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Abstract 

The ability to evaluate the effects of fabrication tolerances and other types of 

uncertainties is a critical part of microwave design process. Improving the immunity of the 

device to parameter deviations is equally important, especially when the performance 

specifications are stringent and can barely be met even assuming a perfect manufacturing 

process. In the case of modern miniaturized microwave components of complex topologies, it 

is of paramount importance to carry out tolerance-aware design at the highest available 

accuracy level (i.e., with the use of full-wave electromagnetic (EM) simulations). Although 

reliable, EM-driven tolerance-aware design is extremely costly if conventional techniques are 

to be applied (e.g., Monte Carlo simulation). To overcome this setback, this paper proposes a 

simple and computationally efficient algorithm for robustness enhancement of compact 

microwave component designs. The objective is to increase the allowed deviations of geometry 

parameter values (described using the coefficients of an underlying probability distributions, 

e.g., the variance) so that the prescribed performance specifications are still fulfilled. The

presented approach incorporates knowledge-based surrogate models, constructed using the 

characteristic points (response features) of EM-simulated system outputs, and utilized for low-

cost prediction of the fabrication yield. The parameter vector of the microwave circuit of 

interest is adjusted within the trust-region (TR) framework to identify the maximum levels of 

deviations still ensuring 100-percent yield. The employment of TR also permits the adaptive 

control of design relocation and ensures convergence of the optimization process. Numerical 

verification of the presented methodology is carried out using three miniaturized microstrip 

circuits, including two equal-split couplers and a wideband filter. The major finding is that 

incorporating knowledge-based feature surrogates allows for achieving a significant 

improvement of the acceptable input tolerance levels (nearly two fold on the average) at a 

remarkably low cost of few dozen EM simulations. 
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1. Introduction 

The fulfillment of stringent performance specifications imposed on microwave 

components and systems, including wideband [1] and multi-band operation [2], tunability [3], 

specific demands pertinent to emerging application areas (5G [4], internet of things [5], 

wearable devices [6], etc.), and—more and more often—compact size [7]-[10], has been 

increasingly difficult. In general, it requires the development of topologically complex 

structures, the dimensions of which have to be meticulously tuned to ensure the best possible 

values of the operating parameters (bandwidth, phase response, power split levels, etc.). In most 

cases, the designs are optimized in the nominal sense [11]-[13], that is, by neglecting possible 

fabrication tolerances and other uncertainties (e.g., imprecise knowledge of the substrate 

permittivity), including operating conditions (temperature, different signal power levels, etc.). 

Needless to say, these may affect the system characteristics, often leading to a violation of the 

performance requirements. Unfortunately, parameter deviations are unavoidable due to 

inherently limited manufacturing process accuracy, whereas reducing the deviations normally 

increases the fabrication expenses. Consequently, the ability to quantify the uncertainties and 

mitigate their effects is of fundamental importance when it comes to ensuring design robustness 

[14]. In practice, this is addressed by maximizing a suitably chosen statistical performance 

figures, e.g., the yield [15]. An alternative approach is to increase the maximum level of 

parameter deviations that still ensure satisfaction of the specs (e.g., the improvement of the 

maximum input tolerance hypervolume, MITH [16]).  

Statistical analysis of microwave components is a computationally expensive task when 

directly conducted using full-wave electromagnetic (EM) simulation models. For example, the 

primary analysis procedure, Monte Carlo (MC) simulation [17], normally requires many 

hundreds of system evaluations due to its slow convergence. On the other hand, the employment 

of EM models is often imperative, especially for miniaturized components where considerable 
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cross-coupling effects virtually rule out utilization of simpler models (e.g., equivalent networks 

[18]). Simplification of the task is one way to accelerate the process, which can be realized by 

performing a worst-case analysis [19], [20]. However, it typically results in an overly 

pessimistic estimation of the tolerance effects. Nowadays, the most popular approach to 

practical EM-based uncertainty quantification (UQ) is the incorporation of surrogate modeling 

techniques [21], [22]. These may belong to two groups: data-driven (kriging [23], neural 

networks [24], Gaussian process regression [25], polynomial chaos expansion, PCE [26], [27]), 

and physics-based (e.g., space mapping [28]). The major advantage of surrogate-assisted 

approach is a possibly dramatic acceleration of all sorts of UQ procedures, including yield 

estimation. When using PCE, some of the figures of merit, e.g., the statistical moments of the 

system outputs, can be evaluated directly from the expansion coefficients without the necessity 

of running MC. Yet, conventional modeling techniques are severely limited in terms of 

parameter space dimensionality but also parameter ranges (both being a consequence of high 

nonlinearity of microwave component characteristics). Available mitigation methods include 

hybrid surrogates (e.g., PC kriging [29]), dimensionality reduction (e.g., principal component 

analysis, PCA [30]), model order reduction [31], utilization of variable-fidelity EM simulations 

(co-kriging [32], two-stage GPR [33], space mapping [34]), and, recently, modeling with 

domain confinement [35], [36]. 

Although manufacturing tolerances are unavoidable, the robustness of microwave 

component designs can be improved by proper tuning of the circuit parameters. The respective 

procedures are referred to as tolerance-aware design, yield-driven design or design centering 

[37]-[39]. As mentioned before, in many cases (especially in the case of minimax-type of design 

specifications), the merit function of choice is the yield. Other options include maximization of 

maximum parameter deviations that do not lead to a violation of the specs, or allocating the 

design as much in the interior of the feasible space as possible (geometrical design centering 
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[40]). The tolerances, due to their stochastic nature, are modeled using suitable probability 

density functions, typically Gaussian with zero mean and a variance (or covariance matrix) 

specific to a given manufacturing process, or uniform with (also process-specific) maximum 

deviation. Just as in the case of UQ, statistical optimization is a CPU-heavy task when 

conducted at the level of EM simulation models, and the primary workaround is the utilization 

of surrogate modeling methods [41]-[43]. However, robust design is considerably more 

challenging due to the larger expected design relocation, which implies that the underlying 

surrogate model should be valid over broader ranges of the circuit parameters. The metamodel 

can be constructed using machine learning approaches [44], e.g., by adding infill samples in the 

regions to be explored during the optimization process [45]. Another method is sequential 

approximate optimization, SAO [46], with the surrogate only rendered in the vicinity of the 

current design, and the domain moved along the optimization path. Yet another approach is to 

employ a response feature technique [47], where the surrogate model is representing selected 

characteristic (feature) points of the circuit outputs rather than the entire frequency responses, 

which leads to ‘flattening’ the functional landscape to be modeled while being sufficient to 

account for performance specifications [48]. Additional benefits can be achieved by means of 

performance-driven modeling [49], which capitalizes on restricting the volume of the surrogate 

model domain without reducing it along important directions (i.e., corresponding to the 

maximum response modifications) [36]. 

In this work, we propose a technique for low-cost robustness improvement of compact 

microwave components. It is oriented towards maximization of input tolerances for which the 

perfect (100-percent) fabrication yield is still ensured and it utilizes problem-specific 

knowledge in the form of the response features extracted from the gathered data, i.e., frequency 

characteristics of the device under design. Feature-based surrogates are employed to carry out 

yield estimation in a computationally efficient manner, whereas the search is executed 

iteratively and adopts the trust-region concept to permit a control over design relocation during 
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the optimization process, and to guarantee its convergence. The presented methodology is 

validated using several examples of microstrip circuits, including two broadband filters and a 

miniaturized branch-line coupler. In all cases, independent Gaussian probability distribution is 

chosen to represent the parameter deviations. The input tolerance level—measured using the 

distribution variance—is improved by a factor of 1.6, 1.5, and 1.8, for the first, second, and 

third circuit, respectively. The average computational cost of the robustness enhancement 

process is low and corresponds to only seventy EM circuit simulations. The result reliability, in 

particular, the predictive power of the feature-based surrogates, has been verified through EM-

based Monte Carlo simulations at the nominal and the robust designs. 

The major contributions of the paper include: (i) the development of a novel algorithm 

for simulation-driven tolerance optimization of microwave components that ensures perfect 

fabrication yield by direct maximization of the input tolerance levels, (ii) ensuring cost-

effectiveness of the yield estimation process through the employment of the problem-specific 

knowledge encoded in the form of feature-based surrogates, (iii) inducing convergence of the 

tolerance optimization procedure by embedding it in the the trust-region (TR) local search 

routine, (iv) definition of a performance metric that ensures inexpensive evaluation of the  

candidate designs yielded by the TR algorithm, (v) establishing the parameter deviation values 

that do not lead to violation of the design requirements at the cost of a few dozens of EM 

analyses of the respective circuits.  

The paper is organized as follows: Section 2 introduces the proposed algorithm for 

robustness enhancement of microwave devices, preceded by formulation of the design task, as 

well as recollection of response features technology. Section 3 delineates the verification case 

studies, provides the results of the numerical verification of the introduced algorithm, along 

with their discussion. Section 4 summarizes the research findings and concludes the paper. 
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2. Robustness Enhancement by Means of Response Feature Surrogates 

The purpose of this section is to formulate the proposed procedure for robustness 

improvement of compact microwave components. The design problem and objectives are stated 

in Section 2.1. Section 2.2 recalls the concept of response features along with the definition of 

the knowledge-based surrogate set up at the level of the response features. Section 2.3 defines 

the objective function and its evaluation procedure. The entire tolerance optimization 

framework is summarized in Section 2.4. The numerical verification of the procedure will be 

provided in Section 3.  

 
Table 1. Robustness enhancement with feature-based surrogates: Notation 

Purpose Description Notation 

General 
Parameter vector of the circuit x = [x1 … xn]T 

Frequency f 

Device response  

Scattering parameters of microwave circuits Sj1, j = 1, …, 4 

Operating frequencies f0.k, k = 1, …, N 

Lower, upper frequencies of the  

kth operating band 

fl.k, fR.k 

Target power split Sk 

Power split error Dk 

Acceptance threshold for S11 and S41 Smax 

Tolerance 

optimization 

Nominal design x(0) 

Fabrication yield Y 

Objective function UY 

Probability density function describing 

parameter deviations 

p 

Variance of Gaussian probability distribution  

Parameter perturbations d 

Feasible space Xf 

Random observables xr,j, j = 1, …, Nr 

Response features 

Response features vector  P(x) = [p1 … pNp]T 

Frequency coordinate of the feature point fi, i = 1, …, Np 

Level coordinate of the feature point li, i = 1, …, Np 

Trust-region 

algorithm 

Trust region size  (i) 

Gain ratio r 

Termination threshold  

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

2.1. Robustness Enhancement through Input Tolerance Optimization 

This section discusses formulation of the nominal design task for exemplary microwave 

components, definition of statistical performance metrics utilized throughout the paper, as well 

as the formulation of the robustness enhancement problem.  

2.1.1. Performance Specifications and Nominal Design 

In order to discuss the robustness enhancement task, we first need to quantify the 

performance of the microwave circuit at hand. In particular, we need a rigorous formulation of 

the design specifications, which is specific to a particular class of components. Below, we 

consider two examples, a microwave coupler, and a bandpass filter. In both cases, x = [x1 … 

xn]
T will stand for a vector of adjustable parameters, whereas f will denote the frequency. In 

order to facilitate the reading, the notation used henceforth has been highlighted in Table 1. 

Multi-band coupler. We formulate the specifications for a multi-band coupler, where fL.k 

and fR.k denote the lower and upper frequencies determining the kth operating band, k = 1, …, N, 

whereas Dk are maximum power split errors at the operating frequency f0.k = [fR.k + fL.k]/2, with 

Sk being the respective target power split ratio. The circuit satisfies the specifications at the 

design x if 

  . . 11 max1
max , : | ( , ) |

N

L k R kk
f f f S f S


 x                                       (1) 

  . . 41 max1
max , : | ( , ) |

N

L k R kk
f f f S f S


 x                                       (2) 

and 

31 0. 21 0.| ( , ) | | ( , ) | 1,...,k k k kS f S f S D k N   x x                                 (3) 

The acceptance threshold Smax for the matching and isolation characteristics is decided upon by 

the user, typically, we have Smax = –20 dB. Satisfaction of (1)-(3) is equivalent to the circuit 

featuring a sufficient bandwidth (at the level Smax) and realizing a required power split within 

the assumed tolerance Dk, simultaneously at all operating frequencies. 
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Bandpass filter. For simplicity, we only consider performance specifications imposed 

on the reflection response of the filter. Let fL and fR be the frequencies determining the intended 

operating bandwidth, and Smax be the maximum allowed in-band reflection level. The circuit 

satisfies the specifications at the design x if 

  11 maxmax , : | ( , ) |L Rf f f S f S x                                             (4) 

In practice, additional requirements are often imposed on both the reflection and transmission 

response (e.g., maximum in-band ripple level [50], etc.), which is omitted here for the sake of 

clarity.  

 In this work, the nominal design, denoted as x(0), will be understood as the one that does 

not take into account any fabrication tolerances. Typically, it is obtained in a minimax sense 

using the objective function corresponding to conditions (1)-(3) or (4). For example, in the case 

of a coupler, we aim at improving the circuit matching |S11| and isolation |S41| within the 

frequency range or operation, and to maintain the required power split S. In particular, we have  

   (0)

. . 11 411
arg min max , : max{| ( , ) |,| ( , ) |}

N

L k R kk
f f f S f S f


 

x
x x x              (5) 

which is subject to the equality constraints 

31 0. 21 0.| ( , ) | | ( , ) | 1,...,k k kS f S f S k N  x x                                      (6) 

As the constraints (6) are expensive to evaluate (i.e., extracted from EM-simulated circuit 

outputs), they are best handled using penalty functions [51]. In the case of a bandpass filter 

(cf. (4)), the nominal design may be obtained as 

   (0)

11arg min max , : | ( , ) |L Rf f f S f 
x

x x                              (7) 

2.1.2. Fabrication Yield 

The primary statistical performance metric utilized in high-frequency design is yield 

[52]. It is more suitable than, e.g., statistical moments of the system output (e.g., the variance), 

because the microwave circuit responses are normally vector-valued, whereas design 
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specifications are often formulated in a minimax form (cf. Section 2.1.1). Furthermore, it 

explicitly quantifies the likelihood of the design satisfying the specs under the assumed 

manufacturing tolerances. The yield Y is defined as 

(0) (0)( ) ( , )

fX

Y p d x x x x                                          (8) 

where p(x, x
(0)) is a joint probability density function that describes statistical variations of the 

design x w.r.t. the nominal design x(0); Xf in (8) denotes the feasible space, i.e., the set containing 

designs satisfying the given performance requirements (e.g., (1)-(3) for a coupler, or (4) for a 

filter). 

 In practice, an explicit integration of the density function p()  is hardly possible because 

the feasible space is not explicitly available. Instead, Monte Carlo (MC) simulation is often 

used, which essentially corresponds to numerical integration of (8). The yield Y is obtained as 

(0) 1 ( )

1
( ) ( )

rN k

r k
Y N H


 x x                                                     (9) 

In (9), x(k), k = 1, …, Nr, are random vectors of the form x(k) = x(0) + dx(k), where the deviations 

dx(k) are generated according to the probability density function p(). Whereas the function H(x) 

is defined to take the value of 1 if the design specifications are met, and zero otherwise. 

 In general, the function p depends on the fabrication process as well as correlations 

between the geometry parameters. In the numerical experiments presented in Section 3, it is 

assumed that parameter deviations follow independent Gaussian distributions with zero mean 

and a variance . The MC procedure is slowly convergent, i.e., reliable estimation of the yield 

requires many hundreds or even thousands of system evaluations. Consequently, it incurs 

considerable computational expenses when carried out directly using EM simulation tools.  

  

2.1.3. Robustness Enhancement Problem Formulation 

Perhaps the most popular approach to statistical design of high-frequency components 

is maximization of yield under specific assumptions concerning manufacturing/material 
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uncertainties [14], [15], [21], [26], [30], [34]. Therein, the design task is posed as 

* arg min{ ( )}Y 
x

x x                                      (10) 

Practical methods for solving (10) are largely based on surrogate modelling techniques, which 

is often imperative given a high computational cost of massive EM analyses involved in the 

process. 

The robustness improvement problem can also be formulated from the perspective of 

input tolerances, which is more insightful in certain situations, especially when the 

manufacturing process has not yet been selected, or the designer seeks to identify the maximum 

values of parameter deviations that can be tolerated by the device without violating the 

performance specifications (cf. maximum input tolerance hypervolume improvement [16]). 

This is the approach adopted here. In particular, we aim at maximizing the allowable deviations 

of the circuit geometry parameters for which the yield is still equal to one (i.e., hundred percent). 

For simplicity, we assume a single parameter governing the tolerance levels, i.e., the variance 

 of independent Gaussian probability distributions describing the parameter deviations. The 

robustness enhancement task is formulated as 

Feasible 

region

Parameter space

Nominal design x
(0)

Maximum 

parameter 

deviations
3

        

Feasible 

region

Parameter space

Robust design

Maximum 

parameter 

deviations

3*

 
                                                      (a)                                                                       (b) 

Fig. 1. Robustness enhancement concept: (a) nominal design x(0) and the dashed-line-marked region 

corresponding to the maximum values of parameter deviations that ensure perfect (100-percent) yield; 

here, assuming independent Gaussian distributions with a joint variance ; (b) robust design, featuring 

enlarged maximum parameter deviations. The nominal objective function value (cf. (5) or (7)) is 

typically worse at the robust design than at x(0). 
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* arg min ( )YU

x
x x                                      (11) 

with the objective function UY therein defined as 

 ( ) arg max ( , ) 1YU Y


 x x                             (12) 

According to (12), the objective function value at x is the maximum variance  for which the 

yield Y is still equal to one. This definition can be reformulated for other probability 

distributions (also determined by several coefficients) in a straightforward manner. The 

procedure for numerical evaluation of UY will be discussed in Section 2.3. A graphical 

illustration of the robustness enhancement process has been provided in Fig. 1. 

 

2.2. Knowledge-Based Regression Surrogates by Response Features 

In this work, in pursuit of computational efficiency, uncertainty quantification of the 

microwave component of interest is carried out using knowledge-based surrogate models 

constructed at the level of the response features. The response feature technique has been 

originally introduced to accelerate EM-driven optimization of high-frequency structures [47]. 

The key concept was to represent design objectives in terms of characteristic points of the 

system outputs (e.g., frequency/level coordinates of resonances, or frequencies corresponding 

to target levels of gain or axial ratio), i.e., the problem-specific knowledge extracted from the 

simulation data. A typically weakly nonlinear relationship between the feature points and 

geometry parameters, allows for achieving faster convergence of the optimization procedures 

[47], constructing surrogate models using smaller training data sets [53], but also obtaining 

quasi-global search capabilities using local algorithms [54]. 

For the purpose of robustness enhancement of microwave components, the definition of 

the feature points depends on the type of the circuit (coupler, filter, impedance transformer). 

Notwithstanding, we are either interested in points determining the system operating bandwidth 

at a specified level (e.g., –20 dB), or points determining the maximum/minimum in-band levels 
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of a chosen characteristic (e.g., return loss). Figure 2 shows the examples of feature point 

selection or a microwave coupler and a bandpass filter. 

Information about the feature points will be gathered in a feature vector P, which, at the 

design x, is defined as 

1 2( ) [ ( ) ( ) ... ( )]
p

T

Np p pP x x x x                                                 (13) 

where pk(x), k = 1,…, Np, are characteristic point coordinates (either frequencies or levels) 

pertinent to the design task at hand. The feature points are extracted from the EM-simulated 

circuit responses.  

 Let us consider two examples. In the case of a microwave coupler with design 

specifications formulated as in (1)-(3), we are primarily interested in the frequency coordinates 

of the points corresponding to –20 dB levels of matching and isolation response, |S11| and |S41|, 

as well as the level coordinates of the transmission responses |S21| and |S31| at the intended 

operating frequencies. Consequently, for a single-band coupler, the feature vector takes the 

form of  

1 2 6 1 2 3 4 1 2( ) [ ( ) ( ) ... ( )] [ ( ) ( ) ( ) ( ) ( ) ( )]T Tp p p f f f f l l P x x x x x x x x x x               (14) 

where f1 and f2 are the frequencies corresponding to Smax (e.g., –20 dB) level of the matching 

response |S11|, f3 and f4 are the frequencies corresponding to Smax level of the isolation response 

|S41|, whereas l1 and l2 are the levels of |S21| and |S31|, respectively, at the target operating 

frequency of the coupler (cf. Fig. 2(a)). For an N-band coupler, the corresponding feature vector 

takes the form of 

1 2 6

1.1 2.1 3.1 4.1 1.1 2.1 1. 2. 3. 4. 1. 2.

( ) [ ( ) ( ) ... ( )]

[ ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( )]

T

N

T

N N N N N N

p p p

f f f f l l f f f f l l

 P x x x x

x x x x x x x x x x x x
   (15) 

In (15), the second subscript indicates the operating band (from 1 to N). The design 

specifications (1)-(3) formulated for the multi-band coupler in Section 2.1 can now be expressed 

in terms of the response features as 
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(a) 

 
(b) 

Fig. 2. Response features for exemplary microwave components: (a) scattering parameters of a coupler 

along with the response features corresponding to –20 dB level of matching (|S11|) and isolation (|S41|) 

characteristics (o), and transmission (|S21|, |S31|) at the target operating frequency of 1.5 GHz (); the 

feature points allow for determining satisfaction of the performance requirements (here, the 

matching/isolation bandwidth of 1.45 GHz to 1.55 GHz, and maximum power split error of 0.5 dB at 

1.5 GHz); (b) scattering parameters of a filter with the feature points corresponding to –15 dB level of 

|S11| and local maxima of |S11| within the filter operating band; the feature points permit determination 

of whether the return loss characteristic satisfies the matching conditions over the upper UWB 

bandwidth (5.9 GHz to 10.6 GHz). The left- and right-hand-side panels illustrate designs satisfying and 

violating the performance specifications, respectively. 

 

 

1. . 3. .( ) , ( )k L k k L kf f f f x x ,     k = 1, …, N                                    (16) 

2. . 4. .( ) , ( )k R k k R kf f f f x x ,     k = 1, …, N                                     (17) 

1. 2.| ( ) ( ) |k k kl l D x x ,     k = 1, …, N                                            (18) 

As a second example, let us consider a Nth-order bandpass filter with performance 

requirements formulated for the return loss characteristic using (4) (Section 2.1). In this case 

the feature vector will take the form of  

1 2 1 1 2 1 1( ) [ ( ) ( ) ... ( )] [ ( ) ( ) ( ) ... ( )]T T

N Np p p f f l l  P x x x x x x x x                  (19) 

where f1 and f2 are the frequencies corresponding to Smax (e.g., –20 dB level of |S11|, and lk, k = 

1,…, N – 1, are the reflection levels corresponding to local in-band maxima of |S11| (note that 
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the filter should be well tuned in order for all maxima to be present, which is normally the case 

at the nominal design), cf. Fig. 2(b). Using (19), the design specifications (4) for the filter can 

be expressed as 

1 2( ) , ( )L Rf f f f x x                                                       (20) 

max( )kl Sx ,     k = 1, …, N – 1                                                 (21) 

The primary advantage of employing the response features is the aforementioned low sensitivity 

of feature point coordinates to geometry parameter variations. This property makes it possible 

to use simple (e.g., linear) surrogates that still have a sufficient predictive power in the 

neighborhood of the nominal design. From the point of view of robustness enhancement, this 

will translate into improved computational efficiency of the optimization process. 

 The robustness enhancement algorithm proposed in this work is an iterative procedure 

(cf. Section 2.4), with the feature-based surrogate model LP
(i)(x) established at the current 

design point x(i). The model represents the feature vector P and is defined as 

( )

0.1 1

( )

.1 .

( )

0. 2

( )

( ) [ ( ) ... ( )]

( )

  
 

   
 

   

p

p p

T i

i T

P L L N

T i

N N

l

p p

l

L x x

L x x x

L x x

                            (22) 

The model coefficients are found as  

1 (1)(1) ( )

0.

( 1) ( ) ( 1)

( )1 ( )

1 ( ) ( )

i T
j BB

j

j n i T n

B j B

p
l

p



 

  
    

    
          

xx x

L
x x x

,      j = 1, …, Np                         (23) 

where xB
(k), k = 1, …, n + 1, are the training points, and pj(xB

(k)) are the elements of the feature 

vectors P(xB
(k)) extracted from EM-simulated circuit responses. The training vectors are 

allocated as xB
(1) = x(i), and xB

(k) = x(i) + [0 … 0 d 0 … 0]T with d on the (k–1)th position. Here, 

we set d = 3, i.e., the parameter perturbations d correspond to the maximum deviation values.  
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2.3. Objective Function Evaluation 

An important aspect of the robustness enhancement procedure discussed in this work is 

the evaluation of the objective function UY(x) defined in (12). Here, it is carried out by 

numerical integration of the probability density function p() in (8), using—for the sake of 

expediting the process—the feature-based surrogate (22). More specifically, the model LP
(i)(x), 

utilized throughout the ith iteration of the optimization algorithm, is employed as a predictor 

providing estimated values of the feature vector at the design x, which, permits rapid 

verification of the design specifications (e.g., (16)-(18) in the case of a coupler, or (21), (22) in 

the case of a filter). The estimation of the yield Y(x,) is realized using a large number of 

random observables xr
(j) (here, Nr = 100,000) allocated using the assumed probability 

distribution governed by the variance . The following procedure is applied: 

1. For a given variance , generate the observable set {xr
(j)}j = 1, …, Nr; 

2. Evaluate the regression surrogate LP
(i)(xr

(j)) for j = 1, …, Nr; 

3. Evaluate design specifications (e.g., conditions (16)-(18), or (21), (22) for all xr
(j) 

using surrogate-predicted features pL.k(xr
(j)), j = 1, …, Nr; 

4. Compute Y(x,) according to (9). 

All steps of the above procedure are vectorized to speed up yield estimation, which allows for 

handling a large number of observables at a negligible cost. At the same time, involving large 

data sets considerably reduces the yield estimation variance.  

The objective function UY(x) is calculated by solving the problem (12). Here, we use a 

golden ratio search [55] because the probability distribution controlling the fabrication 

tolerances is parameterized by a single coefficient (the variance ). In more complex situations, 

e.g., joint normal distributions governed by a given covariance matrix, other methods can be 

applied (e.g., gradient-based procedures). To distinguish the objective functions evaluated 
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using different feature-based surrogates, we introduce the symbol UY
(i)(x) to denote the function 

associated to the model LP
(i). 

 

2.4. Complete Robustness Enhancement Algorithm 

In order to exploit the feature-based surrogate and to ensure convergence of the 

robustness enhancement process, the problem (11) is solved iteratively using the trust-region 

(TR) framework [56]. The design x(i+1) approximating x* and produced in the ith iteration of the 

algorithm (x(0) is the nominal design), is obtained as 

( ) ( )

( 1) ( )

|| ||
arg min ( )

i i

i i

Y
d

U

 


x x

x x                                     (24) 

The objective function UY
(i)(x) in (24) is evaluated as described in Section 2.3. Note that the 

optimization process is constrained to the vicinity of the current design, defined as ||x – x(i)||  

(i); the TR size is adjusted based on the gain ratio [56]  

#( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

( ) ( )

( ) ( )

i i i i

Y Y

i i i i

Y Y

U U
r

U U










x x

x x
                                        (25) 

The denominator of (25) is the objective function improvement as predicted using the 

regression model. The numerator is calculated using UY
#(i), which is defined as in Section 2.3 

but using the feature-based model LP
#(i), in which the coefficient vector [l0.1 … l0.Np]

T is replaced 

by the feature point P(x(i+1)), extracted from EM simulation data at x(i+1). 

Utilization of the model UY
#(i) allows for a computationally cheap validation of the 

design x(i+1) (only one EM analysis is involved). The reliability of this validation is subject to 

the feature point gradients not changing rapidly between x(i) and x(i+1). This is normally justified 

by the very nature of the feature point relations with geometry parameters as well as small 

expected design relocations between the algorithm iterations. In particular, ||x(i+1) – x(i)|| is 

typically comparable to the fraction of the variance . 
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Fig. 3. Flow diagram of the robustness enhancement algorithm involving feature-based surrogates.  

 

The vector x(i+1) produced by (25) is accepted if the gain ratio r > 0, and it is rejected 

otherwise. In the latter case, the iteration is repeated with reduced d(i). The termination condition 

utilized in this work is ||x(i+1) – x(i)|| <   (convergence in argument) OR   (i) <  (reducing the 

TR radius), with  = 10–3. Figure 3 shows the flow diagram of the proposed procedure.  

3. Demonstration Case Studies 

In this section, the tolerance optimization methodology introduced in Section 2 is 

demonstrated using three microstrip circuits, including two broadband filters and a compact 

branch line coupler. Given the performance requirements, the design goal is to enlarge the 

maximum input parameter deviations for which the perfect (100-percent) fabrication yield can 
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still be achieved. The reliability of the optimization process is corroborated through EM-driven 

Monte Carlo simulations at the nominal and the optimized designs.  

 

3.1. Case Studies 

For the sake of validation, we use the following three circuits: 

 An upper UWB-band (5.8 GHz to 10.6 GHz) microstrip filter using a stepped-

impedance resonator (SIR) [57], shown in Fig. 4(a) (Circuit I); 

 A compact wideband filter using shunt resonators coupled through admittance inverters 

[58], shown in Fig. 4(b) (Circuit II); 

 A miniaturized branch-line coupler (BLC) [58], shown in Fig. 4(c) (Circuit III). 

L1 L2 L3

W1

W2W3
W0

Symmetry plane

Via

 

(a) 

Symmetry plane
Vias

Ll1

Wc1
Wc2

Wc3

Wl1
Wl2

Wl3

W0

Ll2

Ll3

Lr1 Lr2 Lr3

Lz1 Lz2

Lz3

Lc1 Lc2 Lc3

 

(b) 

wc

Ws

lb

la

wa

dL w2

l1

w1

g

s

Ls

W

L

w3
w4

wb

1

2

3

4  

 (c) 

Fig. 4. Microwave circuits utilized for demonstrating the tolerance optimization procedure of 

Section 2: (a) UWB filter using stepped-impedance resonator (Circuit I) [57], (b) wideband filter 

using shunt resonators (Circuit II) [58], (c) miniaturized branch-line coupler (Circuit III) [59]. 
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Table 2.  Verification case studies 

 
Case study$ 

Circuit I Circuit II Circuit III 

Substrate 
RO4003C 

(r = 3.55, h = 0.305 mm) 

RO3010 

(r = 10.2, h = 0.63 mm) 

AD300  

(r = 2.97, h = 0.76 mm) 

Design 

parameters 
x = [L1 L2 L3 W1 W2 W3]T 

x = [Ll1 Ll2 Ll3 Lc1 Lc2 Lc3 

Lr1 Lr2 Lr3 Lz1 Lz2 Lz3]T 

x = [g l1r la lb w1 w2r w3r 

w4r wa wb]T 

Other 

parameters 
W0 = 0.66 mm 

W0 = 0.6 mm, Wc1 = Wc2 = 2 mm, 

Wc3 = 3 mm, Wl1 = Wl3 = 0.3 

mm, Wl2 = 0.5 mm 

L = 2dL + Ls, Ls = 4w1 + 4g + s 

+ la + lb, W = 2dL + Ws, Ws = 

4w1 + 4g + s + 2wa, l1 = lbl1r, w2 

= waw2r, w3 = w3rwa, and w4 = 

w4rwa, wc = 1.9 mm 

Performance 

specifications 

|S11| ≤ 15 dB within        

the operating band of            

5.8 GHz to 10.6 GHz 

|S11| ≤ 15 dB within                 

the operating band of                

2.1 GHz to 2.9 GHz 

|S11|, |S41| ≤ 20 dB within      

the operating band of           

1.45 GHz – 1.55 GHz 

Power split |S21|  |S31| ≤ 0.5 dB 

at 1.5 GHz 

Nominal 

design 

x(0) = [4.25 5.20 4.04 6.69 

1.07 0.47]T 

x(0) = [2.86 3.53 1.77 10.55 

11.62 10.82 0.74 2.42 0.54 

3.67 2.30 3.89]T 

x(0) = [0.63 5.90 9.34 12.45 

1.29 2.02 0.99 0.32 2.81 0.22]T 

$ Parameters with subscript r are relative, and their deviations are recalculated accordingly in order to have the corresponding absolute 

parameters following the assumed probability distribution. 

 

Table 2 provides the necessary data on the considered structures, including the material 

parameters of the dielectric substrate, geometry parameters, nominal design, as well as design 

specifications. The computational models of all circuits are evaluated using the time-domain solver 

of CST Microwave Studio [60] (software package for simulation of EM components and systems). 

All the simulations were performed on Intel Xeon 2.1 GHz dual-core CPU with 128 GB RAM. 

The input (manufacturing) tolerances are represented by means of independent normal 

distributions with zero mean and a common variance . Further, the maximum parameter deviations 

are limited to 3. It should be noted that some of the circuit parameters are relative, in which case, 

their parameter deviations are recalculated (scaled) to comply with the assumed input tolerances for 

the corresponding absolute parameters (based on the functional dependencies provided in Table 2).  

As mentioned before, the variance  is the major evaluation metric, which is subject to 

maximization in the tolerance optimization process. Larger variance (for which the perfect, i.e., 
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100-percent fabrication yield is still ensured) corresponds to higher levels of acceptable 

parameter deviations. The assumption of joint variance for independent Gaussian distributions, 

taken in this section, is reasonable due to the fact that most of geometry parameters are 

determined by the same fabrication process (e.g., chemical etching). At the same time, this can 

be generalized to, e.g., arbitrary covariance matrix that describes the relationships between the 

parameters. In that case, tolerance optimization procedure would be only different in a part 

pertinent to evaluation of the objective function UY, as mentioned in Section 2.3. 

3.2. Results and Discussion 

Table 3 gathers the numerical results, in particular, the variance and maximum 

parameter deviation ensuring 100-percent yield at the nominal design and after applying the 

robustness enhancement procedure. The obtained final designs for the considered circuits are: 

 Circuit I: x* = [4.24 5.17 4.02 6.71 1.06 0.47]T; 

 Circuit II: x* = [2.84 3.53 1.77 10.53 11.62 10.81 0.74 2.40 0.53 3.67 2.30 3.88]T; 

 Circuit III: x* = [0.64 5.90 9.27 12.51 1.27 2.01 1.06 0.33 2.85 0.22]T. 

Table 3. Robustness enhancement results for the Circuit I, II, and III 

Verification structure Circuit I Circuit II Circuit III 

Nominal 

design 

Maximum variance  ensuring 

100-percent yield@ 
5.6 m 1.2 m 4.3 m 

Maximum parameter deviation 

ensuring 100-percent yield 
16.7 m 3.7 m 13.0 m 

EM-based yield estimation# 100 % 98 % 100 % 

Tolerance-

optimized 

design 

Maximum variance  ensuring 

100-percent yield@ 
8.7 m 1.8 m 7.7 m 

Maximum parameter deviation 

ensuring 100-percent yield 
26.1 m 5.4 m 23.0 m 

EM-based yield estimation# 100 % 99 % 100 % 

Optimization cost$ 40 118 52 

@  refers to the variance of the independent zero-mean Gaussian distributions assumed to describe the fabrication tolerances. The maximum 

parameter deviations are assumed to be 3. 
# Estimation obtained using Monte Carlo simulation based on 500 random samples. 
$ Optimization cost in terms of the number of EM analyses of the circuit under design. 
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It should be noted that the CPU cost of finding the robust designs is low. It corresponds 

to just 40, 118, and 52 EM simulations of the respective circuits. Although the cost for Circuit II 

is considerably higher than for other structures, the dimensionality of the parameters is also 

higher (12 parameters versus six for Circuit I and ten for Circuit III). The primary factor 

enabling computational speedup is utilization of feature-based surrogates, which permits rapid 

uncertainty quantification.  

The design relocations are generally small, which is due to the fact that the responses of 

all circuits are highly dependent of their geometry parameters. Nevertheless, the proposed 

robustness enhancement procedure allows for a considerable increase of the input tolerance 

levels ensuring 100-percent fabrication yield, by a factor of 1.6, 1.5, and 1.8 for Circuit I, II, 

and III. In absolute terms, the maximum parameter deviations increase from 16.7 m to 26.1 

m (Circuit I), from 3.7 m to 5.4 m (Circuit II), and from 13.0 m to 23.0 m (Circuit III). 

The average improvement ratio factor exceeds 1.6. 

 
(a) 

 
(b) 

Fig. 5. EM-driven Monte Carlo analysis of Circuit I (Fig. 4(a)) at (a) the nominal design, and (b) the 

design found using the robustness enhancement algorithm. Black plots indicate the circuit responses at 

the nominal and the optimized designs, respectively, gray plots represent EM simulation data at the 

random observables generated during the MC analysis. 
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(a) 

 

(b) 

Fig. 6. EM-driven Monte Carlo analysis of Circuit II (Fig. 4(b)) at (a) the nominal design, and (b) the 

design found using the robustness enhancement algorithm. Black plots indicate the circuit responses at 

the nominal and the optimized designs, respectively, gray plots represent EM simulation data at the 

random observables generated during the MC analysis. 

 

For the sake of reliability, EM-based Monte Carlo analysis using 500 random samples 

has been executed for both the nominal and the robust design. The purpose was to verify 

whether 100-percent yield is indeed preserved, which would be a confirmation of a sufficient 

predictive power of the feature-based surrogates utilized for uncertainty quantification. It can 

be observed (Table 3) that the MC-validated yield is 100 percent for Circuit I and Circuit II, 

and it is slightly lower for Circuit II. It should be emphasized that EM-driven MC exhibits 

relatively large standard deviation of yield estimation, which is inversely proportional to Nr
1/2; 

at the same time, the number of samples was limited to 500 due to the high CPU cost of the 

procedure.  

Graphical illustrations of MC can be found in Figs. 5 through 7. It can be observed that 

the allowable tolerance levels are much higher at the optimized designs than at the nominal 

ones, which is indicated by the broader spread of the circuit characteristics (grey plots). The 
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improvement obtained by relocating the design manifests itself by slight broadening of the 

bandwidth at the expense of other characteristics (e.g., the increase of the in-band maxima for 

the filter structures). Also, in all cases, the families of circuit responses are essentially touching 

the specification lines, which is a visual confirmation of both the fact that the yield at both the 

nominal and the robust design is close to 100 percent, and that the tolerance levels cannot be 

improved further. 

Let us compare the proposed robustness enhancement technique with conventional 

approaches: simulation-based and surrogate-assisted procedures. The cost of the former (i.e., 

direct EM-driven tolerance-aware design using e.g., Monte Carlo simulation) is in most cases 

tremendous and may reach up few thousand EM analyses. The employment of surrogate-based 

frameworks may somewhat alleviate this issue, still, they are not free from shortcomings.  

        
                                            (a)                                                                 (b) 

Fig. 7. EM-driven Monte Carlo analysis of Circuit III (Fig. 4(c)) at (a) the nominal design, and (b) the 

design found using the robustness enhancement algorithm. Black plots indicate the circuit responses at 

the nominal and the optimized designs, respectively, gray plots represent EM simulation data at the 

random observables generated during the MC analysis. 
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In fact, traditional surrogate modeling techniques are to a large extent limited in terms of design 

space dimensionality and the ranges of geometry parameters due to the observed highly 

nonlinear characteristics of microwave components. This severely hinders their applicability to 

the devices described by low numbers of design variables, which is far from sufficient. Whereas 

our approach allows for performing the robustness improvement task cost-efficiently, and, at 

the same time does not impose any limitations on the parameter space dimensionality. As a 

matter of fact, the structures utilized in this work as verification case studies are quite 

challenging ones, as they are described by six, ten and twelve geometry parameters. Finally, it 

should be mentioned, that most of statistical design procedures described in the high-frequency 

design literature (cf. Section 1) are oriented towards yield maximization, whereas there are 

almost no works that directly tackle tolerance improvement in the sense considered in this work. 

This is yet another advantage of the proposed approach, because—instead of finding the designs 

that improve the fabrication yield as much as possible—it directly maximizes acceptable levels 

of parameter deviations. This information can be used, among others, to select the 

manufacturing process that ensures perfect fabrication yield. 

 

4. Conclusion 

This work presented a novel procedure for accelerated robustness enhancement of 

microwave components under uncertainties. The objective is to maximize the permitted levels 

of geometry parameter deviations, for which the perfect (100-percent) fabrication yield can be 

ensured. The primary benefit of this formulation is that it allows for explicit prediction data on 

input tolerances, thereby facilitating a selection of a suitable manufacturing process or 

meaningful comparison of alternative circuit topologies for a given application. The key 

components of the proposed procedure are knowledge-based surrogates set up at the level of 

the response features, a vectorized implementation of Monte Carlo integration of probability 

density functions determining the tolerances, as well as embedding the optimization process in 
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the trust region framework to secure its convergence. Comprehensive verification experiments 

have been carried out using three microstrip circuits, including two broadband filters and a 

compact branch-line coupler. A significant improvement of the input tolerance levels has been 

achieved in all cases, by a (multiplication) factor of 1.6 on the average. Despite relatively large 

dimensionalities of the corresponding parameter spaces (six, twelve, and ten variables), the 

average CPU cost of the robustness enhancement process is merely seventy EM analyses of the 

respective circuits. Due to its efficacy and easy implementation, the methodology introduced in 

this paper may be an attractive tool of choice for reliable and expedited EM-driven robust design 

of microwave components. 

The major findings are that incorporating knowledge-based surrogates constructed at the 

level of the feature points allows for obtaining a considerable improvement of the input tolerance 

levels (nearly twofold on the average) at low computational cost. Achieving this may be primarily 

attributed to exploitation of the problem-specific knowledge in the form of the response features 

embedded in the acquired data. In addition, the employment of feature-based surrogates for yield 

estimation dramatically reduces computational expenditures, whereas executing iterative search 

with the use of the trust-region routine guarantees its convergence. The scope of applicability of 

the proposed technique is limited to the components of responses featuring easily discernible 

characteristic points. Notwithstanding, because tolerance optimization typically requires 

reasonably small relocation of the parameter vector, the existence of response features is generally 

not an issue. Also, in many cases, the frequency characteristics of real-world microwave passives 

are inherently well-structured (e.g., couplers, multi-band transformers or power dividers). 

Consequently, the techniques formulated at the level of the response features may be successfully 

employed for the structures of these classes. The future work will be aimed at increasing its 
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versatility of the proposed technique to other types of high-frequency components (e.g., antennas 

of various types of responses such as multi-band or wideband). 
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