the covariant base vectors, as (see

Appendix A.1 for a derivation)

j0 := detDx0 = (G1 ×G2) ·G3, (20)

and

jt := detDxt = (g1 × g2) · g3. (21)

The infinitesimal volume in the reference configuration can be expressed by

dB = dξ1dξ2dξ3. (22)

Then the corresponding infinitesimal volume due to the mappings of Eqs. (9) and (14) are, respectively,

obtained by

dB0 = j0 dB, (23a)

dBt = jt dB = Jt dB0. (23b)

Remark 2.1. Area change of the lateral boundary surface. Let ν = νiE
i denote the outward unit

normal vector on the boundary surface S := ∂B, and dS represent an infinitesimal area. The surface

area vector in the current configuration can be expressed by6

dSt := νt dSt = jtDxt
−Tν dS, (24)

where νt denotes the outward unit normal vector on the surface St, and dSt denotes the infinitesimal

area. In the same way, the surface area vector in the initial configuration can be expressed by

dS0 := ν0 dS0 = j0Dx0
−Tν dS, (25)

where ν0 denotes the outward unit normal vector on the surface S0, and dS0 denotes the infinitesimal

area. Combining Eqs. (24) and (25), we have

dSt = Jt F
−Tν0 dS0. (26)

6This formula of area change is often called Nanson’s formula.
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If the lateral boundary surface SL
0 is parameterized by two convective coordinates ζ1 and ζ2, i.e., SL

0 :

(ζ1, ζ2) ∈ R2 →XL(ζ1, ζ2) ∈ R3, the infinitesimal area of lateral boundary surface SL
0 can be expressed

by

dSL
0 = ‖A1 ×A2‖dζ1dζ2, (27)

where Aα := ∂XL/∂ζα (α = 1, 2) denotes the surface covariant base vectors. For example, if the lateral

boundary surface is parameterized by a NURBS surface, and the convective coordinate ζ1 represents the

coordinate along the central axis, Eq. (27) can be rewritten, using ds = j̃dζ1 with j̃ :=
∥∥∂ϕ0/∂ζ

1
∥∥, as

dSL
0 = dΓ0ds with dΓ0 :=

1

j̃
‖A1 ×A2‖ dζ2. (28)

It is clear advantage of using IGA that the beam central axis curve and the lateral boundary surface190

can be parameterized by the same coordinate in the axial direction, which enables to calculate the exact

surface geometrical information like covariant base vectors A1 and A2 in Eq. (28). The significance

of geometrical exactness in the calculation of the surface integral might be more significant in laterally

loaded beam with varying cross-section. However, in this paper, we deal only with uniform cross-sections

along the central axis, and the investigation on the different kinds of parameterization of lateral boundary195

surface and the significance of geometrical exactness remain future works.

3. Equations of motion

3.1. Three-dimensional elasticity

We recall the equilibrium equations and boundary conditions of a three-dimensional deformable

body, which occupies an open domain Bt bounded by the boundary surface St := ∂Bt in the current

configuration. The boundary is composed of a prescribed displacement boundary SD
t and a prescribed

traction boundary SN
t , which are mutually disjoint, i.e.7

St = SD
t ∪ SN

t , and SD
t ∩ SN

t = ∅. (29)

The equations of motion are obtained from the local forms of the balance laws whose derivation can be

found in many references on the continuum mechanics, for example, Bonet and Wood (2008). First, the

local conservation of mass is expressed by ρ0 = ρtJt in Bt, where ρ0 and ρt define the mass densities at

the initial and current configurations, respectively. Second, the local balance of linear momentum in a

three-dimensional body is expressed as

divσ + b = ρt xt,tt in Bt, (30)

where σ denotes the Cauchy stress tensor, and div(•) represents the divergence operator with respect

to the current configuration, and b represents the body force per unit current volume, and (•),tt repre-

sents the second order partial differentiation with respect to time. Third, the local balance of angular

7Strictly speaking, those boundary conditions are defined for each independent component in the global Cartesian frame.
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momentum in the absence of body moment is expressed by the symmetry of the Cauchy stress tensor,

i.e., σ = σT in Bt. The non-homogeneous Dirichlet (displacement) boundary condition is given as

ut = ū0, or equivalently xt = x̄0 on SD
t , (31)

where ut := xt − x0 denotes the displacement vector, and ū0 and x̄0 are the prescribed values. Taking

the first variation of Eq. (31) yields the homogeneous Dirichlet boundary condition

δut = 0, or equivalently δxt = 0 on SD
t . (32)

Further, the natural (traction) boundary condition is given as

σνt = t̄0 on SN
t , (33)

where νt defines the unit outward normal vector on SN
t , and t̄0 defines the prescribed surface traction

vector in the current configuration. The surface traction can be also defined with respect to the initial

configuration, as

Pν0 = T̄ 0 on SN
0 , (34)

where P := JtσF
−T denotes the first Piola-Kirchhoff stress tensor, and ν0 and T̄ 0 define the unit

outward normal vector and the prescribed surface traction vector, respectively, on SN
0 .200

3.2. Resultant linear and director momentum

The resultant linear momentum over the cross-section At, with units of linear momentum per unit

of initial arc-length, is defined as

pt :=

∫
A
ρt xt,t jt dA =

∫
A
ρ0 xt,t j0 dA, (35)

where dA := dξ1dξ2 denotes the infinitesimal area of the cross-section in the reference domain. (•),t
denotes the partial differentiation with respect to time. As ϕ(s, t) represents the current position of the

centroid, the parametric position (ξ1, ξ2) ∈ A satisfies∫
A
ξγ ρ0 j0 dA = 0 (γ = 1, 2). (36)

By substituting Eq. (14) into Eq. (35) and using Eq. (36), we have

pt = ρAϕ,t, (37)

where ρA represents the initial line density (mass per unit of initial arc-length), defined as

ρA :=

∫
A
ρ0 j0 dA. (38)

Similarly, we define the resultant angular momentum over the cross-section At, with units of angular

momentum per unit of initial arc-length, as

Ht :=

∫
A
{(xt −ϕ)× ρt xt,t jt} dA = dγ × H̃

γ

t , (39)
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where H̃
γ

t defines the resultant director momentum, given by

H̃
γ

t :=

∫
A
ξγρt xt,t jt dA (γ = 1, 2). (40)

Substituting Eq. (14) into Eq. (40), we obtain

H̃
γ

t = Iγδρ dδ,t (γ = 1, 2), (41)

where the components of the second moment of inertia tensor are expressed by

Iγδρ :=

∫
A
ρt ξ

γ ξδjt dA =

∫
A
ρ0 ξ

γ ξδj0 dA. (42)

Note that these components of the second moment of inertia tensor do not depend on time.

3.3. Stress resultants and stress couples

We formulate the balance equations in terms of stress resultants and director stress couples. We

define the stress resultant as the force acting on the cross-section At, i.e.

n :=

∫
A
σg3jt dA. (43)

Similarly, we define the stress couple as the moment acting on the cross-section At, i.e.

m :=

∫
A

(xt −ϕ)× σg3jt dA = dα × m̃α, (44)

where m̃α defines the director stress couple, given by

m̃α :=

∫
A
ξασg3jt dA (α = 1, 2). (45)

We further define the through-the-thickness stress resultant as

lα :=

∫
A
σgαjt dA (α = 1, 2). (46)

3.4. Momentum balance equations

Starting from Eq. (30) the resultant forms of the local linear and director momentum balance equa-

tions are respectively derived as (see Appendix A.2.1 for a detailed derivation)

n,s + n̄ = ρAϕ,tt, (47)

and

m̃γ
,s − l

γ + ¯̃m
γ

= Iγδρ dδ,tt (γ = 1, 2). (48)

Here, n̄ = n̄(s, t) denotes the external stress resultant, with units of external force per unit of initial

arc-length, given by

n̄ :=

∫
∂A0

T̄ 0 dΓ0 +

∫
A
b0 j0 dA, (49)
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where b0 denotes the body force per unit initial volume such that jtbt = j0b0. ¯̃m
γ

= ¯̃m
γ
(s) denotes

the external director stress couple, which is an external moment per unit of initial arc-length due to the

surface and body force fields, given by

¯̃m
γ

:=

∫
∂A0

ξγT̄ 0 dΓ0 +

∫
A
ξγb0 j0 dA (γ = 1, 2). (50)

We also obtain the resultant form of the balance of angular momentum from the symmetry of the Cauchy

stress tensor, as (see Appendix A.2.2 for a detailed derivation)

ϕ,s × n+ dγ,s × m̃γ + dγ × lγ = 0. (51)

We finally state the static beam problem: Find y :=
[
ϕT,d1

T,d2
T
]T
∈
[
R3
]3

that satisfies (Naghdi,

1981)

n,s + n̄ = 0 (linear momentum balance), (52a)

m̃γ
,s − l

γ + ¯̃m
γ

= 0 (director momentum balance), (52b)

ϕ,s × n+ dγ,s × m̃γ + dγ × lγ = 0 (angular momentum balance). (52c)

We define the Dirichlet boundary condition, as

ϕ = ϕ̄0, d1 = d̄01, d2 = d̄02 on ΓD, (53)

where the central axis position and director vectors are prescribed at the boundary ΓD 3 s. The Neumann

boundary condition is defined as

n = n̄0, m̃
γ = ¯̃m

γ
0 on ΓN (γ = 1, 2). (54)

It is noted that ΓD ∩ ΓN = ∅, and ΓD ∪ ΓN = {0, L}.205

3.5. Effective stress resultant

The balance of angular momentum given by Eq. (52c) can be automatically satisfied by representing

the balance laws in terms of an effective stress resultant tensor (Simo et al., 1990). We define this effective

stress resultant tensor as

ñ := n⊗ϕ,s − dγ,s ⊗ m̃γ + lγ ⊗ dγ . (55)

We also recall the identities â× b = 2 skew[b⊗ a] and skew[a⊗ b] = −skew[b⊗ a] for vectors a, b ∈ R3

where (̂•) represents the skew-symmetric matrix associated with the vector (•) ∈ R3, that is, (̂•)a =

(•) × a, ∀a ∈ R3, and skew[(•)] := 1
2

{
(•)− (•)T

}
. Then Eq. (52c) can be rewritten as the symmetry

condition of the effective stress resultant tensor, i.e., ñ = ñT.210

Decomposing the stress resultant forces and moment relative to the basis of {d1,d2,ϕ,s} yields

n = nϕ,s + qαdα, (56a)

m̃α = m̃αϕ,s + m̃βαdβ , (56b)

lα = lαϕ,s + lβαdβ . (56c)

We also decompose dα,s in the same basis as

dα,s = kαϕ,s + kβαdβ . (57)
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Remark 3.1. Physical interpretation of current curvatures. Without loss of generality, we examine

the case α = 1 in Eq. (57). The change of director vector along the central axis has three different

components, i.e.

d1,s = k1ϕ,s + k1
1d1 + k2

1d2. (58)

The components k1, k2
1 represent the bending and torsional curvatures in the current configuration.

However, they are not exactly geometrical curvatures, since the basis
{
d1,d2,ϕ,s

}
is not orthonormal. k1

1

is associated with a varying cross-section stretch (λ1) along the central axis in the current configuration.

If the transverse and in-plane cross-section shear deformations are zero (i.e., ϕ,s · d1 = d1 · d2 = 0), we

have k1
1 = λ1,s/λ1. In other words, if the cross-section stretch is non-varying along the central axis in215

the current configuration, we have k1
1 = 0.

Using the component forms in Eqs. (56) and (57), the effective stress resultant tensor of Eq. (55) can

be rewritten as

ñ = ñϕ,s ⊗ϕ,s + q̃αdα ⊗ϕ,s + l̃
α
ϕ,s ⊗ dα + l̃

αβ
dα ⊗ dβ , (59)

where the following component expressions are defined relative to the basis {d1,d2,ϕ,s}

ñ := n− m̃γkγ (effective axial stress resultant), (60a)

q̃α := qα − m̃γkαγ (effective transverse shear stress resultant), (60b)

l̃
α

:= lα − m̃αγkγ (effective longitudinal shear stress resultant), (60c)

l̃
αβ

:= lβα − m̃αγkβγ (effective transverse normal and cross-section shear stress resultants). (60d)

The symmetry condition ñ = ñT yields the following symmetry conditions on the components

q̃α = l̃α and l̃αβ = l̃βα. (61)

4. Variational formulation

4.1. Weak form of the governing equation

We define a variational space by

V :=

{
δy :=

[
δϕT, δd1

T, δd2
T
]T
∈
[
H1(0, L)

]d∣∣∣∣ δϕ = δd1 = δd2 = 0 on ΓD

}
, (62)

where H1(0, L) defines the Sobolev space of order one which is the collection of all continuous functions

whose first order derivatives are square integrable in the open domain (0, L) 3 s. Here the components of

δy in the global Cartesian frame are considered as independent solution functions, so that the dimension

becomes d = 9. In the following, we restrict our attention to the static case. By multiplying the linear

and director momentum balance equations by δϕ and δdγ (γ = 1, 2), respectively, we have∫ L

0

{
(n,s + n̄) · δϕ+

(
m̃γ
,s − l

γ + ¯̃m
γ) · δdγ} ds = 0, (63)
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where δ(•) denotes the first variation. Integration by parts of Eq. (63) leads to the following variational

equation8

Gint(y, δy) = Gext(y, δy), ∀δy ∈ V, (64)

where

Gint(y, δy) :=

∫ L

0

(
n · δϕ,s + m̃γ · δdγ,s + lγ · δdγ

)
ds, (65)

and

Gext(y, δy) := [n̄0 · δϕ]ΓN
+
[

¯̃m
γ
0 · δdγ

]
ΓN

+

∫ L

0

(
n̄ · δϕ+ ¯̃m

γ · δdγ
)

ds. (66)

The external virtual work of Eq. (66) depends on the current configuration if a non-conservative load

is applied (see for example the distributed follower load in section 6.2, and the external virtual work,

expressed by Eq. (A.6.1)), and it can be rewritten in compact form by

Gext(y, δy) =
[
δyTR̄0

]
ΓN

+

∫ L

0

δyTR̄ ds, (67)

where we define

R̄0 :=


n̄0

¯̃m
1
0

¯̃m
2
0

 , and R̄ :=


n̄

¯̃m
1

¯̃m
2

 . (68)

Using Eqs. (56) and (57), the internal virtual work of Eq. (65) can be rewritten by the effective stress

resultants and director stress couples, as

Gint(y, δy) =

∫ L

0

(
ñ δε+ m̃αδρα + q̃αδδα + m̃αβδγαβ + l̃

αβ
δχαβ

)
ds, (69)

where the variations of the strain measures (virtual strains) are derived as

δε = δϕ,s ·ϕ,s, (70a)

δρα = δϕ,s · dα,s +ϕ,s · δdα,s, (70b)

δδα = δϕ,s · dα +ϕ,s · δdα, (70c)

δγαβ = δdα · dβ,s + dα · δdβ,s, (70d)

δχαβ =
1

2
(δdα · dβ + dα · δdβ) . (70e)

Using the fact that these strains vanish in the initial beam configuration, we obtain the following strain

expressions,

ε :=
1

2
(
∥∥ϕ,s∥∥2 − 1) (axial stretching strain), (71a)

ρα := ϕ,s · dα,s −ϕ0,s ·Dα,s (bending strain), (71b)

δα := ϕ,s · dα −ϕ0,s ·Dα (transverse shear strain), (71c)

γαβ := dα · dβ,s −Dα ·Dβ,s (couple shear strain), (71d)

χαβ :=
1

2
(dα · dβ −Dα ·Dβ) (cross-section stretching and shear strains). (71e)

8See Appendix A.4 for the linearization of Eq. (64) and the configuration update process.
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Remark 4.1. Physical interpretation of director stress couple components. Substituting Eq. (56b) into

Eq. (44) yields

m = m̃1d1 ×ϕ,s + m̃2d2 ×ϕ,s +
(
m̃21 − m̃12

)
d1 × d2. (72)

Here, m̃α (α = 1, 2) represents the bending moment around the axis orthogonal to the current tangent

vector to the central axis (i.e., ϕ,s) and director dα, and m̃12 and m̃21 represent torsional moments in

the opposite directions around the normal vector of the cross-section. The other components m̃11 and

m̃22 are associated with the non-uniform transverse normal stretching in the directions of directors d1

and d2, respectively. Without loss of generality, we examine the component m̃11 and its work conjugate

strain γ11 only. From Eq. (71d), we have

γ11 = d1 · d1,s = λ1λ1,s, (73)

where D1 ·D1,s = 0 is used, since we assume D1 is a unit vector. A material fiber aligned in the axial

direction rotates, i.e., γ11 6= 0 if the transverse normal stretch of the cross-section (λ1) is not constant220

along the central axis, and m̃11 represents the work conjugate moment. If the cross-section deforms

uniformly along the central axis, then γ11 = m̃11 = 0.

4.2. Hyperelastic constitutive equation

We can obtain constitutive equations by a reduction of a three-dimensional hyperelastic constitutive

model. In what follows, we consider two hyperelastic materials: the St. Venant-Kirchhoff material, and225

the compressible Neo-Hookean material.

4.2.1. Work conjugate stresses and elasticity tensor

The Green-Lagrange strain tensor is defined as

E :=
1

2

(
FTF − 1

)
, (74)

where 1 represents the identity tensor in R3. The identity tensor can be expressed in the basis
{
G1,G2,G3

}
as

1 = GijG
i ⊗Gj where Gij := Gi ·Gj . (75)

Using Eq. (10) the identity tensor can be rewritten as

1 = Gα ⊗Gα + ξβDα ·Dβ,s

(
Gα ⊗G3 +G3 ⊗Gα

)
+
(
1 + 2ξαDα,s ·D3 + ξαξβDα,s ·Dβ,s

)
G3 ⊗G3. (76)

Then substituting Eqs. (18) and (76) into Eq. (74), the Green-Lagrange strain tensor can be rewritten in

terms of the strains in Eq. (71) as

E = EαβG
α ⊗Gβ + E3γ

(
G3 ⊗Gγ +Gγ ⊗G3

)
+ E33G

3 ⊗G3, (77)

where the components are 
Eαβ = χαβ ,

E3α = Eα3 =
1

2
(δα + ξγγαγ) ,

E33 = ε+ ξγργ + ξγξδκγδ,

(78)

18

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


and we define a high-order bending strain component as

καβ :=
1

2
(dα,s · dβ,s −Dα,s ·Dβ,s) . (79)

Taking the first variation of Eq. (79), we obtain

δκαβ =
1

2
(δdα,s · dβ,s + dα,s · δdβ,s) . (80)

For brevity we define the following arrays by exploiting the symmetry of the strains (i.e., κ12 = κ21 and

χ12 = χ21)

ρ :=

 ρ1

ρ2

 , κ :=


κ11

κ22

2κ12

 , δ :=

 δ1

δ2

 , γ :=



γ11

γ12

γ21

γ22


, χ :=


χ11

χ22

2χ12

 , (81)

and

¯
ε :=



ε

ρ

κ

δ

γ

χ


. (82)

Remark 4.2. Incompleteness of the Green-Lagrange strain components in the beam kinematic descrip-

tion of Eq. (4) with a2 = b1 = 0. Here it is shown that the kinematic expression of Eq. (4) leads to the

Green-Lagrange strain tensor having a complete linear polynomial expression in terms of the coordinates

ξ1 and ξ2, but it does not if a2 = b1 = 0. Based on the kinematic expression of Eq. (4), the covariant

base vectors are obtained as  g1 = d1 + 2a1ξ
1d1 + ξ2 (b1d2 + a2d1) ,

g2 = d2 + ξ1 (a2d1 + b1d2) + 2b2ξ
2d2.

(83)

The in-plane components of the Green-Lagrange strain tensor are obtained by substituting Eq. (83) into

Eq. (74), as

Eαβ = Ec
αβ + Ẽαβ , (84)

where the additional parts, after neglecting the quadratic terms of ξ1 and ξ2 9, are

Ẽ11 = 2ξ1a1d1 · d1 + ξ2 (a2d1 · d1 + b1d1 · d2) + 2ξ1ξ2 (a1a2d1 · d1 + a1b1d1 · d2) , (85a)

Ẽ22 = ξ1 (a2d1 · d2 + b1d2 · d2) + 2b2ξ
2d2 · d2 + 2ξ1ξ2 (a2b2d1 · d2 + b1b2d2 · d2) , (85b)

2Ẽ12 = ξ1 (a2d1 · d1 + b1d1 · d2 + 2a1d1 · d2) + ξ2 (2b2d1 · d2 + a2d1 · d2 + b1d2 · d2)

+ ξ1ξ2
(
a2

2d1 · d1 + 4a1b2d1 · d2 + 2a2b1d1 · d2 + b1
2d2 · d2

)
. (85c)

9The quadratic terms are neglected since the enhanced strain field should satisfy the orthogonality to the constant stress

fields (Betsch et al., 1996).
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However, if the bilinear terms in ξ1 and ξ2 are missing in Eq. (4), i.e., a2 = b1 = 0, those in-plane

Green-Lagrange strain components, after neglecting the quadratic terms, become

Ẽ∗11 = 2a1ξ
1d1 · d1, (86a)

Ẽ∗22 = 2b2ξ
2d2 · d2, (86b)

2Ẽ∗12 = 2
(
ξ1a1 + ξ2b2 + 2ξ1ξ2a1b2

)
d1 · d2. (86c)

It is noticeable that Eqs. (86a) and (86b) do not have linear terms of the coordinates ξ2 and ξ1, respec-

tively. This means that the kinematic expression of Eq.(4) without bilinear terms (i.e., a2 = b1 = 0) is

not able to represent trapezoidal deformations of the cross-section, illustrated in Fig. 1b.230

We assume that the strain energy density (defined as the strain energy per unit undeformed volume)

is expressed in terms of the Green-Lagrange strain tensor, as

Ψ = Ψ(E). (87)

The second Piola-Kirchhoff stress tensor, which is work conjugate to the Green-Lagrange strain tensor,

is obtained by

S = SijGi ⊗Gj with Sij =
∂Ψ

∂Eij
. (88)

The components S11,S22, and S12 are typically assumed to be zero in many beam formulations and this

zero stress condition has made the application of general nonlinear constitutive laws not straightforward.

Exploiting the symmetries, the second order tensors E and S can be expressed in array form (Voigt

notation), as
¯
S :=

[
S11, S22, S33, S12, S13, S23

]T
, and

¯
E := [E11, E22, E33, 2E12, 2E13, 2E23]

T
. The total

strain energy of the beam can be expressed as

U =

∫ L

0

∫
A

Ψ j0 dAds . (89)

The first variation of the strain energy density function can be obtained, by using the chain rule of

differentiation, as (see Appendix A.3.1 for the details)

δΨ =
¯
STδ

¯
E =

¯
ST

¯
Dδ

¯
ε with

¯
D :=

∂
¯
E

∂
¯
ε
. (90)

Taking the first variation of the total strain energy of Eq. (89) and using Eq. (90) we obtain the internal

virtual work

Gint(y, δy) ≡ δU =

∫ L

0

δ
¯
εTR ds, (91)

where R defines the array of stress resultants and director stress couples,

R :=

∫
A ¯
DT

¯
S j0 dA =

[
ñ, m̃1, m̃2, h̃

11
, h̃

22
, h̃

12
, q̃1, q̃2, m̃11, m̃12, m̃21, m̃22, l̃

11
, l̃

22
, l̃

12
]T
. (92)

Here, h̃
αβ

defines the component of the high-order director stress couple. For general hyperelastic mate-

rials, the constitutive relation between S and E is nonlinear. Thus, we need to linearize the constitutive

relation, by taking the directional derivative of S,

DS ·∆xt = C : DE ·∆xt, (93)
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where D(•) · (∗) represents the directional derivative of (•) in direction (∗), and ∆xt denotes the incre-

ment of the material point position at the current configuration. The fourth-order tensor C, called the

Lagrangian or material elasticity tensor, is expressed by

C :=
∂S

∂E
= Cijk`Gi ⊗Gj ⊗Gk ⊗G` with Cijk` =

∂2Ψ

∂Eij ∂Ek`
. (94)

Note that the elasticity tensor has both major and minor symmetries. For computational purposes we

can therefore represent the fourth order tensor C in matrix form as

¯̄
C :=



C1111 C1122 C1133 C1112 C1113 C1123

C2222 C2233 C2212 C2213 C2223

C3333 C3312 C3313 C3323

C1212 C1213 C1223

sym. C1313 C1323

C2323


. (95)

In a similar manner to the derivation of Eq. (90), the directional derivative of
¯
S can be derived as

D
¯
S ·∆y =

¯̄
C

¯
D (D

¯
ε ·∆y) . (96)

Then, the directional derivative of R is obtained by using Eq. (96), as

DR ·∆y = C (D
¯
ε ·∆y) , (97)

where ∆y :=
[
∆ϕT,∆d1

T,∆d2
T
]T

, and C represents the symmetric constitutive matrix, defined by

C :=

∫
A

(
¯
DT

¯̄
C

¯
Dj0

)
dA. (98)

Remark 4.3. Numerical integration over the circular cross-section. In this paper, we restrict our

discussion to rectangular and circular cross-sections. In the case of circular cross-section of radius R, we

can simply parametrize the domain by polar coordinates, as

ξ1 = r cos θ and ξ2 = r sin θ with 0 ≤ r ≤ R, and 0 ≤ θ < 2π. (99)

Then, the infinitesimal area simply becomes

dA = r dr dθ, r =

√
(ξ1)

2
+ (ξ2)

2
. (100)

4.2.2. St. Venant-Kirchhoff material

In the St. Venant-Kirchhoff material model, the strain energy density is expressed by

Ψ =
1

2
λ(trE)

2
+ µE : E, (101)

where λ and µ are the Lamé constants, which are related to Young’s modulus E and Poisson’s ratio ν

by

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (102)
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The second Piola-Kirchhoff stress tensor is then obtained by

S =
∂Ψ

∂E
= λ (trE) 1 + 2µE. (103)

Note the linearity in the constitutive relation of Eq. (103), which restricts the applicability of this material

law to moderate strains. The contravariant component of S follows as

Sij = S : Gi ⊗Gj = Cijk`Ek`, (104)

where

Cijk` = λGijGk` + µ
(
GikGj` +Gi`Gjk

)
. (105)

4.2.3. Compressible Neo-Hookean material

The stored energy function of the three-dimensional compressible Neo-Hookean material is defined

as

Ψ =
µ

2
(trC − 3)− µ ln J +

λ

2
(ln J)2, (106)

where C := FTF is the right Cauchy-Green deformation tensor. The second Piola-Kirchhoff stress

tensor follows as (Bonet and Wood, 2008)

S =
∂Ψ

∂E
= µ(1−C−1) + λ(ln J)C−1. (107)

The contravariant components of S can then be derived as

Sij = S : Gi ⊗Gj = µ
{
Gij −

(
C−1

)ij}
+ λ(ln J)

(
C−1

)ij
. (108)

The corresponding Lagrangian elasticity tensor follows as (Bonet and Wood, 2008)

C = λC−1 ⊗C−1 + 2(µ− λ ln J)I, (109)

where

C−1 ⊗C−1 =
(
C−1

)ij(
C−1

)k`
Gi ⊗Gj ⊗Gk ⊗G`, (110)

and the fourth order tensor I can be expressed in terms of the covariant basis, as (see Appendix A.3.2

for the derivation)

I := −∂C
−1

∂C
=

1

2

{(
C−1

)ik(
C−1

)j`
+
(
C−1

)i`(
C−1

)jk}
Gi ⊗Gj ⊗Gk ⊗G`. (111)

Then the contravariant components of C are obtained as

Cijk` = λ
(
C−1

)ij(
C−1

)k`
+ (µ− λ ln J)

{(
C−1

)ik(
C−1

)j`
+
(
C−1

)i`(
C−1

)jk}
. (112)
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4.3. Isogeometric discretization

4.3.1. NURBS curve

The geometry of the beam’s central axis can be represented by a NURBS curve. Here we summa-

rize the construction of a NURBS curve. More detailed explanation on the properties of NURBS and

geometric algorithms like knot insertion and degree elevation can be found in Piegl and Tiller (2012).

Further discussions on the important properties of NURBS in the analysis can be found in Hughes et al.

(2005). For a given knot vector Ξ̃ =
{
ξ1, ξ2, ..., ξncp+p+1

}
, where ξi ∈ R is the ith knot, p is the degree

of basis function, and ncp is the number of basis functions (or control points), B-spline basis functions

are recursively defined (Piegl and Tiller, 2012). For p = 0, they are defined by

B0
I (ξ) =

1 if ξI ≤ ξ < ξI+1,

0 otherwise,

(113)

and for p = 1, 2, 3, ..., they are defined by

BpI (ξ) =
ξ − ξI

ξI+p − ξI
Bp−1
I (ξ) +

ξI+p+1 − ξ
ξI+p+1 − ξI+1

Bp−1
I+1(ξ), (114)

where ξ ∈ Ξ ⊂ R denotes the parametric coordinate, and Ξ :=
[
ξ1, ξncp+p+1

]
represents the parametric

space. From the B-spline basis functions the NURBS basis functions are defined by

NI(ξ) =
BpI (ξ)wI

ncp∑
J=1

BpJ(ξ)wJ

, (115)

where wI denotes the given weight of the Ith control point. If weights are equal, NURBS becomes

B-spline. The geometry of the initial beam central axis can be represented by a NURBS curve, as

X(ξ) =

ncp∑
I=1

NI(ξ)XI , (116)

where XI are the control point positions. The arc-length parameter along the initial central axis can be

expressed by the mapping s(ξ) : Ξ → [0, L], defined by

s(ξ) :=

∫ η=ξ

ξ1

‖X,η(η)‖ dη. (117)

Then the Jacobian of the mapping is derived as

j̃ :=
ds

dξ
= ‖X,ξ(ξ)‖ . (118)

In the discretization of the variational form, we often use the notation NI,s for brevity, which is defined

by

NI,s := NI,ξ
dξ

ds
=

1

j̃
NI,ξ, (119)

where NI,ξ denotes the differentiation of the basis function NI(ξ) with respect to ξ.235
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4.3.2. Discretization of the variational form

In the discretization of the variational form using NURBS basis functions, an element in one-

dimension is defined as the nonzero knot span, which means the span between two distinct knot values.

Let Ξe denote the eth nonzero knot span (element), then the entire parametric domain is the sum of

the whole knot spans, i.e., Ξ = Ξ1 ∪ Ξ2 ∪ · · · ∪ Ξnel
, where nel denotes the total number of nonzero

knot spans. Using the NURBS basis of Eq. (115), the variations of the central axis position and the two

director vectors at ξ ∈ Ξe are discretized as

δyh(s(ξ)) =
[
N1(ξ) 19×9 · · · Nne(ξ) 19×9

]
δy1

...

δyne

 =: Neδye, with δyI :=


δϕI

δd1I

δd2I

 , (120)

where δϕI ∈ R3 and δdαI ∈ R3 denote the displacement and director coefficient vectors, and 1m×m

denotes the identity matrix of dimension m×m. ne denotes the number of basis functions having local

support in the knot span Ξe.240

Remark 4.4. It is noted that the spatial discretization is applied to the increment (variation) of the

director vectors, not to the total director vectors. This is because the initial directors are assumed

to be orthonormal, and the spatial discretization by NURBS basis functions does not preserve the

orthonormality. The initial orthonormal director vectors at an arbitrary position on the central axis

may be calculated in many different ways. For example, for a given C1 continuous curve, the smallest245

rotation method gives a smooth parameterization of initial orthonormal directors. More details on this

method can be found in Meier et al. (2014) and Choi and Cho (2019).

Using Eq. (120) and the standard element assembly operator A, we obtain

Gint(y
h, δyh) = δyTFint, with Fint :=

nel

A
e=1

Feint and δy :=
nel

A
e=1

δye, (121)

where the element internal force vector is obtained, from Eq. (A.4.6), by

Feint :=

∫
Ξe

BeT
totalR j̃ dξ, (122)

and the matrix Betotal is defined in Eq. (A.5.2). The external virtual work of Eq. (67) is also discretized

as

Gext(y
h, δyh) = δyTFext, with Fext :=

nel

A
e=1

Feext + A
[
R̄0

]
ΓN
, (123)

where the second term on the right-hand side represents the assembly of load vector at the boundary

ΓN, and the element external load vector is obtained by

Feext :=

∫
Ξe

NT
e R̄ j̃ dξ. (124)

Similarly, the linearized internal virtual work of Eq. (A.4.12) is discretized as

∆Gint(y
h; δyh,∆yh) = δyTKint ∆y with Kint :=

nel

A
e=1

Ke
int. (125)

The element tangent stiffness matrix is obtained by

Ke
int =

∫
Ξe

(
BeT

totalCBetotal + YeTkGYe
)
j̃ dξ, (126)
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where Ye is defined in Eq. (A.5.4). It is noted that the global tangent stiffness matrix Kint is symmetric,

since C and kG are symmetric. Substituting Eqs. (121), (123), and Eq. (125) into Eq. (A.4.1) leads to

δyT n+1K(i−1) ∆y = δyT n+1R(i−1), (127)

where K := Kint−Kext, and the global load stiffness matrix Kext appears, e.g., due to non-conservative

follower loads, and it is generally unsymmetric (see for example Eq. (A.6.5)). The global residual vector

is

R := Fext − Fint. (128)

After applying the kinematic boundary conditions to Eq. (127), we obtain

n+1K(i−1)
r ∆yr =

n+1
R(i−1)

r , (129)

where (•)r denotes the reduced vector or matrix after applying the kinematic boundary conditions.

Remark 4.5. The symmetry of the global tangent stiffness matrix K depends solely on whether the

external loading is conservative. If a non-conservative load is applied, the load stiffness leads to unsym-250

metric tangent stiffness matrix.

5. Alleviation of Poisson locking by the EAS method

In order to alleviate Poisson locking, the in-plane strain field in the cross-section should be at least

linear. We employ the EAS method, and we modify the Green-Lagrange strain tensor as

E = Ec︸︷︷︸
compatible

+ Ẽ︸︷︷︸
enhanced

, (130)

where the compatible strain part is the same as in Eq. (77), and the additional strain part Ẽ, which is

incompatible, is intended to enhance the in-plane strain components of the cross-section, expressed by

Ẽ = ẼαβG
α ⊗Gβ . (131)

The enhanced strain components are assumed as the linear and the bi-linear terms of the coordinates ξ1

and ξ2 in the cross-section, i.e.,


Ẽ11

Ẽ22

2Ẽ12

 =


ξ1 ξ2 ξ1ξ2 0 0 0 0 0 0

0 0 0 ξ1 ξ2 ξ1ξ2 0 0 0

0 0 0 0 0 0 ξ1 ξ2 ξ1ξ2





α1

α2

...

α8

α9


=: Γα, (132)

where nine independent enhanced strain parameters αi ∈ L2(0, L) (i = 1 ∼ 9) are introduced. L2(0, L)

defines the collection of all the functions, which are square integrable in the domain (0, L) 3 s. Even

though the additional Green-Lagrange strain parts may include quadratic or higher order terms, we255

enrich the linear strain field only, since the enhanced strain is required to be orthogonal to constant

stress fields in order to satisfy the stability condition (Betsch et al., 1996).
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Remark 5.1. In this paper, it is shown that it may lead to erroneous results if the expression of Eq. (86)

is applied. For example, following Eq. (86), one could define the enhanced strain part, as


Ẽ∗11

Ẽ∗22

2Ẽ∗12

 =


ξ1 0 0 0 0

0 ξ2 0 0 0

0 0 ξ1 ξ2 ξ1ξ2





α∗1

α∗2

α∗3

α∗4

α∗5


, (133)

where five enhanced strain parameters α∗i ∈ L2(0, L) (i = 1 ∼ 5) are introduced. In numerical examples

of section 6.3, it is shown that the EAS method based on Eq. (133) still suffers from significant Poisson

locking.260

Applying the modified Green-Lagrange strain tensor to the three-field Hu-Washizu variational princi-

ple, the total strain energy is written in terms of the modified Green-Lagrange strain tensor as (Bischoff

and Ramm, 1997)

Ũ
(
y, Ẽ, S̃

)
=

∫ L

0

∫
A

{
Ψ(Ec + Ẽ)− S̃ : Ẽ

}
j0 dAds. (134)

The following condition that the stress field is L2-orthogonal to the enhanced strain field enables to

eliminate the stress field from the formulation, which leads to a two-field variational formulation.∫ L

0

∫
A

(
S̃ : Ẽ j0

)
dAds = 0. (135)

The independent stress field S̃, which satisfy the orthogonality condition of Eq. (135), does not explicitly

appear in the subsequent formulation, and is generally different from the stress field S, which is calculated

by the constitutive law10. The first variation of the total strain energy is obtained by

δŨ =

∫ L

0

∫
A

(
∂Ψ

∂E
: δEc j0

)
dAds+

∫ L

0

∫
A

(
∂Ψ

∂E
: δẼ j0

)
dAds. (136)

We rewrite Eq. (136), using Eqs. (91), (A.4.4), and (132), as

Gint(η, δη) ≡ δŨ =

∫ L

0

(
δyTBT

totalR
)

ds+

∫ L

0

δαTsds, (137)

where δη :=
[
δyT, δαT

]T
, and

s :=

∫
A

(
ΓT

¯
Ŝ j0

)
dA with

¯
Ŝ :=

[
S11, S22, S12

]T
=

[
∂Ψ

∂E11
,
∂Ψ

∂E22
,
∂Ψ

∂E12

]T

. (138)

5.1. Linearization

The directional derivative of the internal virtual work of Eq. (137) in the direction of ∆η :=
[
∆yT,∆αT

]T
is given by

∆Gint(η; δη,∆η) := DGint ·∆η

=

∫ L

0

δηT

 BtotalTCBtotal + Y TkGY BtotalTCayT

sym. Caa

∆η ds, (139)

10See page 2,557 of Büchter et al. (1994).
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where we use the following matrices

Cay :=

∫
A

(
ΓTC̄ay

¯
D j0

)
dA with C̄ay

:=


C1111 C1122 C1133 C1112 C1113 C1123

C2211 C2222 C2233 C2212 C2213 C2223

C1211 C1222 C1233 C1212 C1213 C1223

, (140)

and

Caa :=

∫
A

(
ΓTC̄aa

Γ j0

)
dA with C̄aa

:=


C1111 C1122 C1112

C2222 C2212

sym. C1212

 . (141)

5.2. Solution update procedure

The iterative process to find solution n+1η :=
[
n+1yT, n+1αT

]T
at the (n + 1)th load step is stated

as: For a given solution n+1η(i−1) at the (i− 1)th iteration of the (n+ 1)th load step, find the solution

increment ∆η, where ∆y ∈ V and ∆α ∈ [L2(0, L)]
d
, such that

∆Gint(
n+1η(i−1); δη,∆η) = Gext(δy)−Gint(

n+1η(i−1), δη), ∀δy ∈ V, and ∀δα ∈ [L2(0, L)]
d
, (142)

where the dimension of the solution space of enhanced strain parameters can be d = 9 or d = 5 (see

Remark 5.1). Since the enhanced strain parameters are chosen to belong to the space L2(0, L), no inter-

element continuity is required. Thus, it is possible to condense out those additional degrees-of-freedom

at element level (Bischoff and Ramm, 1997). The solution is updated by

n+1y(i) = n+1y(i−1) + ∆y, n+1y(0) = ny,

n+1α(i) = n+1α(i−1) + ∆α, n+1α(0) = nα.

 (143)

5.3. Discretization of the enhanced strain parameters and static condensation

We reparameterize each of the nel elements of the central axis by a parametric coordinate ξ̃ ∈ [−1, 1].

We define a linear mapping between the parametric domain of the eth element Ξe =
[
ξ1
e , ξ

2
e

]
3 ξ and

[−1, 1] 3 ξ̃, as

ξ̃ = 1− 2

(
ξ2
e − ξ

ξ2
e − ξ1

e

)
. (144)

Then, within each element the vector of virtual enhanced strain parameters δα = δα(ξ̃) is linearly

interpolated as

δαh(ξ̃) =
[
Ñ1(ξ̃) 19×9 Ñ2(ξ̃) 19×9

] δα1

δα2

 =: Ñe(ξ̃)δαe, (145)

with nodal vectors of enhanced strain parameters δαi (i = 1, 2). In this paper, we use linear basis

functions, given by

Ñ1(ξ̃) = (1− ξ̃)/2

Ñ2(ξ̃) = (1 + ξ̃)/2

 , ξ̃ ∈ [−1, 1] . (146)

Similarly, the vector of incremental enhanced strain parameters is interpolated within each element, as

∆αh(ξ̃) = Ñe(ξ̃) ∆αe. (147)
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Substituting Eq. (145) into the internal virtual work of Eq. (137), and using the standard element assem-

bly process, we have

Gint(η
h, δηh) =

nel

A
e=1

 δye

δαe


T Feint

se

 , (148)

where we use

se :=

∫
Ξe

{
j̃ Ñe

T
∫
A

(
ΓT

¯
Ŝ j0

)
dA
}

dξ. (149)

The linearized variational equation (Eq. (142)) is discretized as follows. For the given solution at the

(i− 1)th iteration of the (n+ 1)th load step, we find the solution increment such that

nel

A
e=1


 δye

δαe


T n+1  Ke

int Ke
ay

T

sym. Ke
aa

(i−1) ∆ye

∆αe




=
nel

A
e=1


 δye

δαe


T n+1 Feext − Feint

−se


(i−1)

, (150)

where we use

Ke
ay :=

∫
Ξe

(
ÑeTCayBtotal

e j̃
)

dξ, (151)

and

Ke
aa :=

∫
Ξe

(
ÑeTCaaÑe j̃

)
dξ. (152)

Since we allow for a discontinuity of the enhanced strain field between adjacent elements, Eq. (150) can

be rewritten as

nel

A
e=1

{
δyeT

(
Ke

int∆ye + Ke
ay

T∆αe
)}

=
nel

A
e=1

{
δyeT (Feext − Feint)

}
, (153a)

δαeT (Ke
ay∆ye + Ke

aa∆αe
)

= −δαeTse, e = 1, 2, ..., nel. (153b)

From Eq. (153b), we obtain

∆αe = −
n+1 [

Ke
aa
−1
](i−1) (

n+1 [se]
(i−1)

+ n+1
[
Ke

ay

](i−1)
∆ye

)
, e = 1, 2, ..., nel. (154)

Substituting Eq. (154) into Eq. (153a) leads to

δyTn+1
K̃

(i−1)
∆y = δyTn+1

R̃
(i−1)

, (155)

where the global tangent stiffness matrix is defined as

K̃ :=
nel

A
e=1

(
Ke

int −Ke
ay

TKe
aa
−1Ke

ay

)
, (156)

and the global residual vector is

R̃ :=
nel

A
e=1

(
Feext − Feint + KeT

ay Ke−1
aa se

)
. (157)

After applying the kinematic boundary conditions to Eq. (155), we obtain

n+1
K̃

(i−1)

r ∆yr =
n+1

R̃
(i−1)

r . (158)

265
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6. Numerical examples

We verify the presented beam formulation by comparison with reference solutions from the isogeomet-

ric analysis of three-dimensional hyperelasticity using brick elements. The brick elements use different de-

grees of basis functions in each parametric coordinate direction. We denote this by ‘deg. = (pL, pW, pH)’,

where pL, pW, and pH denote the degrees of basis functions along the length (L), width (W), and270

height (H), respectively. Further, we indicate the number of elements in each of those directions by

nel = nL
el×nW

el ×nH
el. We employed two different hyperelastic material models: St. Venant-Kirchhoff and

compressible Neo-Hookean types, which are abbreviated by ‘SVK’ and ‘NH’, respectively. We also use

the following abbreviations to indicate our three beam formulations.

� Ext.-dir.-std.: The standard extensible director beam formulation.275

� Ext.-dir.-EAS: The EAS method with nine enhanced strain parameters, i.e., Eq. (132).

� Ext.-dir.-EAS-5p.: The EAS method with five enhanced strain parameters, i.e., Eq. (133).

In the beam formulation, the integration over the cross-section is evaluated numerically. We use standard

Gauss integration for the central axis and cross-section, where (p+ 1) integration points are used for the

central axis, and the number of integration points for the cross-section is mentioned in each numerical280

example. Here p denotes the order of basis functions approximating the central axis displacement and

director fields.

6.1. Uniaxial tension of a straight beam

In order to verify the capability of the presented beam formulation in representing finite axial and

transverse normal strain, we consider uniaxial tension of a straight beam having nonzero Poisson’s ratio.285

The beam has length L = 1m and a circular cross-section with two cases for its radius, R = 0.05m and

R = 0.1m, while Young’s modulus and Poisson’s ratio are E = 1GPa and ν = 0.3, respectively. Two

different kinematic boundary conditions at the two ends of beam (i.e., s ∈ {0, L}) are considered. First,

the cross-section is allowed to deform at the both ends (BC#1), and second, this is not allowed (BC#2).

A traction of T̄ 0 =
[
T̄ 0, 0, 0

]T
where T̄ 0 = 106kN/m2 is applied on the undeformed cross-section at290

s = L. In the beam model, these two boundary conditions are implemented as follows.

� BC#1: Central axis displacement is constrained at one end, but the end directors are free, i.e.,

∆ϕ = 0 at s = 0, and d1 and d2 are free at s ∈ {0, L} .

� BC#2: All degrees-of-freedom are constrained at one end, and the directors are fixed at the other

end, that is,

∆ϕ = ∆d1 = ∆d2 = 0 at s = 0, and ∆d1 = ∆d2 = 0 at s = L.

In the numerical integration over the circular cross-section of the beam, we employ polar coordinates r

and θ (see Remark 4.3), and four Gauss integration points are used for each of the variables r and θ in
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each quarter of the domain 0 ≤ θ < 2π. Fig. 4 shows the undeformed configuration, and Fig. 5 shows the

deformed configurations for the different boundary conditions and material models, where the decrease295

of cross-sectional area is noticeable. We compare the lateral displacement at surface point A, indicated in

Fig. 4, with the reference solutions obtained from IGA using brick elements (convergence results for the

lateral displacement at point A and the volume change can be found in Tables B.1 and B.2). Tables 1

and 2 compare the lateral (Y -directional) displacements. The results from the developed beam model are

in excellent agreement with the reference solution. In Fig. 6, we can also verify that the volume change of300

the beam agrees with the reference solutions in all cases of the selected materials and cross-section radii.

As expected those two material models show similar behavior within the small strain range; however,

the behavior become different for large strains. Note that the SVK material shows unphysical volume

decrease beyond certain strains, which shows the unsuitability of this material model for large strains.

Figure 4: Uniaxial tension of a straight beam: Undeformed configuration. The directions of ξ1 and ξ2 represent

the chosen principal directions of the circular cross-section.

(a) End directors free (SVK). (b) End directors free (NH).

(c) End directors fixed (SVK). (d) End directors fixed (NH).

Figure 5: Uniaxial tension of a straight beam: Undeformed and deformed configurations. The color represents

the ratio of the current cross-sectional area (A) to the initial one (A0). 40 cubic B-spline elements have been

used for the analysis.

6.2. Cantilever beam under end moment305

An initially straight beam of length L = 10m with rectangular cross-section of width w = 1m and

height h is clamped at one end and subject to bending moment M on the other end (see Fig. 7). The
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Table 1: Uniaxial tension of a straight beam: Verification of the lateral displacement at surface point A

(St. Venant-Kirchhoff material). All results are obtained by IGA.

End directors free End directors fixed Ratio

R

[m]

Brick, deg.=(2,2,2),

nel = 320× 20× 20,

[m] (a)

Beam, p = 3,

nel = 40

[m] (b)

Brick, deg.=(3,3,3),

nel = 320× 15× 15

[m] (c)

Beam, p = 3,

nel = 40

[m] (d)

(b)/(a)

[%]

(d)/(c)

[%]

0.05 -1.1089E-02 -1.1089E-02 -1.1089E-02 -1.1089E-02 100.00 100.00

0.1 -2.2178E-02 -2.2178E-02 -2.2181E-02 -2.2177E-02 100.00 99.98

Table 2: Uniaxial tension of a straight beam: Verification of the lateral displacement at surface point A (com-

pressible Neo-Hookean material). All results are obtained by IGA.

End directors free End directors fixed Ratio

R

[m]

Brick, deg.=(2,2,2),

nel = 320× 20× 20,

[m] (a)

Beam, p = 3,

nel = 40,

[m] (b)

Brick, deg.=(2,2,2),

nel = 320× 20× 20,

[m] (c)

Beam, p = 3,

nel = 40,

[m] (d)

(b)/(a)

[%]

(d)/(c)

[%]

0.05 -1.4593E-02 -1.4593E-02 -1.4593E-02 -1.4593E-02 100.00 100.00

0.1 -2.9186E-02 -2.9186E-02 -2.9186E-02 -2.9186E-02 100.00 100.00

(a) R = 0.05m (b) R = 0.1m

Figure 6: Uniaxial tension of a straight beam: Comparison of volume change in uniaxial tension with brick

elements and beam elements for the two different material models and cross-section radii with two cases of

kinematic boundary conditions.
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material properties are Young’s modulus E = 1.2 × 107Pa, and Poisson’s ratio ν = 0. Under the

assumption of pure bending, an applied moment M deforms the beam central axis into a circle with

radius R = EI/M , where the X- and Z-displacements at the tip of the central axis (point A in Fig. 7)

can be derived, respectively, as

uA = R sin
L

R
− L, (159a)

wA = R

(
1− cos

L

R

)
. (159b)

Since the presented extensible director beam formulation contains no rotational degrees of freedom, we

Figure 7: Cantilever beam under end moment: Undeformed configuration and boundary conditions.

cannot directly apply the bending moment. There are several ways to implement the moment load: A

coupling element was introduced in Frischkorn and Reese (2013), and the virtual work contribution of

the boundary moment was directly discretized in the rotation-free thin shell formulation of Duong et al.

(2017). We adopt another way presented in Betsch and Stein (1995) to use a distributed follower load

acting on the end face. At the loaded end face, the following linear distribution of the first Piola-Kirchhoff

stress is prescribed,

P = pνt ⊗ ν0 with p := −M
I
ξ1 and I =

wh3

12
at s ∈ ΓN (s = L) , (160)

where the outward unit normal vector on the initial end face is ν0 = e1 since the beam central axis is

aligned with the X-axis, and the outward unit normal vector on the current end face is

νt = d3 with d3 =
d1 × d2

‖d1 × d2‖
, and d2 = −e2. (161)

From Eq. (160), we can simply obtain the prescribed traction vector T̄ 0, as

T̄ 0 = Pν0 = pd3 at s ∈ ΓN. (162)

Substituting the traction vector of Eq. (162) into Eqs. (A.2.12) and (A.2.13), we obtain

n̄0 =

∫
A0

T̄ 0 dA0 = 0, (163a)

¯̃m
1
0 =

∫
A0

ξ1T̄ 0 dA0 = −Md3, and ¯̃m
2
0 = 0. (163b)

That is, the Neumann boundary condition at s ∈ ΓN is given by

n = 0, (164a)

m̃1 = −Md3, and m̃2 = 0. (164b)
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(a) Initial cross-section height h = 0.1m (b) Initial cross-section height h = 0.01m

Figure 8: Cantilever beam under end moment: Deformed configurations for two different cross-section heights. n

denotes the load step number, where the applied end moment is M = 0.1nπEI/L. Figure (b) shows the central

axis only, because the cross-section is too thin to clearly visualize. The beam solutions are calculated by IGA

with p = 4 and nel = 160.

(a) Initial cross-section height h = 0.1m (b) Initial cross-section height h = 0.01m

Figure 9: Cantilever beam under end moment: Comparison of the X- and Z-displacements at the tip of the

central axis with the analytical solutions for the different initial cross-section heights. The beam solutions are

calculated by IGA with p = 4 and nel = 160.
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A detailed expression of the external virtual work and the load stiffness operator can be found in Appendix

A.6.

Figs. 8a and 8b show the deformed configurations of the cantilever for initial heights h = 0.1m and

h = 0.01m, respectively. The external load is incrementally applied in 20 uniform steps. The final

deformed configurations are very close to circles, but are not exact circles. As Fig. 9 shows, the X-310

and Z-displacements at the end are in very good agreement with the analytic solution of Eq. (159).

However, it turns out that a slight difference persists even in the converged solutions. This difference in

the converged solution is attributed to the fact that axial strain in the central axis and the transverse

normal strain in the cross-section are induced by the bending deformation, which is not considered in

the analytical solution under the pure bending assumption.315

6.2.1. Coupling between bending and axial strains

The axial strain (ε) is not zero, but decreases with h. To verify this, we show that the effective stress

resultant ñ, which is work conjugate to the axial strain ε (see Eq. (91)), is not zero. From Eq. (164b), we

obtain m̃1 = −M/
(
ϕ,s · d3

)
by using Eq. (56b) and the relations d3 ·dα = 0 and ϕ,s ·d3 > 0 (postulation

of Eq. (7)). From Eq. (164a), it follows that n = n · d3/
(
ϕ,s · d3

)
, obtained by using Eq. 56a, vanishes

at s ∈ ΓN. Therefore, using Eq. (60a), we obtain the effective axial stress resultant

ñ = −m̃1k1, (165)

where the current bending curvature is k1 ≈ 1/R. Thus, ñ does not vanish at s ∈ ΓN. This is a high order

effect of beam theory that disappears quickly for decreasing h: ñ decreases with the initial cross-section

height h due to m̃1 ∼ M ∼ h3, i.e., ñ ∼ h3. Therefore, since the cross-sectional area is proportional to

h, the work conjugate axial strain is ε ∼ h2. Then, the membrane strain energy is

Πε :=

∫ L

0

ñεds ∼ h5. (166)

Further, for the given end moment M ∼ h3, the bending strain ρ1 is nearly constant with respect to h,

then the bending strain energy is

Πρ :=

∫ L

0

m̃1ρ1ds ∼ h3. (167)

Fig. 10 shows the convergence of axial stress resultant n and the effective stress resultant ñ with the mesh

refinement in the beam. We calculate n using Eq. (43), from which we can extract n. It is observed that

the condition of vanishing n is weakly satisfied. We compare the axial strain field on the loaded end face

in the presented beam formulation with the following three different reference solutions.320

� Ref.#1: IGA with nel = 2, 560× 1× 20 brick elements and deg. = (2, 1, 2). One element along the

beam width is sufficient since ν = 0.

� Ref.#2: IGA with nel = 2, 560× 1× 1 brick elements and deg. = (2, 1, 1). In the calculation of the

relative difference of the displacement in the L2 norm in Fig. 15, we use IGA with nel = 2, 560×1×1

brick elements and deg. = (4, 1, 1) in order to obtain the convergence of the difference to machine325

precision. It is noted that three Gauss integration points are used in the direction of cross-section

height for brick and beam element solutions.
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� Ref.#3: The analytic solution under the pure bending assumption.

In the reference solution using brick elements, we apply the end moment in the same way as in the beam

formulation, that is, we apply the distributed follower load on the end face. In the following, we derive

the analytical solution of the axial strain under the pure bending assumption (Ref. #3). In pure bending,

every material fiber deforms into a circle and is being stretched in the axial direction, where the amount

of stretch linearly varies through the cross-section height. If the central axis deforms into a full circle

with radius R = L/2π, we have the following expression for the axial stretch

U∗33 =
`

L
=

2π
(
R− ξ1

)
L

= 1− 2π

L
ξ1, ξ1 ∈ [−h/2, h/2] , (168)

where ` denotes the current length of each material fiber. Then, the axial component of the Green-

Lagrange strain is obtained by

E∗33 =
1

2

{(
1− 2π

L
ξ1

)2

− 1

}
= −2π

ξ1

L
+ 2π2

(
ξ1

L

)2

, ξ1 ∈ [−h/2, h/2] . (169)

In this analytical expression, it should be noted that the axial strain is zero at the central axis ξ1 = 0.

Since the cross-section height h is much smaller than the beam length L, the quadratic order term in330

Eq. (169) almost vanishes, so that the axial strain has nearly linear distribution along the coordinate

ξ1 (see Fig. B.2). Fig. 11 shows the differences between E∗33 and the axial strains of reference solutions

Ref.#1, Ref.#2, and the presented beam formulation. It is noticeable that the axial strain is nonzero in

the results using brick elements as well. The beam solution agrees very well with that of Ref.#2, since

the Ref.#2 also assumes a linear displacement field along the cross-section height. Especially, in case of335

h = 0.01m, it is observed that as we increase the number of elements along the central axis, the reference

solution (nel = 10, 240 × 1 × 1) approaches the beam solution. The solution of Ref.#1 shows that the

cross-section does not remain plane but undergoes warping. Therefore there are large differences in the

axial strain between Ref.#1 and the beam solution; however, it is remarkable that the average of the

solution in Ref.#1 still agrees very well with the beam solution. Fig. 12a shows that the axial strain of340

the beam is nearly constant along the central axis, and decreases with the initial cross-section height h.

Also, the shear strain is negligible, which is consistent with −m̃1 ≈ M , shown in Fig. 12b. The slight

shear strain near the clamped boundary is associated with the drastic change of current cross-section

height there. At the clamped boundary, the cross-section does not deform. Thus, the gradient d1,s

does not vanish, i.e., k1
1 6= 0 (see Remark 3.1), which generates the effective shear stress q̃1of Eq. (60b).345

Similarly, the gradient d1,s at the clamped boundary generates the nonvanishing strain γ11, and its work

conjugate m̃11 (see Fig. 12b). However, m̃11 is almost zero elsewhere in the domain, and this means that

the current cross-section height is almost uniform (see Remark 4.1 for the relavant explanation).

6.2.2. Coupling between bending and through-the-thickness stretch

The through-the-thickness stretch χ11 is also coupled with the bending deformation, and decreases

quickly with the initial cross-section height h. In the absence of an external director stress couple,

¯̃mγ = 0, substituting Eq. (56b) into Eq. (52b), and using the fact that torsional deformation is absent,
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Figure 10: Cantilever beam under end moment: Convergence of axial stress resultant n and effective axial stress

resultant ñ for the two different cross-section heights h. IGA with p = 4 is used. As expected, n vanishes, while ñ

approaches a constant. The applied bending moment is M = 2πEI/L. The converged values of −ñ at nel = 320

are 395.7N and 0.3948N for the cases of h = 0.1m and 0.01m, respectively, which is consistent with the theoretical

estimation of convergence rate of ñ ∼ h3 discussed below Eq. (165).

(a) Initial cross-section height h = 0.1m (b) Initial cross-section height h = 0.01m

Figure 11: Cantilever beam under end moment: Difference of the axial strain component along the cross-section

height at the loaded end (s = L), and the applied moment M = 2πEI/L. ‘avg.’ represents the average. Note

that, in the solid red line of (a), E33 = 1.5580× 10−6 at ξ1 = 0, i.e., the central axis is slightly stretched.
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(a) Strain components ε and δ1 (b) Director stress couples m̃1 and m̃11

Figure 12: Cantilever beam under end moment: Distribution of the axial strain (ε), transverse shear strain (δ1)

and director stress couple components (m̃11 and m̃1) of the beam along the central axis. The results are from

IGA with p = 4, and nel = 320.

i.e., m̃21 = 0, we obtain

l1 = m̃1
,sϕ,s + m̃1ϕ,ss + m̃11

,s d1 + m̃11d1,s ≈ m̃1ϕ,ss, (170)

since m̃1 is nearly constant, and m̃11 is negligible in the domain s ∈ (0, L). Let s̃ be the arc-length

coordinate along the current central axis. Then, ϕ,s̃s̃ represents the curvature vector such that κ :=
∥∥ϕ,s̃s̃∥∥

denotes the curvature of the deformed central axis, which is given by κ ≈ 1/R in the example. Using

the relation ds̃ =
√

1 + 2εds and the chain rule of differentiation, we find

ϕ,ss =
ε,s√

1 + 2ε
ϕ,s̃ + (1 + 2ε)ϕ,s̃s̃ ≈

1

λ1R
(1 + 2ε)d1, (171)

since ε is nearly constant, and the shear deformation is negligible such that the unit normal vector of

the central axis is approximated by ϕ,s̃s̃/κ = d1/λ1. Substituting Eq. (171) into Eq. (170) and using the

decomposition of Eq. (56c), we obtain

l̃
11
≈ 1

λ1R
(1 + 2ε)m̃1. (172)

This means that the transverse normal stress l̃
11

does not vanish, but decreases with the initial cross-

section height h through the relation m̃1 ∼ h3, i.e., l̃
11
∼ h3. Therefore, since the cross-sectional

area is proportional to h, the work conjugate strain is χ11 ∼ h2, and the in-plane strain energy of the

cross-section is

Πχ :=

∫ L

0

l̃
11
χ11ds ∼ h5. (173)

350

Fig. 13 compares the change of cross-sectional area along the axis for the beam and the reference

solutions. It is noticeable that the cross-sectional area also decreases when using brick elements. The

cross-sectional area in the beam solution agrees very well with that of Ref. #2, since both assume constant

transverse normal (through-the-thickness) strain of the cross-section (see also Fig. 14). Also, Fig. 13 shows

37

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


that the amount of change in cross-sectional area decreases with h. The deformation of the cross-section355

in Ref. #1 is more complicated than for the other cases, since it allows for warping, i.e., the cross-section

does not remain plane after deformation. Especially, at the loaded end face, the cross-sectional area

slightly increases, since the central axis is stretched. It is shown in Fig. 14 (red curves) that the cross-

section is stretched along the transverse direction at the center (ξ1 = 0, s = L), so that the average

of the transverse normal strain is positive, i.e., the cross-section is stretched in average. On the other360

hand, apart from the boundary, the through-the-thickness compressive force coupled with the bending

deformation is dominant, so that the cross-sectional area decreases. In Fig. 13, it is remarkable that the

average cross-sectional area of Ref. #1 in the domain s ∈ (0, L) coincides with that of the beam and

Ref. #2. Further, in Fig. 14, the average of the transverse normal strain at the middle of the central axis

(s = L/2) agrees very well with that of the beam and Ref. #2.

(a) Initial cross-section height h = 0.1m (b) Initial cross-section height h = 0.01m

Figure 13: Cantilever beam under end moment: Distribution of the current cross-sectional area along the central

axis. ‘average’ denotes the average in the whole domain of the central axis where the two boundary points are

excluded. The applied bending moment is M = 2πEI/L.

365

(a) Initial cross-section height h = 0.1m (b) Initial cross-section height h = 0.01m

Figure 14: Cantilever beam under end moment: Distribution of the transverse normal (through-the-thickness)

component of the Green-Lagrange strain along the cross-section height at the loaded end face. ‘avg.’ denotes the

average, and nH
el denotes the number of brick elements in the direction of cross-section height. For brick element,

deg. = (2, 1, 1) for nH
el = 1, and deg. = (2, 1, 2) in the other cases. For beam element, p = 4, and nel = 160. The

applied bending moment is M = 2πEI/L.
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(a) Initial cross-section height h = 0.1m (b) Initial cross-section height h = 0.01m

Figure 15: Cantilever beam under end moment: Convergence of the relative difference of the X-displacement

in the central axis. The applied bending moment is M = 2πEI/L. The dashed lines represent the theoretical

convergence rate of h̄
p+1

, where h̄ denotes the element size.

6.2.3. Verification of displacements

Fig. 15 compares the relative difference of the X-displacement of the beam from the three different

reference solutions, where the relative L2 norm of the difference in the X-displacement u in the domain

of the central axis (0, L) is calculated by

‖eu‖L2 =

√√√√∫ L0 (u− uref)
2

ds∫ L
0
uref

2 ds
, (174)

where uref denotes the reference solution of the displacement component. The convergence test results of

the reference solutions are given in Tables B.3 and B.4. In Fig. 15, Ref. #2 shows the smallest differences

from the beam solution. The difference is even smaller than the analytical solution and vanishes to

machine precision, since Ref. #2 is kinematically the same as the beam formulation with Poisson’s ratio370

ν = 0. Ref. #1 shows the largest differences, but they are only around 1% and 0.1% in the cases of

h = 0.1m and h = 0.01m, respectively. We also compare the convergence rate in several different orders

of basis function (p = 3, 4, 5) with the asymptotic and optimal convergence rate of h̄
p+1

, where h̄ denotes

the element size. The beam solution shows comparable or even better rate of convergence than the

optimal one, especially in the coarser level of mesh discretization.375

6.2.4. Instability in thin beam limit

Tables 3 and 4 compare the total number of load steps and iterations in the cases of h = 0.1m and

h = 0.01m, respectively. Ref. #1 requires larger number of iterations than Ref.#2 and the beam solution.

This is mainly attributed to more complicated deformations of the cross-section. It is also shown that

more iterations are required for the thinner cross-section case. It has been investigated in the shell380

formulation with extensible director (Simo et al., 1990) that the instability in the thin limit (h → 0)

is associated with the coupling of bending and through-the-thickness stretching. A couple of methods

to alleviate this instability has been presented, for example based on a multiplicative decomposition of
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the extensible director into an inextensible direction vector and a scalar stretch (Simo et al., 1990), and

based on the mass scaling in dynamic problems (Hokkanen and Pedroso, 2019). In this paper, we restrict385

our application of the developed beam formulation to low to moderate slenderness ratios, and further

investigation on the alleviation of the instability remains future work.

Table 3: Cantilever beam under end moment: History of the Newton-Raphson iteration for M = 0.1nEIπL at

step n = 20, and the total number of load steps and iterations (initial cross-section height h = 0.1m).

Iteration

number

at step

n = 20

Brick Beam

IGA, deg.=(2,1,2),

nel = 2, 560× 1× 20

IGA, deg.=(2,1,1),

nel = 2, 560× 1× 1

IGA, p = 4,

nel = 160

Euclidean

norm of residual

Energy

norm

Euclidean

norm of residual

Energy

norm

Euclidean

norm of residual

Energy

norm

1 1.6E+02 1.1E+01 3.1E+02 9.8E+00 3.1E+01 9.8E+00

2 6.4E+04 1.5E+04 6.2E+04 1.1E+04 6.7E+04 1.1E+04

3 4.0E+03 6.6E+01 3.1E+03 2.7E+01 3.9E+03 2.7E+01

4 1.3E+03 8.0E+00 1.2E+01 1.4E-02 1.8E+01 1.4E-02

5 1.1E+03 5.8E+00 3.5E+01 3.6E-03 4.5E+01 3.6E-03

6 5.5E+02 1.3E+00 8.7E-01 2.0E-04 8.9E-01 2.0E-04

7 1.4E+01 5.6E-02 1.3E+00 5.8E-06 1.2E+00 5.8E-06

8 1.6E+02 1.1E-01 1.7E-03 8.7E-10 1.6E-03 8.7E-10

9 8.5E-01 5.9E-03 5.8E-06 1.2E-16 5.2E-06 1.2E-16

10 3.2E+01 4.3E-03 1.4E-06 4.3E-20 4.5E-08 1.3E-22

11 9.3E-03 3.2E-06

12 1.8E-02 1.4E-09

13 5.8E-07 4.9E-19

#load steps 20 20 20

#iterations 445 200 200

Table 4: Cantilever beam under end moment: History of the Newton-Raphson iteration for M = 0.1nEIπL at

step n = 20, and the total number of load steps and iterations (initial cross-section height h = 0.01m).

Iteration

number

at step

n = 20

Brick Beam

IGA, deg.=(2,1,2),

nel = 2, 560× 1× 20

IGA, deg.=(2,1,1),

nel = 2, 560× 1× 1

IGA, p = 4,

nel = 160

Euclidean

norm of residual

Energy

norm

Euclidean

norm of residual

Energy

norm

Euclidean

norm of residual

Energy

norm

1 1.6E+00 1.0E-02 3.1E+00 9.9E-03 3.1E-02 9.9E-03

2 4.7E+04 8.5E+02 5.4E+04 1.1E+03 6.7E+03 1.1E+03

3 2.4E+03 2.4E+00 2.6E+03 2.7E+00 4.0E+02 2.8E+00

4 1.6E+02 1.2E-02 8.7E+00 3.8E-05 1.8E+00 3.8E-05
.
.
.

.

.

.
.
.
.

10 7.0E+01 2.1E-03 1.8E+00 1.4E-06 1.6E-01 1.2E-06

11 3.7E+01 6.8E-04 7.3E-05 5.5E-10 3.6E-06 4.8E-10

12 8.8E+01 3.3E-03 3.2E-03 4.4E-12 2.6E-04 3.4E-12

13 1.0E+01 7.0E-05 1.7E-07 1.6E-20 6.5E-09 5.9E-21
.
.
.

29 1.6E+01 1.1E-04

30 2.1E-04 2.2E-09

31 1.1E-02 5.5E-11

32 3.9E-06 6.2E-18

#load steps 20 20 20

#iterations 787 260 260

40

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6.2.5. Alleviation of membrane, transverse shear, and curvature-thickness locking

We investigate the effect of mesh refinement and higher-order of basis function on the alleviation of

membrane, transverse shear, and curvature-thickness locking. We compare, in Fig. 16, the relative differ-

ence of X-displacement from the analytical solution (Ref.#3) in the L2 norm with increasing slenderness

ratio. The difference of the displacement between our beam formulation and Ref.#3 is attributed to

the aforementioned coupling between bending strain and axial/through-the-thickness stretching strains.

However, it is shown that both axial (ε) and through-the-thickness stretching (χ11) strains diminish with

the rate of h2. Therefore, it is expected that the resulting displacement difference from Ref.#3 should

also decrease with the rate of h2. In Fig. 16, it is seen that mesh refinement improves the convergence

rate, and it is noticeable that the solution of using p = 5 with nel = 80 shows the estimated convergence

rate of order 2. Further, Fig. 17 shows the ratio of membrane (Πε), through-the-thickness stretching

(Πχ), and transverse shear (Πδ) strain energy to bending strain energy (Πρ). In Figs. 17a and 17b, it is

seen that mesh refinement or higher-order basis functions lead to the expected convergence rate for the

strain energy ratio of order 2, i.e., Πε/Πρ ∼ h2 and Πχ/Πρ ∼ h2. This means that the membrane-bending

and curvature-thickness locking are alleviated. Further, we investigate the transverse shear strain energy,

defined by

Πδ :=

∫ L

0

q̃1δ1ds. (175)

In Fig. 17c, by using higher-order basis functions and mesh refinement (p = 4, 5 with nel = 80), the

spurious transverse shear strain energy (transverse shear-bending locking) is alleviated. It should be390

noted that this result does not mean those locking issues are completely resolved. For example, as

discussed in Adam et al. (2014), if higher-order basis function is used, the membrane and transverse

shear locking are less significant but still existing, due to the field-inconsistency paradigm, which is more

pronounced in higher slenderness ratio. However, in this paper, we focus on low to moderate slenderness

ratios, and further investigation on the reduced integration method and mixed-variational formulation395

remains future work.

Figure 16: Cantilever beam under end moment: Change of the relative difference of the X−displacement in the

L2 norm (w.r.t. Ref.#3) with increasing slenderness ratio. The dashed line represents the theoretically estimated

convergence rate of order 2, which agrees very well with the solution of using p = 5 and nel = 80.
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6.3. Cantilever beam under end force

The third example illustrates Poisson locking in the standard extensible director beam formulation,

and its alleviation by the EAS method. We further show that the EAS formulation based on Eq. (133)

(i.e., “ext.-dir.-EAS-5p.”) still suffers from significant Poisson locking due to its incomplete enrichment

of the cross-section strains. A beam of length L = 10m and cross-section dimension h = w = 1m400

is clamped at one end, and subjected to a Z-directional force of magnitude F = 105N/m2 acting on

the other end (see Fig. 18). The compressible Neo-Hookean material is selected, and Young’s modulus

is chosen as E = 107Pa, and two different Poisson’s ratios are considered: ν = 0 and ν = 0.3. We

determine reference solutions by using IGA brick elements of deg. = (2, 1, 2) with nel = 200 × 1 × 15

and deg. = (3, 3, 3) with nel = 200 × 20 × 20 for those cases ν = 0 and ν = 0.3, respectively (the405

convergence test result can be found in Table B.5). For beams, we use 4 × 4 Gauss integration points

for the integration over the cross-section. Fig. 19 shows the convergence of beam solutions based on the

presented extensible director kinematics for those two different cases of Poisson’s ratios. If zero Poisson’s

ratio is considered (ν = 0), the results of the standard method are very close to the reference solution, and

the EAS method gives the same results as the standard method. However, in the case of nonzero Poisson’s410

ratio, since the standard method only allows for constant transverse normal strains, the coupled bending

stiffness increases. This leads to a much smaller deflection than the reference solution. This Poisson

locking is alleviated by the EAS method as it enhances the in-plane strain field of the cross-section. The

EAS solution gives larger displacements that are much closer to the reference solutions (see also Table

5). It is also noticeable that the EAS solution ‘ext.-dir.-EAS-5p.’ gives smaller deflections than the415

results of ‘ext.-dir.-EAS’, since its enriched linear strain field is incomplete, so that Poisson locking is not

effectively alleviated. In case of nonzero Poisson’s ratio, we have a lateral (Y -directional) displacement.

Fig. 20a compares the lateral displacement along the edge BA, indicated in Fig. 18. In the EAS solution,

the magnitude of lateral displacement increases and becomes closer to the average displacement of the

reference one, compared with the solution by the standard method. Although the lateral displacement at420

the point A (ξ1 = 0.5 m) in the standard method is closer to the reference solution than that of the EAS

solution (see also Table 5), it is shown that the accuracy of lateral displacement improves substantially

by the EAS method in an average sense (see also the difference in L2 norm in Fig. 20b). Further, it

is seen that the 5-parameter EAS formulation (ext.-dir.-EAS-5p.) shows smaller magnitude of lateral

displacement in Fig. 20a, and larger L2 norm of difference in Fig. 20b due to the incomplete enrichment425

of in-plane strain field, compared with the 9-parameter formulation (ext.-dir.-EAS). Fig. 21 shows that

the standard beam formulation shows much smaller deflection than the other formulations in the final

deformed configuration due to Poisson locking. Table 6 shows that the beam solutions use less number

of load steps and iterations than the brick element solution.

42

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


(a) Membrane (axial) strain energy

(b) In-plane cross-section strain energy

(c) Transverse shear strain energy

Figure 17: Cantilever beam under end moment: Comparison of the ratio of the membrane, in-plane cross-section,

and transverse shear strain energy to the bending strain energy. It is noticeable that the solution of p = 3 and

nel = 80 recovers the analytically estimated convergence rate of order 2 in (a) and (b). It is noted that, in (a)

and (b), the case p = 3, nel = 80 shows the same result as the case of p = 5, nel = 10.
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Figure 18: Cantilever beam under end force: Undeformed configuration and boundary conditions.
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(a) X-displacement (b) Z-displacement

Figure 19: Cantilever beam under end force: Convergence of the normalized displacements at point A for two

different cases of Poisson’s ratio. The displacement is normalized by the reference solution using brick elements,

where deg. = (2, 1, 2) and nel = 200× 1× 15 for ν = 0, and deg. = (3, 3, 3) and nel = 200× 20× 20 for ν = 0.3.

The beam solutions are obtained by IGA with p = 3.

(a) Lateral displacement (uY ) (b) Relative L2 error of uY

Figure 20: Cantilever beam under end force: Comparison of the lateral displacement along the edge BA in the

case of ν = 0.3. The beam solutions are obtained by IGA with p = 3. Also, we use nel = 40 for the beam

solutions in Figure (a).

Table 5: Cantilever beam under end force: Convergence test of normalized displacements at the point A for

ν = 0.3. uA, vA, and wA denote the X-, Y -, and Z-displacements at the point A, respectively. (•)ref denotes the

reference solution. All results are obtained by IGA with p = 3.

Beam (ext.-dir.-std.) Beam (ext.-dir.-EAS)

nel uA/u
ref
A vA/v

ref
A wA/w

ref
A uA/u

ref
A vA/v

ref
A wA/w

ref
A

5 9.0455E-01 1.0141E+00 9.6811E-01 9.9831E-01 1.0261E+00 9.9886E-01

10 9.0588E-01 1.0214E+00 9.6919E-01 1.0002E+00 1.0300E+00 1.0003E+00

20 9.0598E-01 1.0211E+00 9.6930E-01 1.0003E+00 1.0298E+00 1.0004E+00

40 9.0599E-01 1.0211E+00 9.6930E-01 1.0003E+00 1.0298E+00 1.0004E+00
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(a) Brick element (b) Beam (ext.-dir.-std.) (c) Beam (ext.-dir.-EAS)

Figure 21: Cantilever beam under end force: Comparison of deformed configurations. Deformations by (a)

brick elements with deg.=(3, 3, 3), nel = 200 × 10 × 10, (b) beam elements (ext.-dir.-std.) with p = 3 and

nel = 40, and (c) beam elements (ext.-dir.-EAS) with the same discretization with (b). The color represents the

X-displacement.

Table 6: Cantilever beam under end force: Comparison of Newton-Raphson iteration history for ν = 0.3. A

uniform load increment is used.

Iter.#

(last load

step)

Brick, deg.=(3,3,3),

nel=200× 10× 10

Beam (ext.-dir.-std.),

p = 3, nel=40

Beam (ext.-dir.-EAS),

p = 3, nel=40

Euclidean

norm of residual

Energy

norm

Euclidean

norm of residual

Energy

norm

Euclidean

norm of residual

Energy

norm

1 4.4E+02 2.9E+02 1.0E+04 1.5E+03 1.0E+04 1.2E+03

2 6.4E+02 3.7E+00 2.2E+04 1.2E+02 1.7E+04 7.7E+01

3 8.6E-01 2.3E-04 1.0E+02 1.7E-01 8.2E+01 7.7E-02

4 6.9E-04 4.3E-12 3.4E+00 2.4E-06 1.4E+00 4.8E-07

5 2.8E-08 1.1E-21 2.5E-06 9.5E-17 7.6E-07 5.4E-18

6 7.7E-08 1.8E-22 7.2E-08 1.3E-22

#load steps 20 10 10

#iterations 124 73 78
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6.4. Laterally loaded beam430

The fourth example investigates the significance of considering the correct surface load rather than

applying an equivalent load directly to the central axis, which is typically assumed in the analysis

of thin beams. The significance was also discussed in the shell formulation based on an extensible

director in Simo et al. (1990). We consider a clamped-clamped straight beam, and a distributed force

of magnitude T̄ 0 = 108N/m2 in the negative Z-direction is applied over 0.1m along the middle of the435

beam, as illustrated in Fig. 22. The beam has initial length L = 1m and a square cross-section of

dimension h = w = 0.1m, and the compressible Neo-Hookean material with Young’s modulus E = 1GPa

and Poisson’s ratio ν = 0.3. We model the geometry using three NURBS patches such that the basis

functions have C0-continuity at the boundaries of the loaded area (s = 0.45m and 0.55m) in order to

satisfy the discontinuity of the distributed load. For the beam, 4× 4 Gauss integration points are used440

for the integration over the cross-section. Fig. 23 compares the relative difference of the Z-displacement

at the central axis between the beam formulation and the reference solution obtained by IGA using

brick elements with deg.=(3,3,3) and nel = 320× 15× 15 (Table B.6 shows the convergence result of the

brick element solution). As expected, it is seen in Fig. 23 that the EAS formulation gives much smaller

differences than the standard formulation due to the alleviation of Poisson locking. Fig. 23 also illustrates445

the difference between two ways of applying the surface load: One follows the common practice in the

analysis of thin beams that applies an equivalent load directly to the central axis, and is termed as

equivalent central axis load. The second, termed the correct surface load, calculates the external stress

resultant n̄0 and external director stress couple ¯̃m
1
0 by substituting T̄ 0 = −T̄ 0e3 into Eqs. (49) and

(50), respectively. On the other hand, in the equivalent central axis load, the force per unit arc-length450

is calculated by n̄0 = −T̄ 0we3, and the effect of the director stress couple is neglected, i.e., ¯̃m
1
0 = 0,

since the load is assumed to be directly applied to the central axis. In Fig. 23, the beam solutions

using the correct surface load show much smaller difference in both of standard and EAS formulations,

compared with the results using the equivalent central axis load. Further, Fig. 24 compares the deformed

configurations and the change of cross-sectional area in three different formulations; the brick element455

solution with correct surface load, the beam element solution with EAS method and correct surface load,

and the beam element solution with EAS method and equivalent central axis load. It is noticeable that

the beam solution using the equivalent load shows much smaller change of cross-sectional area at the

loaded part, since it neglects the effect of external director stress couple. Table 7 shows that the brick

element formulation requires larger number of load steps to achieve the convergence.460
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Figure 22: Laterally loaded beam: Undeformed configuration and boundary conditions.

Figure 23: Laterally loaded beam: Comparison of relative difference in the Z-displacement on the central axis.

The results are obtained by IGA with p = 3.

(a) Brick element (surface load) (b) Beam element (surface load) (c) Beam element (central axis load)

Figure 24: Laterally loaded beam: Comparison of deformed configurations. The results are obtained by IGA

using (a) brick elements with deg. =(3,3,3) and nel = 320 × 15 × 15, (b) beam elements (ext.-dir.-EAS) with

p = 3 and nel = 40 with correct surface load, and (c) the same spatial discretization with (b) but with equivalent

load directly applied to the central axis. The color represents the ratio of current cross-sectional area (A) to the

initial one (A0).
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Table 7: Laterally loaded beam: Comparison of the total number of load steps and iterations in the Newton-

Raphson method. A uniform load increment is used. Brick elements are deg.=(3,3,3) and nel = 320 × 15 × 15,

and all the beam elements are p = 3 and nel = 320.

Correct surface load Equivalent central axis load

Brick ext.-dir.-std ext.-dir.-EAS ext.-dir.-std ext.-dir.-EAS

#load steps 5 1 2 2 2

#iterations 29 15 16 15 16

6.5. 45◦-arch cantilever beam under end force

We verify the alleviation of Poisson locking by the EAS method, and the significance of correct

surface load in a curved beam example as well. The initial beam central axis lies on the XY -plane and

describes an 1/8 of a full circle with radius 100m, and the cross-section has a square shape of dimension

h = w = 5m. A Z-directional force of magnitude T̄ 0 = 7.5 × 104N/m is applied on the upper edge

of the end face, and the other end is clamped (see Fig. 25). We select the compressible Neo-Hookean

material with Young’s modulus E = 107Pa and Poisson’s ratio ν = 0.3. For beams, we use 3× 3 Gauss

integration points for the integration over the cross-section. The surface load T̄ 0 =
[
0, 0, T̄ 0

]T
leads to

the external director stress couple ¯̃m
1
0 =

[
0, 0,−T̄ 0wh/2

]T
, since the loaded edge is located at ξ1 = −h/2.

Consequently, the following external stress couple is applied at the loaded end (see Fig. 27b).

m̄0 := dγ × ¯̃m
γ
0 = d1 × ¯̃m

1
0 6= 0. (176)

Fig. 26a shows the beam displacement at point A normalized by the reference solution based on brick

elements with deg.=(3,3,3) and nel = 240× 15× 15 (see Tables B.7 and 8 for the convergence results of

the brick and beam element solutions, respectively). As expected, the results of the standard formulation

(black curves), which is combined with the correct surface load condition, exhibit significantly smaller465

displacements due to Poisson locking, and this is improved by employing the EAS method. Since the

equivalent central axis load neglects the external director stress couple (i.e., ¯̃m
1
0 = 0), it significantly

overestimates the displacement at the point A, while the beam solution based on the correct surface

load is in a very good agreement with the reference solution (see also the comparison of Z-displacement

contours in Fig. 27). Further, Fig. 26b compares the relative difference of the cross-sectional area from470

the brick element result. It is seen that the EAS formulation more accurately captures the change of

cross-sectional area, compared with the standard formulation, and the equivalent central axis load leads

to a larger difference of the change of cross-sectional area from the brick element result, compared with

the result of correct surface load. Table 9 compares the total number of load steps and iterations in the

iterative solution process.475
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Table 8: 45◦-arch cantilever beam: Convergence of the normalized displacements at the point A. uA, vA, and wA

denote the X-, Y -, and Z-displacements at the point A, respectively. (•)ref denotes the reference solution. All

results are obtained by IGA with p = 3.

nel

Beam (ext.-dir.-stand.) Beam (ext.-dir.-EAS)

uA/u
ref
A vA/v

ref
A wA/w

ref
A uA/u

ref
A vA/v

ref
A wA/w

ref
A

5 9.6802E-01 9.3753E-01 9.7859E-01 9.9660E-01 9.9514E-01 9.9583E-01

10 9.6783E-01 9.4193E-01 9.8154E-01 9.9633E-01 1.0018E+00 1.0002E+00

20 9.6785E-01 9.4222E-01 9.8178E-01 9.9635E-01 1.0021E+00 1.0005E+00

40 9.6785E-01 9.4224E-01 9.8181E-01 9.9635E-01 1.0022E+00 1.0005E+00

Figure 25: 45◦-arch cantilever beam: Undeformed configuration and boundary conditions. The axes of ξ1 and ξ2

represent two principal directions of the cross-section.

(a) Normalized displacements (b) Cross-sectional area (A)

Figure 26: 45◦-arch cantilever beam: (a) Convergence of normalized displacements at the point A, and (b) the

relative difference of the cross-sectional area A from the brick element result in L2 norm. ‘AL’ and ‘SL’ denote

the equivalent central axis load and the correct surface load, respectively. uA, vA, and wA denote the X-, Y -,

and Z-displacements at the point A, respectively. (•)ref denotes the reference solution. Also, ‘EAS’ represents

the 9-parameter EAS formulation, i.e., ‘ext.-dir.-EAS’. All results are obtained by IGA with p = 3.
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(a) Brick (correct surface load) (b) Beam (correct surface load) (c) Beam (central axis load)

Figure 27: 45◦-arch cantilever beam: Comparison of deformed configurations. The color represents the displace-

ment in Z-direction. The brick element solution is obtained by IGA with deg. = (3, 3, 3) and nel = 240×15×15,

and the beam element solutions are obtained by 9 parameter EAS formulation and IGA with p = 3 and nel = 40.

Table 9: 45◦-arch cantilever beam: Comparison of the total number of load steps and iterations. In each

formulation, the load is uniformly incremented.

Brick element Beam (ext.-dir.-std.) Beam (ext.-dir.-EAS)

deg. = (3, 3, 3), nel = 200× 15× 15 p = 3, nel = 40 p = 3, nel = 40

#load steps 10 10 10

#iterations 80 74 80

7. Conclusions

In this paper, we present an isogeometric finite element formulation of geometrically exact Timoshenko

beams with extensible directors. The presented beam formulation has the following advantages.

� The extensible director vectors allow for the accurate and efficient description of in-plane cross-

sectional deformations.480

� They belong to the space R3, so that the configuration can be additively updated.

� In order to alleviate Poisson locking, the complete in-plane strain field has been added in the form

of incompatible modes by the EAS method.

� The formulation does not require the zero stress assumption in the constitutive law, and offers a

straightforward interface to employ general three-dimensional constitutive law like hyperelasticity.485

� In the analysis of beams, the external load is often assumed to be directly applied to the central

axis. It is shown that this equivalent central axis load leads to significant error.

� We verify the accuracy and efficiency of the developed beam formulation by comparison with the

results of brick elements.

The following areas could be interesting future research directions.490
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� Incorporation of out-of-plane deformation of cross-sections: In this paper, cross-section warping

has not been considered, which restricts the range of application to compact convex cross-sections,

where the out-of-plane cross-sectional deformation is less pronounced. In order to consider open and

thin-walled cross-sections, one can incorporate cross-section warping by employing an additional

degree-of-freedom as in Simo and Vu-Quoc (1991), Gruttmann et al. (1998), and Coda (2009). One495

can also refer to the works of Wackerfuß and Gruttmann (2009, 2011), where additional strain and

stress parameters are eliminated at the element level, so that the finite element formulation finally

has three translation and three rotational degrees-of-freedom per node.

� Incorporation of exact geometry of initial boundary surface of beams with non-uniform cross-

section: Eq. (28) can be applied to non-uniform cross-sections along the central axis. IGA has an500

advantage over conventional finite element formulation in perspective of straightforwardly utilizing

exact geometrical information of the initial boundary NURBS surface.

� Numerical instability in high slenderness ratio: There are several factors that limit the slenderness

ratio within which the presented beam formulation can be properly utilized. First, the coupling

between bending and through-the-thickness stretching can lead to an ill-conditioned stiffness matrix505

in the thin beam limit (see section 6.2.4). These issues can be alleviated by existing techniques such

as a multiplicative decomposition of directors in Simo et al. (1990) and mass scaling techniques in

Hokkanen and Pedroso (2019). Second, a mixed variational formulation or an optimal quadrature

rule of reduced integration needs to be developed to alleviate membrane, shear, and curvature-

thickness locking. Since the developed beam formulation has additional degrees-of-freedom for the510

in-plane cross-sectional deformation and the numerical integration over the cross-section, it may

not be straightforward to directly employ existing reduced integration methods like the recent

development in Zou et al. (2021).

� Enforcement of rotation continuity at intersections with slope discontinuity: As the developed

beam formulation does not rely on rotational degrees-of-freedom, describing rigid joint connections515

between multiple beams becomes a challenge. A selective introduction of rotational degrees-of-

freedom associated with the variation (increment) of director vectors can be utilized.

� Beam contact problems: One can investigate the advantages of incorporating the transverse normal

strain in beam contact problems. For example, the coupling between transverse normal stretching

and bending deformations was illustrated in Naghdi and Rubin (1989).520

� Incompressible and nearly incompressible hyperelastic materials: One can extend the presented

formulation to incorporate incompressibility constraint.

� Strain objectivity and energy-momentum conservation: It has been shown in several works includ-

ing Romero and Armero (2002), Betsch and Steinmann (2002), and Eugster et al. (2014) that the

direct interpolation of director fields satisfies the objectivity of strain measures. Furthermore, this525

can facilitate the straightforward application of time integration schemes with energy-momentum
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conservation11. An in-depth discussion on the objectivity and energy-momentum conservation

property in the developed beam formulation is planned for subsequent work. Although a relevant

numerical study on the objectivity, path-independence, and energy-momentum conservation was

performed in Coda (2009) and Coda and Paccola (2011) based on beam kinematics with extensible530

directors, further investigation including an analytical verification seems still necessary.

A. Appendix to the beam formulation

A.1. Jacobians of the mappings x0 and xt

We recall the following Piola identity for a linear transformation A ∈ Rm×n and vectors a, b ∈ Rn

Aa×Ab = (det A) A−T (a× b) . (A.1.1)

Then, using Eq. (A.1.1), the triple product of the covariant base vectors in the current configuration can

be expressed by

(g1 × g2) · g3 = detDxt (DxtE3) ·
(
Dxt

−TE3

)
= detDxt =: jt. (A.1.2)

In the same way, it can be easily shown that

(G1 ×G2) ·G3 = detDx0 =: j0. (A.1.3)

A.2. Derivation of momentum balance equations for the beam

A.2.1. Linear and director momentum balance535

The divergence of the Cauchy stress tensor can be expressed in terms of the basis
{
g1, g2, g3

}
, as

divσ =
1

jt

(
jtσg

i
)
,i
, (A.2.1)

where (•),i denotes the partial differentiation with respect to ξi. For a detailed derivation one can refer

to chapter 10 of Zienkiewicz et al. (2014). Then, the local form of the balance of linear momentum given

in Eq. (30) can be rewritten as

(
jtσg

i
)
,i

+ jtb = jt ρt xt,tt. (A.2.2)

From Eq. (A.2.2), using the principle of virtual work, the variational identity follows∫
B
δxt ·

(
jtσg

i
)
,i

dB =

∫
B
jt ρt δxt · xt,tt dB −

∫
B
jt δxt · bdB. (A.2.3)

Then, using the divergence theorem and Eq. (25), we have∫
B

(
δxt · jtσgi

)
,i

dB =

∫
S

(
δxt · jtσDxt−Tν

)
dS =

∫
S0

(δxt · Pν0) dS0. (A.2.4)

11Refer to the comments in Eugster et al. (2014) and references therein.
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After applying the boundary conditions of Eqs. (32) and (34), we have∫
B

(
δxt · jtσgi

)
,i

dB =

∫
SN
0

(
δxt · T̄ 0

)
dSN

0 . (A.2.5)

Then, the left-hand side of Eq. (A.2.3) can be rewritten as∫
B
δxt ·

(
jtσg

i
)
,i

dB =

∫
SN
0

(
δxt · T̄ 0

)
dSN

0 −
∫
B

(
δxt,s · jtσg3

)
dB −

∫
B

(δxt,α · jtσgα) dB. (A.2.6)

From the beam kinematics in Eq. (14), we obtain the following relations

δxt = δϕ+ ξγδdγ ,

δxt,s = δϕ,s + ξγδdγ,s,

δxt,α = δdα.

 (A.2.7)

Rearranging terms after substituting Eq. (A.2.7) into Eq. (A.2.6) and using Eq. (28), we have∫
B
δxt · (jtσgi),idB = −

∫ L

0

(
δϕ,s · n+ δdγ,s · m̃γ + δdα · lα

)
ds

+

∫ L

0

(
δϕ ·

∫
∂A0

T̄ 0dΓ0 + δdγ ·
∫
∂A0

ξγT̄ 0dΓ0

)
ds

+

[
δϕ ·

∫
A0

T̄ 0 dA0 + δdγ ·
∫
A0

ξγT̄ 0 dA0

]
s∈ΓN

. (A.2.8)

Furthermore, substituting Eq. (A.2.7) into the first and second terms of the right-hand side of Eq. (A.2.3),

respectively, we have ∫
B
ρtjtδxt · xt,tt dB =

∫ L

0

(
δϕ · ρAϕ,tt + δdγ · Iγδρ dδ,tt

)
ds, (A.2.9)

and ∫
B
jtδxt · bdB =

∫ L

0

(
δϕ ·

∫
A
jtbdA

)
ds+

∫ L

0

(
δdγ ·

∫
A
jtξ

γbdA
)

ds. (A.2.10)

Finally, substituting Eqs. (A.2.8)-(A.2.10) into Eq. (A.2.3) and rearranging terms yields∫ L

0

(
δϕ,s · n+ δdγ,s · m̃γ + δdα · lα

)
ds+

∫ L

0

(
δϕ · ρAϕ,tt + δdγ · Iγδρ dδ,tt

)
ds

=

∫ L

0

(
δϕ · n̄+ δdγ · ¯̃m

γ)
ds+

[
δϕ · n̄0 + δdγ · ¯̃m

γ
0

]
s∈ΓN

, (A.2.11)

where the prescribed stress resultant and stress couple are defined as

n̄0 :=

[∫
A0

T̄ 0 dA0

]
s∈ΓN

, (A.2.12)

and

¯̃m
γ
0 :=

[∫
A0

ξγT̄ 0 dA0

]
s∈ΓN

, (A.2.13)

and the distributed external resultant stress and stress couple are defined as

n̄ :=

∫
∂A0

T̄ 0dΓ0 +

∫
A
b0j0dA, (A.2.14)

and

¯̃m
γ

:=

∫
∂A0

ξγT̄ 0dΓ0 +

∫
A
ξγb0j0dA. (A.2.15)
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Applying integration by parts and the homogeneous displacement boundary condition to the first term

on the left-hand side of Eq. (A.2.11) yields∫ L

0

{
δϕ ·

(
n,s + n̄− ρAϕ,tt

)
+ δdγ ·

(
m̃γ
,s + ¯̃m

γ − lγ − Iγδρ dδ,tt
)}

ds

+
[
δϕ · (n− n̄0) + δdγ ·

(
m̃γ − ¯̃m

γ
0

)]
s∈ΓN

= 0. (A.2.16)

Then, applying the standard localization theorem, we finally obtain the local momentum balance equa-

tions under the boundary conditions: We find (ϕ,d1,d2) ∈ R3 × R3 × R3 such that

n,s + n̄ = ρAϕ,tt, (A.2.17a)

m̃γ
,s − l

γ + ¯̃m
γ

= Iγδρ dδ,tt (γ = 1, 2), (A.2.17b)

with the Neumann boundary conditions

n = n̄0 and m̃γ = ¯̃m
γ
0 at s ∈ ΓN, (A.2.18)

and the Dirichlet boundary conditions

ϕ = ϕ̄0, d
γ = d̄

γ
0 at s ∈ ΓD. (A.2.19)

A.2.2. Angular momentum balance

The symmetry of the Cauchy stress tensor implies (Simo and Fox, 1989)

gi × σgi = 0. (A.2.20)

Integration of Eq. (A.2.20) over A after multiplying the Jacobian jt and using Eqs. (14) and (15) yields∫
A
gi × σgijt dA = ϕ,s ×

∫
A
σg3jt dA+ dγ,s ×

∫
A
ξγσg3jt dA+ dγ ×

∫
A
σgγjt dA. (A.2.21)

Thus, the local angular momentum balance equation is expressed as

ϕ,s × n+ dγ,s × m̃γ + dγ × lγ = 0. (A.2.22)

A.3. Constitutive equation

A.3.1. The first variation of the strain energy density function

The first variation of
¯
E can be expressed as

δ
¯
E =

¯
Dδ

¯
ε, (A.3.1)

where

¯
D :=

∂
¯
E

∂
¯
ε

=



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 ξ1 ξ2 ξ1ξ1 ξ2ξ2 ξ1ξ2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 ξ1 ξ2 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 ξ1 ξ2 0 0 0


. (A.3.2)
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A.3.2. Compressible Neo-Hookean material

Here we obtain the contravariant components of the fourth order tensor I. In the standard Cartesian

basis {e1, e2, e3}, we have (Bonet and Wood, 2008)

I := −∂C
−1

∂C
=

1

2

{(
C−1

)
AC

(
C−1

)
BD

+
(
C−1

)
AD

(
C−1

)
BC

}
eA ⊗ eB ⊗ eC ⊗ eD. (A.3.3)

The contravariant components are thus obtained by

Iijk` = I :: Gi ⊗Gj ⊗Gk ⊗G`

=
1

2

{(
C−1

)
AC

(
C−1

)
BD

+
(
C−1

)
AD

(
C−1

)
BC

}
(eA ·Gi)(eB ·Gj)(eC ·Gk)(eD ·G`)

=
1

2

{(
Gi ·C−1Gk

)(
Gj ·C−1G`

)
+
(
Gi ·C−1G`

)(
Gj ·C−1Gk

)}
=

1

2

{(
C−1

)ik(
C−1

)j`
+
(
C−1

)i`(
C−1

)jk}
. (A.3.4)

A.4. Linearization of the weak form540

A.4.1. Configuration update

We employ the Newton-Raphson method to solve the nonlinear equation of Eq. (64). An external load

is incrementally applied, and the solution at the (n + 1)th load step is found based on the equilibrium

at the previous nth load step. The following steps are repeated until a given convergence criterion is

satisfied. The iterative scheme to find solution n+1y :=
[
n+1ϕT, n+1d1

T, n+1d2
T
]T

is stated as: For a

given solution n+1y(i−1) at the (i− 1)th iteration of the (n+ 1)th load step, find the solution increment

∆y :=
[
∆ϕT,∆d1

T,∆d2
T
]T
∈ V such that

∆G
(
n+1y(i−1); δy,∆y

)
= Gext

(
n+1y(i−1), δy

)
−Gint

(
n+1y(i−1), δy

)
, ∀δy ∈ V, (A.4.1)

and we update the configuration by

n+1ϕ(i) = n+1ϕ(i−1) + ∆ϕ, n+1ϕ(0) = nϕ,

n+1dγ
(i) = n+1dγ

(i−1) + ∆dγ ,
n+1dγ

(0) = ndγ .

 (A.4.2)

∆G := ∆Gint−∆Gext represents the tangent stiffness, and the first part ∆Gint is given by the linearization

of the internal virtual work in the following. The second part ∆Gext is the load stiffness which appears,

e.g., due to a non-conservative load (see for example Eq. (A.6.2)).

A.4.2. Operator expressions545

We define the following strain operators in order to have compact forms for the virtual strains of

Eqs. (70) and (80).

δε =
[
ϕ,s

T(•),s 01×6

]
1×9

δy =: Bεδy, (A.4.3a)

δρ =

 d1,s
T(•),s ϕ,s

T(•),s 0T

d2,s
T(•),s 0T ϕ,s

T(•),s


2×9

δy =: Bρδy, (A.4.3b)

δκ =


0T d1,s

T(•),s 0T

0T 0T d2,s
T(•),s

0T d2,s
T(•),s d1,s

T(•),s


3×9

δy =: Bκδy, (A.4.3c)
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δδ =

 d1
T(•),s ϕ,s

T 0T

d2
T(•),s 0T ϕ,s

T


2×9

δy =: Bδδy, (A.4.3d)

δγ =


0T d1

T(•),s + d1,s
T 0T

0T d2,s
T d1

T(•),s
0T d2

T(•),s d1,s
T

0T 0T d2
T(•),s + d2,s

T


4×9

δy =: Bγδy, (A.4.3e)

δχ =


0T d1

T 0T

0T 0T d2
T

0T d2
T d1

T


3×9

δy =: Bχδy, (A.4.3f)

where [•]m×n indicates that the matrix [•] has dimension m× n. Combining Eqs. (82) and (A.4.3) leads

to

δ
¯
ε = Btotal δy, (A.4.4)

where we use

Btotal :=



Bε
Bρ
Bκ
Bδ
Bγ
Bχ


15×9

. (A.4.5)

Then Eq. (91) can be rewritten as

Gint(y, δy) =

∫ L

0

δyTBT
totalR ds. (A.4.6)

A.4.3. Material part

Taking the directional derivative of the internal virtual work of Eq. (A.4.6) with the virtual strain

part held constant and using Eq. (97) yields

DMGint ·∆y :=

∫ L

0

δyTBT
totalDR ·∆y ds =

∫ L

0

δyTBT
totalCBtotal∆y ds. (A.4.7)

A.4.4. Geometric part

Taking the directional derivative of the internal virtual work of Eq. (A.4.6) with R held constant

yields

DGGint ·∆y :=

∫ L

0

RTDδ
¯
ε ·∆y ds =

∫ L

0

δyTY TkGY ∆y ds, (A.4.8)

where we define

kG :=


kε kρ kδ

kκ kγ

sym. kχ


15×15

(A.4.9)

with the submatrices

kε := ñ13×3, (A.4.10a)
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kρ :=
[
m̃113×3 m̃213×3

]
, (A.4.10b)

kδ :=
[
q̃113×3 q̃213×3

]
, (A.4.10c)

kκ :=

 h̃
11

13×3 h̃
12

13×3

sym. h̃
22

13×3

 , (A.4.10d)

kγ :=

 m̃1113×3 m̃2113×3

m̃1213×3 m̃2213×3

 , (A.4.10e)

kχ :=

 l̃
11

13×3 l̃
21

13×3

sym. l̃
22

13×3

 , (A.4.10f)

and the operator

Y :=



(•),s13×3 03×3 03×3

03×3 (•),s13×3 03×3

03×3 03×3 (•),s13×3

03×3 13×3 03×3

03×3 03×3 13×3


15×9

. (A.4.11)

Here 0m×n denotes the null matrix of dimension m× n. Combining Eqs. (A.4.7) and (A.4.8) we finally

obtain the following linearization of the internal virtual work12

∆Gint(y; δy,∆y) := DGint ·∆y =

∫ L

0

δyT
(
BT

totalCBtotal + Y TkGY
)

∆y ds. (A.4.12)

A.5. Discretization of the variational form

A.5.1. Discretization of the internal virtual work

The discretization of virtual strains at ξ ∈ Ξe is expressed in compact form as follows.

δεh =
[
ϕ,s

TNI,s 01×6

]
1×9

δyI =: BIεδyI , (A.5.1a)

δρh =

 d1,s
TNI,s ϕ,s

TNI,s 0T

d2,s
TNI,s 0T ϕ,s

TNI,s


2×9

δyI =: BIρδyI , (A.5.1b)

δκh =


0T d1,s

TNI,s 0T

0T 0T d2,s
TNI,s

0T d2,s
TNI,s d1,s

TNI,s


3×9

δyI =: BIκδyI , (A.5.1c)

δδh =

 d1
TNI,s ϕ,s

TNI 0T

d2
TNI,s 0T ϕ,s

TNI


2×9

δyI =: BIδδyI , (A.5.1d)

δγh =


0T d1

TNI,s + d1,s
TNI 0T

0T d2,s
TNI d1

TNI,s

0T d2
TNI,s d1,s

TNI

0T 0T d2
TNI,s + d2,s

TNI


4×9

δyI =: BIγδyI , (A.5.1e)

12Strictly speaking, this is the increment in the linearization of the internal virtual work.
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δχh =


0T d1

TNI 0T

0T 0T d2
TNI

0T d2
TNI d1

TNI


3×9

δyI =: BIχδyI , (A.5.1f)

where the repeated index I implies summation over values from 1 to ne. ne denotes the number of basis

functions having local supports in the knot span Ξe. Having Eq. (A.5.1) we obtain

δ
¯
εh =



Beε

Beρ

Beκ

Beδ

Beγ

Beχ


15×9ne


δy1

...

δyne

 =: Betotalδy
e, (A.5.2)

where we define 

Beε :=
[
B1
ε B2

ε · · · Bne
ε

]
1×9ne

,

Beρ :=
[
B1
ρ B2

ρ · · · Bne
ρ

]
2×9ne

,

Beκ :=
[
B1
κ B2

κ · · · Bne
κ

]
3×9ne

,

Beδ :=
[
B1
δ B2

δ · · · Bne

δ

]
2×9ne

,

Beγ :=
[
B1
γ B2

γ · · · Bne
γ

]
4×9ne

,

Beχ :=
[
B1
χ B2

χ · · · Bne
χ

]
3×9ne

.

(A.5.3)

Also, in the discretization of the geometric part of the tangent stiffness, we use the following operator,

obtained from Eq. (A.4.11).

Ye :=
[
Y 1 Y 2 · · · Y ne

]
15×9ne

, (A.5.4)

where

Y I :=



NI,s13×3 03×3 03×3

03×3 NI,s13×3 03×3

03×3 03×3 NI,s13×3

03×3 NI13×3 03×3

03×3 03×3 NI13×3


15×9

. (A.5.5)

A.6. Implementation of a moment load by a distributed follower load550

The external virtual work due to the Neumann boundary condition of Eq. (164) is expressed by

Gext(y, δy) =
[
δyTR̄0

]
s∈ΓN

with R̄0 =
[
0T,−Md3

T,0T
]T
. (A.6.1)

The directional derivative of the external virtual work can be derived as

∆Gext (y; δy,∆y) := DGext ·∆y =
[
δyTSnc∆y

]
s∈ΓN

. (A.6.2)
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Snc is the load stiffness operator given by

Snc :=
M

‖d1 × d2‖


03×3 03×3 03×3

03×3 (1− d3 ⊗ d3) d̂2 (d3 ⊗ d3 − 1) d̂1

03×3 03×3 03×3

, (A.6.3)

where d̂1 and d̂2 represent the skew-symmetric matrices associated with the dual vectors d1 and d2.

Note that the load stiffness operator Snc is non-symmetric. The global force vector due to the external

virtual work and the global load stiffness matrix can be simply obtained by a finite element assembly,

respectively, as

Fext = A
[
R̄0

]
s∈ΓN

, (A.6.4)

and

Kext = A [Snc]s∈ΓN
. (A.6.5)

B. Appendix to numerical examples

B.1. Uniaxial tension of a straight beam

The exact geometry of circular section of cylindrical structure can be modeled by a single quadratic

NURBS patch (see Fig. B.1a). Figs. B.1b and B.1c show knot spans in two different levels of h-refinement.

Tables B.1 and B.2 show the convergence of the reference solution using brick elements and the beam

(a) (b) (c)

Figure B.1: Uniaxial tension of a straight beam: Modeling of circular plane (cross-section) having radius R =

0.05m and h-refinement, used in brick element results. (a) Modeling of circular domain by a single quadratic

NURBS patch. (b) 10×10, (c) 20×20 elements.

555

solution. For the conciseness of paper, we present only one case of cross-section radius R = 0.1m, and

BC#2. The other cases show similar characteristics of convergence.

B.2. Cantilever beam under end moment

Fig. B.2 plots the analytical solution of axial strain in Eq. (169). Tables B.3 and B.4 show the

convergence results of brick and beam elements.560
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Table B.1: Uniaxial tension of a straight beam: Convergence result of the lateral displacement at A and the

volume (R = 0.1m, BC#2, St. Venant-Kirchhoff material).

Brick, IGA, deg.=(3,3,3) Beam, IGA, p = 3

nel vA [m] V [m3] nel vA [m] V [m3]

80× 10× 10 -2.2181E-02 3.0215E-02 10 -2.2179E-02 3.0420E-02

160× 10× 10 -2.2181E-02 3.0214E-02 20 -2.2177E-02 3.0418E-02

320× 10× 10 -2.2181E-02 3.0214E-02 40 -2.2177E-02 3.0418E-02

320× 15× 15 -2.2181E-02 3.0214E-02 80 -2.2177E-02 3.0418E-02

Table B.2: Uniaxial tension of a straight beam: Convergence test of the lateral displacement at A and the volume

(R = 0.1m, BC#2, compressible Neo-Hookean material)

Brick, IGA, deg.=(2,2,2) Beam, IGA, p = 3

nel vA [m] V [m3] nel vA [m] V [m3]

80× 10× 10 -2.9186E-02 4.5010E-02 10 -2.9137E-02 4.5185E-02

160× 10× 10 -2.9186E-02 4.5006E-02 20 -2.9186E-02 4.5110E-02

320× 10× 10 -2.9186E-02 4.5005E-02 40 -2.9186E-02 4.5109E-02

320× 20× 20 -2.9186E-02 4.5005E-02 80 -2.9186E-02 4.5109E-02

(a) Initial cross-section height h = 0.1m (b) Initial cross-section height h = 0.01m

Figure B.2: Cantilever beam under end moment: Analytic solution of axial strain through the cross-section height

at the loaded end (s = L) under pure bending assumption. Note that, in the analytical solution, the axial strain

is zero on the central axis (ξ1 = 0).

Table B.3: Cantilever beam under end moment: Convergence result of X-displacement at the tip of the central

axis (utip) for the case of h = 0.1m. All results are obtained by IGA.

Brick, deg.=(2,1,1) Brick, deg.=(2,1,2) Beam, p = 4

nel utip [m] nel utip [m] nel utip [m]

160× 1× 1 -9.9850E+00 320× 1× 10 -1.0010E+01 5 -1.0807E+01

320× 1× 1 -9.9849E+00 640× 1× 10 -1.0011E+01 10 -9.9899E+00

640× 1× 1 -9.9848E+00 1280× 1× 10 -1.0011E+01 20 -9.9849E+00

1280× 1× 1 -9.9848E+00 2560× 1× 10 -1.0011E+01 40 -9.9848E+00

2560× 1× 1 -9.9848E+00 2560× 1× 20 -1.0011E+01 80 -9.9848E+00

160 -9.9848E+00
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Table B.4: Cantilever beam under end moment: Convergence result of X-displacement at the tip of the central

axis (utip) for the case of h = 0.01m. All results are obtained by IGA.

Brick, deg.=(2,1,1) Brick, deg.=(2,1,2) Beam, p = 4

nel utip [m] nel utip [m] nel utip [m]

160× 1× 1 -1.0020E+01 320× 1× 10 -1.0001E+01 5 -1.2414E+01

320× 1× 1 -1.0001E+01 640× 1× 10 -1.0000E+01 10 -1.0362E+01

640× 1× 1 -9.9999E+00 1280× 1× 10 -1.0000E+01 20 -1.0001E+01

1280× 1× 1 -9.9999E+00 2560× 1× 10 -1.0000E+01 40 -9.9999E+00

2560× 1× 1 -9.9998E+00 2560× 1× 20 -1.0000E+01 80 -9.9998E+00

160 -9.9998E+00

Table B.5: Cantilever beam under end force: Convergence test of displacement at the point A.

ν = 0,

Brick, IGA, deg.=(2,1,2)

ν = 0.3,

Brick, IGA, deg.=(3,3,3)

nel X-disp. [m] Z-disp. [m] nel X-disp. [m] Y -disp. [m] Z-disp. [m]

80× 1× 10 -6.4736E+00 7.9951E+00 80× 10× 10 -6.4626E+00 -1.4513E-03 8.0033E+00

160× 1× 10 -6.4737E+00 7.9951E+00 160× 10× 10 -6.4629E+00 -1.4533E-03 8.0035E+00

200× 1× 10 -6.4737E+00 7.9951E+00 200× 10× 10 -6.4629E+00 -1.4533E-03 8.0035E+00

200× 1× 15 -6.4737E+00 7.9951E+00 200× 15× 15 -6.4630E+00 -1.4528E-03 8.0037E+00

200× 20× 20 -6.4631E+00 -1.4522E-03 8.0037E+00

B.3. Cantilever beam under end force

Table B.5 shows the convergence test of IGA using brick element to obtain the reference solution.

B.4. Laterally loaded beam

Table B.6 shows the convergence test of IGA using brick elements to obtain the reference solution.

We check the convergence of Z-displacement at the mid-point of the central axis, i.e., at the point of565

s = L/2 and ξ1 = ξ2 = 0.

B.5. 45◦-arch cantilever beam under end force

Table B.7 shows the convergence test of IGA using brick elements to obtain the reference solution.

Table B.6: Laterally loaded beam: Convergence test of Z-displacement at the mid-point of the central axis in

IGA using brick elements with deg.=(3,3,3).

nel Z-displacement [m]

80× 5× 5 -2.1729E-01

120× 5× 5 -2.1729E-01

160× 5× 5 -2.1729E-01

160× 15× 15 -2.1731E-01

320× 15× 15 -2.1731E-01
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Table B.7: 45◦-arch cantilever beam: Convergence test of displacements at the point A in IGA using brick

elements with deg.=(3,3,3).

nel X-displacement [m] Y -displacement [m] Z-displacement [m]

200× 10× 10 1.4506E+01 -2.4987E+01 5.2112E+01

240× 10× 10 1.4507E+01 -2.4987E+01 5.2113E+01

240× 15× 15 1.4505E+01 -2.4987E+01 5.2116E+01
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