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Abstract 

Rotating micromachined beams are one of the most practical devices with several applications 

from power generation to aerospace industries. Moreover, recent advances in micromachining 

technology have led to huge interests in fabricating miniature turbines, gyroscopes and microsensors 

thanks to their high quality/reliability performances. To this end, this article is organized to examine 

the axial dynamic reaction of a rotating thermoelastic nanobeam under a constant-velocity moving 

load. Using Eringen’s nonlocal elasticity in conjunction with Euler–Bernoulli theory and Hamilton's 

principle, the governing equations are derived. It is assumed that the nanobeam is affected by thermal 

load and the boundary condition is simply supported. The Laplace transform approach is employed 

to solve the partial differential equations. A numerical example is presented to analyze the effects of 

the nonlocal parameter, rotation speed and velocity of the static moving load on the dynamic behavior 

of the system. The numerical results are graphically illustrated and analyzed to recognize the 

variations of field variables. Finally, in some special cases, our results are compared to those reported 

in the literature to demonstrate the reliability of the current model. 

Keywords: Micormachined rotating beams; Nonlocal elasticity theory; Thermoelasticity; 

Nanobeams; Moving load 

1. Introduction

The term "nano" refers to the nanometer scale and, more generally, to clearly sub-micron

dimensions. More specifically, nanoscience is the study of basic principles/interactions of molecules 

and structures ranging from approximately 1 to 100 nanometers. These types of structures are known 

as nanostructures [1]. The wide range of practical applications in high-tech nano-devises and systems 

include important nanomaterials in many fields such as aerospace, electronics, automotive, tribology, 

construction, catalysis, packaging and etc. Other types of nanostructures, for example, nanotubes, 
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nano-plates, and nanobeams were developed due to their advanced applications in electrical 

equipment and nuclear microscopes.  

A result of various aspects of nano realm appears in nanotechnology which involves nanoscience, 

engineering and technology. Simulation and manipulation of material in the nanoscale regime are 

part of it. Nanotechnology requires at least one-dimensional creation of miniaturized devices with 

nanometer dimensions [2]. Different molecular components may also be incorporated into a 

functional system in nanotechnology. The advantages are thus tangible in the fields of aerospace and 

defense, energy storage, remediation and restoration, human health and other scientific areas. All 

recent accomplishments have profoundly altered our quality of life [2]. Microscale plates and beams 

are the building blocks of biosensors, smartphone’s micro gyroscopes, microscale vibration energy 

harvesters and microactuators and many other micro-electro-mechanical systems where the operating 

concept is their time-dependent deformations or movements [3-9]. 

In recent years, researchers focused on the mechanical characteristics of nanostructures such as 

nanobeams and plates based on non-classical models of elasticity because of their growing 

applications in nano-electronic structures and nano-sensors. Non-classical theories such as the theory 

of nonlocal elasticity [10, 11], strain gradient theory [12] and modified theory of couple stress [13] 

have been enormously applied to investigate the mechanical features of these structures at the 

nanoscale. Non-local continuum mechanics are ideal for modeling of nano-sized structures which are 

based on the size-dependent behavior of such structures in sub-micron scales. A well-known model 

named modified couple stress theory (MCST) [13] is one of the most common theories in the field. 

This hypothesis is used to explain the micron-scale size-dependency observations. A new set of 

equilibrium equations is constructed which is then applied to the idea of the MCST. A novel 

equilibrium equation for couple stresses is included in this theory. It is stated that with this new 

equations, the couple stress tensor in MCST is restricted as symmetric, reducing the number of extra 

elastic material coefficients. The constitutive equations of the model incorporate extra elastic material 

constants expressing the material's internal characteristic length as a result of the contribution of 

couple-stresses. 

Practical observations on microstructured systems show that the stiffness and strength of materials 

with a micron and sub-micron dimensions can be greater than their bulk materials and therefore size 

or scale effects are important for these kinds of materials. The concepts of classical continuum 

mechanics lack an intrinsic material length scale parameter and hence cannot account for size effects. 

To overcome this drawback, the nonlocal elasticity theory suggests that the stress field will be non-

local because the stress-strain relationship at a given point depends on the strains of the entire 

medium. As a result, scientists were inspired to create different hypotheses for nonlocal continuum 

mechanics. The nonlocal theory of elasticity includes a scale-dependent parameter named non-local 

parameter which provides a mechanism to reduce the rigidity due to the non-local effects [14]. In 

recent years, several researches were conducted to analyze the elastic, thermal, wave propagation, 

and vibration behavior of micro- and nano-structures on the basis of various beam theories [15-39]. 

Nanowires, semi-miniaturized belts, nano-films and silicon-based accelerometers are some 

examples of axially motion systems utilized in many industries and engineering equipment. In recent 

decades, therefore, a lot of attention has been paid to mathematical modeling and vibrational analysis 

of these structures [39, 40]. Within the framework of a generalized non-local thermoelastic approach, 

Zenkour and Abouelregal [41] studied the dynamic performance and temperature variations of a 

nano-beam subject to a moving load. The temperature, deflection, displacement and bending moment 

distributions were calculated using the Laplace transformation technique. Zenkour and Abouelregal 

[42] examined the dynamic features of a ramp-type heating nanobeam exposed to a moving static 

load. Arda [43] studied the vibration of an axially loaded viscoelastic nanobeam. Lin and Trethewey 

[44] investigated the dynamic arbitrary motions of a spring-mass-sweeper device of an elastic beam 

subject to dynamic loads by employing Euler-Bernoulli beam model. Shariati et al. [45] presented the 

size-dependent stability analysis of moving viscoelastic functionally graded nanobeams on the basis 
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of nonlocal elasticity theory. Jaiswal and Iyengar [46] considered the dynamic response of an endless 

long beam resting on a finite depth substrate subject to moving force actions. In the context of Euler-

Bernoulli beam theory, Lee [47] studied the transverse vibrations of a beam-type structure in the 

presence of a static moving load. 

Rotating beams are principal components of several micro and nanosystems and devices. In 

general, some studies of rotating nanobeams were conducted on nano-sized turbines, nanogenerators 

and nanobots in various machinery and robotic applications. Therefore, it is of great importance for 

researchers to explore the rotating effects on the overall response of such structures. Rotating beam-

type micromachined structures are widely utilized as the blades of microturbines, micromachined 

gyroscopes, microsensors to measure the angular velocity of a rotating frame and high resolution 

spinning space miniature structures in small portable micro-satellites and navigation devices. Figure 

1 illustrates some realistic applications of miniature rotating beams in modern tools and devices.  

 

 

(a) (b) 

 

 

(c) (d) 

Figure 1: Some realistic applications of rotating micromachined  beams (a) microgyroscope with rotary 

movement of pillars [48] (b) axial microturbine [49] (c) micromachined Gyroscope proposed by National 

University of Defense Technology (NUDT) [34] (d) Nano-Gyroscope in rotating machine composed of 

carbon nanotube [50] 

   

Hosseini et al. [51] presented the stress analysis of rotating FGM nano-disks on the basis of strain 

gradient theory. Mohammadi et al. [52] studied the hygro-mechanical vibration of a spinning, non-

linear, nano-viscous beam resting on an elastic visco-Pasternak medium. On the basis of strain 

gradient theory, Hosseini et al. [53] presented the thermoelastic behavior of rotating FG micro-/nano-

disks with variable thickness. In addition, the analysis of smart porous rotating heterogeneous piezo-

electric nanobeams was considered by Ebrahimi and Dabbagh [54] within the framework of nonlocal 

elasticity theory. Khadimallah et al. [55] investigated the impact of three different fraction laws in 

vibrational behavior of rotating nanostructures.  Karimi-Nobandegani et al. [56] studied the instability 

analysis of rotating cracked beams exposed to tangential compressive loads. Zhang et al. [57] 

presented the atomistic simulations of double-walled carbon nanotubes on rotational bearings. 
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Several works in the literature focused on the dynamic characteristics of rotating small-sized 

structures [58–62] demonstrating the importance of this topic among researchers and scientists. 

Geometric nonlinearities are prevalent phenomena in many fields and applications. When the 

elements are exposed to compressive forces, the stiffness of the structure may be weakened which 

play a crucial role in the structural performance of the host system and, as a result, it should be 

considered in the design processes of such systems. Tension forces are seldom a concern since they 

cause the system's parts to become more rigid. Many structural components may be idealized as 

beams, such as airplane wings, rotor blades and robot arms. Additionally, the assumption that the 

unstrained and undeformed configurations are valid at equilibrium state is not always accurate, and 

the geometrical nonlinearities and deformations must be taken into account. Aeronautics and 

aerospace fields as well as microelectromechanical systems require models that are more realistic 

because the physiomechanical characteristics of beam structures play a key role in their optimal 

design. As a result, modeling of geometrically nonlinearities in such systems is a crucial research 

topic in the field. 

The basic idea of Euler–Bernoulli hypothesis for beams employed in the preceding work is based 

on the premise that beam deflections are only due to flexural deformations and both rotary inertia and 

transverse shear effects should be ignored which has acceptable accuracy for several engineering 

applications. The Timoshenko beam theory, which considers these two factors, gives a better 

approximation where the thickness of beams are comparable with their lengths. For non-slender 

beams and high-frequency responses with considerable shear or rotational effects, Timoshenko's 

beam theory represents a significant improvement. The extra rotation of beam’s cross-section, due to 

shear deformation, is omitted in Euler-Bernoulli theory. Furthermore, compared to flexural 

deformation, shear-induced angular distortion is deemed to be minimal. The thin beam theory can be 

applied to beams in which their lengths are at least 10 times greater than their thicknesses. 

The general thermoelasticity theories have been established to resolve the infinite speed of heat 

waves estimated by the conventional coupled dynamic thermoelasticity models introduced by Biot 

[63]. Lord and Shulman [64] developed a generalized theory of thermoelasticity by suggesting a novel 

model to change the conventional Fourier assumption. The vector of heat flux, time derivative and 

relaxation time were included in this model. Tzou [65-67] considered the influences of infinitesimal 

interactions in the fast transition operation of a thermal medium within a macroscale framework of 

two-phase-delay heat conduction (DPL) theory. In a constitutive relationship concerning the heat-

wave and temperature changes, two separate phase-lags (one for temperature change and the other 

for heat-flow vector) were added [68–73]. In realistic engineering applications, the elastic bodies like 

nanobeams are often subject to variable-temperature ambient, and therefore, the variation of 

temperature fields should considered. The generalized thermoelasticity theories take into account the 

relation between temperature and strain rates. The corresponding relations are, furthermore, stated in 

the form of a hyperbolic function. The contradiction of the high speeds of propagating thermal waves 

is therefore ignored in the classical coupling model of thermoelasticity.  

Because of the widespread use of microbeams in electrical and aerospace engineering as well as 

the discrepancy between the reference and operating temperatures, it is critical to consider the thermal 

effects in designing the complex systems with sensitive applications. Few studies have been yet found 

on the effect of variable temperature of rotating nanobeams in the context of generalized 

thermoelasticity theory. It should be pointed out that the thermal stresses is one of the most important 

aspects of spinning micro-beams subject to varying heat sources. Therefore, both thermal and rotating 

effects should be taken into consideration in order to perform an accurate thermal analysis of such 

structures.  

Based on the mentioned concepts, a thorough investigation on the thermomechanical behavior of 

a rotating nanobeam influenced by a moving load has been introduced. Furthermore, a system of 

differential equations for nonclassical nanobeams under a moving mechanical load is established. The 

constructed model is based on the thermoelastic heat conduction theory with phase lags. Nonlocality 

and rotational effects on thermoelastic characteristics of the studied problem are considered. The 
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Laplace transform approach is then exploited to deal with the governing equations. The effects of 

moving load and the ramp time parameter are also addressed and discussed. The results obtained in 

this research are compared with the previous models and good agreements are found which 

demonstrates the accuracy of the present model. 

2. Basic equations and problem formulation 

The Hamiltonian principle is used to construct the governing equations of the presented model. The 

fundamental equation based on this principle is given by [21] 

 𝛿(𝑈𝑠 + 𝑉𝑒 − 𝐾𝑒) = 0 (1) 

where 𝑈𝑠 is the strain energy, 𝑉𝑒 is the virtual work due to external forces and 𝐾𝑒 is the kinetic energy.  

The virtual strain energy 𝛿𝑈𝑠 may be defined as [26] 

 𝛿𝑈𝑠 = ∬ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉
𝑉

= ∬ 𝜎𝑥𝛿𝜀𝑥𝑥𝑑𝐴𝑑𝑥 (2) 

in which 𝐴 and 𝐿 are the cross-sectional area and beam’s length. In addition, 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are, 

respectively, the stress and the strain tensors which are given by [25, 36] 

 𝜎𝑖𝑗 = 2𝜇𝜀𝑖𝑗 + [𝜆𝜀𝑘𝑘 − 𝛾𝜃]𝛿𝑖𝑗 , (3) 

 𝜀𝑖𝑗 =
1

2
(𝑢𝑗,𝑖 + 𝑢𝑖,𝑗) (4) 

where, 𝜆 and 𝜇 stand for the Lame's parameters, 𝜃 = 𝑇 − 𝑇0 is the temperature change, 𝑇0 represents 

the reference temperature, 𝛾 =
𝐸𝛼𝑡

1−2𝜈
, 𝛼𝑡 symbolizes the thermal expansion factor, 𝐸 denotes the 

modulus of elasticity and 𝛿𝑖𝑗 is the Kronecker’s delta function. It is worth mentioning that Lame's 

parameters are expressed in the following forms [36]:  

 𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
,     𝜇 =

𝐸

2(1+𝜈)
. (5) 

As mentioned earlier, the considered nanobeam is subjected to a moving mechanical load. The 

dimensions of the uniform nanobeam are: length, 𝐿  (0 ≤ 𝑥 ≤ 𝐿) width 𝑏  (−𝑏/2 ≤ 𝑦 ≤ +𝑏/2) and 

thickness h  (−ℎ/2 ≤ 𝑧 ≤ +ℎ/2). The system is supposed to be initially free of any stress and strain 

and the initial temperature of the entire beam is 𝑇0 . 

According to the assumption of Euler–Bernoulli beam theory with small strains, the non-zero 

deflections and strains are given by [27, 28] 

 
𝑢 = −𝑧

𝜕𝑤

𝜕𝑥
, 𝑣 = 0, 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡)

𝜀𝑥𝑥 = 𝑒 = 𝑧
𝜕2𝑤

𝜕𝑥2

  (6) 

 

 

Figure 2: Schematic view of a rotating nanoscale beam subject to a moving load 

 

Therefore, the nonvanishing constitutive relation is expressed as [34] 

 𝜎𝑥 = 𝐸
𝜕𝑢

𝜕𝑥
− 𝛼𝑇𝐸𝜃 = −𝐸𝑧

𝜕2𝑤

𝜕𝑥2 − 𝐸𝛼𝑇𝜃 (7) 
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By inserting Eq. (6) into Eq. (2), the energy of the strain can be calculated as [21, 26] 

 𝛿𝑈𝑠 = − ∫ 𝑀
𝜕2𝛿𝑤

𝜕𝑥2 𝑑𝑥
𝐿

0
 (8) 

where the bending moment 𝑀 is defined by [41, 42] 

 𝑀 = ∫ 𝑧 𝜎𝑥𝑑𝐴 (9) 

The whole system is rotating around the 𝑧-axis with the angular velocity of Ω, therefore, the 

longitudinal force 𝑅 should be taken into consideration. Furthermore, if the beam carries a moving 

load or a particle 𝑞(𝑥, 𝑡), the virtual potential energy 𝛿𝑉𝑒 is defined as follows [47] 

 𝛿𝑉𝑒 = − ∫ (𝑞 − 𝑅)
𝑑𝛿𝑤

𝑑𝑥

𝑑𝑤

𝑑𝑥
𝑑𝑥

𝐿

0
 (10) 

Excluding the rotary inertia, the virtual kinetic energy 𝛿𝐾𝑒 is given by [47] 

 𝛿𝐾𝑒 = ∫ 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 𝛿𝑤𝑑𝑥
𝐿

0
 (11) 

Then, one has 

 ∫ (𝑀
𝜕2𝛿𝑤

𝜕𝑥2 + (𝑅 − 𝑞)
𝑑𝛿𝑤

𝑑𝑥

𝑑𝑤

𝑑𝑥
+ 𝜌𝐴

𝜕2𝑤

𝜕𝑡2 𝛿𝑤) 𝑑𝑥
𝐿

0
 (12) 

with arbitrary 𝛿𝑤 over the interval 0 ≤ 𝑥 ≤ 𝐿 and using the integration by parts, the governing 

equation of motion can be extracted as [50, 51] 

 
𝜕2𝑀

𝜕𝑥2 =
𝜕

𝜕𝑥
[(𝑅 − 𝑞)

𝜕𝑤

𝜕𝑥
] + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2  (13) 

3. Nonlocal elasticity theory 

In this section, the non-local elasticity theory [10, 11, 74-77] is used to introduce the small-scale 

effects in nanoscale beams. From the nonlocal elasticity point of view, the fundamental concept is 

that the stress in a certain point is not only defined as a function of its own strain but also is affected 

by the strain fields of all other points of a flexible body. This non-classical theory includes the spatial 

integration, which is a weighted average of the strain field of the entire body to estimate the stress 

field. The non-local stress 𝜏𝑖𝑗  for any point 𝒙 of the elastic beam is written by 

 𝜏𝑖𝑗(𝒙) = ∫ Υ(|𝒙, 𝒙′|, 𝜉)
𝑉

𝜎𝑖𝑗(𝒙′)d𝑉(𝒙′) (14) 

In the above equation, Υ(|𝒙, 𝒙′|, 𝜉) is a positive scalar kernel operator, ‖𝒙 − 𝒙′‖ represents the 

Euclidean distance, 𝜉 = 𝑒0𝑎/𝑙 is the nonlocal scale parameter with the internal and external 

characteristic lengths of a and l and 𝑒0 is a parameter determined experimentally named the material-

dependent constant and 𝛿𝑘𝑙 denotes the delta function. When the kernel is chosen as [78, 79]: 

 Υ(|𝒙, 𝒙′|, 𝜉) = 1

2𝜋𝜉
2

𝑙
2 𝐾0 (

‖𝒙−𝒙′‖

𝜉𝑙
) (15) 

in which 𝐾0 stands for the modified Bessel function, Eq. (6) can be re-written as: 

 𝜏𝑖𝑗(𝒙) − 𝜉2∇2𝜏𝑖𝑗 = 𝜎𝑖𝑗(𝒙) (16) 

Eq. (16) is utilized to incorporate the effect of size-dependency in the mechanical behavior of 

nanostructures.  

Using Eq. (3) in (16), the following nonlocal constitutive stress-strain equation can be obtained 

 𝜏𝑖𝑗 − 𝜉2∇2𝜏𝑖𝑗 = 2𝜇𝜀𝑖𝑗 + 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 − 𝛾𝜃𝛿𝑖𝑗 (17) 

In one-dimensional analysis, the nonlocal constituent relationships can be summarized as: 

 𝜏𝑥𝑥 − 𝜉2 𝜕2𝜏𝑥𝑥

𝜕𝑥2 =   − 𝐸𝑧
𝜕2𝑤

𝜕𝑥2 − 𝐸𝛼𝑇  𝜃, (18) 

It is worth noting that by omitting the external characteristic lengths a which means that the 

elements of the elastic body are assumed to be continuously distributed, the parameter 𝜉 is equal to 

zero and the constitutive equation given in Eq. (18) turns to the classical case. 
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The theory of generalized thermoelasticity [52] was formulated in order to eliminate the infinite 

thermal diffusion velocity paradox which inherently exist in the traditional coupled thermoelasticity 

theory which is on the basis of Fourier’s law by assuming the heat conduction formulation in the form 

of the parabolic kind. The model proposed by Tzou [65-67] is among those generalized theories. This 

model includes two parameters indicating the delay times (phase-lags). The generalized heat equation 

proposed by Tzou’s theory is given by 

 (1 + 𝜏𝜃
𝜕

𝜕𝑡
) (𝐾𝜃,𝑖),𝑖 = 𝜌𝐶𝐸 (1 + 𝜏𝑞

𝜕

𝜕𝑡
) (

𝜕𝜃

𝜕𝑡
) + 𝛾𝑇0 (1 + 𝜏𝑞

𝜕

𝜕𝑡
) (

𝜕𝑒

𝜕𝑡
), (19) 

where 𝜌, 𝐾 and 𝐶𝐸 denote the density, thermal conductivity of the material and the specific heat at 

constant strain, 𝜏𝜃 represents the phase lag of temperature gradient, 𝜏𝑞 stands for the heat flux phase 

lag and 𝑒 = 𝜕𝑢/𝜕𝑥 incorporates the normal strain. 

The following relation is obtained by the substituting Eq. (6) into Eq. (19) 

 (1 + 𝜏𝜃
𝜕

𝜕𝑡
) (

𝜕2𝜃

𝜕𝑥2) + (1 + 𝜏𝜃
𝜕

𝜕𝑡
) (

𝜕2𝜃

𝜕𝑧2) =
𝜌𝐶𝐸

𝐾
(1 + 𝜏𝑞

𝜕

𝜕𝑡
) (

𝜕𝜃

𝜕𝑡
) −

𝛾𝑇0

𝐾
(1 + 𝜏𝑞

𝜕

𝜕𝑡
) (𝑧

𝜕3𝑤

𝜕𝑡𝜕𝑥2). (20) 

in which the longitudinal force 𝑅(𝑥) originates from the centrifugal effects at location 𝑥 (see Fig. 

2) and can be determined using the following formula [53, 56] 

 𝑅(𝑥)  = ∫ 𝜌𝐴Ω2(𝑟 + 𝜒)𝑑𝜒
𝐿

𝑥
 (21) 

As shown in Fig. 2, the parameter 𝑟 denotes the distance to the left edge of nano-beam from the 

center of rotation. Note that if Ω = 0, no rotation exists and the centrifugal tension force 𝑅 will 

disappear. The centrifugal tension force 𝑅 is then given by 

 𝑅(𝑥)  =
3𝐿𝜌𝐴Ω2

6𝐿
[(𝐿 − 𝑥)(𝐿 + 2𝑟 + 𝑥)] (22) 

Integrating equation (18) along with the thickness of the beam after multiplying the equation by z 

and then one has 

 𝑀 − 𝜉
𝜕2𝑀

𝜕𝑥2 = −𝐸𝐼
𝜕2𝑤

𝜕𝑥2 −𝐸𝐼𝛼𝑇𝑀𝑇 , (23) 

in which 𝐼 = 𝑏ℎ3/12, 𝐸𝐼 is the flexural rigidity and 𝑀𝑇 is the resulting moment caused by the effect 

of temperature gradient which is defined by 

 𝑀𝑇 =
12

ℎ3 ∫ 𝜃(𝑥, 𝑧, 𝑡) 𝑧𝑑𝑧
ℎ 2⁄

−ℎ/2
. (24) 

The following equation can be obtained by substituting Eq. (23) from Eq. (13) 

 𝑀 = 𝜉𝜌𝐴
𝜕2𝑤

𝜕𝑡2 − 𝜉(𝑞(𝑥) − 𝑅(𝑥)) − 𝐸𝐼
𝜕2𝑤

𝜕𝑥2 − 𝐸𝐼𝛼𝑇𝑀𝑇 , (25) 

The governing equation for the rotating nonlocal nano-beam can be obtained using Eq. (13) and 

(25) in terms of the deflection 𝑤 as follows 

 
𝜕4𝑤

𝜕𝑥4 +
𝜌𝐴

𝐸𝐼
(1 − 𝜉

𝜕2

𝜕𝑥2) (
𝜕2𝑤

𝜕𝑡2 ) + 𝛼𝑇
𝜕2𝑀𝑇

𝜕𝑥2 =
1

𝐸𝐼
(1 − 𝜉

𝜕2

𝜕𝑥2) (𝑞(𝑥) − 𝑅(𝑥)) (26) 

Equations (20) and (26) represent the basic equations for nonlocal rotating nanobeams on the basis 

of dual-phase thermoelasticity model. 

4. Solution of the problem 

In this work, the temperature change, 𝜃(𝑥, 𝑧, 𝑡), in the longitudinal direction of the nanobeam is 

studied and it is assumed that there is no heat flow through the upper and lower surfaces of the beam, 

i.e. 
𝜕θ

𝜕𝑥
= 0 at 𝑧 = ±ℎ/2. For a very thin beam, it is supposed that the temperature gradient can be 

described in terms of sin(𝜋𝑧/ℎ) as follows:  

 𝜃(𝑥, 𝑧, 𝑡) = Ψ(𝑥, 𝑡) sin(𝑝𝑧) ,    𝑝 =
𝜋

ℎ
. (27) 

By considering Eq. (27), the governing equations (20), (25) and (26) become 
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𝜕4𝑤

𝜕𝑥4 +
𝜌𝐴

𝐸𝐼
(1 − 𝜉

𝜕2

𝜕𝑥2) (
𝜕2𝑤

𝜕𝑡2 ) +
24𝛼𝑇

𝜋2ℎ

𝜕2Ψ

𝜕𝑥2 =
1

𝐸𝐼
(1 − 𝜉

𝜕2

𝜕𝑥2) (𝑞(𝑥) − 𝑅(𝑥)). (28) 

 𝑀 = 𝜉𝜌𝐴
𝜕2𝑤

𝜕𝑡2 − 𝜉(𝑞(𝑥) − 𝑅(𝑥)) − 𝐸𝐼
𝜕2𝑤

𝜕𝑥2 − 𝐸𝐼
24𝑇0𝛼𝑇

𝜋2ℎ
Ψ, (29) 

 (1 + 𝜏𝜃
𝜕

𝜕𝑡
) (

𝜕2Ψ

𝜕𝑥2 −
𝜋2

ℎ2 Ψ) =
𝜌𝐶𝐸

𝐾
(1 + 𝜏𝑞

𝜕

𝜕𝑡
)

𝜕Ψ

𝜕𝑡
−

𝛾𝑇0𝜋2ℎ

24𝐾
(1 + 𝜏𝑞

𝜕

𝜕𝑡
) (

𝜕3𝑤

𝜕𝑡𝜕𝑥2), (30) 

In order to simplify the governing equations, the system parameters are introduced in non-

dimensional forms which helps us to conduct some comparative studies with the previous works in 

the literature. The following non-dimensional terms are introduced 

 

(𝑥′, 𝐿′, 𝑢′, 𝑤′, 𝑧′, ℎ′, 𝑏′) = 𝜂𝑐(𝑥, 𝐿, 𝑢, 𝑤, 𝑧, ℎ, 𝑏),      (𝑡′, 𝑡′
0, 𝜏′

𝑞, 𝜏′
𝜃) = 𝜂𝑐2(𝑡, 𝑡0, 𝜏𝑞, 𝜏𝜃),

𝜉′ = 𝜂2𝑐2𝜉,     Ψ′ =
Ψ

𝑇0
,      {𝑞′, 𝑅′} =

𝐴

𝐸𝐼
{𝑞, 𝑅},  𝑀′ =

𝑀

𝜂𝑐𝐸𝐼
,   𝑐 = √

𝐸

𝜌
 ,   𝜂 =

𝜌𝐶𝐸

𝐾
,

 (31) 

Then Eqs. (28)-(30) can be written as (the prime symbols are dropped, for the sake of simplicity) 

 
𝜕4𝑤

𝜕𝑥4 +
12

ℎ2 (1 − 𝜉
𝜕2

𝜕𝑥2) (
𝜕2𝑤

𝜕𝑡2 ) +
24𝑇0𝛼𝑇

𝜋2ℎ

𝜕2Ψ

𝜕𝑥2 = (1 − 𝜉
𝜕2

𝜕𝑥2) (𝑞(𝑥) − 𝑅(𝑥)), (32) 

 (1 + 𝜏𝜃
𝜕

𝜕𝑡
) (

𝜕2Ψ

𝜕𝑥2 −
𝜋2

ℎ2 Ψ) = (1 + 𝜏𝑞
𝜕

𝜕𝑡
) (

𝜕Ψ

𝜕𝑡
) −

𝛾 𝜋2ℎ

24𝐾𝜂
(1 + 𝜏𝑞

𝜕

𝜕𝑡
) (

𝜕3𝑤

𝜕𝑡𝜕𝑥2), (33) 

 𝑀(𝑥, 𝑡) =
12𝜉

ℎ2

𝜕2𝑤

𝜕𝑡2 − 𝜉(𝑞(𝑥) − 𝑅(𝑥)) −
𝜕2𝑤

𝜕𝑥2 −
24𝑇0𝛼𝑇

𝜋2ℎ
Ψ. (34) 

The external moving load 𝑞(𝑥, 𝑡) is supposed to be concentrated with a constant velocity 𝜐 along 

the beam’s longitudinal direction and may therefore be represented as [41, 42] 

 𝑞(𝑥, 𝑡) = 𝑄0𝛿(𝑥 − 𝜐𝑡) (35) 

in which 𝑄0 denotes the load strength that assumed to be constant and 𝛿(·) is the Dirac function. 

In the present paper, it is assumed that the angular velocity of the nanobeam is constant and therefore 

the centrifugal load 𝑅(𝑥) acts at its maximum value. The axial centrifugal load R is then given by 

[53, 55] 

 𝑅𝑚𝑎𝑥  = ∫ 𝜌𝐴Ω2(𝑟 + 𝑥)𝑑𝑥 =
1

2
𝜌𝐴Ω2𝐿(2𝑟 + 𝐿)

𝐿

0
 (36) 

Therefore, the equation of motion (32) can be represented as 

 
𝜕4𝑤

𝜕𝑥4 +
12

ℎ2 (1 − 𝜉
𝜕2

𝜕𝑥2) (
𝜕2𝑤

𝜕𝑡2 ) +
24𝑇0𝛼𝑇

𝜋2ℎ

𝜕2Ψ

𝜕𝑥2 = (1 − 𝜉
𝜕2

𝜕𝑥2) [𝑞 −
6𝐿Ω2(2𝑟+𝐿)

ℎ2

𝜕2𝑤

𝜕𝑥2 ] (37) 

The bending moment (34) can also be described as 

 𝑀 =
12𝜉

ℎ2

𝜕2𝑤

𝜕𝑡2 − 𝜉 [𝑞 −
6𝐿Ω2(2𝑟+𝐿)

ℎ2

𝜕2𝑤

𝜕𝑥2 ] −
𝜕2𝑤

𝜕𝑥2 −
24𝑇0𝛼𝑇

𝜋2ℎ
Ψ (38) 

The nanobeam is supposed to be homogeneous, undeformed and initially at rest. Therefore, the 

following initial conditions are introduced 

 𝑤(𝑥, 𝑡)|𝑡=0 =
𝜕𝑤(𝑥,𝑡)

𝜕𝑡
|

𝑡=0
= 0,   Ψ(𝑥, 𝑡)|𝑡=0 =

𝜕Ψ(𝑥,𝑡)

𝜕𝑡
|

𝑡=0
= 0, (39) 

On the other hand, the boundary conditions of the structure at the ends 𝑥 = 0, 𝐿 are provided as 

 𝑤(𝑥, 𝑡) = 0,         
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 = 0 (40) 

In addition, it is assumed that 

 𝜃 = 𝜃(𝑧, 𝑡) = 𝜃0 sin(𝑝𝑧) 𝑓(𝑥, 𝑡)        at    𝑥 = 0. (41) 

in which 𝜃0 stands for as a constant coefficient and the function 𝑓(𝑥, 𝑡) is expressed by the following 

formula: 

 𝑓(𝑥, 𝑡)|𝑥=0 = {

0,                         𝑡 ≤ 0,
𝑡

𝑡0
,            0 ≤ 𝑡 ≤ 𝑡0,

1,                 𝑡 > 𝑡0,

 (42) 

in which 0t  symbolizes the non-negative ramp-type parameter. Furthermore, the temperature at the 

second end satisfies the following condition: 

 
𝜕Ψ

𝜕𝑥
= 0  ,    𝑥 = 𝐿. (43) 
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5. Laplace transform approach 

In order to deal with the governing equations, the Laplace transform method is used to reduce the 

order of the differential equations by omitting the time derivatives and solving the resulting equation 

in the Laplace space. By applying the Laplace technique, by assuming zero initial conditions (39), 

Eqs. (33), (37), and (38), in their transformed cases, are written by:  

 𝐴0
d

4𝑤̅

d𝑥4 − 𝐴1
d

2𝑤̅

d𝑥2 + 𝐴2𝑤̅ + 𝐴3
d

2Ψ̅

d𝑥2 = 𝑔̅(𝑠)𝑒−
𝑠

𝜐
𝑥, (44) 

 (1 + 𝜏𝜃𝑠) (
d

2

d𝑥2 − 𝐴4) Ψ̅ = 𝑠(1 + 𝜏𝑞𝑠)Ψ̅ − 𝐴5𝑠(1 + 𝜏𝑞𝑠)
d

2𝑤̅

d𝑥2 , (45) 

 𝑀̅ = −𝐴0
d

2𝑤̅

d𝑥2 + 𝐴2𝑤̅ − 𝐴3Ψ̅ −
𝜉 𝑄0

𝜐
𝑒−

𝑠

𝜐
𝑥, (46) 

where  

 
𝐴0 = 1 −

6𝐿Ω2𝜉(2𝑟+𝐿)

ℎ2 ,   𝐴1 =
12𝜉𝑠2

ℎ2 −
6𝐿Ω2(2𝑟+𝐿)

ℎ2 ,     𝐴2 =
12𝜉

ℎ2 ,

𝐴3 =
24𝑇0𝛼𝑇

𝜋2ℎ
,   𝑔̅(𝑠) =

𝑄0

𝜐
(1 − 𝜉

𝑠2

𝜐2) , 𝐴4 =
𝜋2

ℎ2 ,   𝐴5 =
𝛾 𝜋2ℎ

24𝐾𝜂
.

 (47) 

Removing Θ̅ from equations (44) and (45), one gets  

 [
d6

d𝑥6 − 𝐴
d4

d𝑥4 + 𝐵
d2

d𝑥2 − 𝐶] 𝑤̅ = 𝛤1𝑒−
𝑠

𝜐
𝑥
 (48) 

In which 

 

𝐴 =
𝐴1

𝐴0
+

𝜙𝐴3𝐴5

𝐴0
+ 𝐴4 + 𝜙,  𝐵 =

𝐴2

𝐴0
+

𝐴1

𝐴0
(𝐴4 + 𝜙), 𝐶 =

𝐴2

𝐴0
(𝐴4 + 𝜙), 

  𝜙 =
𝑠(1+𝜏𝑞𝑠)

(1+𝜏𝜃𝑠)
,   𝛤1 = 𝑔̅(𝑠)((𝑠 𝜐⁄ )2 − (𝐴4 + 𝜙))/𝐴0.

 (49) 

The solution of 𝑤̅ can be derived from equation (48) as follows:  

 𝑤̅ = ∑ (𝐶𝑗𝑒−𝑚𝑗𝑥 + 𝐶𝑗+3𝑒𝑚𝑗𝑥) + 𝐶7𝑒−𝑠𝑥/𝜐
3

𝑗=1
 (50) 

where 𝐶7 = 𝛤1/((𝑠 𝜐⁄ )6 − 𝐴(𝑠 𝜐⁄ )4 + 𝐵(𝑠 𝜐⁄ )2 − 𝐶), 𝑚1
2, 𝑚2

2 and 𝑚3
2 represent the roots of 

characteristic equation governed by 

 𝑚6 − 𝐴𝑚4 + 𝐵𝑚2 + 𝐶 = 0. (52) 

Similarly, by removing 𝑤̅ from (44) to (45), the governing equation for Θ̅ yields  

 [
𝑑6

𝑑𝑥6 − 𝐴
𝑑4

𝑑𝑥4 + 𝐵
𝑑2

𝑑𝑥2 − 𝐶]  Ψ̅ = 𝛤2𝑒−
𝑠

𝜐
𝑥, (53) 

where 𝛤2 = 𝑞𝑠2𝐴5𝑔̅(𝑠)/(𝜐2𝐴0). In addition, the solution of Eq. (53) can be expressed as 

 Ψ̅ = ∑ 𝛽𝑖(𝐶𝑗𝑒−𝑚𝑗𝑥 + 𝐶𝑗+3𝑒𝑚𝑗𝑥) + 𝐶8𝑒−𝑠𝑥/𝜐
3

𝑗=1
 (55) 

where  

 𝛽𝑖 =
𝑞𝐴5𝑚𝑖

2

(𝐴4+𝑞)−𝑚𝑖
2 , 𝐶8 =

𝛤2

(𝑠 𝜐⁄ )6−𝐴(𝑠 𝜐⁄ )4+𝐵(𝑠 𝜐⁄ )2−𝐶
. (56) 

By substituting 𝑤̅ and Θ̅ into equation (46), the solution of bending moment 𝑀̅ is given by: 

 𝑀̅ = − ∑   (𝐴0𝑚𝑖
2 − 𝐴2 + 𝐴3𝛽𝑖)(𝐶𝑖𝑒−𝑚𝑖𝑥 + 𝐶𝑖+3𝑒𝑚𝑖𝑥)

3

𝑖=1
+ 𝐶9𝑒−

𝑠

𝜐
𝑥, (58) 

in which 

 𝐶9 = −(𝐴0(𝑠 𝜐⁄ )2 − 𝐴2)𝐶7 − 𝐴3𝐶8 −
𝜉 𝑄0

𝜐
 (59) 

The axial displacement 𝑢̅ also takes the following form by considering Eqs. (6) and (50) 

 𝑢̅ = −𝑧
𝑑𝑤̅

𝑑𝑥
= 𝑧  ∑ 𝑚𝑖(𝐶𝑖𝑒−𝑚𝑖𝑥 − 𝐶𝑖+3𝑒𝑚𝑖𝑥)3

𝑖=1    + (𝑠 𝜐⁄ )𝐶7𝑒−𝑠𝑥/𝜐. (60) 

One can obtain the strain field of the nanobeam as  

 𝑒̅ =
𝑑𝑢̅

𝑑𝑥
= −𝑧  ∑ 𝑚𝑖

2(𝐶𝑖𝑒−𝑚𝑖𝑥 + 𝐶𝑖+3𝑒𝑚𝑖𝑥)
3

𝑖=1
   − (𝑠 𝜐⁄ )2𝐶7𝑒−𝑠𝑥/𝜐. (61) 
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The boundary conditions (40)-(43) are reduced into the Laplace transform field as 

 𝑤̅(𝑥, 𝑠)|𝑥=0,𝐿 = 0,        
𝑑2𝑤̅(𝑥,𝑠)

𝑑𝑥2 |
𝑥=0,𝐿

= 0, (62) 

 Ψ̅(𝑥, 𝑠)|𝑥=0 = 𝜃0 (
 1−𝑒−𝑡0𝑠

𝑡0𝑠2 ) = 𝐺̅(𝑠). (63) 

 
𝜕Θ̅

𝜕𝑥
= 0,    𝑥 = 𝐿. (64) 

Substitution of Eqs. (50) and (55) into Eqs. (62)-(64) gives 

 ∑ (𝐶𝑗 + 𝐶𝑗+3) = −𝐶7

3

𝑗=1
 (65) 

 ∑ (𝐶𝑗𝑒−𝑚𝑗𝐿 + 𝐶𝑗+3𝑒𝑚𝑗𝐿) = −𝐶7𝑒−𝑠𝐿/𝜐
3

𝑗=1
 (66) 

 ∑ 𝑚𝑗
2(𝐶𝑗 + 𝐶𝑗+3𝑒𝑚𝑗𝑥) = −𝐶7𝑠2/𝜐2

3

𝑗=1
 (67) 

 ∑ 𝑚𝑗
2(𝐶𝑗𝑒−𝑚𝑗𝐿 + 𝐶𝑗+3𝑒𝑚𝑗𝐿) = −𝐶7(𝑠2

3

𝑗=1
/𝜐2)𝑒−𝑠𝐿/𝜐 (68) 

 ∑ 𝛽𝑖(𝐶𝑗 + 𝐶𝑗+3)
3

𝑗=1
   = 𝐺̅(𝑠) − 𝐶8. (69) 

 ∑ 𝛽𝑗𝑚𝑗(−𝐶𝑗𝑒−𝑚𝑗𝐿 + 𝐶𝑗+3𝑒𝑚𝑗𝐿)
3

𝑗=1
   = 𝐶8(𝑠/𝜐)𝑒−𝑠𝐿/𝜐. (70) 

The final forms of the solutions to all field variables in the Laplace domain are obtained by 

determining the integral constants 𝐶𝑗. From equations (47)-(52), the unknown constants 𝐶𝑗 can be 

obtained. The current problem is numerically studied based on the Fourier expansion method by 

employing mathematical software. 

6. Inversion of the Laplace transforms 

In order to apply the Laplace transform inversion, the Riemann summation approach is employed to 

achieve the numerical solution of the transversal deflection, stress field and temperature gradient. In 

this approach, the time domain solution Η(𝑥, 𝑡), can be obtained from the Laplace domain result 

Η̅(𝑥, 𝜁) as follows [67] 

 Η(𝑥, 𝑡) =
𝑒𝜁 𝑡

2𝑡
𝑅𝑒[Η̅(𝑥, 𝜁)] +

𝑒𝜁 𝑡

𝑡
𝑅𝑒 ∑ (−1)𝑛Η̅ (𝑥, 𝜁  +

𝑖𝑛𝜋

𝑡
)

𝑁

𝑛=0
, (71) 

in which 𝜁 represents a real number which is larger than all real components of Η̅(𝑥, 𝑡), 𝑅𝑒 is an 

operator that extracts the real part of each function, and 𝑖 is the imaginary unit. Numerical calculations 

demonstrate that for appropriate convergence, 𝜁 should take the value of 4.7/𝑡. 

7. Numerical results 

This section focuses on the thermomechanical behavior of heat waves in nanobeams due to varying 

heat source. A rotating nanobeam subject to a moving load is modeled using the generalized 

thermoelasticity and nonlocal Euler-Bernoulli beam theories. Silicon (Si) material was taken into 

account as the main flexible nanobeam. Different physical properties of this kind of material are as 

follows [41, 42]: 

 

𝛼𝑇 = 2.59 × 10−6K−1,      𝜈 = 0.22,     𝐾 = 156 W/(mK), 𝑇0 = 293 𝐾 

𝐸 = 169 GPa,   𝜌 = 2330 kg/m
3,   𝐶𝐸 = 713 J/(kgK),  𝛺 = 0.1,  

𝑡 = 0.1sec,   𝐿/ℎ = 10,   𝑏/ℎ = 0.5,   𝐿 = 1, 𝑧 = ℎ/3. 
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The dimensions of the microscale beam (such as length, width and thickness) are selected in the 

range of (1 − 100) × 10−9m. In picoseconds, in the interval (1 − 100) × 10−14sec, the relaxation 

parameter 𝜏0 and the thermal vibration parameter 𝑡0 are also specified at the instant time 𝑡. Moreover, 

the microbeam’s length to thickness ratio is taken as 𝐿/ℎ = 10 and the other variables are assumed 

to take the values  𝑡 = 0.12, 𝐿 = 1, 𝑟 = 0.05 and 𝑧 = ℎ/3. The nonlocal parameter and the velocity 

of the moving load are introduced as follows:  𝜐̅ (𝜐̅ = 103 𝜐) and  𝜉̅ (𝜉̅ = 103 𝜉).  

7.1 Validation 

By ignoring the impact of rotation speed, one can conclude that there is a good agreement with 

those reported in [41, 42]. Therefore, the impacts of moving load, rotating speed and phase lags are 

examined in this research. After analyzing the present approach, the vibrational response of the 

considered problem is explored by assuming different values of systems parameters. The values of 

the vector fields may be calculated in accordance with the classical theory of elasticity when the non-

local parameter 𝜉̅ is zero. In addition, with the assumption of 𝜏𝑞 = 𝜏𝜃 = 0, the values of the physical 

fields based on the CTE model can be obtained.  

7.2 The nonlocality effect 

In the first case, the variations of the non-dimensional deflection, axial displacement, temperature 

gradient and bending moment are investigated for various values of non-local parameter 𝜉̅. Three 

values for this parameter, namely 𝜉̅ = 0, 𝜉̅ = 1, and 𝜉̅ = 3, are used, and the other parameters like 

moving load velocity 𝜐̅, rotation Ω and the time of ramp 𝑡0 remain constant as 𝜐̅ = 3, Ω = 0.5 and 

𝑡0 = 0.1, respectively. The time delays 𝜏𝑞 and 𝜏𝜃 are equal to 𝜏𝑞 = 0.02,  𝜏𝜃 = 0.01.  

It is noted that the classical theory can be reached when 𝜉̅ takes the zero value (CTE model) and 

the nonlocal thermoelasticity theory (NLTE model) is indicated by assigning positive values for 𝜉̅. 
The variation of the physical fields of nanobeam versus dimensionless distance x are shown in Figures 

3-6 for different nonlocal parameter 𝜉̅. The nanobeam responses are obtained at 𝑡 = 0.12. According 

to the illustrated results, one can find that the nonlocal parameter has considerable effect on all 

physical fields and the presence of size-dependency cannot be ignored in the thermoelastic response 

of rotating nanobems in thermal environment. 

Figure 3 shows that, at lower values of x, the values of thermal deflection 𝑤 for NLTE model is 

somehow similar to the classical CTE model, however, by increasing the distance x, a slight deviation 

is seen in comparison with the classical theory. This phenomenon is similar to that obtained by 

Abouelregal and Zenkour [42]. Furthermore, the values of deflection based on NLTE model are 

greater than the CTE theory.  
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Figure 3: The variation of deflection 𝑤 vs the 

nonlocal parameter 𝜉̅ 
Figure 4: The variation of temperature 𝜃 vs the 

nonlocal parameter 𝜉̅ 

  

Figure 5: The variation of axial displacement 𝑢 vs 

nonlocal parameter 𝜉̅ 
Figure 6: The variation of bending moment 𝑀 vs 

nonlocal parameter 𝜉̅ 

Figure 4 shows the nanobeam thermodynamic temperature 𝜃 versus the axial position 𝑥 in view 

of some assigned values of 𝜉̅ as 0, 1 and 3. As the distance 𝑥 increases, the results show that 

temperature 𝜃 decreases against the wave propagation. According to this figure, one can infer that the 

thermal waves in the rotating nanobeam are smooth and continuous functions and reach the steady-

state response along with the distance of the nano-beam. This is in good agreement with the 

experimental and physical points of view, since the amount of heat is reduced with the reversal of the 

heat waves propagation. Furthermore, in the presence of the non-locality effect (𝜉̅ = 1 and 𝜉̅ = 3), 

the magnitude of 𝜃 is somehow smaller than those in the absence of non-locality effect (𝜉̅ = 0). This 

demonstrates the difference between the generalized local thermoelasticity and non-local generalized 

models of thermoelasticity. The effect of non-local term is to decrease the temperature distribution.  

Generally speaking, this parameter has a weak influence on the distribution of temperature compared 

to other field variables. 

The variation of the non-dimensional axial displacement 𝑢 versus 𝑥 for local and nonlocal theories 

are depicted in Figure 5. It can be seen that any increase in the value of 𝜉̅ causes an increase in the 

amount of the negative displacements of 𝑢 when 0 ≤ 𝑥 ≤ 0.44 and increases the positive values of 

𝑢 in the interval 0.44 ≤ 𝑥 ≤ 1.0. By reducing the rigidity of nanobeam, the non-local effect yields 

the higher values of transverse and axial displacements. As a result, the nonlocal nanobeam is more 

flexible than the classical one. 

The distribution of the bending moment 𝑀 in terms of distance 𝑥 based on the classical and non-

local models are plotted in Figure 6. It is also noted that as distance 𝑥 moves forward, the bending 

moment 𝑀 decreases. Furthermore, any increase in 𝜉̅ results in the greater values for nonlocal bending 

moments. One can infer that the nonlocality of nanobeam will significantly changes the 

thermomechanical behavior of the structure, especially its mechanical features, and therefore it is 

very important to consider it in designing of spinning nanobeams. 

7.3 The impact of angular speed of the nanobeam 

The effect of angular speed Ω on the nondimensional field vectors has been presented in this 

subsection. The vibrational behavior of the rotating nanobeams is influenced by the rotating speed Ω. 

Figures 7-10 are presented to demonstrate this effect. It is assumed that the velocity of moving load 

𝜐̅, the phase lags 𝜏𝑞 and 𝜏𝜃, the nonlocal parameter 𝜉̅ and the ramping time 𝑡0 are fixed and take the 

values (𝜐̅ = 1, 𝜏𝑞 = 0.05, 𝜏𝜃 = 0.02, 𝑡0 = 0.1, and 𝜉̅ = 1). Three different values of angular speed 
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(Ω = 0, 0.1, 0.3) are chosen to investigate the impact of this parameter on the mechanical behavior of 

the rotating nanobeam. As a special case study and in the absence of angular velocity, the rotation 

speed is assumed to be zero (Ω = 0). As the results of this section are compared to those for other 

parameters, it is concluded the vibrational response of the system are considerably affected by 

parameter Ω. Moreover, the distance r between the left edge of the nanobeam and the spinning axis 

has a great influence on the variation of the field variables. 

Figure 7 displays the influence of rotation on the transverse deflection 𝑤. The figure shows that 

the angular velocity Ω reduces the deflection 𝑤. It is concluded that the nanobeam becomes stiffer in 

the presence of angular rotation. These findings are in good agreement with those reported by 

Ebrahimi and Haghi [80]. The variation of temperature 𝜃 at any axial point 𝑥 is examined in Fig. 8 

for three values of angular speed. One concludes that as Ω increases, the temperature distribution also 

shifts upward. Furthermore, the figure shows the slight influence of the rotation speed on the 

temperature distribution which are consistent with the results obtained by previous works [81, 82]. 

Figure 9 presents the impact of parameter Ω on the variation of axial displacement 𝑢. It is revealed 

that the impact of angular velocity Ω is to decrease the absolute values of displacement 𝑢. Finally, 

according to Fig. 10, one observes that in the presence of angular velocity, the bending moment 𝑀 is 

slightly increased. 

 

  

Figure 7: The variation of deflection 𝑤 versus 𝑥 for 

some assigned values of rotation speed Ω 

Figure 8: The variation of temperature 𝜃 vs 𝑥 for 

some assigned values of rotations speed Ω 

  

Figure 9: The variation of displacement 𝑢 vs 𝑥 for 

some assigned values of rotations speed Ω 

Figure 10: The variation of bending moment 𝑀 vs 

𝑥 for some assigned values of rotations speed Ω 
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It is finally exhibited that the thermomechanical behavior of rotating micromachined beams is very 

sensitive to the values of rotational speed and therefore the results of this section provide useful 

theoretical findings to precisely design the blades of miniaturized turbines [80, 83, 84]. 

7.4 The impact of moving load velocity 

In the previous studies, many researchers have modeled and discussed the problem of small-scale 

systems in the presence of moving load by employing nonlocal theory of elasticity. However, this 

problem has not yet been discussed thoroughly on how nonlocal stress theories are affected by moving 

load velocity. Figures 11-14 show the distributions of field variables for some assigned values of 

moving load velocity. In order to justify the integrity of the present results, the simulations are 

performed by considering the microbeam parameters reported in the literature [85, 86]. It may be 

determined that the mechanical behavior of rotating nanobeam is more sensitive to the influence of 

moving load velocity compared to its thermal characteristics. More specifically, the velocity of 

moving load has no effect on the temperature distribution. 

In this section, the angular velocity Ω, nonlocal parameter 𝜉̅, the ramping time 𝑡0, the phase lags 

𝜏𝑞 and 𝜏𝜃 are supposed to be fixed and take the values (Ω = 0.1, 𝜏𝑞 = 0.05, 𝜏𝜃 = 0.02, 𝑡0 = 0.1,

and 𝜉̅ = 1). According to the illustrated results, it is evident that parameter 𝜐̅ plays a key role in the 

vibrational response of the system. The variation of transverse deflection 𝑤 against the axial velocity 

is shown in Figure 11. It is clear that with by increasing the moving load velocity 𝜐̅, the non-

dimensional deflection 𝑤 decreases which is consistent with practical findings in the literature. 

Figure 12 shows the effect of parameter 𝜐̅ on the temperature distribution 𝜃 in the case of nonlocal 

elasticity theory. According to this figure, it is evident that the moving load velocity has no influence 

on the temperature gradient 𝜃. This important observation is in coincidence with those obtained by 

Abouelregal and Zenkour [42], as for the absence of rotation. 

 

 

  

Figure 11: The distribution of deflection 𝑤 vs 𝑥 for 

some assigned values of speed 𝜐̅  

Figure 12: The distribution of temperature 𝜃 vs 𝑥 

for some assigned values of speed 𝜐̅ 
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Figure 13: The distribution of displacement 𝑢 vs 𝑥 

for some assigned values of speed 𝜐̅ 

Figure 14: The distribution of bending moment 𝑀 

vs 𝑥 for some assigned values of speed 𝜐̅ 

  

Figure 15: The distribution of deflection 𝑤 for 

some assigned values of ramping time 𝑡0 

Figure 16: The distribution of temperature 𝜃 for 

some assigned values of ramping time 𝑡0 

 

  

Figure 17: The distribution of displacement 𝑢 for 

some assigned values of ramping time 𝑡0 

Figure 18: The distribution of bending moment 𝑀 

for some assigned values of ramping time 𝑡0 
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Figure 13 is displayed to analyze the effect of moving load velocity 𝜐̅ on the axial displacement 𝑢. It 

is indicated that the values of the absolute values of displacement 𝑢 intend to decrease as the loading 

velocity is taken into account. Finally, Fig. 14 demonstrates the variation of the flexural moment 𝑀 

for three valued of moving load velocity 𝜐̅. One can deduce that the effect of the parameter 𝜐̅ is to 

increase the flexural moment 𝑀. Generally speaking, it can be concluded that, in the presence of 

loading velocity, the absolute values of transverse and axial displacements becomes smaller and the 

bending moment shifts upward by considering the loading velocity 𝜐̅. 

7.5 The impact of ramping time 

In the current subsection, the effect of ramping time 𝑡0 on the vibration behavior and temperature 

distribution is investigated by considering the variation of transverse and axial deflections, thermal 

and flexural moment distributions with the aid of thermal load expression defined in Eq. (42). The 

capacity of components and systems to resist against the variation of environmental temperature is 

very crucial in designing the sensitive devices like microelectromechanical systems in real-world 

applications. To determine the ramping time in experimental testing, the set point temperature is 

progressively increased by ramp heating, which helps to minimize the thermal shock. Thermal shock 

happens when heat causes various parts of an item to expand at different rates. 

In this section, the phase lags 𝜏𝑞 and 𝜏𝜃, the angular velocity  Ω, the nonlocal parameter 𝜉̅ and the 

moving load velocity 𝜐̅ are considered to be constant. The obtained results are illustrated through 

Figs. 15-18. The following observations are extracted: 

1- The ramping time 𝑡0 has a considerable influence on the distributions of different system 

parameters. 

2- The presence of ramping time is found to have a considerable impact on the reduction of non-

dimensional deflections. 

3- Any increase in the ramping time leads to a decrease in the lateral vibration 𝑤 and temperature 

gradient 𝜃, which is evident in Figures 15 and 16. 

4- As can be seen in Figure 17, the absolute values of axial displacement 𝑢 are decreased in the 

presence of ramping time 𝑡0. 

5- Any increase in the values of parameter 𝑡0 results in decreasing the bending moment 𝑀, as can 

be observed from Figure 18. 

6- For aerospace constructions, the temperature ramp rate is important for modelling the practical 

temperature changes. 

7.6 A comparative study on different thermoelasticity models 

The final case explores how the non-dimensional physical fields are affected by the heat flux delay 

𝜏𝑞 and the temperature gradient delay 𝜏𝜃 while the other system parameters remain constant. The 

transverse deflection, thermodynamic temperature, bending moment and axial displacement of the 

rotating nanobeam are illustrated in Figures 19-22 for the sake of comparison between the results of 

different theories. The coupling theory of thermoelasticity (CTE) can be obtained when 𝜏𝑞 = 𝜏𝜃 = 0 

and the Lord-Shulman (LS) model is available when 𝜏𝑞 = 0.05 > 0 and 𝜏𝜃 = 0. The dual-phase lag 

theory (DPL) proposed by Tzou and in its generalized form, can be achieved by considering 𝜏𝑞 = 0.0 

and 𝜏𝜃 = 0.02. 

From the illustrated results of this section, one can figure out that: 

 The delay parameters 𝜏𝑞 and 𝜏𝜃 have a pronounced influence on the distribution of all field 

variables. 

 The trends of the obtained results for the coupled (CTE) and generalized thermoelastic models 

(LS and DPL) are almost identical and their values are different.  

 Compared to CTE theory, the values of temperature distributions in LS and DPL models are 

smaller.  
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 By considering LS and DPL theories, the absolute values of transverse and axial 

displacements as well as bending moment are smaller compared to CTE theory. 

  

Figure 19: The distribution of deflection 𝑤 for 

different models of thermoelasticity 

Figure 20: The distribution of temperature 𝜃 for 

different models of thermoelasticity 

  

Figure 21: The distribution of displacement 𝑢 for 

different models of thermoelasticity 

Figure 22: The distribution of moment 𝑀 for 

different models of thermoelasticity 

8. Conclusion 

The current work was aimed at investigating the size-dependent mechanical and thermal 

characteristics of rotating nanobeams. To this end, on the basis of non-local elasticity theory in 

conjunction with the generalized thermoelasticity theory, including phase delays, the basic equations 

governing the motion of nanobeams under a constant-velocity moving load were presented. The 

performance of rotating micromachined structures like miniaturized turbine blades strongly depends 

on the thermomechanical behavior of their components. By considering the simply-supported end 

conditions and employing the Laplace transform technique, the analytical solutions were found and 

the impacts of moving load velocity and angular speed on the distributions of field variables were 

theoretically studied. Furthermore, the effects of ramping time rate of thermal load and nonlocality 

were thoroughly investigated. It was shown that the results of the proposed model are in agreement 

with those reported in the literature. It was demonstrated that, due to the small-scale effects, the 

dynamic deflection of nanobeam are often higher than those of classical theory. Moreover, it was 

revealed that the behavior of nanoscale beams significantly depends on the ramping time of the 

thermal load. It was finally concluded that the moving load velocity has no effect on the temperature 
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distribution and the non-local parameter has a slight effect on the thermal behavior of the system. By 

considering LS and DPL theories, the absolute values of different field variables were smaller 

compared to CTE theory.  
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