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SFEM Analysis of Beams with Scaled Lengths including
Spatially Varying and Cross-Correlated Concrete Properties

Ewelina Korol

Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12,
80-233 Gdansk, Poland; ewelina.korol@pg.edu.pl

Abstract: This paper presents the results obtained for plain concrete beams under four-point bending
with spatially varying material properties. Beams of increasing length but constant depth were
analyzed using the stochastic finite element method. Spatial fluctuation of a uniaxial tensile strength,
fracture energy and elastic modulus was defined within cross-correlated random fields. The symmet-
rical Gauss probability distribution function was applied for the material properties. The shape of the
probability distribution function was modified by changing the coefficient of variation in order to find
its right value. The correctness of the numerical solution was verified against the experimental results
of Koide et al. (1998, 2000). The stochastic FEM analysis was performed with an autocorrelation
length of 40 mm and material coefficients of variation of 0.12, 0.14, 0.16, 0.20 and 0.24. The comparison
between numerical outcomes and experimental results demonstrated that the coefficient of variation
of 0.24 gave the best agreement when referring to the experimental mean values. On the other hand,
the variation of results was better captured with the coefficient of variation of 0.16. The findings
indicate that the Gauss probability distribution function with cov = 0.24 correctly reproduced the
statistical size effect, but its tails needed modification in order to project experimental result variation.

Keywords: concrete beam; coefficient of variation; cross-correlation; elasto-plasticity; non-local
softening; random field; SFEM; statistical size effect

1. Introduction

The size effect in quasi-brittle materials has been commonly identified as a nominal
strength reduction connected with an increasing specimen size. This statement is partic-
ularly valid for geometrically similar structures (i.e., when a specimen is scaled in the
directions of the length L and depth D simultaneously). The requirement of geometrical
similarity provides the same failure mechanism. There are two main mechanical sources
of the size effect in concrete: energetic and statistical ones. The energetic size effect is
connected with a strain localization phenomenon that develops before the macro-crack
appears. The fracture process zone size (or strain localization zone) is a material property
that is dependent mostly on the material characteristic length of a microstructure lc. When
the beam depth D increases (i.e., lc/D→0), the nominal strength decreases together with its
ductility. The energetic size effect is of a deterministic nature, and it assumes a homogenous
(uniform) distribution of the material properties. On the other hand, the statistical size
effect is caused by a spatial fluctuation of the material properties. Generally, the number of
flaws inside the material increases with an increasing specimen size. Hence, the strength
reduction becomes stronger with an increasing specimen size. The weakest link theory
introduced by Weibull [1] postulates that a structure is as strong as its weakest component.
Thus, the structure fails when its strength is exceeded in the weakest spot, since stress
redistribution is not considered. The Weibull theory is valid for large structures, which fail
as soon as a macroscopic fracture initiates in one small material element. However, it is not
able to account for a spatial correlation of the local material properties and does not include
the material characteristic length lc (i.e., it ignores the energetic size effect). As a result, the
weakest link theory underestimates the strength of small- and medium-sized specimens.
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The combination of the energetic and statistical size effects was introduced by Bazant [2]
into the analytical type I size effect law. The coupled energetic-statistical size effect covers
the whole size range from small to large specimens. The nominal strength described by
the type I SEL applies to geometrically similar structures of positive geometries without
initial notches or large-stress free cracks. The last condition is crucial for the statistical
part of the size effect, since it enables the FPZ to develop at a random position. When the
position of the FPZ is fixed (e.g., by a notch), the statistical size effect on the mean nominal
strength is negligible. In that case, the nominal strength can be described by the type II SEL
from Bazant and Planas [3], which represents the energetic size effect solely. Reinforced
concrete beams failing due to concrete damage follows the type II SEL. It was numerically
demonstrated by Syroka-Korol et al. [4] that when referring to RC beams experiencing
shear failure, the material randomness only causes spreading of the results.

The coupled energetic-statistical size effect is commonly verified against experimental
research with plain concrete beams [5] or dog bone specimens [6]. The isolated statistical
size effect can be analyzed with plain concrete beams of varying lengths but a constant
depth [7,8]. Numerical analysis of statistical sources of the size effect requires the ap-
plication of concrete parameter spatial fluctuation, which is mostly performed within
autocorrelated random fields. The type of autocorrelation function and autocorrelation
length have influence on the parameters’ variation in space. Generally, the square expo-
nential autocorrelation function is adopted [4]. The probability distribution of concrete’s
material properties was described by Weibull [9], grafted Weibull–Gauss [10] and Gauss [11]
probability distribution functions (pdfs). The shape of the pdf was modified by chang-
ing the shape parameter m or the coefficient of variation cov in the Weibull and Gauss
functions, respectively.

The comprehensive numerical investigation of a pure statistical size effect in plain
concrete beams subjected to four-point bending was performed by, among others, Bazant
and Novak [9] and also by Grassl and Bazant [10]. Bazant and Novak [9] performed
simulations using a stochastic finite element method and the Weibull pdf to describe the
concrete’s parameter variations. The experimental mean bending moments registered by
Koide et al. [7,8] were numerically covered with a surprisingly low Weibull modulus of
m = 8. Next, Grassl and Bazant [10] analyzed the same beams with the aid of a lattice model.
It was concluded that the geometrical randomness in the lattice model was insufficient to
reproduce the experimentally observed average strength reduction from Koide et al. [7,8].
The fluctuation of the lattice bars’ strength was modeled with autocorrelated random
fields with a square exponential autocorrelation function and the autocorrelation length
lcor = 40 mm. The tensile strength ft variability was indirectly defined through ε0 (strain
corresponding to ft), and its coefficient of variation was cov = 0.25. This time, the grafted
Gaussian–Weibull cumulative distribution function was adopted. (It was demonstrated
in [12,13] that the tails below a probability of 0.01 followed Weibull, while the core was
Gaussian.) The numerical results obtained for the longest and medium beams exhibited
good agreement with the experimental findings. However, the shortest beam overestimated
the experimental result variations.

The combined energetic-statistical size effect was investigated within a stochastic
discrete meso-scale model by Elias et al. [14]. Simulations of geometrically similar concrete
beams subjected to three-point bending of a depth D = 40, 93, 215 and 500 mm were
performed. A relative notch length varied between α0 = 0 ÷ 0.3D (the statistical size
effect appeared in unnotched beams with α0 = 0 only). A lattice–particle model was
used to simulate concrete fractures. The spatially autocorrelated random fields were
introduced to define the material properties. As a result, the model considered both
the geometrical and material randomness. The grafted Weibull–Gaussian probability
distribution function was adopted. As suggested in [10], the material coefficient of variation
was cov = 0.25, while the autocorrelation length lcor was 40 and 80 mm. The stochastic
results (with both lcor) obtained for the two largest beam sizes (D = 215 and 500 mm)
highly underestimated the experimentally observed average nominal strength (experiments
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performed by Hoover et al. [15]). In other words, the simulated statistical size effect with
cov = 0.25 was too strong compared with the laboratory tests. Satisfactory agreement was
achieved only for small beams with D = 40 and 93 mm, where the statistical size effect was
relatively weak and the energetic size effect dominated.

The finite element method was applied by Syroka-Korol et al. [11] to also investigate
the combined energetic-statistical size effect in plain concrete beams under three-point
bending. The very broad range of the autocorrelation length lcor = 5, 10, 15, 20, 40, 60, 80,
100, 120, 140 and 150 mm was analyzed in geometrically similar beams of depth D = 80, 160,
320 and 1920 mm. Concrete was modeled within elaso-plasticity with non-local softening.
The fluctuation of the local material strength was described by the square exponential
autocorrelation function, and the pdf was entirely Gaussian. The results showed a strong
effect of the autocorrelation length lcor upon the average nominal strength reduction. It
was demonstrated that the nominal strength depends on the FPZ size at the peak load,
the average local material strength inside the FPZ and its position with respect to the
support. This extensive SFEM study showed that the lowest average nominal strength in
all beam sizes was obtained with the autocorrelation length lcor = 0.5hloc (hloc = the height of
the FPZ at the peak load), while the strongest reduction of the average nominal strength
with increasing beam depth D (i.e., the strongest statistical size effect) was obtained for
lcor = 40 mm.

The purpose of the current study is to calibrate the stochastic parameters of the FE
model to properly describe the pure statistical size effect. Plain concrete beams of series C
tested by Koide et al. [7,8] are the comparative base. The stochastic finite element method
is chosen because, in contrast to the lattice model [10] and lattice–particle model [14], it is
applicable to both small and very large specimens (compare SFEM analysis of 6-m long
RC beams in [4]) and can be further used to analyze the safety of real-sized structures. The
fluctuation of the material parameters defined within random fields is described by the
square exponential autocorrelation function and the autocorrelation length lcor = 40 mm, as
already validated in [11]. The entirely Gaussian pdf is applied, which is a simplification
compared with [10,14], where the core is Gaussian but the tails follow the Weibull pdf.
The effect of varying the material coefficient of variation cov is carefully studied. The
SFEM simulations were performed with simultaneously varying cross-correlated random
distributions of the local uniaxial tensile strength, fracture energy and elastic modulus in
contrast to [14], where the material parameters are mutually linearly dependent.

The outline of the present paper is as follows. First, after the introduction (Section 1),
the numerical SFEM model is presented in Section 2. The numerical results from SFEM
simulations are discussed in Section 3. The conclusions are listed in Section 4.

2. Materials and Methods
2.1. Constitutive Elasto-Plastic Model with Non-Local Softening

The concrete behavior under tension was defined with a simple Rankine criterion with
isotropic softening, while the yield function f was as follows:

f = max{σ1, σ2, σ3} − σt(κ), (1)

where σi, i = 1, 2, 3 are the principal stresses, σt is the tensile yield stress and κ is the softening
parameter equal to the maximum principal plastic strain ε1p [11]. The associated flow rule
was assumed. The bilinear function recommended by Hoover and Bazant [15] (Figure 1)
was used to describe the post-peak softening under tension. The total fracture energy
GF = 80 N/m was calculated after the CEB-FIP code [16], based on the experimentally
measured concrete compressive strength fc = 30 MPa and the maximum aggregate diameter
da = 20 mm. The ratio between the total and initial fracture energy was taken to be
GF/Gf = 1.5 (very close to recommendation in [15]). The uniaxial tensile strength ft was
not experimentally measured by Koide et al. [7,8]. Nevertheless, ft = 2.9 MPa was initially
adopted (estimated based on fc and the recommendations in Eurocode 2 [17]).
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Figure 1. The bilinear softening function under tension expressed in terms of tensile stress σt versus
the softening parameter κ (Gf = initial fracture energy, GF = total fracture energy and wloc = the
localized zone width).

In the calculations, a non-local regularization technique was applied, and a non-local
formulation of the softening parameter was introduced [11]:

κ(x) = (1−mnl)κ(x) + mnl

∫
V ω(‖x− ξ‖)κ(ξ)dξ∫

V ω(‖x− ξ‖)dξ
, with i = 1, 2, (2)

where V is the body volume, x is the coordinate vector of the analyzed point, ξ is the
coordinate vector of the surrounding points and mnl is the non-local parameter. The normal
distribution function was used as a weighting function:

ω(r) =
1

lc
√

π
e−(

r
lc
)2

(3)

This depended on the characteristic length of the microstructure lc and the distance
between material points r. The characteristic length was assumed in this study to be
lc = 2 mm, based on the experimental investigations by Skarzynski and Tejchman [18]. The
softening non-local parameters near the boundaries were always calculated on the basis of
Equations (2) and (3), which satisfied the normalizing condition.

Calculations were performed in the commercial finite element software ABAQUS
from Dassault Systèmes Simulia Corp. (Rhode Island, US) with user subroutines which
introduced the non-local model, constitutive law and user element definition. To capture the
whole load-deflection curves, including the post-peak softening, the arc-length method was
used to control the load (the simplified procedure formulated by Jirasek and Bazant [19]).

2.2. Random Fields

The local material properties had the Gauss probability distribution function with a
prescribed mean value µ and a standard deviation sdev. The coefficient of variation was
defined by the ratio cov = sdev/µ (the tensile strength, elastic modulus and fracture energy
had the same coefficient of variation, calculated as covft = σft/µft, covEmod = σEmod/µEmod and
covGf = σGf/µGf, respectively). The material fluctuation was represented by spatially autocor-
related random fields with a homogenous squared exponential autocorrelation function:

C(x1, x2) = exp

(
−(x1 − x2)

2

l2
cor

)
(4)
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where |x1 − x2| is the distance between two points in a Cartesian space and lcor is the
autocorrelation length, assumed to be lcor = 40 mm. The auto-covariance function had the
following spectral decomposition:

C(x1, x2) =
∞

∑
i=1

λi fi(x1) fi(x2) (5)

where the eigenvalues λi and eigenfunctions fi(x) are the solution of the Fredholm integral
equation of the second kind: ∫

D
C(x1, x2) fi(x1)dx1 = λi fi(x2) (6)

The solution to Equation (6) was found with the aid of the wavelet-Galerkin method
described by Phoon et al. [20,21], where Haar wavelets are implemented to create an
orthogonal base.

The spatially correlated random fields H(x,θ) (here with the zero mean and unit
variance) were defined according to the Karhunen–Loëve expansion [22,23] by an infinite
linear combination of orthogonal functions and random coefficients:

H(x, θ) =
∞

∑
i=1

√
λiξi(θ) fi(x) (7)

where ξi(θ) is the vector of uncorrelated random variables sampled from N(0,1) distribution,
λi is the eigenvalues and fi(x) is the corresponding eigenfunctions. The approximated
solution Ĥ(x, θ) was obtained by truncating the series in Equation (7) after M terms which

satisfied the condition
M
∑

i=1
λi0.95tr(C).

The simultaneously varying local uniaxial tensile strength ft, fracture energy Gf and
elasticity modulus Emod were simply cross-correlated through a scalar coefficient r as
proposed by Vorechovsky [24]. When the cross-correlation coefficient r = 0, the spatial
distributions of the material parameters are independent. On the other hand, when r = 1,
the material parameters are linearly dependent. In the present SFEM study, a strong cross-
correlation (r = 0.9) was assumed between ft, Gf and E (exemplary profiles are given in
Figure 2).
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Figure 2. Exemplary profiles of cross-correlated and spatially auto-correlated random distributions
of local material parameters: (a) ft, (b) Gf and (c) Emod.

2.3. FE Input Data

Three beam sizes of a constant depth D = 100 mm and thickness t = 100 mm but
varying span were analyzed, similar to Series C as tested by Koide et al. [7,8]. The beams
were subjected to four-point bending, and the distance from the support to the loading
point was always a = 200 mm (Figure 3). Hence, the energetic size effect was negligible,
and the predominant statistical size effect could be investigated. The beam’s effective span
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Leff varied from 600 mm through 800 mm and up to 1000 mm, while the corresponding
distance between loading points was Lm = 200, 400 and 600 mm (beams denoted as LM200,
LM400 and LM600, respectively). Series C, as tested by Koide et al. [7,8], consisted of 121
plain concrete beams, including 46, 40 and 35 identical specimens of sizes LM200, LM400
and LM600, respectively.
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Figure 3. Geometry of analyzed beams.

A large central part of the beam, where the non-local elasto-plastic material was
defined, was covered by a fine FE mesh consisting of right triangles of dimensions
1 mm × 1.25 mm (Figure 4). The remaining part of the beam, which consisted of a coarse
mesh, was defined as an elastic material. Analysis was performed under plain stress
conditions. The initial calculations started with the following concrete properties: uniaxial
tensile strength ft = 2.9 MPa, initial fracture energy Gf = 52 N/m, total fracture energy
GF = 80 N/m, elasticity modulus Emod = 30 GPa and Poisson’s ratio ν = 0.17. The nominal
strength of a beam expressed as σN = Mmax/(tD2/6) was linearly dependent on Mmax due
to the constant cross-section dimensions. Hence, the terms nominal strength and bending
moment were used interchangeably when describing the results.
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3. Results
3.1. Convergence Study

Initially, 2000 random fields were generated for each beam size and each material
parameter. In order to reduce the computational time, the stratified sampling technique [11]
was applied, and as a result, 24 random fields were eventually chosen for further FE
simulations. Stochastic analysis started with the shortest beam, denoted as LM200 with
simultaneously varying ft, Gf and Emod, for which a strong cross-correlation was assumed
to be r = 0.9. The material coefficients of variation (identical for ft, Gf and Emod) changed
from cov = 0.12 through 0.16 and 0.20 and up to 0.24 (for each cov, the new set of random
fields was generated). First, convergence analysis was performed in order to verify whether
the specified number of SFEM simulations provided a satisfactory approximation of the
desired solution. Figure 5 compares the calculated mean values of the ultimate bending
moment obtained for an increasing number of SFEM simulations with different material cov
values. Initially, when the number of simulations was under five, the scattering of the mean
value µM was very strong, particularly for a higher material cov. After 10 simulations, the
fluctuation of µM weakened, and after ca. 20 simulations, the changes were unnoticeable
for all material cov values. Referring to the standard deviation of ultimate M (Figure 6),
its convergence was slightly slower than that observed for the mean value, although after
20 simulations, the obtained standard deviations showed acceptably low changes. Thus,
the chosen number of 24 simulations turned out to give adequate results.
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Figure 6. The calculated standard deviation of the ultimate bending moment M against the number
of SFEM simulations for beam LM200.

The numerical results of beam LM200 presented in Figures 5 and 6 clearly show that
the increasing material cov caused a reduction in the mean ultimate bending moment µM
and an increase in its standard deviation. Moreover, the resulting coefficient of variation
COVM (st.dev.M/µM) was always lower than the assumed material cov. This behavior can
be explained as follows. The beam’s ultimate strength depends on the value of the local ft
and Gf inside the localized zone (or the FPZ) at the peak load. When the FPZ dimensions
were larger than the autocorrelation length, the average value of the varying parameters ft
and Gf inside the FPZ gave lower values than the input material cov. Hence, the resulting
ultimate failure force and corresponding bending moment had a lower coefficient of
variation COVM.

3.2. Material and Stochastic Parameter Calibration

Figure 7 compares the experimental and numerical frequency diagrams obtained for
beam LM200 with various material cov values. The calculated mean ultimate bending
moment µM reached 659, 627, 598 and 555 Nm for material cov values of 0.12, 0.16, 0.20
and 0.24, respectively, while the corresponding standard deviation of M was 67, 78, 95 and
113 Nm. It is clear that the calculated mean ultimate bending moment did not coincide with
the experimental one. However, the effect of the varying material cov upon the resulting
variation of M could be still verified against the experimental outcomes based on the
translated frequency distributions (Figure 8) (translated by the calculated mean value µM
for each distribution separately). The experimental frequency distribution was subdivided
into 24 strata (the same number as in the SFEM calculations), keeping the extreme values
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unchanged. Next, for each stratum, the average value was estimated. The calculated mean
square error between the numerical and experimental translated distributions indicated
the material cov = 0.16 gave the best agreement.
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Figure 8. The translated frequency diagrams for beam LM200 obtained for different material cov
compared with the experimental results of Koide et al. (Copyright Permission, Proceedings of
FRAMCOS-3, 1998 and Proceedings of ICASP-8, 2000) [7,8].

It is worth reminding here that Koide et al. [7,8] measured in a laboratory the com-
pressive strength fc only, whereas the uniaxial tensile strength ft (the generic mean value
for random fields) in the initial case study was roughly estimated based on fc and the
recommendations in Eurocode 2 [17]. Meanwhile, the stochastic results clearly showed
that the uniaxial tensile strength ft needed correction. Hence, renewed SFEM analysis of
beam LM200 was run with a modified uniaxial tensile strength ft = 3.48 MPa and with the
material cov = 0.16. The total fracture energy GF and its ratio to the initial fracture energy
GF/Gf remained the same. This time, the obtained mean bending moment reached 704 Nm
and was nearly the same as the experimental value of 702 Nm.

3.3. The Statistical Size Effect on the Beam Strength

After calibrating the material and stochastic parameters based on the smallest beam
(LM200), the remaining beams (LM400 and LM600) were simulated with the following
mean values: ft = 3.48 MPa, GF = 80 N/m (GF/Gf = 1.5) and Emod = 30 GPa, while the
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coefficient of variation was cov = 0.16 for all the material parameters independent of the
beam size. For each beam size, 24 stochastic simulations were performed. The calculated
mean ultimate bending moment µM reached 658 Nm (LM400) and 645 Nm (LM600) and
was 3 and 6% higher than the corresponding mean experimental value (Figure 9). The
calculated standard deviation of M was similar in beams LM400 and LM600 and slightly
higher in beam LM200 compared with the experimental values (Figure 9).
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Figure 9. The mean ultimate bending moment (±standard deviation) of a beam with increasing span
calculated based on SFEM simulations with cov = 0.16 compared with deterministic FEM analysis
and the experimental results of Koide et al. (Copyright Permission, Proceedings of FRAMCOS-3,
1998 and Proceedings of ICASP-8, 2000) [7,8].

Additional calculations were performed for the deterministic FEM models (with
a constant and uniformly distributed ft = 3.48 MPa, Gf = 52 N/m, GF = 80N/m and
Emod = 30 GPa). Deterministic simulations confirmed the energetic size effect upon the
beam’s nominal strength (in this case, the equivalent bending moment) was negligible
when the beam depth D was constant. However, the deterministic effect of the varying
beam span Leff was evident when comparing the beams’ brittleness. Figure 10 includes the
normalized load-deflection diagrams illustrating that the longer beam, the more brittle the
post-peak response (a so-called snap back behavior could be observed thanks to the applied
arc-length method). When comparing the deterministic and stochastic results, the mean
stochastic bending moment was 23, 28 and 29% lower than the corresponding deterministic
value. The reduction was mainly caused by a locally weaker tensile strength inside the
localized zone area (the width was always wloc = 6 mm, while the height hloc fluctuated
around 41 m (Figure 11).

Generally, the agreement between SFEM results with cov = 0.16 and experimental
outcomes (Figure 9) was satisfactory but not perfect. The increasing discrepancy between
the mean values together with the beam size indicate that the simulated statistical size
effect on the beam’s mean nominal strength should have been stronger. For this reason,
SFEM analysis of all beams was performed once more with a higher material coefficient of
variation cov = 0.24. The uniaxial tensile strength was ft = 4.2 MPa (calibrated again based
on the mean bending moment µM from 24 SFEM simulations of the smallest beam, LM200),
whereas the other material parameters remained unchanged (GF = 80 N/m, GF/Gf = 1.5
and Emod = 30 GPa). For each beam size, 24 SFEM simulations were executed.

This time, the agreement between the laboratory measured and simulated mean
ultimate bending moments for cov = 0.24 was nearly perfect (Figure 12). However, the
scattering of results in the case of SFEM analysis with cov = 0.24 was significantly stronger
than in the experiments. This may indicate the need to introduce the grafted Gaussian–

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2022, 15, 95 10 of 12

Weibull probability distribution function for the concrete material properties in order to
better reflect both the mean and the standard deviation of the results.

The effect of the simultaneously varying material properties was also examined.
Referring to the results discussed above, where strong cross-correlation (r = 0.9) was
adopted between ft, Gf and Emod, the assumption of a constant Gf and Emod increased the
mean ultimate bending moment by 5% and decreased its standard deviation by 16% on
average. On the other hand, when a linear dependence between ft and Gf was applied (it
was found that Emod affected only the initial beam stiffness), the resulting mean ultimate
bending moment decreased by less than 2%, while its standard deviation was higher by
4% on average. These results demonstrate that the variation of the local uniaxial tensile
strength ft was crucial for the statistical size effect.
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calculated based on SFEM simulations with cov = 0.16 and cov = 0.24 compared with the experimental
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ICASP-8, 2000) [7,8].

4. Conclusions

The following conclusions can be drawn from the FEM investigation of plain concrete
beams of varying lengths, summarizing both the deterministic and the stochastic approach
with simultaneously and spatially varying ft, Gf and Emod values:

• The spatial fluctuation of the local material properties was the source of the mean
nominal strength reduction with an increasing beam length;

• The increasing material coefficient of variation cov contributed to the stronger statistical
size effect on the mean nominal strength (i.e., the more pronounced reduction of the
mean strength with the increasing beam length);

• The simulated statistical size effect with the material cov = 0.16, calibrated based on
the bending moment variation of the shortest beam LM200, was too weak compared
with the experimental results;

• The best approximation of the experimentally registered mean nominal strengths for
increasing beam lengths was numerically obtained with the material cov = 0.24, but
the calculated results’ variation was larger than that observed by Koide et al. [4,5];

• Deterministic analysis showed the increase in the beam length (with the constant
depth) caused the more brittle post-peak behavior but did not change the nomi-
nal strength.

The future plan is to compare the presented results with similar SFEM analysis using
the grafted Gaussian–Weibull cumulative probability distribution function.
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