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Abstract: In recent years, the static and dynamic response of micro/nanobeams made of hyperelas-
ticity materials received great attention. In the majority of studies in this area, the strain-stiffing 
effect that plays a major role in many hyperelastic materials has not been investigated deeply. More-
over, the influence of the size effect and large rotation for such a beam that is important for the large 
deformation was not addressed. This paper attempts to explore the free and forced vibrations of a 
micro/nanobeam made of a hyperelastic material incorporating strain-stiffening, size effect, and 
moderate rotation. The beam is modelled based on the Euler–Bernoulli beam theory, and strains are 
obtained via an extended von Kármán theory. Boundary conditions and governing equations are 
derived by way of Hamilton’s principle. The multiple scales method is applied to obtain the fre-
quency response equation, and Hamilton’s technique is utilized to obtain the free undamped non-
linear frequency. The influence of important system parameters such as the stiffening parameter, 
damping coefficient, length of the beam, length-scale parameter, and forcing amplitude on the fre-
quency response, force response, and nonlinear frequency is analyzed. Results show that the hyper-
elastic microbeam shows a nonlinear hardening behavior, which this type of nonlinearity gets 
stronger by increasing the strain-stiffening effect. Conversely, as the strain-stiffening effect is de-
creased, the nonlinear frequency is decreased accordingly. The evidence from this study suggests 
that incorporating strain-stiffening in hyperelastic beams could improve their vibrational perfor-
mance. The model proposed in this paper is mathematically simple and can be utilized for other 
kinds of micro/nanobeams with different boundary conditions. 

Keywords: hyperelastic micro/nanobeam; extended modified couple stress theory; strain-stiffening 
effect; nonlinear frequency response 
 

1. Introduction 
For many decades, vibration analysis of mechanical structures was a major topic 

among scientists [1–10]. Over recent decades, a surge of interest in studying hyperelastic 
materials was shown. The main characteristic of hyperelastic materials is that their strain-
stress diagram is nonlinear and may undergo large deformations [11–13]. Hyperelastic 
materials play a vital role in soft systems and structures, e.g., soft robotics [14], human 
organs [15,16], soft actuators [17,18], soft sensors [19,20], and soft energy harvesters [19–
22]. Data from previous studies show that various mechanical structures such as beams, 
plates, membranes, and shells were made of hyperelastic materials [23–35]. It was re-
ported that hyperelastic beams are an appropriate candidate to fabricate systems with 
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high performance. For this reason, this paper focuses on beams made of hyperelastic ma-
terials. In light of the applications and properties of hyperelastic beams, it is becoming 
extremely difficult to ignore their investigation in different situations. 

There are numerous published works that investigate dependent and time-inde-
pendent responses of hyperelastic beams. For example, the nonlinear postbuckling of a 
hyperelastic beam-like structure was investigated by Lubbers et al. [36]. They employed 
the neo-Hookean hyperelastic model in conjunction with empirical tests and the finite el-
ement technique in their study. Wang and coworkers [37] studied nonlinear vibration of 
hyperelastic beams utilizing time history diagrams and frequency responses, who em-
ployed a compressible neo-Hookean constitutive law. He and coworkers [38] developed 
the Euler–Bernoulli beam model in a new finite strain framework to model a neo-Hookean 
hyperelastic beam. Xu and Liu [39] proposed an improved method to dynamically explore 
the response of a beam-like hyperelastic structure, where a Yeoh model was utilized to 
capture the material nonlinearity. Nonlinear dynamic characteristics of a soft hyperelastic 
beam were investigated by Wang et al. [40], employing a compressible neo-Hookean 
model and variational approach. Wang and Zhu [41] studied the nonlinear oscillation of 
a harmonically excited hyperelastic beam. They utilized the frequency-amplitude re-
sponse, time histories, and a compressible neo-Hookean model in their investigation. The 
finite bending of a beam made of hyperelastic materials was analyzed by Bacciocchi and 
Tarantino [42]. They utilized a compressible Mooney-Rivlin hyperelastic material model 
to physical nonlinearity of the beam. Dadgar–Rad and Sahraee [43], by considering the 
incompressibility condition, investigated the large deformation response of a beam made 
of hyperelastic materials, where a neo-Hookean model was employed as the hyperelastic 
constitutive model. Bacciocchi and Tarantino [44] conducted a finite anticlastic bending 
analysis of hyperelastic beams using two hyperelastic models, namely Mooney–Rivlin 
and Saint Venant–Kirchhoff. Lanzoni and coworker [45] studied the nonuniform bending 
of a beam made of the hyperelastic beam, taking the Mooney–Rivlin into account. The 
large deformation response of hyperelastic beams was explored by Dadgar–Rad and 
Firouzi [46]. They incorporated Fung’s quasilinear viscoelasticity theory and Mooney-Ri-
vlin model. 

Results from earlier studies demonstrate that few researchers addressed the model-
ling of hyperelastic beams with the strain-stiffening effect. Furthermore, previous studies 
have notably investigated a beam-like hyperelastic structure on a large scale and have not 
considered the hyperelastic beams in micro/nanoscales. However, fabrication of such 
beams in smaller scales was feasible, and hence analyzing hyperelastic micro/nanobeam 
and proposing more sophisticated theories should be developed for such structures. A 
challenging problem that arises in this domain is accurate modelling for hyperelasticity in 
micro/nanoscales. More specifically, in nanoscale, it is necessary to capture the size effect. 
Because hyperelastic materials may undergo large deformation and large rotation, these 
conditions should be considered on micro/nanoscale. One of the problems that it investi-
gates in hyperelasticity is the strain-stiffening effect. This effect may improve or limit the 
performance of hyperelastic micro/nanobeams. Therefore, incorporating strain-stiffening 
with simple mathematical modelling in micro/nanoscale is essential. Specifically, to our 
knowledge, no study has considered large deformation, strain-stiffening, and moderate 
rotation for hyperelastic micro/nanobeams. 

This paper aims to propose a sophisticated model for a micro/nanobeam made of 
hyperelastic materials that incorporate the small-scale and strain-stiffening effects of non-
linear elasticity. The nonlinear equations of motion are derived via Hamilton’s principle 
and an extended von-Kármán theory. The frequency-amplitude plot and nonlinear reso-
nance plot are presented by considering different system parameters. The results are dis-
cussed in detail, and influential parameters on free and forced vibrations of the hypere-
lastic micro/nanobeam are identified. 
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2. Governing Equations 
The schematic view of the hyperelastic micro/nanobeam is illustrated in Figure 1, 

where the length, width, and height of the beam are denoted by 𝐿, 𝑏, and 𝑑, respectively. 
A clamped-clamped boundary condition is assumed to the beam, and a harmonic trans-
verse mechanical load is applied to it. It is considered that the length of the beam is much 
greater than the depth. In addition, the shear deformation and rotary inertia are neglected. 
Thus, we use the Euler–Bernoulli (E-B) beam theory to define the displacement field. 

The displacement field for the beam is established according to the Euler–Bernoulli 
beam equation, namely, 𝑢௫ = −𝑧 𝜕𝑤(𝑥, 𝑡)𝜕𝑥  𝑢௬ = 0 𝑢௭ = 𝑤(𝑥, 𝑡) 

 

(1) 

where 𝑤(𝑥, 𝑡) stands for the transverse displacement of any point on the neutral axis. The 
strain-displacement relations originated for the Euler–Bernoulli beam theory are mod-
elled based on an extended von Kármán equation, in which large deformation, moderate 
rotation, and transverse strain are included, namely [47,48] 

 
Figure 1. Schematic representation of a clamped-clamped hyperelastic beam. 

𝜀ଵ = 12 ൬𝜕𝑤𝜕𝑥 ൰ଶ − 𝑧 𝜕ଶ𝑤𝜕𝑥ଶ  𝜀ଷ = 12 ൬𝜕𝑤𝜕𝑥 ൰ଶ
 

 

(2) 

Other components of the extended von Kármán equation are equal to zero. 
The strain energy of the hyperelastic micro/nanobeam is decomposed into two parts, 

i.e., the potential due to the hyperelasticity and the potential due to small-scale effects. 
For hyperelastic materials, a strain energy function is used to obtain the strain energy 

of the system. Numerous hyperelastic strain energy functions can capture the strain stiff-
ening, for instance, the standard Gent, the Arruda–Boyce, and modified versions of the 
Standard Gent model [49–51]. In this work, for simplicity, a standard Gent model is con-
sidered, in which the strain-stiffening effect is incorporated, namely [52,53] Ψଵ = 𝜇2 [(𝐼ଵ − 3) + 12 𝐽௠ (𝐼ଵ − 3)ଶ + ⋯ + 1(𝑛 + 1)𝐽௠௡ (𝐼ଵ − 3)௡ାଵ] (3) 

where 𝜇 is the shear modulus; 𝐼ଵ denotes the first invariant of the deformation tensor; 𝐽௠ is a dimensionless parameter that is called the stiffening parameter. 
For simplicity, the second-order expansion of the standard Gent model is utilized, 

such that Ψଵ = 𝜇2 [(𝐼ଵ − 3) + 12 𝐽௠ (𝐼ଵ − 3)ଶ] (4) 
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The first principal invariant of the right Cauchy–Green deformation tensor in terms 
of the extended von Kármán strains is formulated as [54] 𝐼ଵ = 2(𝜀ଵ + 𝜀ଶ + 𝜀ଷ) + 3 (5) 

Substituting Equation (2) into Equation (5), the first principal invariant is reformu-
lated as 𝐼ଵ = 2 ቈ൬𝜕𝑤𝜕𝑥 ൰ଶ − 𝑧 𝜕ଶ𝑤𝜕𝑥ଶ ቉ + 3 (6) 

Substituting Equation (6) into Equation (4), the Gent strain energy function as a func-
tion of transverse displacement is obtained below Ψଵ = න ൥𝜇𝐴 ൬𝜕𝑤𝜕𝑥 ൰ଶ + 𝜇𝐴𝐽௠ ൬𝜕𝑤𝜕𝑥 ൰ସ + 𝜇𝐽௠ 𝐼 ቆ𝜕ଶ𝑤𝜕𝑥ଶ ቇଶ൩ d𝑥௅

଴  (7) 

It is mentioned that Equation (7) was obtained by considering the following relations 𝐼 = න𝑧ଶ d𝑦d𝑧஺ = 𝑏 𝑑ଷ12 𝐴 = න d𝑦d𝑧஺ = 𝑏𝑑 0 = න 𝑧 d𝑦d𝑧஺  

(8) 

In Equation (8), 𝐴 is the cross-section area, and 𝐼 represents the second moment of 
the cross-section. 

The potential of the small-scale effect is considered through the use of an extended 
modified couple stress theory, such that [47] Ψଶ = 12 (2𝜇𝐴ℓଶ) න ቆ𝜕ଶ𝑤𝜕𝑥ଶ ቇଶ௅

଴ d𝑥 (9) 

where ℓ is a length-scale parameter. 
Comparing Equation (9) with previous studies, for the moderate rotation, a coeffi-

cient 2 appears in the equation in comparison to the small rotation [55]. 
Finally, the total strain energy of the hyperelastic micro/nanobeam is written as 𝑈௦ = Ψଵ + Ψଶ (10) 
The moving beam generates the kinetic energy in the system, which is formulated as 𝑈௞ = 12 𝜌𝐴 න ൬𝜕𝑤𝜕𝑡 ൰ଶ d𝑡௅

଴  (11) 

where 𝜌 stands for the mass-density of the hyperelastic beam. 
The transverse applied periodic loading does the work of the following form 𝑊ி = න 𝐹௅

଴ cos(𝜔𝑡) 𝑤 d𝑥 (12) 

in which 𝐹 is the amplitude and 𝜔 indicates the excitation frequency. 
The work generated from the viscous damping is expressed as 𝑊஽ = −𝑐஽  න 𝜕𝑤𝜕𝑡௅

଴ 𝑤 d𝑥 (13) 

where 𝑐஽ is the viscous damping coefficient. 
To derive boundary conditions and governing equation, Hamilton’s principle is uti-

lized, namely 𝛿 න [𝑈௞௧మ௧భ − 𝑈ௌ]d𝑡 + 𝛿 න [𝛿𝑊ி + 𝛿𝑊஽]௧మ௧భ d𝑡 = 0 (14) 

Substituting Equations (10)–(13) into Equation (14), we obtain the following equa-
tions 𝜌𝐴 డమ௪డ௧మ + 𝐶஽ డ௪డ௧ + ଶఓூ௃೘ డర௪డ௫ర + 2𝜇𝐴ℓଶ డర௪డ௫ర − 2𝜇𝐴 డమ௪డ௫మ − ଵଶఓ஺௃೘ ቀడ௪డ௫ ቁଶ డమ௪డ௫మ = 𝐹 cos(𝜔𝑡)  (15) 

and boundary conditions for the double-clamped micro/nanobeam 𝑤(0) = 0, 𝑤(𝐿) = 0, d𝑤(0)d𝑥 = 0, d𝑤(𝐿)d𝑥 = 0 (16) 
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The above equations are made dimensionless to simplify and generalize the vibration 
analysis of the micro/nanobeam. The following nondimensional quantities are intro-
duced, such that 𝑥ො = 𝑥𝐿 , 𝑤ෝ = 𝑤𝐿 , 𝑡̂ = 𝑡ඨ 𝜇𝐼𝜌𝐴𝐿ସ , 𝑐̂ = 𝑐𝐿ସ𝜇𝐼 ඨ 𝜇𝐼𝜌𝐴𝐿ସ , Ω = 𝜔ඨ𝜌𝐴𝐿ସ𝜇𝐼  

𝜂ଵ = 2𝜇𝐴ℓଶ𝜇𝐼 , 𝜂ଶ = − 2𝜇𝐴𝐿ଶ𝜇𝐼 , 𝛽 = − 12𝜇𝐴𝐿ଶ𝜇𝐼𝐽௠ , 𝐹෠ = 𝐹𝐿ଷ𝜇𝐼  

(17) 

Utilizing the above equations, the dimensionless partial differential equation govern-
ing the transverse vibration of the beams is obtained as (the hat notation is omitted for 
convenience). 𝜕ଶ𝑤𝜕𝑡ଶ + 𝑐 𝜕𝑤𝜕𝑡 + 1𝐽௠ 𝜕ସ𝑤𝜕𝑥ସ + 𝜂ଵ 𝜕ସ𝑤𝜕𝑥ସ + 𝜂ଶ 𝜕ଶ𝑤𝜕𝑥ଶ + 𝛽 ൬𝜕𝑤𝜕𝑥 ൰ଶ 𝜕ଶ𝑤𝜕𝑥ଶ = 𝐹 cos(Ω𝑡) (18) 

Subsequently, the boundary conditions become 𝑤(0) = 0, 𝑤(1) = 0, d𝑤(0)d𝑥 = 0, d𝑤(1)d𝑥 = 0 (19) 

The system is continuous, and therefore there are infinite modes of vibration. In this 
paper, the first mode is considered only, with the aid of the separation of variable tech-
nique and the Galerkin method. Based on the separation of variable technique, we assume 
the transverse response is approximated as 𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑞(𝑡) (20) 
in which 𝑞(𝑡) is the time-dependent coordinate of vibration; 𝑊(𝑥) stands for the mode 
shape of a double-clamped beam that is given below [56] 𝑊(𝑥) = ඨ23 [1 − cos(2 𝜋 𝑥)] (21) 

The function expressed in Equation (21) satisfies conditions in Equation (19). 
According to the Galerkin method, Equation (20) is substituted in Equation (18), and 

the resulting equation is multiplied by Equation (21), and integration over [0 1] is taken, 
which results in 𝑞ሷ + 𝑐𝑞ሶ + 𝜔଴ଶ𝑞 + 𝛼𝑞ଷ = 𝑓 cos(Ω𝑡) (22) 

In which 

𝜔଴ = ൮׬ ቄ𝜂ଵ𝑊ᇱᇱᇱᇱ𝑊 + 1𝐽௠ 𝑊ᇱᇱᇱᇱ𝑊 + 𝜂ଶ𝑊ᇱᇱ𝑊ቅ 𝑑𝑥ଵ଴ ׬ 𝑊ଶଵ଴ 𝑑𝑥 ൲ଵଶ
 

𝛼 = ׬ (𝛽𝑊ᇱ𝑊ᇱ𝑊ᇱᇱ𝑊)ଵ଴ 𝑑𝑥׬ 𝑊ଶଵ଴ 𝑑𝑥  

𝑓 = ׬ (𝐹𝑊)ଵ଴ 𝑑𝑥׬ 𝑊ଶଵ଴ 𝑑𝑥  

(23) 

In Equation (23), 𝜔଴ indicates dimensionless linear natural frequency. 

3. Solution Method 
This section is divided into two parts. In the first one, the forced vibration is solved 

using the Multiple Scales Method (MSM) [57], and in the second one, the free vibration is 
solved using Hamilton Approach (HA). 

3.1. Forced Vibration Solution 
To implement the MSM, the forced vibration equation, Equation (22), is converted to 

a perturbated form by introducing the following parameters 𝑐 = 2𝜀 𝑐ௗ, 𝛼 = 𝜀𝛼ଵ, 𝑓 = 𝜀 𝑓ଵ (24) 
where 𝜀 is a dimensionless quantity that measures the strength of the nonlinearity of the 
beam and is called the gauge parameter. 
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Substituting Equation (24) into Equation (22), we obtain 𝑞ሷ + 2𝜀 𝑐ௗ𝑞ሶ + 𝜔଴ଶ𝑞 + 𝜀𝛼ଵ𝑞ଷ = 𝜀 𝑓ଵ cos(Ω𝑡) (25) 
In line with the MSM, the original time is replaced with new time scales as 𝑇௡ =𝜀௡ 𝑡; 𝑛 = 1,2, … and therefore, the ODE is converted to a PDE. 
New differential operators based on new time scales are 𝐷௡ = 𝜕/𝜕𝑇௡, and original 

time first and second derivatives in terms of these operators are expressed as dd𝑡 = 𝐷଴ + 𝜀 𝐷ଵ + 𝜀ଶ 𝐷ଶ + ⋯ dଶd𝑡ଶ = 𝐷଴ଶ + 2 𝜀 𝐷଴𝐷ଵ + 𝜀ଶ(𝐷ଵଶ + 2 𝐷଴𝐷ଶ ) + ⋯ 
 

(26) 

The governing equation includes a nonlinear cubic term. Therefore, a first-order per-
turbation approximation is accurate enough, such that 𝑞 = 𝑞଴ + 𝜀 𝑞ଵ (27) 𝑞௡, 𝑛 = 0,1 are independent of the gauge parameter 𝜀. For this reason, we can equal 
the coefficient of each power of 𝜀 to zero. 

Combining Equations (25)–(27), and equating coefficients of 𝜀଴ and 𝜀ଵ to zero, the 
following PDEs are attained 

Coefficients of 𝜀଴ 𝐷଴ଶ𝑞଴ + 𝜔଴ଶ𝑞଴ = 0 (28) 
Coefficients of 𝜀ଵ 𝐷଴ଶ𝑞ଵ + 𝜔଴ଶ𝑞ଵ = −2𝐷଴𝐷ଵ𝑞଴ − 2𝐷଴𝑞଴ − 𝛼ଵ𝑞଴ଷ + 𝑓ଵ cos(Ω𝑡) (29) 
The solution of Equation (28) takes the following form 𝑞଴ = 𝐴(𝑇ଵ)𝑒௜ ఠబ బ் + 𝐴̅(𝑇ଵ)𝑒ି௜ ఠబ బ் (30) 

in which 𝐴(𝑇ଵ) is a complex-valued function and 𝐴̅(𝑇ଵ) is its complex conjugate. 
Substituting Equation (30) into Equation (29), the following equation is obtained as 𝐷଴ଶ𝑞ଵ + 𝜔଴ଶ𝑞ଵ = [−3𝛼ଵ𝐴ଶ𝐴̅ − 2𝑖𝑐ௗ𝐴𝜔଴ − 2𝑖𝜔଴ ௗ୅ௗ భ்]𝑒௜ ఠబ బ் + 𝑓ଵ cos(Ω𝑡) + CC + NST  (31) 
In the above equation, the terms inside the box bracket shows secular terms, CC 

stands for complex conjugates of previous terms, and NST is an abbreviation for terms 
with higher degrees of 𝑒௜ ఠబ బ் (nonsecular terms). 

By equating secular terms to zero, the frequency-amplitude relation can be obtained. 
However, the external loading can also give rise to secure terms. This fact is considered in 
two states, i.e., the primary resonance and the secondary resonance. In this paper, the pri-
mary resonance is analyzed, which states that Ω = 𝜔଴ + 𝜀 𝜎 (32) 

Writing the trigonometric function in Equation (31) and using Equation (32), we ob-
tain 3𝛼ଵ𝐴ଶ𝐴̅ + 2𝑖𝑐ௗ𝐴𝜔଴ + 2𝑖𝜔଴ 𝑑A𝑑𝑇ଵ − 12 𝑓ଵ𝑒௜ఙ భ் = 0 (33) 

The complex-valued function 𝐴 is written as 𝐴 = 12 𝑎𝑒௜ఏ, 𝐴̅ = 12 𝑎𝑒ି௜ఏ (34) 

in which 𝑎 and 𝜃 are the amplitude and phase, which are functions of 𝑇ଵ. 
Substituting Equation (34) into Equation (33) and then separating the resulting equa-

tion into real and imaginary parts yields 
Imaginary parts: dadTଵ = −𝑎𝑐ௗ + 12𝜔଴ 𝑓ଵsin (𝜎𝑇ଵ − 𝜃) (35) 

Real parts: 𝑎 d𝜃d𝑇ଵ = 38𝜔଴ 𝛼ଵ𝑎ଷ − 12𝜔଴ 𝑓ଵcos(𝜎𝑇ଵ − 𝜃) (36) 

Equations (35) and (36) are converted to an autonomous equation by introducing 𝛾 =(𝜎𝑇ଵ − 𝜃), which results in dadTଵ = −𝑎𝑐ௗ + 12𝜔଴ 𝑓ଵsin (𝛾) (37) 
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𝑎 d𝛾d𝑇ଵ = 𝜎𝑎 − 38𝜔଴ 𝛼ଵ𝑎ଷ + 12𝜔଴ 𝑓ଵcos(𝛾) (38) 

A bounded response is acquired while ୢୟୢ୘భ = 𝑎 ୢఊୢ భ் = 0, whereby one can obtain 𝑎𝑐ௗ = 12𝜔଴ 𝑓ଵsin (𝛾) (39) 𝜎𝑎 − 38𝜔଴ 𝛼ଵ𝑎ଷ = − 12𝜔଴ 𝑓ଵcos (𝛾) (40) 

After some mathematical manipulation and using the fact sinଶ(𝛾) + cosଶ(𝛾) = 1, we 
obtain the frequency-amplitude response as [𝑐ௗ𝑎]ଶ + ൤𝜎𝑎 − 38𝜔଴ 𝛼ଵ𝑎ଷ൨ଶ = ൤ 12𝜔଴ 𝑓ଵ൨ଶ

 (41) 

3.2. Free Vibration Solution 
In this subsection, the nonlinear frequency of the micro/nanobeam with neglecting 

the external force and damping is obtained via Hamilton’s approach. The initial condi-
tions for the vibration of the hyperelastic beam are expressed as 𝑞(0) = 𝑎଴, 𝑞ሶ (0) = 0 (42) 
where 𝑎଴ stands for the maximum amplitude of the vibration. Based on Hamilton’s prin-
ciple, the nonlinear frequency is derived as [58] 𝜔௡௟ = ඨ𝜔଴ଶ + 4970 𝛼𝑎଴ଶ (43) 

4. Result and Discussion 
The effects of several parameters such as the stiffening parameter, the length scale 

parameter, and forcing amplitude and damping on the frequency response and nonlinear 
frequency of the system are analyzed. The material and geometrical parameters of the 
hyperelastic microbeam are given in Table 1. 

Table 1. Material and geometrical parameters. 

Parameters Value 
Length 𝐿 = 30 μm 
Width 𝑏 = 10 μm 
Height 𝑑 = 0.65 μm 

Young’s modulus 𝐸 = 3 GPa 
Shear modulus 𝜇 = 𝐸 3⁄ = 1 GPa 

4.1. Frequency Response 
Figure 2 depicts the influence of the gauge parameter 𝜀 on the frequency response 

under the following parameter 𝑓ଵ = 0.5, ℓ = 0, 𝑐ௗ = 0.004, and 𝐽௠ = 100. As the gauge 
parameter 𝜀 is decreased, the nonlinearity of the system increases. Mathematically speak-
ing, with the decrease of 𝜀, the value of nonlinear terms in the equation of motion becomes 
higher in comparison to the value of linear terms. Depending on the accuracy, an arbitrary 
value for 𝜀 can be adopted, which in this paper it is chosen as 𝜀 = 1. D
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Figure 2. Influence of gauge parameter (𝜀) on frequency response of system. Systems parameters: ℓ = 0; 𝑐ௗ = 0.004; 𝐽௠ = 100; 𝑓ଵ = 0.5. 

Illustrated in Figure 3 is the influence of the damping coefficient 𝑐ௗ on the frequency 
response of the system while considering the following parameters ℓ = 0, and 𝐽௠ = 100. 
From the figure, it is concluded that increasing the damping coefficient decreases the re-
sponse amplitude of the hyperelastic micro/nanobeam. The damping in hyperelastic ma-
terials mainly originates from the viscosity of matter. In the remaining part of the numer-
ical simulation, as a test case, the damping coefficient is taken as 𝑐ௗ = 0.004. 

 
Figure 3. Influence of damping coefficient (𝑐ௗ) on frequency response of system. Systems parame-
ters: ℓ = 0; 𝐽௠ = 100; 𝑓ଵ = 0.5. 

Figure 4 represents the impact of the length scale parameter ℓ on the nonlinear res-
onant vibration of the hyperelastic beam. As seen, increasing the size effect, the response 
amplitude decreases, and the hardening nonlinearity becomes weaker. This result is in 
agreement with that shown in the literature for linear materials. Obtaining the accurate 
small-length scall parameter in the experimental test is a crucial task for engineers. Find-
ing an exact value for the length scale parameter for the hyperelastic beam in the experi-
mental test should be carried out to improve the performance of hyperelastic microbeams. 
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Figure 4. Influence of length scale parameter (ℓ) on frequency response of system. Systems param-
eters: 𝐽௠ = 100; 𝑓ଵ = 0.5; 𝑐ௗ = 0.004. 

The influence of the stiffening parameter 𝐽௠  on the frequency-amplitude plot is 
shown in Figure 5. It is concluded that as the stiffening parameter is decreased, the hard-
ening nonlinearity gets stronger. When the stiffening parameter is equal to 𝐽௠ = ∞, i.e., 
the conversion of the Gent model to the neo-Hookean model, the system’s response is 
linear. It is noted that if the stiffening parameter is smaller, the strain-stiffening effect is 
stronger. As reported by Amabili, a stiffening parameter in a range 𝐽௠ = 30 − 100 stands 
for rubber materials, and values less than them stand for biological tissues [12]. 

 
Figure 5. Influence of stiffening parameter (𝐽௠) on frequency response of system. Systems parame-
ters: ℓ = 0; 𝑓ଵ = 0.5; 𝑐ௗ = 0.004. 

The influence of the amplitude of the external loading 𝑓ଵ on the resonant character-
istics of the hyperelastic micro/nanobeam is analyzed in Figure 6. Increasing 𝑓ଵ the re-
sponse amplitude increases, and the frequency response becomes wider. Moreover, the 
forcing amplitude cannot alter the nonlinear nature of the system and only quantitatively 
alter the resonant behaviour. 
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Figure 6. Influence of forcing amplitude (𝑓ଵ) on frequency response of system. Systems parameters: ℓ = 0; 𝐽௠ = 100; 𝑐ௗ = 0.004. 

We analyze the influence of the strain-stiffening parameter on the force-response in 
Figure 7. The system parameters are ℓ = 0; 𝜎 = 0.05; 𝑐ௗ = 0.004. We can see that by in-
creasing the value of the strain-stiffening parameter, a higher value of forcing amplitude 
is required to cause the jump phenomenon. Moreover, by increasing the strain-stiffening 
parameter, the system becomes stable and for the neo-Hookean model. 

 
Figure 7. Influence of stiffening parameter (𝐽௠) on force response of system. Systems parameters: ℓ = 0; σ = 0.05; 𝑐ௗ = 0.004. 

We show the influence of the length-scale parameter on the force-response in Figure 
8. With the inclusion of the effect of size, the jump phenomenon arises for higher values 
of forcing amplitude. 
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Figure 8. Influence of stiffening parameter (ℓ) on force response of system. Systems parameters: 𝐽௠ = 100; σ = 0.05; 𝑐ௗ = 0.004. 

4.2. Nonlinear Frequency 
The previous section demonstrates the results for the forced vibration of the Gent 

hyperelastic beam. Herein, the nonlinear frequency of the system given in Equation (42) 
is evaluated. 

Illustrated in Figure 9 is the nonlinear frequency versus the maximum amplitude 
when ℓ = 0, and 𝐽௠ = 100. It is found that by increasing the maximum amplitude 𝑎଴ the 
nonlinear frequency increases. 

As depicted in Figure 10, the nonlinear frequency for variations of the length of the 
beam is presented. As the length is increased, the dimensionless nonlinear frequency in-
creases accordingly. 

The nonlinear frequency versus the stiffening parameter 𝐽௠ is presented in Figure 
11. Increasing 𝐽௠, the nonlinear frequency decreases. 

As depicted in Figure 12, the nonlinear frequency versus the length scale parameter 
is presented. As the size effect is increased, the nonlinear frequency increases accordingly. 

 
Figure 9. Influence of maximum amplitude (𝑎଴) on nonlinear frequency of system. Systems param-
eters: ℓ = 0; 𝐽௠ = 100, 𝐿 = 30μm. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomaterials 2021, 11, 3066 12 of 15 
 

 

 
Figure 10. Influence of length of micro/nanobeam (𝐿) on nonlinear frequency of system. Systems 
parameters: ℓ = 0; 𝐽௠ = 100; 𝑎଴ = 0.5. 

 
Figure 11. Influence of stiffening parameter (𝐽௠) on nonlinear frequency of system. Systems param-
eters: 𝐿 = 30μm; ℓ = 0; 𝑎଴ = 0.5. 

 
Figure 12. Influence of length scale parameter ℓ on nonlinear frequency of system. Systems param-
eters: 𝐿 = 30μm; 𝐽௠ = 100; 𝑎଴ = 0.5. 
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5. Discussion on the Strain-Stiffening 
Rubber-like materials can be deformed by stretching. In the beginning, we can stretch 

rubbers easily, but if the stretch is large enough, the stretching process becomes difficult. 
This is due to the strain-stiffening effect in rubber-like materials. The strain-stiffening is a 
nonlinear behavior that is seen even in soft biological materials such as liver and brain 
tissue [59]. We can use this property in hyperelastic materials so as to evade damage. The 
strain-stiffening can also be connected to the molecular-statistical point of view in nonlin-
ear elasticity. The stiffening parameters 𝐽௠ in the Gent model relates to the number of 
rigid links in a single chain 𝑁 using 𝐽௠ = 3(𝑁 − 1). 𝑁 is also called the classical number 
of Kuhn segments [60]. The results of Figures 5, 7, and 11, can also be interpreted based 
on molecular-statistical point of view. We see that altering 𝐽௠, the number of segments 
changes accordingly. Therefore, this change affects the frequency/force response of the 
hyperelastic microbeam. Taken together, the results of this paper can help researchers 
who would like to analyze the hyperelastic microbeam via molecular-statistical hypere-
lastic models such as generalized neo-Hookean model. 

6. Conclusions 
In this paper, nonlinear, free, and forced oscillations of a hyperelastic micro/nano-

beam were investigated with the inclusion of the small-scale effect, strain-stiffening effect, 
and moderate rotation. A developed Euler–Bernoulli beam theory was utilized to model 
the beam, and the energies and works that appeared in the system were formulated. The 
equation of motion was derived using Hamilton’s principle and the Galerkin decomposi-
tion method. Frequency-amplitude curves and the nonlinear natural frequency diagrams 
were illustrated by analytically solving the equation of motion. This paper concludes that: 
• Increasing the strain-stiffening effect leads to increasing hardening nonlinearity. 
• For the neo-Hookean model with 𝐽௠ = ∞, the nonlinearity vanishes, and the re-

sponse is transformed into a linear type. 
• As the stiffening parameter 𝐽௠  is increased, the nonlinear natural frequency de-

creases. 
• The length of the micro/nanobeam, the damping, and size effects were identified as 

influential parameters in the system. 
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