
 
 

 
 

 
Resources 2022, 11, 12. https://doi.org/10.3390/resources11020012 www.mdpi.com/journal/resources 

Article 

Predicting Ice Phenomena in a River Using the Artificial  
Neural Network and Extreme Gradient Boosting 
Renata Graf 1,*, Tomasz Kolerski 2 and Senlin Zhu 3 

1 Department of Hydrology and Water Management, Institute of Physical Geography and Environmental 
Planning, Adam Mickiewicz University, 61-680 Poznań, Poland 

2 Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland; 
tomasz.kolerski@pg.edu.pl 

3 College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China; 
slzhu@yzu.edu.cn 

* Correspondence: renata.graf@amu.edu.pl; Tel.: +48-61-829-6259 

Abstract: Forecasting ice phenomena in river systems is of great importance because these phenom-
ena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, 
their prediction is a difficult process, especially when data sets are sparse or incomplete. In this 
study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Ex-
treme Gradient Boosting (XGBoost)—were developed to predict ice phenomena in the Warta River 
in Poland in a temperate climate zone. Observational data from eight river gauges during the period 
1983–2013 were used. The performance of the model was evaluated using four model fit measures. 
The results showed that the choice of input variables influenced the accuracy of the developed mod-
els. The most important predictors were the nature of phenomena on the day before an observation, 
as well as water and air temperatures; river flow and water level were less important for predicting 
the formation of ice phenomena. The modeling results showed that both MLPNN and XGBoost 
provided promising results for the prediction of ice phenomena. The research results of the present 
study could also be useful for predicting ice phenomena in other regions. 

Keywords: river freezing; Multilayer Perceptron Neural Network (MLPNN); Extreme Gradient 
Boosting (XGBoost); predictor variables; balanced accuracy; Poland 
 

1. Introduction 
Prediction of ice phenomena in rivers is an important element of hydrological regime 

analysis [1] and the assessment of the risk of ice jam type floods [2]. The changing thermal 
conditions of river waters during the winter season and the nature of river ice may signif-
icantly change the hydro-ecological and socio-economic aspects of the functioning of the 
river ecosystem. 

Due to the stochastic nature of ice phenomena, their prediction is difficult, especially 
when data sets for rivers are sparse or incomplete. An additional complication is the scale 
of the event (local and regional scales) and the influence of numerous factors on the pro-
cess of river freezing, e.g., meteorological (e.g., air temperature, solar radiation, wind ve-
locity) [3,4], hydrological (e.g., flow rate, inflow and outflow conditions) [5,6], the com-
plexity of interactions between hydroclimatic factors [7,8], hydraulic (e.g., trough cross-
section geometry, river bathymetry, water table drop) [9] and thermodynamic factors 
(e.g., water temperature and thermal conductivity) [10,11]. Relations between river freez-
ing and features of the hydrological regime, including flow, water state, and water tem-
perature, are usually complex and non-linear, and are also spatially heterogeneous due to 
the variability of environmental conditions. In addition to the process that determines the 
number of occurrences of a given phenomenon, there is also a dichotomous process 
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determining whether it has a chance of occurring in a given period [12]. This task is further 
complicated by the fact that ice phenomena occur in three phases: freezing of the river 
(first symptom of ice), permanent ice cover, and the disappearance phase when an ice floe 
is formed and related phenomena appear, such as ice jams, which often lead to winter 
floods. However, the full freezing cycle is not always recorded for rivers. 

The analysis of time series relating to ice phenomena allows for the determination of 
the frequency and duration of their occurrence and the tendency of changes over time, 
and also for an assessment of the ice phases, which provides a good background for the 
characteristics of the freezing process in many regions. However, it is not sufficient for 
their prediction and forecasting [13]. Although Shulyakovskii [14] has developed a man-
ual for forecasting the freezing of inland rivers and lakes, there are few studies related to 
this topic, especially works dealing with the prediction of ice phenomena at various stages 
of their occurrence. The problem most frequently discussed is the prediction of ice jams 
on rivers and their consequences in the form of ice jam floods. The theoretical model of 
river ice jams was developed by Uzuner and Kennedy [15]. Existing forecasts of ice extent 
are most often based on the location of the 0 °C isotherm [16]. Good results in this regard 
have also been obtained from observations of river ice ranges carried out with the use of 
satellites. Remote sensing is useful for the monitoring of ice characteristics, such as differ-
ent types and thicknesses of ice or ice cover, and for tracking the progress of the breakup 
of ice jams, which can help predict the location and timing of ice blockages [17,18]. How-
ever, the results of field studies and analyses of satellite images do not always provide 
accurate data for forecasting ice and scenarios of changes in ice dynamics [19]. 

Prediction models for ice phenomena are usually limited to the empirical or the sto-
chastic due to the difficulties in applying deterministic models. The methods used to pre-
dict ice phenomena (e.g., ice jams) include empirical single-variable threshold analyses, 
logistic regression [2,20], and discriminant function analysis [21]. Many numerical models 
have been developed to simulate ice formation on rivers [22,23]. According to Wang et al. 
[24] and Beltaos [25], a better understanding of physical processes has increased the pos-
sibility of developing more accurate numerical models of ice jams and ice jam floods in 
rivers, e.g., the public-domain river-ice RIVICE model [10], the DynaRice model, a two-
dimensional coupled hydrodynamic and ice dynamic model [23], and hydraulic models 
[19]. An interesting ice jam flood forecasting system that considers requirements for the 
real-time predictions of water, ice, and sediment transport, was developed for the lower 
Odra River [26]. The prediction of ice phenomena was also carried out using teleconnec-
tion indices, as presented by Sutyrina [27] in relation to spring ice phenomena in lakes 
and reservoirs (including for Lake Baikal). 

In the prediction of ice phenomena, machine learning methods are used less fre-
quently, although they have already been utilized widely in forecasting time series of hy-
drometeorological data [28–30]. Artificial neural networks (ANNs) have been used to 
forecast freezing conditions in rivers [31,32] and predict ice jams [4,33]. For example, 
Chokmani et al. [34] estimated the thickness of ice using artificial neural networks 
(ANNs), while Hu et al. [35] predicted the disappearance of ice phenomena using hybrid 
artificial neural networks. Furthermore, fuzzy logic systems have provided favorable re-
sults as regards ice phenomena forecasting and its effects [20,36]. For example, Zhao [3] 
predicted the breakup date of flood ice using a wavelet neural network (WNN) model. 
Whereas Yan and Ding [37] proposed a predictive model of ice formation based on a dy-
namic fuzzy neural network (D-FNN) in combination with a particle swarm optimization 
(PSO) algorithm. The significant advantages of artificial neural networks over standard 
statistical classification methods consist in their ability to adapt to data of different formats 
and configurations [32,34]. Ensemble machine learning methodologies, including 
resampling methods (bagging, boosting, and dagging), model averaging, and stacking, 
are used in the solving of problems related to simulation and prediction in hydrology 
[38,39]. 
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The increase in the amount of hydrological and meteorological data makes it more 
difficult not only to select the methods for their analysis but also to choose predictive and 
prognostic models so as to maintain both their legibility and accuracy [40]. For the inte-
grated management of an aquatic ecosystem, it is necessary to determine how the ther-
mal–ice regime of the river will develop and change in the future, considering global cli-
mate change and local conditions in particular [41]. The identification of the most im-
portant hydrological and thermal variables influencing the course of ice phenomena in a 
river may result in more accurate forecasts of the freezing process. 

The main goal of the present study is to predict ice phenomena in a river with the use 
of the Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting 
(XGBoost) algorithms, which belong to the group of machine learning methods. MLPNN 
is one of the most widely used ANN models in the field of hydrology [4,7,8]. According 
to Zounemat-Kermani et al. [42], the boosting methods (e.g., boosting, AdaBoost, and Ex-
treme Gradient Boosting) are becoming more and more effective for modeling and fore-
casting water quality, runoff, sediment transport, groundwater, flooding, and drought. 
One of the advantages of XGBoost compared to neural networks is the ability to assess the 
importance of predictors in the model, and in this study, by employing the XGBoost 
model, we can assess the dominant factors controlling the dynamics of ice phenomena in 
the studied river. The objective of the present research was to show the predictability of 
the selected models and explain spatial differences in terms of the predictors: air temper-
ature (Ta), water temperature (Tw), water level (H), and river flow (Q), as well as the ice 
phenomenon of the previous day and of the month of occurrence of the phenomenon. The 
predictions will be carried out using the example of the Warta River in Poland (Central 
Europe), which is a river of great economic significance and considerable natural value. 
The results of the study are important for determining the range of intensification of ther-
mal and hydrological ice phenomena variables and the conditions under which their re-
duction will occur. 

2. Study Area 
The Warta River is a tributary of the Odra River and the third longest (808 km) river 

in Poland (Figure 1). Its catchment area (area 54,500 km2) is characterized by a significant 
diversity of topography and terrain and climatic and hydrological conditions [43]. Within 
the Warta Water Region there are three main types of relief: old-glacial in the southern 
part, young-glacial in the northern and central parts, and upland, south of Wielun. 
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Figure 1. Study area and the locations of water gauges and meteorological stations of the Institute 
of Meteorology and Water Management—National Research Institute (IMGW-PIB, Warsaw, Po-
land). 

The catchment belongs to nine out of 28 climatic regions designated in Poland by 
Woś [44]. The average annual air temperature ranges from 7.5 °C in the north to 8.5 °C in 
the west. In the coldest month—January—the average temperature ranges from −1.2 °C 
(in the west) to −2.5 °C (in the southeast). Annual rainfall totals in the study area are di-
verse and range from 520 mm in the Kujawy region (in the northeast) to 675 mm in the 
south. A regional differentiation of features of the hydrological regime has been observed 
along the analyzed section of the Warta [45]—from a medium-developed (the upper and 
lower course of the river) to a highly-developed (along the section from Nowa Wies 
(Nowa Wieś Podgórna to Poznan) nival regime (Figure 1). The average dates of appear-
ance of ice phenomena on the Warta River, as well as the dates of their disappearance, 
vary. Research by Graf et al. [46] for the 1991–2010 observation series showed that the 
earliest ice phenomena occurred in the third decade of December (about 45% of the total 
number of observations) and the latest in the first decade of January. The disappearance 
of ice phenomena is usually observed from the end of January to the end of March [47], 
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while about 30% of observations are made in the third decade of February. Most days with 
ice phenomena on the Warta River are in January (41% of observations), and the most 
common form of ice is frazil ice (46% of phenomena) and ice cover (30%). 

3. Materials and Methods 
Predictions of ice phenomena and their numerical descriptions were performed 

based on daily data on the number of occurrences (the number of days on which the phe-
nomena were observed) and the nature of ice phenomena, and on air temperature (Ta), 
water temperature (Tw), water levels (H), and river flow (Q) for the years 1983–2013 from 
the Central Database of Historical Data of the Institute of Meteorology and Water Man-
agement—National Research Institute (IMGW-PIB) in Warsaw, Poland (Figure 1). The ob-
servation series includes data for the period after 1980, when changes in water tempera-
ture in rivers and further consequences, including the lower incidence of ice phenomena, 
were revealed in response to the sudden climate change associated with changes in CRS 
(climate regime shift). The regime shift of the late 1980s is a well-documented example of 
CRS in Poland [48]. 

Use was made of data from eight water gauges on the Warta River (Bobry, Sieradz, 
Uniejow, Nowa Wies (Nowa Wieś Podgórna), Srem, Poznan, Skwierzyna, and Gorzow 
Wielkopolski) and seven meteorological stations (Wielun, Sieradz, Koło, Słupca, Kornik, 
Poznan, and Gorzow Wielkopolski). Data have been presented in relation to the hydro-
logical year, which in Poland lasts from 1 November until 31 October. 

3.1. Classification of Ice Phenomena 
The full ice cycle of the river includes forms of ice phenomena observed within the 

IMGW-PIB water gauge network: frazil ice, border ice, border ice and frazil ice, frazil ice 
jam, ice cover, ice floes, ice floes and border ice, ice floes and frazil ice, and ice jams. For 
modeling and predicting ice phenomena, these were grouped into three basic categories: 
(1) river freeze-up, (2) stable ice cover, and (3) breakup of ice cover—the disappearance of 
ice (Table 1). The joining into classes is not random, and indeed follows from the order in 
which ice phenomena appear on the river depending on the thermal and hydrological 
conditions of the winter season. Each observed ice phenomenon was assigned to the date 
of occurrence (month and year). 

Table 1. Classification and grouping of ice phenomena. 

Class Ice Phenomena  Ice Phase of the River 
 Frazil ice 

I phase— 
Freeze-up 

1 class Border ice 

 
Border ice and frazil ice 

Frazil ice jam 
2 class  Ice cover II phase—Ice cover 

 Ice floe 
III phase— 

Breakup and ice deterioration  
3 class Ice floe and border ice  

 Ice floe and frazil ice  
 Ice jam 

In each of the mentioned phases, characteristic fluvial processes occur as a result of 
the appearance of various forms of ice. Strictly defined forms, such as frazil ice jams or ice 
jams, are ephemeral forms. According to data from the IMGW-PIB, in the analyzed period, 
the Warta River had only several days with frazil ice jams and ice jams, which accounted 
for 0.1% of all observed ice phenomena. Frazil ice jam embolism occurred on the Warta 
River in Skwierzyna (three days with jams) and Poznan (one day with jams). Ice jams on 
the Warta occurred in Srem (three days with jams) and Uniejow (two days with jams). 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Resources 2022, 11, 12 6 of 29 
 

 

It should be emphasized that ice jams are not a common event in the Warta River. 
They are among the characteristic features of the river’s morphology, which makes the 
reaches of the river susceptible to the formation of frazil ice [46]. In addition, climatic 
change serves to significantly decrease the intensity of ice jams by increasing the temper-
ature in the vicinity of supercooled water and thereby prohibiting the formation of ice 
jams. Furthermore, the Warta River is strongly impacted by anthropogenic activity. Re-
garding the features of its morphology, the Warta River consists of various bed slopes, 
from mild to steep, which follow each other in a way that affects the pattern of ice for-
mation. Surface ice is observed mainly over the milder sloped beds. Less surface ice is 
observed over the steeper slopes, while more suspended frazil particles are present. These 
ice particles may accumulate under the cover of the following flat sections, forming hang-
ing dams at the inlet of the low-sloped sector. There is no specific data for the Warta River 
regarding hanging dams that would allow us to distinguish between the ice cover itself 
and frazil depositions with a greater degree of certainty. 

3.2. Data Preparation 
Predictions of ice phenomena were performed based on daily data on the number of 

occurrences (number of days with the phenomena) and the nature of ice phenomena and 
on air temperature (Ta), water temperature (Tw), water levels (H), and river flow (Q), as 
well as ice phenomena of the previous day (the day before occurrences of ice phenomena 
from classes 1, 2, or 3, or from class “none”) and the month of individual phenomena (six 
months of the hydrological winter half-year XI-IV). The choice of input variables was not 
accidental. The hydroclimatic factors and thermal conditions are important predictors for 
the process of ice phenomena formation. 

To improve the predictability of the tested models and accelerate the process of sim-
ulation convergence (in particular as regards artificial neural networks (ANNs)), before 
inputting the data into Multilayer Perceptron Neural Network (MLPNN) the variables 
were normalized by converting their values into standardized values (so-called Z-scores) 
[29]: 

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑥𝑥
𝑠𝑠𝑠𝑠𝑥𝑥

 (1) 

where 𝑥𝑥𝑖𝑖 is the i-th value of x, 𝑥𝑥 is the mean of x, and 𝑠𝑠𝑠𝑠𝑥𝑥 is the standard deviation of x. 
The resulting variable z has a mean of zero and a standard deviation of one while retaining 
all the properties of the original variable. The following variables were transformed: Ta, 
Tw, H, Q, the day of the month (mon.), and the year (Y). 

Additionally, ice phenomena of the previous day, encoded in four columns with the 
one-hot method (zero for the absence of a given phenomenon, and one when it occurred), 
and the month of individual phenomena, also encoded with the one-hot method, were 
introduced into the models. Encoding ice phenomena using the one-hot method with the 
addition of labels allows the assignment of your own characteristics to specific phenom-
ena, showing the similarities between phenomena or the features that make them differ-
ent. The ice phenomena data used are treated as categorical variables (also called nominal 
variables), that is, they represent the types of data that can be broken down into groups. 
In the tested example, three classes were distinguished (Table 1). However, the categories 
cannot be ordered from highest to lowest. In the classification methods these variables—
as target variables (the ones we want to predict)—are usually converted to numerical form 
using one-hot coding. 

3.3. Descriptive Statistics of the Frequency of Ice Phenomena 
The research methodology included several stages. The development of predictive 

models for ice phenomena on the river was preceded by a statistical description of ice 
phenomena and their changes in the studied period. 
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The statistical description of ice phenomena included an analysis of the frequency of 
ice phenomena in the set of analyzed data, which was determined separately for each 
measuring station and assuming the classification of ice phenomena into three classes, as 
presented in Table 1. The next stage concerned the analysis of ice phenomena as sequential 
phenomena. For this purpose, cross-tables were made comparing ice phenomena from the 
current day with phenomena from the previous day. In the last step, the relationships 
between the classes of ice phenomena and air temperature, as well as water temperature, 
water level, and river flow, were analyzed. For this purpose, box and violin plots were 
made for the distribution of these parameters for each class of ice phenomenon. The violin 
plot is a combination of a box plot and a density plot, thus showing more details of data 
distribution, especially the kernel density distribution [49]. As a result, the problem of 
overlapping the traditional density plot, which is difficult to identify, is eliminated. Wider 
sections of the graph signify the higher probability of occurrence of certain values, while 
narrower sections denote lesser probability. According to Hintze and Nelson [50], the vi-
olin plot is used to visualize quantitative and qualitative data, including those that do not 
conform to the normal distribution, and to define the data structure. Like box plots, violin 
plots are used to present a comparison of variable distribution (or sample distribution) 
across different categories. 

3.4. Prediction Models 
Figure 2 depicts the stages of research activities in brief. The current research was 

carried out in three stages in total. To begin with, the data that had been cleaned, stand-
ardized, and adapted to the needs was referred to as prepared data. The second step was 
to use the R tools to test model predictions using both XGBoost and MLPNN methods. In 
the prediction of ice phenomena, the following formula was used (according to the choice 
of the MLPNN and XGboost algorithms): 

ice_0 + ice_1 + ice_2 + ice_3 ~ 

Ta + Tw + Q + H + D + Y + 

day_before0 + day_before1 + day_before2 + day_before3 + 
mo1 + mo2 + mo3 + mo4 + mo5 + mo6 

(2) 

where ice_0 means no ice phenomena, ice_1–3 is the classes of ice phenomena (classes 1–
3 adopted on the basis of the classification and grouping of ice phenomena presented in 
Table 1), Ta is air temperature, Tw is water temperature, Q is river flow, H is water level, 
D is day of the month, Y is day of the year, day_before0 is day before the day with no ice 
phenomena (class “none”), day_before1–3 means the day before occurrences of ice phe-
nomena from classes 1, 2, 3 and mo1–6 means months in the winter half-year (November– 
April, according to the hydrological year). 
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Figure 2. Stages of research activities. 

The training and test sets were created using the stratified sampling algorithm, with 
the year and month variables functioning as layers. The process of determining datasets 
is detailed in the description Evaluating the Predictions. The confusion matrices were 
formed on the basis of the second stage of the activity and were then used as inputs for 
the third stage, which involved evaluating the performance of the XGBoost and MLPNN 
methods. 

3.4.1. The Multilayer Perceptron Neural Network (MLPNN) 
The most commonly used type of neural network method is the multi-layered per-

ception method. In this method, the signal is passed to a one-way loop-free input-to-out-
put network. Neither neuron acts on itself. This architecture is referred to as feed-forward, 
and consists of multiple inputs, hidden layers, and an output, as shown in Figure 3. 

 
Figure 3. Feed-forward multilayer perceptron architecture. 

The first model used to predict ice phenomena was the Multilayer Perceptron Neural 
Network (MLPNN), which included an input layer, one hidden layer, and an output layer, 
and is one of the most widely used ANN models in the field of hydrology [4,7,8]. The 
input layer, which comprises the predictors, does not perform any calculations. The 
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hidden layer is made of artificial neurons. A single hidden neuron ‘collects’ activations 
from each neuron of the input layer and calculates the weighted sum of the input varia-
bles. Each hidden layer neuron is connected to each input layer neuron. The hidden layer 
neurons then perform a non-linear transformation of the weighted sums using an activat-
ing function and pass the results to the output layer, which in this application is repre-
sented by ice phenomena. A neural network of this type with an output variable Y and 
containing n neurons in the hidden layer can be expressed as follows [51]: 

𝑌𝑌 = 𝑓𝑓2 ��𝑤𝑤𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�𝑓𝑓1 ��𝑥𝑥𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑤𝑤𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑗𝑗�� + 𝛿𝛿0� (3) 

where 𝑥𝑥𝑖𝑖 is the value of the input variable i, 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight (synapse) between the in-
put variable i and the hidden neuron j, 𝛿𝛿𝑗𝑗 is the bias of the hidden neuron j, 𝑓𝑓1 is the 
sigmoidal function constituting the activation function for hidden neurons, 𝑤𝑤𝑗𝑗𝑗𝑗  is the 
synapse between the hidden neuron j and the output neuron k (here k = 4), 𝑓𝑓2 is also the 
activation sigmoid function, and 𝛿𝛿0 is the bias of the output layer neuron. The use of the 
sigmoidal function as an activation function for neurons of the output layer ensured that 
the predictions would be obtained from the model. 

To estimate the weights and biases, the neural net package [52] and implemented 
elastic back propagation [53] were used. Cross entropy was used as a function of cost. 
Models with three, four, five, and six neurons in the hidden layer were calculated for each 
station. 

3.4.2. The Extreme Gradient Boosting (XGBoost) Model 
The second model tested was the Extreme Gradient Boosting (XGBoost) imple-

mented by Chen et al. [54]—also in the form of the XGBoost library for the R platform. 
The gradient boosting machine is a team learning technique based on decision trees. A 
decision tree generates an output variable estimate based on optimized predictor thresh-
olds that divide the data into multiple groups. The gradient boosting algorithm in each 
subsequent step aims to reduce the prediction error of the previous step. Technically, in 
each subsequent step the algorithm estimates the parameters of the model whose purpose 
is to predict the residuals (prediction errors) of the model estimated in the previous step. 
The objective function (J) in round t (step t) is given by Equation (4) [54]: 

𝐽𝐽(𝑡𝑡) = �𝑙𝑙(𝑦𝑦𝑖𝑖 , 
𝑛𝑛

𝑖𝑖=1

𝑦𝑦�𝑖𝑖 ) + �Ω(𝑓𝑓𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

 (4) 

where: l is the training loss, Ω is regulations, fk is the function of the K–tree. In this study, 
𝑦𝑦𝑖𝑖  is the observed ice phenomena and 𝑦𝑦�𝑖𝑖 is the obtained final prediction value. 

In the present study, decision trees with a maximum depth of five nodes were used. 
Formally, a tree is any consistent acyclic graph, i.e., a graph that does not contain cycles. 
The multi-class log loss function was used as the cost function. Predictions of 𝑌𝑌(𝑡𝑡) from 
the model for iteration t are obtained from Equation (5) [39,54]: 

𝑌𝑌(𝑡𝑡) = �𝑓𝑓𝑘𝑘

𝑡𝑡

𝑘𝑘=1

(𝑋𝑋) = 𝑌𝑌(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑋𝑋) (5) 

where 𝑋𝑋 is the predictor or set of predictors and 𝑓𝑓𝑘𝑘 is the function that returns the pre-
dicted values of the predictors. The second part of the equation shows explicitly that the 
algorithm prediction in the iteration t is the sum of predictions from the t-1 iteration and 
the new predictions from the t iteration. In XGBoost, the function 𝑓𝑓𝑘𝑘 consists of classifi-
cation and regression trees that enable the modeling of arbitrary nonlinear relations and 
the prediction of variables of any nature (Figure 4). 
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Figure 4. A general architecture for XGBoost. 

One of the advantages of XGBoost compared to neural networks is the ability to as-
sess the importance of predictors in the model. The importance of a predictor for regres-
sion and classification trees in the gradient boosting algorithm is defined as the profit that 
the predictor contributes to the entire model by using it to create successive branches of 
the tree. In this study, by employing the XGBoost model, we can assess the dominant fac-
tors controlling the dynamics of ice phenomena in the studied river. 

3.5. Evaluating the Predictions 
To assess the predictive power of the tested models, cross-validation and four good-

ness-of-fit metrics were used. Cross-validation was performed by training the models on 
the available data (training data) and then calculating predictions and goodness-of-fit 
metrics for the data on which the algorithms were not trained (test data). The XGBoost 
model was taught on 70% of the training set, and the prediction model was tested on 30% 
of the test set. The ANN model was taught on the first 50% of the sample, and the predic-
tion model was tested on the remaining 50%. The test and training sets were created using 
the stratified sampling algorithm. The year and month variables were used in the form of 
layers. This was done specifically so that the training and test sets had a comparable num-
ber of observations within each year and month included in the analysis. Such divisions 
are in line with the general practice of evaluating machine learning algorithms [51]. 

The test and training sets were created using the stratified sampling algorithm, with 
the year and month variables functioning as layers. As a result, the test and random sets 
had a comparable number of observations within each year and month. 

Four metrics were used as goodness-of-fit metrics, calculated separately for each 
class of ice phenomena: sensitivity, specificity, precision, and weighted validity [55]. For 
ease of interpretation of these statistics, consider the following cross tables (Table 2), 
where the letters A–D represent the counts: 

Table 2. Goodness-of-fit metrics. 

Prediction 
Observation 

Phenomenon No Phenomenon 

Phenomenon A (TP) B (FP) 
No phenomenon C (FN) D (TN) 

Explanation: A—TP (True-Positive), the number of true positive predictions, i.e., correctly classi-
fied examples from the selected class, B—FP (False-Positive), the number of false-positive predic-
tions, i.e., examples incorrectly assigned to the selected class when in fact they do not belong to it, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Resources 2022, 11, 12 11 of 29 
 

 

the so-called false alarm, C—FN (False-Negative), the number of false-negative predictions, i.e., 
misclassified examples from this class, i.e., a negative decision while the example is positive (the 
so-called error of miss), D—TN (True-Negative), the number of truly negative predictions, i.e., 
examples correctly not assigned to the selected class (correct rejection). 

The statistics used are defined by the formulas: 

Sensitivity = A/(A + C) (6) 

Specificity = D/(D + B) (7) 

Precision = A/(A + B) (8) 

Balanced Accuracy = (Sensitivity + Specificity)/2 (9) 

Sensitivity TPR (True-Positive Rate) is a measure of “reach” (coverage, “reaching”) 
that indicates the percentage of the positive class that has been covered by a positive pre-
diction [56]. Specificity TNR (True-Negative Rate) is a measure of “coverage” that indi-
cates the percentage of the negative class being covered by the negative prediction. Theo-
retically, Sensitivity (TPR) and Specificity (TNR) are independent measures, however. in 
practice increasing sensitivity often leads to a decrease in specificity [55]. Precision, re-
ferred to as the Positive Predictive Value (PPV), is a measure of precision that indicates 
how confidently we can trust positive predictions, i.e., the percentage of positive predic-
tions that are positive. The confidence interval for the three distinguished measures is 
built based on the Clopper–Pearson method for a single proportion. Accuracy is the pro-
portion of correct predictions with a set of test data. It is the ratio of the number of correct 
predictions to the total number of input samples. In turn, Balanced Accuracy is the arith-
metic mean of the recall for each class. The closer the value is to 1, the better the prediction. 
However, exactly 1 indicates a problem that may be typically labeled as over-fitting. For 
highly unbalanced classification problems, as in the case of the analyzed data, balanced 
accuracy is particularly useful, because this statistic depends on both the level of correct 
prediction of a phenomenon and the level of prediction of the absence of a phenomenon. 

Data analyses and operations were performed using the R 4.02 statistical environ-
ment [57]. The analyses and the necessary data restructuring, as well as the visualization 
of the data and the results of the analyses, were performed using the basic functions of the 
R environment and dedicated libraries for a given type of algorithm. The libraries used 
are cited in the corresponding analysis. 

4. Results 
4.1. Probability of Occurrence of Ice Phenomena 

The frequency of ice phenomena on the Warta River in the analyzed period has been 
presented in Table 3. At the majority of measuring stations, ice phenomena from class 1 
were observed on slightly more than 10% of days, while the frequency of occurrence of 
phenomena from class 2 varies from about 1.5% to over 8%. Ice phenomena from class 3 
(breakup of ice cover—disappearance of freezing) were the least frequently observed. At 
each measuring station, this class was observed on less than 1% of days. 

Table 3. The frequency of ice phenomena. 

Class of Ice  
Phenomena 

Bobry Sieradz Uniejow 
Nowa 
Wies 

Srem Poznan Skwierzyna 
Gorzow 
Wlkp. 

1 
Nr. of days 518 275 287 417 404 735 449 626 

(%) 10.99 5.8 12.18 10.00 11.73 15.60 10.33 13.29 

2 
Nr. of days 82 393 130 309 259 69 354 278 

(%) 1.74 8.34 5.52 7.41 7.52 1.46 8.14 5.90 
3 Nr. of days 2 45 4 12 4 45 42 15 
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(%) 0.04 0.96 0.17 0.29 0.1 0.95 0.97 0.32 
No 
* 

Nr. of days 4110 3997 1935 3431 2777 3864 3503 3793 
(%) 87.22 84.86 82.13 82.30 80.63 81.99 80.57 80.50 

* No—no ice phenomena. 

The probability of occurrence of ice phenomena in specific months of the year (in the 
cold semester of the hydrological year) has been presented in Figure 5. The probability of 
occurrence of ice phenomena from class 1 is highest in the months of December and Jan-
uary. Class 2 events are most likely to occur in January and February, whereas the greatest 
probability of the breakup of ice cover and disappearance of freezing (class 3) is associated 
with the month of January; with February in Sieradz, and with March in Poznan. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

Figure 5. Probability of occurrence of ice phenomena (classes 1–3 and none) as a function of the 
month for the water gauge stations on the Warta River. Note: Water gauge stations are labeled in 
the order (a)–(h), according to their location on the river (from upper to lower course). 

The results of the analysis of ice phenomena as sequential phenomena have been presented in 
Figure 6. The cross tables compare ice phenomena from the current day with the phenomena of 
the previous day. It was noted that each class was most often preceded by a phenomenon from its 
class. Additionally, there was often no ice at all at the river stations the day before the occurrence 
of ice phenomena from class 1. In a small percentage of days, ice phenomena from class 1 pre-
ceded class 2 events. Class 3 occurrences were regularly preceded by phenomena from classes 1 
and 2 (Figure 6). 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

Figure 6. Probability of the order of occurrence of ice phenomena classes (none, C1, C2, C3) as a 
function of the ice phenomenon of the previous day for the water gauge stations on the Warta River. 
Note: Water gauge stations are labeled in the order (a)–(h), according to their location on the river 
(from upper to lower course). 

4.2. The Relationship between Ice Phenomena and Hydrological Conditions and  
Thermal Variables 

The assessment of the relationship between various classes of ice phenomena and 
thermal conditions and hydrological factors has been presented in the form of violin plots 
of the distribution of these parameters for each class of the phenomenon. Figure 7 shows 
the differentiation of the variables with respect to the water gauges. For each water gauge 
station on the Warta River, the differentiation of the occurrence of ice phenomena in rela-
tion to air (Ta) and water (Tw) temperatures as well as water level (H) and flow (Q) was 
presented. As drawn, the graphs indicate certain regularities of occurrence of ice phenom-
ena on the river. 
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Figure 7. Distributions of the relationship between classes of ice phenomena (none, C1, C2, C3) and 
air and water temperatures (Ta, Tw), the water level (H), and river flow (Q). 

The phenomena from the first stage of ice (border ice, frazil ice) are characteristic of 
the conditions of poor cooling of the water and mild flow, i.e., for the months of November 
and December. Although frazil ice requires a significant subcooling of the water and an 
effective dissipation of the heat of solidification, it can form particularly abundantly dur-
ing strong, cold winds, even if the air temperature drop is insignificant (even at a few 
degrees below 0 °C). The analysis of the data showed that the ice phenomena from the 
first phase occur even at a water temperature of the Warta River of 0.2–0.8 °C, and ice 
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cover is maintained at a water temperature of 0.2 °C and at negative air temperatures, 
which is understandable. In the case of lowland rivers, which also include the Warta 
River, the ice cover expansion phase, due to low flows and falls, lasts the longest, and its 
formation is favored by the persistence of negative air temperatures for a long time [46]. 
The period of ice cover disappearance as a result of an increase in air temperature occurs 
on the river in stages, as a result of which an ice floe is created that moves downstream 
(ice procession). The flow of ice floes in the river usually accelerates the cracking of the ice 
cover caused by the rise in the water level in the spring. 

The distribution of ice phenomena concerning water temperature has a distinct char-
acter. In this case, the distribution for phenomena classes 1–3 is unimodal and has one 
high “peak” at very low water temperatures, which indicates the typical regularity of the 
occurrence of the first ice on the river. Considering the ice cover, the distribution partly 
takes the form of a slanting distribution with a long tail, which can be seen in the graph 
for the water gauges of Uniejow, Nowa Wies, and Srem (Figure 7). 

As regards the relationship between ice phenomena and air temperature, distribution 
becomes more diverse depending on the class of the phenomenon and the location of the 
observation post. For class 1, the distribution is predominantly unimodal. For the majority 
of measuring stations, distribution is asymmetric and has features of skewed distribution. 
At the Sieradz and Skwierzyna stations, this distribution shows a tendency to bimodality, 
which would suggest the presence of two characteristic periods of air temperature and 
thus favor an increase in the probability of occurrence of ice phenomena from the first 
phase in these locations. In the case of class 2 (permanent ice cover), distributions at almost 
all stations are unimodal with a clear skew towards very low air temperatures, which 
strongly suggests that the probability of ice cover is related to the accumulation of days 
with negative air temperature. The exception is the Poznan water gauge, for which distri-
bution has features similar to the bimodal distribution (Figure 7). For class 3 (breakdown 
of the ice cover), the distribution has features typical of unimodal distribution and is fo-
cused on an air temperature ranging from 0 °C to a few degrees above zero. This form of 
relationship is typical of most water gauges on the Warta River. Finally, as regards the 
water gauges in Nowa Wies and Skwierzyna, the skewness of the distribution increases, 
and this points to an increase in outliers. 

The distribution of ice phenomena from class 1 (formation of ice phenomena) con-
cerning the water level displayed predominantly bimodal features (Figure 7). In the case 
of the Bobry and Sieradz stations, the distribution shows features of asymmetry and de-
velops as a skewed distribution. In the case of distributions with two or more mods, the 
widest sections of the violin diagram indicate the greatest probability of observing ice 
phenomena on the river at a low and medium water level. However, additional periods 
with a specific water level on the Warta River (states above the average) at which ice phe-
nomena will occur under favorable river thermal conditions are not excluded. The bi-
modal distribution indicates that the distribution of ice phenomena in this relationship is 
unstable or very variable. Distribution displays similar features in the case of the relation 
of the ice cover (class 2) to the state of the water, which is also bimodal at most stations 
(Figure 7). The distribution shows similar features as regards the relation between the ice 
cover (class 2) and the state of the water, which, too, is bimodal at the majority of water 
gauges. The exceptions here are Sieradz and Poznan, for which a unimodal distribution 
with a specific skewness has been identified. For ice phenomena from class 3, the relation-
ship with the water level shows different types of distributions: unimodal (Poznan and 
Gorzow Wlkp.) and biomodal (Nowa Wies and Skwierzyna). In the case of Sieradz, the 
distribution is flat, while in Gorzow Wlkp. it is strongly skewed. 

The distribution of the relationship between ice phenomena from class 1 and river 
flow is bimodal at Nowa Wies, Poznan, and Skwierzyna and unimodal at other stations 
(Figure 7). In the case of Uniejow, Srem, and Gorzow Wlkp., distribution is also strongly 
skewed. The greatest probability of occurrence of ice phenomena in the initial period of 
the Warta River’s freezing is associated with the low flow of the river. In the case of 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Resources 2022, 11, 12 17 of 29 
 

 

permanent ice cover (class 2), the distribution is unimodal at all water gauges, except for 
Nowa Wies, where it exhibits features of bimodality. This means that the distribution of 
ice in this relationship is relatively stable along the entire river. However, as regards ice 
phenomena from class 3, the distribution at certain stations has unimodal (Uniejow, Srem, 
and Gorzow Wlkp.) or bimodal (Sieradz, Nowa Wies, and Skwierzyna) features. 

4.3. Predicting Ice Phenomena 
The results of predictive modeling have been presented for three sections of the 

Warta River: the upper course (Bobry, Sieradz, and Uniejow water gauges)—Table 4; the 
middle course (Nowa Wies, Srem, and Poznan water gauges)—Table 5; and the lower 
course (Skwierzyna and Gorzow Wlkp. water gauges)—Table 6. In most of the analyzed 
instances, the predictive power of the tested models was comparable, and the differences 
in metrics between models were inconsiderable. 

Table 4. Results of predictive modeling of ice phenomena for the Warta River (upper course). 

Water 
Gauge 

Model Class 
Training set Test set 

Sensitivity Specificity Precision 
Balanced 
Accuracy Sensitivity Specificity Precision 

Balanced 
Accuracy 

Bobry XGBoost * No  0.986 0.892 0.985 0.939 0.984 0.852 0.978 0.918 
  1 0.87 0.987 0.888 0.928 0.83 0.982 0.852 0.906 
  2 0.93 0.997 0.87 0.964 0.872 1 0.971 0.936 
  3 - 1 - - 0 1 - 0.5 
 NN3 No  0.988 0.907 0.987 0.947 0.982 0.861 0.979 0.922 
  1 0.874 0.987 0.892 0.931 0.811 0.983 0.863 0.897 
  2 0.978 0.998 0.917 0.988 0.919 0.994 0.723 0.957 
  3 1 1 1 1 0 1 0 0.5 
 NN4 No  0.988 0.928 0.989 0.958 0.98 0.886 0.984 0.933 
  1 0.905 0.988 0.905 0.947 0.844 0.982 0.844 0.913 
  2 0.933 0.998 0.913 0.966 0.946 0.995 0.761 0.971 
  3 1 1 1 1 0 1 - 0.5 
 NN5 No  0.988 0.921 0.988 0.954 0.98 0.876 0.982 0.928 
  1 0.909 0.987 0.898 0.948 0.863 0.979 0.833 0.921 
  2 1 1 1 1 0.791 0.998 0.872 0.894 
  3 0 1 - 0.5 0 1 - 0.5 
 NN6 No  0.998 0.934 0.99 0.966 0.982 0.855 0.979 0.918 
  1 0.928 0.997 0.972 0.962 0.831 0.981 0.844 0.906 
  2 0.927 1 1 0.963 0.829 0.997 0.829 0.913 
  3 - 1 - - 0 1 - 0.5 

Sieradz XGBoost No  0.992 0.919 0.985 0.955 0.983 0.936 0.989 0.96 
1 0.765 0.987 0.807 0.876 0.869 0.977 0.675 0.923 

  2 0.934 0.989 0.895 0.962 0.912 0.995 0.943 0.954 
  3 0.2 1 0.8 0.6 0.28 1 0.875 0.64 
 NN3 No  0.983 0.965 0.993 0.974 0.973 0.917 0.986 0.945 
  1 0.88 0.983 0.767 0.932 0.774 0.974 0.644 0.874 
  2 0.961 0.992 0.917 0.977 0.957 0.993 0.922 0.975 
  3 0.37 0.997 0.556 0.683 0.444 0.999 0.8 0.722 
 NN4 No  0.991 0.928 0.987 0.959 0.98 0.915 0.985 0.948 
  1 0.739 0.991 0.836 0.865 0.686 0.982 0.701 0.834 
  2 0.99 0.994 0.934 0.992 0.959 0.987 0.869 0.973 
  3 0.591 0.997 0.684 0.794 0.522 0.999 0.8 0.76 
 NN5 No  0.997 0.929 0.987 0.963 0.984 0.852 0.976 0.918 
  1 0.77 0.996 0.919 0.883 0.559 0.986 0.696 0.772 
  2 0.976 0.992 0.917 0.984 0.952 0.991 0.904 0.972 
  3 0.643 1 1 0.821 0.412 0.997 0.467 0.704 
 NN6 No  0.992 0.947 0.991 0.969 0.982 0.888 0.98 0.935 
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  1 0.871 0.993 0.89 0.932 0.684 0.983 0.715 0.833 
  2 0.99 0.992 0.919 0.991 0.954 0.984 0.851 0.969 
  3 0.273 0.999 0.75 0.636 0 1 - 0.5 

Uniejów XGBoost 
No 0.986 0.922 0.983 0.954 0.993 0.941 0.988 0.967 
1 0.873 0.983 0.879 0.928 0.912 0.99 0.926 0.951 

  2 0.938 0.996 0.938 0.967 0.969 0.999 0.984 0.984 
  3 0 1  0.5 0 1 - 0.5 
 NN3 No  0.994 0.971 0.994 0.983 0.981 0.892 0.976 0.936 
  1 0.951 0.992 0.945 0.972 0.818 0.98 0.854 0.899 
  2 0.969 0.999 0.984 0.984 0.97 0.995 0.914 0.982 
  3 1 1 1 1 0 1 - 0.5 
 NN4 No  0.993 0.977 0.995 0.985 0.979 0.927 0.984 0.953 
  1 0.974 0.989 0.931 0.982 0.881 0.978 0.838 0.93 
  2 0.919 1 1 0.96 0.956 0.996 0.942 0.976 
  3 1 1 1 1 0 1 - 0.5 
 NN5 No  0.998 0.958 0.991 0.978 0.98 0.835 0.965 0.908 
  1 0.954 0.997 0.98 0.976 0.756 0.978 0.816 0.867 
  2 0.951 1 1 0.975 0.855 0.999 0.983 0.927 
  3 1 1 1 1 1 0.997 0.333 0.998 
 NN6 No  0.999 0.986 0.997 0.993 0.99 0.888 0.976 0.939 
  1 0.98 0.999 0.993 0.989 0.804 0.989 0.91 0.897 
  2 1 1 1 1 0.938 0.993 0.884 0.966 
  3 1 1 1 1 0 0.999 0 0.5 

* No means no ice phenomena. 

Table 5. Results of predictive modeling of ice phenomena for the Warta River (middle course). 

Water 
Gauge 

Model Class 
Training Set Test Set 

Sensitivity Specificity Precision 
Balanced 
Accuracy 

Sensitivity Specificity Precision 
Balanced 
Accuracy 

Nowa 
Wies 

XGBoost * No  0.988 0.904 0.979 0.946 0.984 0.91 0.981 0.947 
 1 0.855 0.988 0.896 0.922 0.867 0.983 0.846 0.925 
 2 0.948 0.995 0.936 0.972 0.896 0.994 0.926 0.945 
 3 0 1 - 0.5 0 1 - 0.5 

 NN3 No  0.989 0.917 0.982 0.953 0.98 0.89 0.976 0.935 
  1 0.86 0.99 0.899 0.925 0.819 0.985 0.864 0.902 
  2 0.956 0.994 0.933 0.975 0.94 0.991 0.887 0.965 
  3 0 1  0.5 0 1 - 0.5 
 NN4 No  0.984 0.933 0.986 0.958 0.986 0.842 0.966 0.914 
  1 0.901 0.985 0.872 0.943 0.805 0.986 0.868 0.896 
  2 0.929 0.997 0.96 0.963 0.838 0.994 0.921 0.916 
  3 0.4 0.998 0.333 0.699 0.143 1 0.5 0.571 
 NN5 No  0.979 0.95 0.989 0.965 0.981 0.91 0.981 0.946 
  1 0.93 0.981 0.844 0.955 0.827 0.985 0.861 0.906 
  2 0.956 0.997 0.968 0.977 0.906 0.991 0.888 0.949 
  3 0.625 1 1 0.812 0.25 0.996 0.111 0.623 
 NN6 No  0.987 0.966 0.992 0.976 0.972 0.919 0.983 0.946 
  1 0.967 0.989 0.911 0.978 0.898 0.973 0.791 0.936 
  2 0.957 0.998 0.975 0.977 0.865 0.994 0.921 0.93 
  3 1 1 1 1 0.167 0.998 0.2 0.582 

Srem XGBoost 
No  0.99 0.936 0.984 0.963 0.991 0.935 0.985 0.963 
1 0.895 0.99 0.921 0.942 0.903 0.989 0.917 0.946 

  2 0.969 0.997 0.962 0.983 0.945 0.999 0.984 0.972 
  3 0 1  0.5 0 1 - 0.5 
 NN3 No  0.992 0.982 0.996 0.987 0.976 0.927 0.982 0.951 
  1 0.967 0.993 0.949 0.98 0.876 0.977 0.829 0.926 
  2 0.984 0.998 0.969 0.991 0.955 0.998 0.977 0.977 
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  3 0.667 1 1 0.833 0 0.999 0 0.499 
 NN4 No  0.997 0.962 0.991 0.98 0.99 0.894 0.976 0.942 
  1 0.94 0.997 0.981 0.968 0.82 0.99 0.912 0.905 
  2 1 1 1 1 0.931 0.996 0.945 0.963 
  3 1 1 1 1 0.333 0.998 0.25 0.666 
 NN5 No  0.999 0.957 0.99 0.978 0.988 0.905 0.977 0.947 
  1 0.929 0.997 0.979 0.963 0.874 0.986 0.896 0.93 
  2 0.977 1 1 0.988 0.877 0.998 0.974 0.938 
  3 1 1 1 1 0.5 0.998 0.25 0.749 
 NN6 No  0.997 0.976 0.994 0.987 0.98 0.912 0.979 0.946 
  1 0.95 0.997 0.975 0.974 0.822 0.983 0.869 0.903 
  2 0.993 0.999 0.985 0.996 0.992 0.994 0.925 0.993 
  3 1 1 1 1 0.333 0.999 0.333 0.666 

Poznan XGBoost No  0.987 0.922 0.983 0.955 0.984 0.889 0.975 0.937 
  1 0.906 0.983 0.906 0.945 0.874 0.98 0.893 0.927 
  2 0.935 0.999 0.906 0.967 0.895 0.999 0.919 0.947 
  3 0.567 0.998 0.81 0.782 0.267 0.998 0.5 0.632 
 NN3 No  0.985 0.935 0.986 0.96 0.981 0.919 0.981 0.95 
  1 0.914 0.985 0.914 0.949 0.89 0.976 0.876 0.933 
  2 0.909 0.998 0.882 0.954 0.917 0.999 0.943 0.958 
  3 0.81 0.998 0.773 0.904 0.417 0.996 0.5 0.706 
 NN4 No  0.984 0.93 0.983 0.957 0.98 0.956 0.991 0.968 
  1 0.919 0.981 0.905 0.95 0.918 0.974 0.86 0.946 
  2 0.829 0.999 0.935 0.914 0.853 1 0.967 0.926 
  3 0.867 1 1 0.933 0.4 0.995 0.333 0.697 
 NN5 No  0.989 0.962 0.992 0.976 0.981 0.903 0.978 0.942 
  1 0.946 0.989 0.941 0.967 0.864 0.976 0.871 0.92 
  2 0.97 0.999 0.941 0.984 0.806 0.999 0.906 0.902 
  3 0.833 0.997 0.741 0.915 0.524 0.995 0.478 0.759 
 NN6 No  0.99 0.956 0.99 0.973 0.98 0.901 0.979 0.94 
  1 0.949 0.988 0.937 0.969 0.886 0.976 0.869 0.931 
  2 0.912 0.999 0.939 0.955 0.857 1 1 0.929 
  3 0.75 0.999 0.9 0.875 0.429 0.997 0.529 0.713 

* No means no ice phenomena. 

Table 6. Results of predictive modeling of ice phenomena for the Warta River (lower course). 

Water 
Gauge 

Model Class 
Training Set Test Set 

Sensitivity Specificity Precision 
Balanced 
Accuracy 

Sensitivity Specificity Precision 
Balanced 
Accuracy 

Skwierzyn
a 

XGBoost * No  0.987 0.941 0.985 0.964 0.987 0.908 0.979 0.948 
 1 0.891 0.985 0.872 0.938 0.863 0.982 0.844 0.922 
 2 0.969 0.996 0.959 0.982 0.963 0.998 0.975 0.98 
 3 0.381 0.999 0.727 0.69 0.143 1 1 0.571 

 NN3 No  0.983 0.956 0.989 0.97 0.983 0.964 0.991 0.973 
  1 0.913 0.98 0.84 0.946 0.936 0.98 0.84 0.958 
  2 0.95 0.999 0.983 0.974 0.931 0.998 0.982 0.965 
  3 0.542 0.996 0.619 0.769 0.389 0.996 0.438 0.692 
 NN4 No  0.99 0.977 0.994 0.984 0.983 0.917 0.98 0.95 
  1 0.952 0.99 0.92 0.971 0.832 0.978 0.813 0.905 
  2 0.979 1 0.995 0.989 0.952 0.997 0.963 0.974 
  3 0.842 0.998 0.762 0.92 0.391 0.997 0.562 0.694 
 NN5 No  0.993 0.968 0.993 0.981 0.99 0.887 0.972 0.938 
  1 0.925 0.991 0.921 0.958 0.796 0.987 0.882 0.891 
  2 0.984 0.999 0.989 0.991 0.942 0.995 0.947 0.969 
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  3 0.625 0.997 0.625 0.811 0.385 0.996 0.556 0.69 
 NN6 No  0.995 0.986 0.997 0.99 0.98 0.934 0.984 0.957 
  1 0.981 0.991 0.925 0.986 0.903 0.979 0.842 0.941 
  2 0.995 1 1 0.997 0.97 0.995 0.941 0.982 
  3 0.55 1 1 0.775 0.182 0.999 0.571 0.59 

Gorzow 
Wlkp. 

XGBoost No  0.984 0.938 0.985 0.961 0.982 0.9 0.976 0.941 
 1 0.911 0.981 0.877 0.946 0.866 0.982 0.883 0.924 
 2 0.973 0.999 0.986 0.986 0.977 0.998 0.963 0.987 

  3 0 1 - 0.5 0 1 - 0.5 
 NN3 No  0.986 0.929 0.982 0.958 0.982 0.907 0.978 0.944 
  1 0.907 0.985 0.904 0.946 0.875 0.98 0.869 0.927 
  2 0.98 1 0.993 0.99 0.969 0.998 0.969 0.983 
  3 0 1 - 0.5 0 1 - 0.5 
 NN4 No  0.981 0.946 0.987 0.963 0.98 0.926 0.982 0.953 
  1 0.92 0.978 0.865 0.949 0.885 0.978 0.863 0.932 
  2 0.986 1 0.993 0.993 0.964 0.996 0.937 0.98 
  3 0 1 - 0.5 0 1 - 0.5 
 NN5 No  0.987 0.959 0.989 0.973 0.972 0.908 0.979 0.94 
  1 0.937 0.986 0.914 0.961 0.858 0.974 0.83 0.916 
  2 0.986 1 0.993 0.993 0.912 0.995 0.912 0.953 
  3 0.444 0.999 0.571 0.722 0.333 0.997 0.222 0.665 
 NN6 No  0.989 0.947 0.987 0.968 0.973 0.913 0.979 0.943 
  1 0.929 0.986 0.914 0.958 0.882 0.974 0.838 0.928 
  2 0.986 1 1 0.993 0.949 0.998 0.97 0.974 
  3 0.333 1 1 0.667 0.167 0.999 0.25 0.583 

* No means no ice phenomena. 

In the upper section of the Warta River (Bobry station), the MLPNN with four hidden 
units (NN4) was the best among the models, as indicated by the highest values of “bal-
anced accuracy” (BA) statistics for ice phenomena from class 2 (BA = 0.971), and for the 
“no ice phenomena” class (BA = 0.933), and the second-highest value of statistics for class 
1 (BA = 0.913) in the test set (Table 4). The XGBoost model predicted ice phenomena to a 
comparable extent. It exhibited a similar “balanced accuracy” profile, but one slightly infe-
rior to NN models. Class 3 was too small in terms of abundance for the model to success-
fully learn the relationship between the class and the predictors in this dataset. For the 
Sieradz station, it is difficult to identify the model with the highest predictive power (Ta-
ble 4). The XGBoost model and the NN3–NN5 models successfully predicted each class of 
ice phenomena. From the NN models, the model with four hidden units was the most 
sensitive to the rarely occurring class 3 (balanced accuracy BA = 0.76), while predictions 
for class 1 were less accurate (BA = 0.834). Among all the models used in the work, the 
XGBoost model best predicted ice phenomena from class 1 (BA = 0.923) but demonstrated 
the weakest prediction of phenomena from classes 2 (BA = 0.954) and 3 (BA = 0.64) (Table 
4). The predictive power of the tested models for the Uniejów station was different de-
pending on the class of phenomena (Table 3). At this location, the XGBoost model 
achieved the highest values of balanced accuracy in the test set for ice phenomena from 
classes 1 (BA = 0.951) and 2 (BA = 0.984). At the same time, the NN5 model was the only 
one to correctly predict ice phenomena from class 3 (BA = 0.998). 

In the middle course of the Warta River, for the Nowa Wies water gauge, the NN5 
model turned out to be the best at predicting ice phenomena (Table 5). This model per-
formed well for ice phenomena from classes 1 (BA = 0.906) and 2 (BA = 0.949), comparable 
with other models, while at the same time being the most sensitive for class 3 (BA = 0.623). 
However, the best performance in predicting class 1 events was achieved by the NN6 
model (BA = 0.936), and the best performance for class 2 by the NN3 model (BA = 0.965). 
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The XGBoost model achieved similar performance to the NN5 model as regards the pre-
diction of phenomena from class 2 (BA = 0.945). In the case of the Srem water gauge, it is 
difficult to indicate the best model (Table 5). A neural network model NN5 best predicted 
the ice phenomena from class 3 (BA = 0.749). The NN6 model showed the best prediction 
for class 2 (BA = 0.993), and class 1 events were best predicted by XGBoost (BA = 0.946). 
Nevertheless, it is the neural network model with five hidden units (NN5) that seems to 
have the most balanced prediction profile for all classes of ice phenomena. For the Poznan 
water gauge (Table 5), the predictive power of the tested models was comparable. The 
NN3 model can be viewed as the best for predicting ice phenomena at this location be-
cause it predicted classes 1 (BA = 0.933) and 2 (BA = 0.958) best and was the third most 
effective in predicting the level of class 3 events (BA = 0.706). At the same time, the NN5 
model turned out to be the best for ice phenomena from class 3 (BA = 0.759). 

For the lower course of the Warta River, in the Skwierzyna profile, the predictive 
power of the tested models was comparable (Table 6). The NN3 model appears to present 
the most balanced predictive profile. This model best predicted the occurrence of ice phe-
nomena from class 1 (BA = 0.958) and also the absence of river freezing (BA = 0.973). The 
best prediction of ice phenomena from class 2 was achieved by the NN6 model (BA = 
0.982), with the results of the XGBoost model being comparable (BA = 0.98). The NN3 
model also displayed good predictability of phenomena from classes 2 (BA = 0.965) and 3 
(BA = 0.692). Its class 3 prediction performance is comparable to that of the NN4 model, 
for which BA = 0.694 was determined. For the Gorzow Wlkp. water gauge, one of the 
better predictive models for ice phenomena was the NN4 model (BA = 0.932 for class 1, 
BA = 0.98 for class 2) (Table 6). The NN5 model predicted classes 1 and 2 comparably to 
the other models, and at the same time was the most sensitive in terms of predicting ice 
phenomena from class 3 (BA = 0.665). The XGBoost model predicted the phenomena from 
group 2 best (BA = 0.987), similarly to the NN3 model (BA = 0.983). 

4.3.1. Spatial Differences in Model Performance 
Among the NN models used, the best predictions were given by the NN5 (eight-fold 

confirmation of the best prediction) and NN4 models (seven-fold) (Table 7). The XGBoost 
model also has high predictive power, and the model turned out to be the best in predict-
ing ice phenomena from classes 1 and 2. In three cases, its performance was comparable 
with those of the NN models. The phenomena from the initial stage of freezing (class 1) 
were best predicted by the XGBoost model. On the other hand, the disintegration of the 
ice cover and accompanying ice phenomena were best predicted by the NN5 model (at 
five water gauge stations). No dependence of the models’ performance on the location of 
water gauges (Table 7) was observed, although as regards predictions of ice phenomena 
in the upper section of the Warta River (Bobry, Sieradz, Uniejow stations), the XGBoost 
model and the NN4 and NN5 models proved to be superior. 

Table 7. Models with the best prediction of ice phenomena on the Warta River. 

Water 
Gauge 

No Ice Class 1 Class 2 Class 3 

Bobry NN4 NN5 
NN4 

* No results 
XGBoost 

Sieradz XGBoost XGBoost NN3 NN4 
Uniejow XGBoost XGBoost XGBoost NN5 

Nowa Wies XGBoost NN5 
NN5 

NN5 
XGBoost 

Srem XGBoost XGBoost NN6 NN5 
Poznan NN4 NN3 NN3 NN5 

Skwierzyna NN3 NN3 
NN6 

NN4 
XGBoos 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Resources 2022, 11, 12 22 of 29 
 

 

Gorzow  
Wlkp.  

NN4 NN4 XGBoost NN5 

* No results—no results from the learned relations between the class of the phenomenon and pre-
dictors. 

Ice phenomena predictions for the river along its middle section (stations in Nowa 
Wies, Srem, and Poznan) were made most reliably by the XGBoost and NN5 models 
(Nowa Wies and Srem) and the NN3–NN5 models (Poznan) (Table 7). For the prediction 
of ice phenomena along the lower section of the Warta, superior performance was demon-
strated by the NN models, taking into account the lower efficiency of the XGBoost model. 

The most difficult prediction was that for ice phenomena in the decay phase and the 
formation of ice floes and, consequently, ice jams. Due to the lowest frequency of obser-
vations, there were problems with their prediction in the case of the Bobry station. In this 
case, no results were obtained from the relations determined between the class of ice phe-
nomena and the predictors. 

4.3.2. Evaluation of the Importance of Predictors in the Models 
The use of XGBoost, as opposed to ANNs, made it possible to assess the importance 

of predictors in the model. The selected predictor variables were ranked according to the 
normalized reduction in model error, also known as “variable importance”. Figure 8 
shows the most important predictor variables in the final model: water and air tempera-
ture, hydrological conditions (water level and river flow), and data for the “day before”, 
month, and year. The results of this analysis indicate that for each measuring station the 
most important predictor of ice phenomena is the type of ice phenomenon the day before 
the identification of a given event, with water temperature and air temperature coming 
next. In the case of the stations in Uniejow and Srem, water temperature is the second 
most important predictor of the occurrence of ice phenomena. 
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Figure 8. Relative importance of predictors in the XGBoost model (profit values). 

These results suggest that when looking for a balance between the complexity of the 
model and its predictive power, the two most important predictors for the occurrence of 
ice phenomena on the Warta River should be taken into account, i.e., the nature of the ice 
phenomenon on the day preceding the observation (especially for class 2 or class 1 events), 
and water temperature. 

5. Discussion 
5.1. Selection of Predictors as Input Variables 

The predictive modeling of ice phenomena carried out on the example of the Warta 
River showed that the prediction of their occurrence in different phases and spatial loca-
tions gives different results. In this case, the prediction was a difficult process, mainly due 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Resources 2022, 11, 12 24 of 29 
 

 

to the complexity of interactions between hydroclimatic factors and thermal conditions 
that contribute to the occurrence of freezing. 

In the research conducted on the Warta River, an important assumption was the se-
lection of input variables that affect the accuracy of predictions in the neural network 
models and XGBoost. A set of daily data were used, these including thermal and hydro-
logical variables, the type of ice phenomenon (group of phenomena) on the day preceding 
water gauge observations, and the month of their occurrence. The premises confirming 
the correctness of their choice are the results of studies of the ice regimes of rivers in Po-
land, including those conducted on the Vistula River [13,58], Oder River [59], on the rivers 
of the Baltic coastal zone [60,61], Bug River [62], and Warta River [46,63,64]. The selection 
of input variables significantly affects the performance of ANN models [7], however, it is 
often arbitrary [8]. 

5.2. The Most Important Predictor Variables in the Final Model 
The results of the predictive models that we developed for the Warta River showed 

that all the input parameters (predictors) that were taken into account had some signifi-
cance for the formation of ice phenomena from different classification groups. However, 
under the thermal conditions established for the reference period (research period 1984–
2013), hydrological parameters—river flow and water level—were less important for the 
process of ice phenomena formation. The research established that ice phenomena oc-
curred irregularly and periodically in the studied period and that the structure of freezing 
along the river course was diversified. The phenomena from class 1 were predominant, 
i.e., from the freezing phase of the river, represented by frazil ice and border ice, which is 
now a typical feature of the ice regime of most rivers in Poland [47]. 

The results of modeling confirmed that the most important predictors in the analyzed 
case were the nature of the phenomenon on the day preceding the observation (most often 
class 2 or class 1), as well as water temperature, and then air temperature (Figure 8). Graf 
[12] examined the dependencies of the trends of ice phenomena in the Noteć River, in 
western Poland (a tributary of the Warta River), on air and water temperature using re-
gression models for count data and the Zero-Inflated Negative Binomial Model; results 
showed that the temperature values are the best predictors. In some locations, however, 
the model predicting the number of ice phenomena—taking into account the relationship 
with temperature—turned out to be statistically insignificant. Graf and Tomczyk [11] de-
termined that for the Noteć River, a faster increase in accumulated sequences of negative 
air temperature contributes to an increase in the probability of a permanent ice cover, and 
the average degree day increase by one degree increases the chance of ice cover on the 
river in the range of 1.5–6.0% in different water gauges. 

The period of intense changes in thermal conditions in the Warta catchment area, 
e.g., the cold period or sudden spring river supply, can be represented by changes in the 
models. However, it is also visible in the types of distributions illustrating the relationship 
between the classes of ice phenomena on the Warta River and hydrological factors and 
thermal conditions, which has been presented in the violin plots. The violin plots show 
diverse and complicated relations resulting from the differing variability of hydroclimatic 
factors and thermal conditions, which determines the nature of the distribution (Figure 
5). Conditions conducive to the emergence of ice phenomena are not always the same in 
every location on the river, which is the result of local conditions, including, e.g., channel 
morphology and the influence of anthropic pressure. 

5.3. The Performance of Predictive Models 
The models performed promisingly in predicting the occurrence of ice phenomena 

on the Warta River, and this—in addition to their low demand for computational data 
resources, speed of operation, and ease of use—makes them particularly attractive. Fur-
ther, it was found that the ANN approach served its purpose. By using more advanced 
and specialized network architectures (NN5, NN6), the ability to learn and predict the 
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non-linear behavior of ice phenomena was increased for classes 2 and 3, which were char-
acterized by a lower frequency of occurrence in the Warta River. 

In ANN predictive modeling, the use of the sigmoidal function as an activation func-
tion for output layer neurons ensured that predictions obtained with the model would be 
the probabilities of occurrence of a given class, since this function maps real values to the 
range 0–1. As a result, models with 3, 4, 5, and 6 neurons in the hidden layer were devel-
oped, and this made it possible to compare their performance in predicting ice phenom-
ena. Guo et al. [4], basing their work on the ANN theory, used the sigmoidal function as 
the activation function in the hidden layer for the forecasting of ice jams during river ice 
breakup. Their results were promising, as they predicted the annual occurrence of ice 
blockages with an accuracy of 85%, while the projected decay date with the projected ten-
day period showed a maximum error of two days. 

Concerning the prediction of class 1 and class 2 phenomena in the Warta River (per-
manent ice cover) and their non-occurrence, ANNs require further improvement, alt-
hough present results indicate that they are comparable to the XGboost algorithm for pre-
dicting group 2 phenomena, i.e., permanent ice cover. The performance of the NN models 
and the XGBoost algorithm is also comparable for the different water gauge locations on 
the Warta River, although an overall better fit of XGBoost and NN4/NN5 models was 
observed for the upper course of the river; XGBoost and NN5/NN3 were most successful 
for the middle course, while NN models predominated for the lower course. The results 
of a comparison of both types of models in terms of their suitability for predicting ice 
phenomena on the Warta River showed a high accuracy of prediction for the XGBoost 
method, which has not been used on a larger scale in this regard so far. 

XGBoost models variable interactions and handles the multi-linearity common to 
ecological datasets seamlessly [65]. Moreover, XGBoost works faster than many other gra-
dient-increasing algorithms due to the regularization factor and the parallel computing 
functionality. One of the advantages of this method is its resistance to outliers, which 
eliminates the need to supplement missing data, and thus, in the case of the Warta River, 
it allows an increase in the efficiency of the prediction of a given phenomenon, even when 
eliminating outliers. The obtained results were considered satisfactory, which was con-
firmed by four model fit measures. 

The comparison of results obtained for the Warta River with the ANN models used 
to predict ice phenomena on other rivers shows their considerable similarity. Most of the 
predictive and prognostic models developed confirm that the results of ice condition fore-
casts made with the use of ANNs are satisfactory and consistent with the measured data 
[37,66,67]. Moreover, the high accuracy of forecasts is indicated, which takes into account 
factors influencing the formation and disappearance of ice phenomena. Too many simpli-
fications, as made in some models, may lower their prognostic accuracy and limit their 
usefulness for other rivers [36]. According to Massie [33], neural network classifiers, just 
like in the case of empirical methods, are most likely location-specific, but it is possible to 
transfer ANN models to other locations with minimal modifications. However, there are 
still no solutions for the prediction of phenomena in individual phases of their occurrence 
using the XGBoost algorithm. In Poland to date, models from the ANN group and the 
XGBoost algorithm have not been used to predict ice phenomena. 

A review of the literature shows that numerous parameters are needed to support 
models developed for forecasting ice phenomena, most commonly ice jams and the result-
ant floods, but obtaining this data is sometimes difficult or even impossible. Despite the 
progress made in forecasting ice processes on rivers, this field still has great research po-
tential; however, it also requires comprehensive observations, the collection and testing 
of data from stationary measurement networks, and direct field studies [8]. 
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6. Conclusions 
In the present study, MLPNN and XGBoost models were developed to forecast ice 

phenomena on the Warta River in Poland. The results obtained lead to the following con-
clusions: 
(1) Both the MLPNN and XGBoost models produced promising results for the forecast-

ing of ice phenomena, which are presented using the four model fit measures. 
(2) For highly unbalanced classification problems, as in the case of the analyzed data, 

the “Balanced Accuracy” is particularly useful, since this statistic depends on both 
the level of correct prediction of a phenomenon and the level of prediction of the 
absence of a phenomenon. 

(3) The XGBoost turned out to be the best for predicting freeze-up (class 1) and ice cover 
(class 2 of ice phenomena), and at three water gauges its performance was compara-
ble with that of the NN models, whereas breakup and ice deterioration (class 3) were 
best predicted by the NN5 model (at five water gauge stations). No dependence of 
the performance of individual models on the location of water gauges was observed. 

(4) The choice of input variables impacts the accuracy of the models developed. The na-
ture of ice phenomenon on the day preceding the observation, as well as water and 
air temperature values, are important predictors, while river flow and water level 
were less important for the process of ice phenomena formation. This information 
was provided by the XGBoost algorithm. 

(5) The forecasting of ice phenomena is complicated due to the complex interactions be-
tween their determinants. This is confirmed by the types of distribution (unimodal, 
bimodal), illustrating the relationship between classes of phenomena on the river and 
hydroclimatic factors and thermal conditions. 
The results of the research conducted here have important implications for forecast-

ing ice phenomena, specifically as regards the application of XGBoost. Preliminary results 
seem to indicate that XGBoost, as an ensemble machine learning model, works well as a 
forecasting tool in hydrological research. Though the MLPNN and XGBoost models per-
formed competently, there is still scope for further improvement through additional stud-
ies and the construction of hybrid models. Other factors influencing the occurrence of ice 
phenomena on rivers that would additionally help to improve the accuracy of these mod-
els should also be looked at (e.g., channel morphology, the accumulated degree days of 
frost and thaw, and the rates of change in water level and flow during the freeze-up and 
breakup periods). Since the present results concern only one river, future research will 
focus on applying models to rivers in different geographic locations and hydrological re-
gimes to more accurately test the suitability and effectiveness of models. 
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