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Abstract: In this study, the impact of pseudo-random non-proportional bending-torsion fatigue load-
ings proportion on the fatigue life and the fracture surface topography was analyzed. Investigation
was carried out for 24 specimens made of S355]2 steel with 11 different ratios of maximum stresses A.
For these cases, after the fatigue tests, the surface topography measurements were carried out using
an optical profilometer, using the focus variation method. Three fracture zones were analyzed for
each specimen: (1) total; (2) propagation; (3) rupture, taking into account the root average square
height Sq and void volume Vv parameters. The results pointed that ratio of maximum stresses A is
the most influenced on volume surface parameters represented by void volume at a given height Vv,
in the rupture area. A new fatigue loading parameter P was used, depending on fatigue life T and
ratio of maximum stresses A, which shows very good correlation in 4th degree type of fit, to void
volume Vv parameter for the rupture area.

Keywords: surface topography; fracture; fractography; bending-torsion fatigue; low-alloy steel;
high-strength steel

1. Introduction

High-strength low-alloyed (HSLA) steels are often the optimal material due to their
balanced economic properties and technical properties [1]. Especially accurate fatigue
design, for the security factor on the example of the S355 steel has great importance [2].
Therefore, Cruces et al. [3] as well as Pawliczek and Rozumek [4] studied multiaxial fatigue
and fracture of this type of steel in their research. The importance of this issue is indicated
by a large number of publications on fatigue and fracture of HSLA steels subjected to
various kind treatments [5,6].

Another field of engineering science that is very helpful in material research is surface
metrology [7,8]. The industrial application of areal surface texture measurement started
just in the 1990s but many comparisons of various areal surface topography measuring
instruments have been published [9-11]. In previous research by most of the Researchers,
areal surface topography was used for the manufacturing material measures [12-15].
However, surface metrology is needed not only to improve production quality, but also in
many other aspects of science [16-18].

Surface flaws and internal cracks play a central role in the failure of materials. There-
fore, fracture mechanisms are studied very widely, e.g., Wu et al. [19] presented a fatigue
life prediction model considering crack propagation and closure effect. Additionally,
Derperski et al. [20] have taken up fracture tests of axisymmetric specimens with circum-
ferential notches under elevated temperature. The fractography concerns the intercon-
nection among surface topography of the fracture and the mechanisms as well as states
conducting to their formation [21-23]. Therefore, it is a combination of all the aspects
mentioned in this Introduction.

This paper focus on the promising results obtained by fractographical analysis, par-
tially presented previously by the Author. One of the most important outcomes is the
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introduction of field parameters S- and V- in the context of the description of fatigue
fracture surfaces of 6082 aluminum alloy [24], fractal dimension for bending-torsion fatigue
fracture surfaces [25,26], strain sequence consequences on fracture surface topographies
in 7075-T651 aluminum alloy specimens [27], or also to compare profile and areal surface
parameters for fracture specifications [28]. R-profile and areal S-parameters were also taken
into account in another cited work by the Author [29], to explain the effect of various fatigue
variables during fracture surface formation of notched 2017A-T4 aluminum alloy under
bending fatigue. However, it was decided that the entire fracture surface method was
compared to other areas of the fatigue fractures after bending, torsion and a combination
of these loadings. This study was carried out for a similar set of specimens as in [30].

Coming after the Introduction, the paper is organized as follows: Section 2 describes
the materials and methods used for this research. Section 3 gathers information on the
experimental fatigue test and fracture surface program results. Section 4 presents the
discussion and main outcomes of the fatigue campaign and the fracture topography
parameters, as well as their relationships. The paper ends with a summary of the most
relevant findings.

2. Materials and Methods

Experimental data, with the goal of demonstrating the effect of different values
of normal and shear stresses and their correlation on the fatigue life of the material as
well as to verify the relationship of the fracture surface with type of fatigue loading
histories, were selected similarly to [30], but taking into account other zones and the
fracture surface parameters.

2.1. Bending-Torsion Fatigue Test

The S355]2 steel used in the paper was fatigue examined by Marciniak et al. [31,32].
Bending-torsion fatigue campaign was done using 8mm-diameter specimens illustrated in
the pictures in Figure 1.

Figure 1. The real S355]2 steel specimen after fatigue test.

In Figure 2a,b we can see examples of non-proportional pseudorandom histories of
normal stresses o(t) and shear stresses 7(t) in time, respectively.

To present the classification of 11 combinations of loading levels, a scatter plot of
maximum normal stress ¢, and maximum shear stress Ty, grouped by 24 results of
fatigue life T was generated (see Figure 3).
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Figure 2. Pseudorandom stress histories in time: (a) normal stress o(t); and (b) shear stress 7(t). Adopted from [33].
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Figure 3. Maximum normal stress 0y and maximum shear stress Ty, grouped by fatigue life T.

2.2. Fracture Surface Topography Measurement

Regions of interest for (1) total (the whole current surface reduced to the circle with
diameter 7.8 mm) [30], (2) propagation and (3) rupture areas are shown in Figure 4.

The fatigue fractures were investigated at the objective magnification of 10x. The main
measurement parameters are summarized in Table 1. To realize total area scanning, the
Imagefield function was used. The numbers of merged images were 9 rows and 7 columns.

Table 1. Alicona G4 measurement device main parameters.

Magnification 10x
Vertical resolution 79.6 nm
Lateral resolution 3.91 um
Number of images 9 rows X 7 columns
Exposure time 178 us
Contrast 0.53
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Figure 4. Extracting methodology used to fit the region of interest (ROI).

Surface topography studies were carried out on the fracture area, using selected height
parameter and functional (volume) parameters according to ISO 25178-2 [8,10], employing
MountainsMap software. Sq (Equation (1)) is the root mean square height, while void
volume Vv calculated for a material ratios Smr, by integrating the volume enclosed above
the surface and below a horizontal cutting plane (Equation (2)). Graphical illustration of
the functional (volume) parameters is presented in Figure 5.

Sq = \/ % [ 22(x y)dxdy, (1)
A

where A is the definition area; z is the surface height in position x, y; x, y are the lengths in
perpendicular directions.

100%
Vo(Smr) = k/s [h(Smr) — h(Smrx)|dSmrx, )

where I is a height; k is a factor to convert the volume into the required unit; for Smr = 100%,
the Vv parameter is zero; for Smr = 0%, the void volume is a maximum (the cutting
plane below the lowest point); for these cases, the areal material ratio Smr = Smrl = 10%
(see Figure 5).

Height]

Vp
Abbott-Firestone curve

g

Smrl =10% Smr2 = 80%

Figure 5. Graphical presentation of the functional (volume) parameters: (a) an exemplary surface profile; (b) functional
(volume) parameters of Abbott-Firestone curve according to ISO 25178.
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Given the above definition (Equation (2)), core void volume Vuc and pit void volume
Voo can be represented by Equations (3) and (4), respectively.

Voc = Vo(Smrl) — Vo(Smr2), 3)
Voov = Vo(Smr2). 4)

3. Results

The results of bending-torsion fatigue test for S355]2 steel, shown in this section, was
made with 11 different ratios of maximum stresses A. The visualization of the individual
three ROIs, together with the tables of surface topography measurements for the propaga-
tion and rupture areas, is shown in Figure 6. All 24 loading cases are presented in the order
of reducing the maximum normal stress 0.y value. Figure 6 also shows the results of the
individual fatigue life T values.
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(3) rupture.

4. Discussion

4.1. The Influence of the Maximum Normal and Shear Stresses Share on Fatigue Life

shear stress Ty and maximum normal stress 0,4y, respectively.
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From the plot in Figure 7a, it is possible to deduce a large dispersion of fatigue life
T results depending on the ratio of maximum stresses A. Therefore, in the further part
of the work, the focus was on the selection of the most sensitive parameters of fracture
surface topography to the ratio of maximum stresses A. Figure 7b,c shows that fatigue life
T depends more on the share of maximum normal stress 0,y (see Figure 7c) than on the
maximum shear stress T,y (see Figure 7b) in the applied fatigue loadings.

4.2. The Influence of the Ratio of Maximum Stresses A on Fracture Surface Parameters

Figure 8 shows the ratio of maximum stresses A vs. root mean square height Sq plots
for rupture, propagation and entire fracture areas, respectively. Additionally, Figure 9 plots
the A ratio depending on the Vv parameter, in the same order of zones.

The best correlation with respect to ratio of maximum stresses A was demonstrated by
the void volume Vv parameter for the rupture area, for which the coefficient of determi-
nation R? was 0.72 (linear fit). Therefore, for this case, looking for a better coefficient of
determination, we found the one for cubic fitting, equal to R? = 0.89. The best fit for the
rupture zone may be due to the more stable results of the surface topography in that area.
This, in turn, can be explained by not always matching propagation area and a greater
range of surface topography changes near the edge of the specimen. The analyzed Vv
parameter in the rupture area turned out to be better than in the entire fracture surface
zone, which was taken into account in [30].

Figure 10 presents the relationship between the void volume Vv and the root mean
square height Sq values for three analyzed zones.
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Figure 8. Areal surface parameter Sq evaluation at different applied ratio of maximum stresses A for
the investigated zones: (a) rupture area; (b) propagation area; (c) entire area.
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Figure 10c confirms almost the same fit of root mean square height Sq to void volume
Vv and the effectiveness of the measurements for the rupture zone.

4.3. Fracture Surface Parameters for Maximum Vv Cases

The intentions of this subsection are to confront the standard surface parameters
and their specified sensitivity to topology of fracture for extremal Vv surface parameter
for the rupture zone. For this purpose, in addition to an isometric view of the fractures
(see Figure 11a,b), the study of the Abbott-Firestone curve [34] is presented. Abbott—
Firestone curves (see Figure 11c,e) are connected to the distribution of heights and its
cumulated curve. Figure 11d,f shows the ISO 25178-2 functional volume parameters that
are represented with respect to it: Vmp (peak material volume), Vimc (core material volume),
Voce (core void volume), Voo (valley void volume), Vinp, Vimc, and Vv sections, respectively.
For these functional parameters, the areal material ratio Smr1 = 10% and Smr2 = 80% were
specified [35].
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Figure 11. Fractures maximal Vv values for rupture area: (a,b) an isometric view of the entire fractures; (c,e) Abbott-Firestone

curves; and (d,f) functional volume parameters plots.

The presented cases (see Figure 11), apart from the highest Vv values in the rupture
area, are characterized by ones of the largest fatigue life T values. For the Abbott-Firestone
plots (see Figure 11c,e), the maximum heights, in fractures surfaces of maximal Vv values
for rupture area, demonstrate that the histogram distribution is slightly even. This is
manifested by the fact that the largest measured height distribution takes a large value
(about 13% and 21%). They have big values of height distribution due to extensive valleys.
The maximum Vv values samples are characterized by wide Vmc and Vuc stripes (see
Figure 11d,f), which proves the advantage of the core volume (material and void).

4.4. Summary of the Optimal Fractographic Parameter Vv with Fatigue Life T and Ratio of
Maximum Stresses A

Curve Fitting Toolbox in Matlab software provided a function for fitting curves and
surfaces to data plotted in Figures 12 and 13. Figure 12 shows the Gaussian fit and with
residuals plots containing data from all 24 specimens analyzed, demonstrating the best
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correlation between Vo and T. Gaussian fitting coefficient of determination R? took values
of around 0.434, which along with other statistical parameters are presented in Table 2.
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Figure 13. Relationship between Vv, T and A values.

Table 2. Gaussian curve fitting model parameters for Vo vs. T.

Curve Fitting, General Model Gaussl Goodness of Fit
f(x) =al x exp(—((x — b1)/c1)*2) SSE: 3.351 x 10°
Coefficients (with 95% confidence bounds): RZ: 0.4336
al =537.1 (280, 794.2) Adjusted R%: 0.3797
bl =2.848 x 10° (2.379 x 10°,3.316 x 10°) RMSE: 126.3

cl=1.721 x 10° (1.242 x 10°,2.2 x 10°)

The thin-plate spline interpolant procedure was used to present the relation of void
volume Vw, fatigue life T and ratio of maximum stresses A (see Figure 13), assuming
statistical coefficients, as in Table 3.

Table 3. Gaussian curve fitting model parameters for Vo, T vs. A.

Thin-Plate Spline Interpolant Goodness of Fit
f(x,y) = thin-plate spline computed from p p = coefficient structure
x is normalized by mean 9.003 x 10 and std 1.256 x 10° SSE: 7.196 x 10~2¢
y is normalized by mean 121.5 and std 160.4 R%: 1
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4.5. Loading and Fatigue Life Prediction Model Based on Void Volume Vv Parameter for the
Rupture Area

To find closer relationships of the ratio of maximum stresses A and fatigue life T, with
the fracture surface topography, represented by void volume Vv in the rupture area, the
new indicator called fatigue loading parameter P (Equation (5)) was proposed.

P=T", (5)

where: T is the fatigue life and A is the ratio of maximum stresses (A = Tax/Tax)-

The results of the fatigue loading parameter P vs. void volume Vv in the rupture area
were plotted in log-log scale, see in Figure 14. Log-log(Vv, P) plots Vv- and P-coordinates
using a base 10 logarithmic scale on the Vv-axis and the P-axis. Data points were subjected
to the basic fitting tool, for which the 4th degree type of fit turned out to be the best fit, for
which R? = 0.9997. The presented model has some limitations, mainly related to the scope
of the bending-torsion combination (A).

108
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P = 4.533e-07"v" - 0.0002233* W + 0.04646" " - 3.058"v + 85
o R® = 0.9997
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Rupture area, Void volume Vv, pm?f pm?

Figure 14. Fatigue loading parameter P vs. void volume Vv in the rupture area and their 4th
degree fit.

5. Conclusions

In this paper the surface topography of fractures generated under pseudo-random
non-proportional combined bending-torsion fatigue loading in three regions, (1) total, (2)
propagation and (3) rupture, was studied. In total, 24 specimens made of S355]2 steel
with 11 different ratio of maximum stresses A were tested. The analyzed metrological
parameters of the surface topography were root mean square height Sq and void volume
V. The following conclusions are established:

e  Fatigue life T depends more on the share of maximum normal stress ¢,y than on the
maximum shear stress Tiuqx;

e  The best correlation with respect to ratio of maximum stresses A was demonstrated by
the void volume Vv parameter for the rupture area, and the best was Cubic fit with R?
around 0.89;

e  Theloading factors also affect the shape of the Abbott-Firestone curve as well as the
extent Vx volume parameters (Vmp, Vmc, Voc and Voo);

e  Fatigue life T, in the case of the analyzed data, is not well correlated with the surface
topography parameters and the best was Gaussian fit with R? around 0.434;
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e New fatigue loading parameter P shows a rather good fit to void volume Vv param-
eter for the rupture area, with R>=0.9997, but within the specified range of loading
combinations.

Fracture measurements were performed using an Alicona G4 device, but the findings
should be broadly applicable to any surface topography measuring instrument. The
obtained results for the rupture area turned out to be more accurate than the Author’s best
matched research using the entire fracture area method so far. From the point of view of
methodology, such a solution is easier to implement and more universal. These methods
should also be compared for other materials and loading types, in future investigations.
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Nomenclature
h pm height
P - fatigue loading parameter
R? - coefficient of determination
Sa pm arithmetical mean height
Sk um core height
Smrl, Smr2
Smr, Smrx % areal material ratio
Spk pm reduced peak height
Svk pum reduced dale height
Sq um root mean square height
T s fatigue life
t s time
Vme pum3/um?  core material volume
Vmp um3/um?  peak material volume
Vo pm3/pum?  void volume
Voc pm3/pum?  core void volume
Voo pm3 /pm? pit void volume
o(t) MPa normal stress in time
T(t) MPa shear stress in time
O max MPa maximum normal stress
Tmax MPa maximum shear stress
A - ratio of maximum stresses
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