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Abstract: Damage detection in structural components, especially in mechanical engineering, is an
important element of engineering practice. There are many methods of damage detection, in which
changes in various parameters caused by the presence of damage are analysed. Recently, methods
based on the analysis of changes in dynamic parameters of structures, that is, frequencies or mode
shapes of natural vibrations, as well as changes in propagating elastic waves, have been developed
at the highest rate. Diagnostic methods based on the elastic wave propagation phenomenon are
becoming more and more popular, therefore it is worth focusing on the improvement of the efficiency
of these methods. Hence, a question arises about whether it is possible to shorten the required mea-
surement time without affecting the sensitivity of the diagnostic method used. This paper discusses
the results of research carried out by the authors in this regard both numerically and experimentally.
The numerical analysis has been carried out by the use of the Time-domain Spectral Finite Element
Method (TD-SFEM), whereas the experimental part has been based on the measurement performed
by 1-D Laser Doppler Scanning Vibrometery (LDSV).

Keywords: laser doppler scanning vibrometery; time-domain spectral finite element method; damage
detection

1. Introduction

The inspection of the technical condition of machinery and mechanical components
has always been a fundamental part of engineering practice. The answer to the question
about the technical condition of the equipment in service is crucial, among other things,
for the reasons of operational safety and economic calculations. In recent years, various
methods of the monitoring of engineering structures have been developed. A system that
involves observation of the condition of a structure by means of control and measurement
in order to detect, locate, identify and predict the development of deformation and damage,
which may cause the structure to fail, is called SHM (Structural Health Monitoring) [1,2].
SHM is based on sensing to monitor the behaviour of structures, assess their performance,
and identify damage at its early stage [3-8].

Generally, damage detection techniques can be divided into active and passive ap-
proaches [9,10]. The active approaches need an external excitation of the monitored struc-
tures, while their responses are measured using sensors. The passive approaches depend
on sensor measurements for the detection of unknown inputs, such as external loads or
impacts, environmental factors, and new damage, which causes changes in sensor measure-
ments. The active approaches require sophisticated equipment and less signal processing

Sensors 2021, 21, 7394. https:/ /doi.org/10.3390/s21217394

https:/ /www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9814-4269
https://orcid.org/0000-0003-2572-7065
https://orcid.org/0000-0001-8369-5175
https://orcid.org/0000-0002-0413-7130
https://orcid.org/0000-0003-3015-1355
https://doi.org/10.3390/s21217394
https://doi.org/10.3390/s21217394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217394
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217394?type=check_update&version=1

A\ MOST

Sensors 2021, 21, 7394

20f12

to detect damage, whereas the passive approaches need more signal processing and less
advanced equipment in most of the cases [11].

Non-destructive damage detection techniques can also be classified as local and global.
If the potential damage location is already known for testing, then it is called a local damage
detection technique. However, in some large and complex structures with inaccessible
regions, it is not possible to locate damage using local damage detection techniques. In
such cases, global damage detection techniques are necessary.

Vibration-based damage detection techniques are an example of global damage detec-
tion techniques [12-21]. Among the many available dynamical parameters, the propagation
of elastic waves appears to be the most desirable, especially for damage in the earliest state
of its growth. Gathering necessary information from signals in the form of propagating
waves may be performed numerically and experimentally. In both these cases, sufficient
accuracy is required to provide the carrier information for the respective processing algo-
rithms.

As the measurement accuracy is usually limited by hardware capabilities, the selection
of a suitable measuring tool needs to be optimised in terms of costs and required precision.
When it comes to recording mechanical wave propagation signals, however, the class of
instrumentation is essential. An excellent piece of equipment for registering propagating
waves is a Laser Scanning Doppler Vibrometer (LSDV). The main advantage of such
a system is measurement automation, high sensitivity and the non-contact nature of
measurements. LSDV allows entire surfaces to be scanned quickly and accurately by using
flexible and interactively created grids of measurement points.

On the other hand, the numerical sensitivity is limited to the proper mathematical
model used for solutions. Various approaches to the proper modelling of complicated
wave propagation phenomena can be found in the literature. For example, analytical
models for modelling wave propagation in plate elements made out of various composite
materials have been proposed in [22-24]. Numerical or grid-based methods [25-27] have
found a wide range of applications to solve elastic wave propagation problems arising
in seismology, medical ultrasound and non-destructive evaluation [28,29] or even textile
industry [30]. However, the most versatile method for modelling wave propagation
has been the Time-domain Spectral Finite Element Method (TD-SFEM) [31]. The main
advantage of TD-SFEM is a more precise representation of high frequency signals than
in the case of the classical Finite Element Method (FEM). This is especially important in
the context of numerical calculations related to modelling wave propagation. Moreover, it
is well known that thanks to the orthogonality of high-order approximation polynomials
used in TD-SFEM, the diagonal forms of the inertia matrix are obtained. This additionally
improves the numerical performance of the method.

Properly selected methods of dynamic parameter modelling used in damage detection
algorithms allow for a various analysis to be carried out with the purpose of optimising
these diagnostic methods. This process can cover many aspects, like: assessment of the FE
model sensitivity [32]; analysis of the measurement signal in order to locate damage [33];
assessment of the effectiveness of a damage detection technique in terms of the density of
the measurement grid [34-38] and the analysis of the influence of the location of the sensor
grid on the proposed methodology correctness [39-41].

For both experimental and computational methods, special attention should be paid
to the density of the grid of measurement points. The more the measuring points, the more
accurate the representation of the measured quantity. On the other hand, the measurement
time, dependent on the mesh density as well, is an important issue in industrial applications,
since taking objects out of service can result in unavoidable financial costs. In the case of
numerical investigations performed for complex geometries, there might be a difficulty
resulting from the computational power of the equipment available. However, in the case
of hardware measurements, the issue is very important, as the reduction of the number
of measurement points allows for a significant reduction of measurement time, which in
industrial conditions is of fundamental importance.
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Based on the literature review carried out, it can be concluded that within the ref-
erences found, there are no studies that clearly address the problem of the analysis of
the influence of the grid density, both measured and calculated, on the sensitivity of the
diagnostic method. Therefore, the current study aims to address this, both numerically
and experimentally, in the case of an epoxy-glass plate containing delamination as well as
for various grid densities of spectral finite elements/measurement points. In the analysis
the Root Mean Square (RMS) values of wave signals have been chosen for the damage
location. This is due to the fact that guided elastic waves reflecting from damage change
the distribution of the energy, influencing such signals. These energy changes are then
represented as variations in the values of RMS and can be successfully used for damage
detection [33,42,43].

2. The Problem Analysed

Numerical and experimental investigations discussed have been carried out on a
selected panel made out of plexiglass (Young’s modulus of 2.7 GPa, Poisson’s ratio equal to
0.31, density assumed as 1085 kg/m?). The geometrical dimensions of the analysed panel
are shown in Figure 1. As the damage a small (11 mm diameter) plexiglass disc glued to
the panel surface was considered (0.037% of the total panel mass). In the numerical model
as damage, an equivalent additional mass has been considered, added to selected nodes of
spectral finite elements (SFEs).
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Figure 1. Examined composite panel with 1 SFE, nodes distribution and excitation signal.

For numerical modelling, TD-SFEM has been chosen [31]. TD-SFEM is a computa-
tional technique that combines the properties of the polynomial approximation of spectral
methods and the approach to the discretisation of the analysed area inherent in the fi-
nite element method (FEM) [44]. The property of FEM is that for each simple geometric
object, specific points (called nodes) with certain approximating functions (called shape
functions or node functions) are determined. These functions describe the distribution
of the analysed physical properties inside finite elements (FEs) and at its boundaries. A
characteristic of TD-SFEM is a non-uniform distribution of nodes within SFEs, which
results from the distance between the roots of certain polynomials. This helps to avoid the
Runge phenomenon [45], that is, large oscillations of approximating polynomials near the
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edges FEs. Therefore, high-order polynomials are used in TD-SFEM, which is impossible
in the case of uniformly distributed nodes in the classical FEM [46].

The analysed panel has been modelled by six-node shell SFEs derived using TD-SFEM,
described in more detail here [44]. The node distribution for the examined SFE has been
based on Lobatto polynomials [47] and is presented in Figure 1b. In order to analyse
the panel, 50 x 50 SFEs have been employed with the final grid size of 250 x 250 nodes.
Additionally, an absorbing layer consisting of 2400 SEFs [48] has been assumed to conduit
propagating waves out of the system. The panel has been excited with a sine wave signal
(three modulations) modulated by a Hanning window [49] with a carrier frequency of
25 kHz. The total measurement time has been assumed as 1.2 ms, whereas the results
have been recorded at the same moment in each case, that is at 0.8 ms. An illustration of
the geometrical dimensions of the analysed panel is shown in Figure 1. This figure also
shows the waveform of the excitation signal, as well as the distribution of nodes in one
SFE. Additionally, it is worth mentioning that the position of SFE corner nodes remains the
same as the position of the measurement points in LDSV.

The experimental part of measurements has been carried out with LDSV Polytec
PSV-400 [50] (a picture of the measuring system is shown in Figure 2). The most important
part of this measuring system is the scanning head with a laser Doppler vibrometer, which
allows fast, accurate, and non-contact measurements of vibrations of the whole surface
under investigation. The main advantages of such a sensor are: measurement automation,
high sensitivity and the non-contact nature of measurements. This approach allows entire
surfaces to be scanned quickly and accurately by using flexible and interactively created
grids of measurement points. LDSV automatically moves to each point on the scanning
grid points, measures responses, and validates the measurements by checking the signal-
to-noise ratio. In order to ensure the optimal measurement conditions, high scattering of
the laser beam reflected from the measurement surface should be avoided because even a
small amount of light returning to the sensor head can cause measurement interference.
To compensate for this effect, the measured area should be covered with a reflective
foil. The characteristic feature of such a foil is that it reflects light in the direction of its
source. The full wave-field measurements of out-of-plane velocities were carried out on
the surface opposite to a piezoelectric transducer. All measurements were performed in
equally spaced grids with varying numbers of points, covering the whole surface of the
specimen. Ten times averaging for each recorded time response was used to obtain higher
signal-to-noise ratio.

Figure 2. Experimental setup.
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3. Results

The results presented, both numerical and experimental, have been carried out for a
successively reduced number of measurement points. First, the maximum possible grid of
points (i.e., 250 x 250 in x and y direction, respectively) was analysed. All registered time
signals have been used to determine the Root Mean Squared (RMS) value for each point as:

N
RMS = 4/ Z":T“[’% (1)

where f2 is a squared vibration magnitude (velocities) of a sample 7, and N is the total
number of samples used for RMS calculation. Due to the fact that elastic waves have been
reflected from damage, the distribution of energy has also been changed. These energy
changes have been represented as the maximal values of RMS and that fact has been used
for damage location. Therefore, a map of RMS values, calculated for the simulated and
measured signals, were chosen to visualise the location of possible damage. Moreover, in
the analysed cases, the location of damage has been known since the authors wanted to
verify if it is possible to locate the damage of a known position by a reduced number of
measurement points.

The obtained results are shown in Figure 3. The figure presents four graphs. The
top two—Figure 3a,b—refer to the results obtained experimentally, while the bottom
two—Figure 3c,d—refer to the numerical analysis. The graph marked (a) shows a velocity
pattern measured at the selected time instance, that is, 0.8 ms. The graph marked with
(b) shows an RMS pattern based on each of the measured velocities from plot (a). The
bottom two graphs show the results of numerical simulations recorded at the same time
instances as the measurements. Similarly to the upper graph, the graph marked with (c)
is a recorded velocity pattern and the graph marked with (d) is an RMS pattern based
on it. From the graphs presented, it can be concluded that the maximal of the analysed
number of measurement points allows for a perfect representation of the phenomenon
under consideration.

(b)

Figure 3. Wave propagation velocity patterns registered at 0.8 ms with 250 x 250 mesh grid, (a) Ex-
perimental data, (b) RMS of experimental data, (c) Calculated data, (d) RMS of calculated data.
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The following figures show analogous results of measurements and calculations
obtained for respectively sparser measurement grids. Thus, Figure 4 shows the 100 x 100
measurement points/nodes grid, Figure 5 presents the 50 x 50 measurement points/nodes
grid, Figure 6 the 40 x 40 measurement points/nodes grid and finally Figure 7 the 30 x 30
measurement points/nodes grid. Based on the analysis of the results presented in these
graphs it can be concluded that it is possible to identify the position of the defect for a grid
even five times more sparse, that is, 50 x 50 measuring points in the x and y axis directions.

Figure 4. Wave propagation velocity patterns registered at 0.8 ms with 100 x 100 mesh grid, (a) Ex-
perimental data, (b) RMS of experimental data, (c) Calculated data, (d) RMS of calculated data.

Figure 5. Wave propagation velocity patterns registered at 0.8 ms with 50 x 50 mesh grid, (a) Experi-
mental data, (b) RMS of experimental data, (c) Calculated data, (d) RMS of calculated data.
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Figure 6. Wave propagation velocity patterns registered at 0.8 ms with 40 x 40 mesh grid, (a) Experi-
mental data, (b) RMS of experimental data, (c) Calculated data, (d) RMS of calculated data.

Figure 7. Wave propagation velocity patterns registered at 0.8 ms with 30 x 30 mesh grid, (a) Experi-
mental data, (b) RMS of experimental data, (c) Calculated data, (d) RMS of calculated data.
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In order to determine the threshold grid size, for which damage localisation is possible,
the analysis was carried out, the results of which are summarised in Table 1. For each
of the signals recorded either experimentally or by numerical RMS has been calculated.
Then, the damage location was determined (a simple mathematical procedure consisting of
determination the coordinates for which the RMS derivative has been equal to zero). From
the data in Table 1 it can be concluded that it has been possible to locate the damage for a
grid consisting of only 40 x 40 measurement points. A smaller number of measurement
points made it not possible to locate the damage.

Table 1. Damage location (in cm from plate edges) identified by the use of RMS of calculated and
measured velocities.

Grid Finite Element Size Found x Found y Found x Found y

[cm] Simulation Experiment
250 0.20 0.2048 0.3072 0.1996 0.3060
200 0.25 0.2010 0.3040 0.2060 0.3065
150 0.33 0.1980 0.2953 0.2047 0.3087
140 0.36 0.2014 0.3058 0.2050 0.3058
130 0.38 0.2016 0.3023 0.2093 0.3101
120 0.42 0.2059 0.3109 0.2017 0.3109
110 0.45 0.1927 0.2936 0.2064 0.3073
100 0.50 0.2020 0.2929 0.2071 0.3081
90 0.56 0.2022 0.3034 0.2022 0.3090
80 0.63 0.2025 0.3101 0.2025 0.3101
70 0.71 0.1957 0.3043 0.2029 0.3116
60 0.83 0.1949 0.2966 0.2034 0.3136
50 1.00 0.1939 0.2959 0.2041 0.3163
40 1.25 0.2051 0.2949 0.1923 0.2949
30 1.67 0.2241 0.3276 general region
20 2.50 general region general region
10 5.00 not possible not possible

A coherent summary of the results of the conducted studies can be found in Table 2.
This table summarises information on the total number of measurement points, the per-
centage reduction in size of each of the grids analysed (% griduay), the ratio of the damage
area to the area of one FE (A ;,,,/ Avlmesi), the duration time of the measurements (time
[h]) and the results of the damage location identification for each case analysed. From the
data given in the Table 2, it can be concluded that reducing the grid density even to less
than 10% of gridu,y, in relation to the base grid density, allows the location of damage
to be correctly estimated. If the grid is even more sparse, this can lead to an incorrect
estimation of the damage position. It is also worth noting the profit in terms of calculation
and measurement time. It can be clearly seen that it is possible to reduce the measurement
time for this panel by LSDV below 1 h. This time saving is satisfactory as it allows us to
significantly shorten the necessary time in many SHM applications.
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Table 2. Summary of damage localisation analysis in terms of number of measurement points,
percentage measurement grid reduction and the change of damage area.

GridID No. of Points % Gridmax  Agam/Acimesn Time[h] RMS  Signal

250 62,500 100.00 0.78540 ~8 + +
200 40,000 64.00 0.50265 5.1200 + +
150 22,500 36.00 0.28274 2.8800 + +
140 19,600 31.36 0.24630 2.5088 + +
130 16,900 27.04 0.21237 2.1632 + +
120 14,400 23.04 0.18096 1.8432 + +
110 12,100 19.36 0.15205 1.5488 + +
100 10,000 16.00 0.12566 1.2800 + +
920 8100 12.96 0.10179 1.0368 + +
80 6400 10.24 0.08042 0.8192 + +
70 4900 7.84 0.06158 0.6272 + region
60 3600 5.76 0.04524 0.4608 + region
50 2500 4.00 0.03142 0.3200 + -

40 1600 2.56 0.02011 0.2048 region -

30 900 1.44 0.01131 0.1152 region -

20 400 0.64 0.00503 0.0512 region -

10 100 0.16 0.00126 0.0128 - -

4. Discussion and Conclusions

The main conclusion that arises from the investigations carried out is that propagating
elastic waves represents a very sensitive and precise tool, which allows for the identification
of even small defects in structural elements, both based on numerical data, as well as
recorded from experimental measurements. However, in the case of wave propagation
analysis, it should be kept in mind that the effectiveness of such a diagnostic approach
largely depends on the signal processing algorithm that is implemented. In the current
example, the RMS of wave signal velocities has been chosen for that purpose. It is due
to the fact that guided elastic waves reflect from damage, which changes the distribution
of the energy of such signals. These energy changes are represented as variations in the
values of RMS and can be successfully used for damage detection. The proposed approach
to fault detection problems is known in the literature (e.g., in [33]). However, it is worth
noting that the results related to the analysis of the influence of the density of the grids of
measurement points on the sensitivity and accuracy of the discussed approach remains
unknown in the literature.

The most important conclusion from the completed analysis is that it is possible
to correctly locate the position of damage even in the case of a reduced measurement
grid. This is possible, provided that a diagnostic method exploiting the phenomenon
of elastic wave propagation and the determination of the RMS of measured signals are
employed. The reduction of the grid density should not exceed 10% of the total number of
measurement points of the output grid (below 10% of grid;;ay, in relation to the base grid
density). Such a recommendation and similar ones apply to both grids used for numerical
calculations and grids used for experimental measurements.

The information about the correct identification of the defect position, even in the
case of the reduced grid density, is essential from the point of view of calculation and
measurement times. This considerably reduces the time necessary to take an object out
of service, and this is directly related to the financial side of the diagnostic process. For
example, as seen from Table 2, it is possible to significantly shorten the measurement time
from 8 h to about 40 min without compromising the correctness of the fault location. The
authors believe that this is a very promising result, which may be of interest to those who
are involved in the technical side of the application of increasingly common diagnostic
methods based on the elastic wave propagation phenomenon.
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The primary reason for the differences observed between the experimental and simu-
lation results comes from damping. In the experiment, high frequency signal components
propagating at higher velocities (greater wavelengths) are more attenuated. In the nu-
merical simulation this is not observed due to no damping being assumed in the model.
Additionally, it is worth mentioning that the authors’ intention was to investigate the
possibility of reducing the measurement grid density in terms of the effectiveness of the
damage location assessment method. The described approach is of a research character; it
is a suggestion of a change to the approach to experimental and numerical investigations.
Usually, in such cases, tests are carried out on basic objects in laboratory conditions. The
authors plan to extend their research by verifying the influence of additional operating
conditions, such as signal noise or damping in the model.

Finally, it is worth highlighting the most important conclusions from the research
results presented in this work and discussed:

¢ The reduction of the measurement grid density, in numerical and experimental analyses,
allows one to locate the damage correctly using the proposed damage detection technique;

e The reduction of the same grid density does not affect the precision of the localisation
process;

® The use of a reduced grid significantly also allows one to reduce the measurement time
in a significant manner without compromising its sensitivity (Table 2).
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