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Abstract

The uncertainty afflicting modal parameter estimates stems from e.g., the finite data length, unknown, or

partly measured inputs and the choice of the identification algorithm. Quantification of the related errors

with the statistical Delta method is a recent tool, useful in many modern modal analysis applications e.g.,

damage diagnosis, reliability analysis, model calibration. In this paper, the Delta method-based uncertainty

quantification methodology is validated for obtaining the uncertainty of the modal parameter and the modal

indicator estimates in the context of several well-known subspace identification algorithms. The focus of this

study is to validate the quality of each Delta method-based approximation with respect to the experimental

Monte Carlo distributions of parameter estimates using a statistical distance measure. On top of that, the

accuracy in obtaining the related confidence intervals is empirically assessed. The case study is based on

data obtained from an extensive experimental campaign of a large scale wind turbine blade tested in a

laboratory environment. The results confirm that the Delta method is, on average, adequate to characterize

the distribution of the considered estimates solely based on the quantities obtained from one data set,

validating the use of this statistical framework for uncertainty quantification in practice.

Keywords: Uncertainty quantification, subspace methods, operational modal analysis, experimental

modal analysis, wind turbine blades

1. Introduction

The estimation of modal parameters from vibration measurements is the fundamental task in experi-

mental testing of engineering structures. The practical value of the estimated parameters is significantly
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increased if the considered identification procedure provides a measure of their covariance. This information,

however, is only useful when the underlying identification algorithm is consistent i.e., when the estimated

parameters converge to their true values as the amount of data tends to infinity. Moreover, when the iden-

tification method yields asymptotically Gaussian distributed parameter estimates, information about their

covariance is essential to derive the related confidence bounds, designating a range for the true (unknown)

value of the parameter of interest. Few identification methods satisfy these requirements [1, 2]. Among them

are subspace identification methods [3], whose aim is to identify system matrices of a linear time-invariant

state-space model from input/output or output-only data. During the last decade, the subspace methods

found a special interest in engineering applications for modal parameter estimation, see e.g., [4–15], due to

their favorable statistical and numerical properties e.g., stationary [16] and non-stationary [17] consistency,

asymptotic normality [16], and numerical efficiency in identification of large-scale systems [18].

The expressions for the asymptotic covariance related to the state-space matrices were first proposed in

[19–22] and derived explicitly in [23]. The latter work allows directly to obtain the errors on the estimated

state-space matrices by linking the covariance of the estimated parameters with the covariance of system

states and innovation sequences. This approach, however, was only investigated on theoretical systems and

not yet adopted to the modal analysis, since the computation of the unknown states and innovations, as

well as the required noise covariances, is not necessary for the modal parameter estimation. A different

approach was proposed in [24, 25], where the covariance of the estimated parameters is easily computed

from the sample covariances of the vectorized data correlations and the related sensitivities, based on the

first-order Delta method. Following this path, direct expressions to obtain the covariance related to the

modal parameter estimates have been proposed for different members of the subspace method family e.g.,

output-only covariance-driven algorithm [17] in [25, 26], output-only data-driven algorithm in [27] and for

input/output methods in [28–30]. These developments allowed the application of the modal parameter

covariance estimates to various engineering problems e.g., damage diagnosis [31, 32], modal parameter

tracking [11], model updating [33–36], and paved the way for the quantification of statistical uncertainties in

the estimates of modal indicators i.e., Modal Phase Collinearity (MPC) [37] and Modal Assurance Criterion

(MAC) [38].

The statistical Delta method-based uncertainty quantification methodology, however, still lacks a rigorous

assessment of its accuracy in obtaining the confidence intervals of modal parameter and modal indicator

estimates, shown e.g., in the context of a practical application to a large scale engineering structure. In the

current paper, a simple statistical distance measure is applied to validate the Delta method-based framework
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in the context of several well-known input/output and output-only subspace identification algorithms.

Compared to the validation study in [39], not only the Gaussian characteristics of the modal parameters

are verified, but also the recently developed χ2 approximation for the distribution of MAC and MPC

estimates is confirmed in practice. Moreover, the present work focuses solely on the statistical variability of

the parameters estimated from a single sensor configuration using several subspace algorithms, unlike [39],

where the uncertainty of modal parameters with respect to measurements with different sensor configurations

and for the output-only covariance-driven subspace identification method is considered. In addition, in

contrast to [39] where a large number of in-situ tests of large-scale structures were employed, the current

study is conducted on a large set of experimental data collected from a wind turbine blade tested in a

laboratory environment. The correctness of the Delta method estimates is validated against an exhaustive

Monte Carlo experiment, where the quality of the approximation with respect to the actual parameter

distributions is verified for each Delta method-based distribution approximation. The practical benefit of

such a validation is that it confirms that the statistical properties of modal parameter and modal indicator

estimates obtained with Delta method are equivalent, in most of the cases, to the ones obtained from a

taxing Monte Carlo experiment.

The paper is organized as follows. Some background on the system model is stated in Section 2. The

identification methods used in this paper are recalled in Section 3. The uncertainty quantification strategy

for the modal parameter estimates, the MAC and the MPC is given respectively in Section 4.1, Section 4.2

and Section 4.3. A validation of the obtained distribution approximations is enclosed in Section 5.

2. System modeling

The vibration behavior of a viscously damped, linear time-invariant structural system with m degrees of

freedom is described by the differential equation

Mq̈(t) + Cq̇(t) +Kq(t) = f(t) (1)

where t denotes continuous time, andM, C, K ∈ Rm×m denote mass, damping and stiffness matrices, respec-

tively. Vector q(t) ∈ Rm contains displacements and rotations at continuous-time degrees of freedom, here

only the displacements are considered, and f(t) ∈ Rm comprises both measured and unmeasured external

loads. Let system (1) be observed by sensors measuring, e.g., accelerations, velocities or displacements, at
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r degrees of freedom (DOF) of the structure, collected in the vector

y(t) = Caq̈(t) + Cv q̇(t) + Cdq(t) + v(t) (2)

where y(t) ∈ Rr is the output vector, v(t) ∈ Rr denotes the measurement noise, and matrices Ca, Cv, Cd

∈ Rr×m select the respective type of the output at the measurement DOFs.

Sampled at time instants t = kτ , where τ is the time step and k is an integer, (1) and (2) can be

represented by a discrete-time innovation state-space model of order n = 2m

x̂k+1 = Ax̂k +Buk +Kkek , (3)

yk = Cx̂k +Duk + ek , (4)

where x̂k ∈ Rn are the state estimates corresponding to the non-stationary Kalman gain Kk ∈ Rn×n,

uk ∈ Ru denote the system inputs measured at u locations, and E(x̂k − xk) = 0, where E(·) denotes the

expectation operator. The white noise innovations ek ∈ Rn are one-step ahead prediction errors of yk, given

a past history of yk and uk.

The i-th natural frequency fi, damping ratio ζi and the observed mode shape ϕi of the underlying

structural system are related to the i-th eigenvalue λi = exp(λciτ) and the i-th eigenvector φi of A by

fi =
|λci|
2π

, ζ =
−<(λci)

|λci|
, ϕi = Cφi. (5)

A mode shape having real, <(·), and imaginary, =(·), parts stacked, is defined as ϕR
i =

[
<(ϕi)

T =(ϕi)
T

]T
.

The modal parameters are obtained from (A,C) whose identification can be achieved with e.g., subspace

methods, which are revised next.

3. Subspace identification

One of the principal ideas in subspace identification is to combine the recursive equations of (3) into a

single expression relating system matrices with data. To achieve that, subspace methods use the fact that

a product of an observability matrix O =

[
CT · · · (CAp−1)T

]T
∈ Rpr×n with some state matrix X̂ can

be estimated from an adequate projection of a past and a future horizons of output or input/output data

matrices, where p is a parameter that describes the size of the data horizon used. The purpose of this

section is to concisely recall the main premise of the subspace algorithms applied in this work. Hereafter
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it is assumed that inputs u are a realization of some stationary stochastic process persistently exciting

the considered system [40], and that there is no feedback from y to u. A common step in every subspace

identification algorithm is to define a data matrix containing a collection of p sequences spanning the past

and the future of the available data.

Definition 1 (Data matrix). Let ak ∈ Rb be a discrete signal at time step k. For 0 ≤ i ≤ j ≤ 2p− 1 the

data matrix Ai|j writes

Ai|j =
1√
N


ai ai+1 . . . ai+N−1

ai+1 ai+2 . . . ai+N
...

...
...

...

aj aj+1 . . . aj+N−1

 ∈ R(j−i+1)b×N . (6)

From the input and the output data, define the data matrices Y− ∈ Rpr×N , Y+ ∈ Rpr×N , U− ∈ Rpu×N ,

U+ ∈ Rpu×N

Y− = Y0|p−1, Y+ = Yp|2p−1, U− = U0|p−1, U+ = Up|2p−1, W− =

[
U−T Y−T

]T
, (7)

where N + 2p is the number of available samples. Furthermore, denote the future block-row matrices for

the Kalman states as X̂+ = X̂p|p. Data matrices Y− and Y+ can be expressed by the recursion of (3)-(4)

and with an adequate projection of either the output (Y−,Y+) or the input/output (Y−,Y+,U−,U+) data

matrices, the estimated observability matrix Ô, and the state sequence X̂ can be factorized from a matrix

Ĥ

Ĥ = ÔX̂ . (8)

This property has been shown for the data-driven subspace algorithms in many excellent work e.g., [3, 28],

and is recalled in the context of several identification algorithms in the next section.

3.1. Identification algorithms

A key step in subspace identification is the estimation of the observability matrix O from Ĥ, where

different data projection methods can lead to either covariance or data-driven algorithms to obtain Ĥ. For

the covariance-driven methods, Ĥ is related to the auto and cross-covariance matrices of the available data

i.e., products of (7) with their transposes. For the data-driven methods, Ĥ relates to a projection of data

matrices with data matrices. Both the covariance-driven and the data-driven identification algorithms can

yield consistent estimates of O [16, 17, 21], however for a finite amount of data obtained estimates are
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subjected to statistical errors i.e., variance and bias. Those errors are method-dependent and propagate to

estimates of (A,C), and consequently to the estimates of modal parameters. Analysis and comparison of

the variance errors stemming from different identification methods, is the subject of this paper. For this

purpose, four projection algorithms to obtain Ĥ are analyzed, namely

• the input/output covariance-driven algorithm in Section 3.1.1,

• the input/output data-driven oblique projection algorithm in Section 3.1.2,

• the output-only covariance-driven algorithm in Section 3.1.3,

• the output-only data-driven orthogonal projection algorithm in Section 3.1.4,

and two approaches to estimate (A,C) are considered for the data-driven output-only identification algo-

rithm. For each projection algorithm, Ô can be retrieved from Ĥ by an SVD truncated at model order

n

Ĥ =

[
Ûs Ûker

]D̂s 0

0 D̂ker


 V̂ Ts
V̂ Tker

 (9)

and

Ô = ÛsD̂
1/2
s , (10)

where Ûs ∈ Rpr×n contains the left singular vectors, D̂s ∈ Rn×n contains the non-zero singular values and

V̂s ∈ Rpr×n contains the right singular vectors. A naive approach to obtain the orthogonal projection of a

data matrix A onto the orthogonal complement of B writes as A/B⊥ = A − A/B = A − ABT (BBT )−1B.

An efficient and numerically stable implementation of the latter is obtained with QR factorization, which is

detailed e.g., in [3].

3.1.1. Input/output covariance-driven algorithm

The first approach uses an orthogonal projection of Y+ onto U+, right-multiplied with the past output

data matrix (Y−)T , and is defined after [28] as

ĤIOcov = (Y+/U+⊥)(Y−)T = ÔX̂+
IOcov , (11)

where X̂+
IOcov = (X̂+/U+⊥)(Y−)T .
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3.1.2. Input/output data-driven oblique projection algorithm

The second method uses an oblique projection of Y+ onto W− along U+ and is known in the literature

as N4SID algorithm [41]. The resultant projection matrix ĤIOdat writes

ĤIOdat = Y+/U+W− = (Y+/U+⊥)(W−/U+⊥)†W− = ÔX̂+
IOdat , (12)

where X̂+
IOdat = X̂+

IOcov(W−/U+⊥)†W− is defined in detail in [41] and (·)† denotes the Moore-Penrose

pseudoinverse.

3.1.3. Output-only covariance-driven algorithm

The third method is an output-only covariance-driven algorithm, where the estimate of O is factored as

ĤOOcov = Y+Y−T = ÔX̂+
OOcov , (13)

where X̂+
OOcov = X̂+Y−T .

3.1.4. Output-only data-driven orthogonal projection algorithm

The fourth approach uses an orthogonal projection of the row space of Y+ onto the row space of Y−,

and is known in the literature as data-driven UPC algorithm [3]

ĤOOdat = Y+/Y− = ÔX̂+
OOdat , (14)

where X̂+
OOdat = X̂+/Y−.

3.2. Estimation of (A,C)

Two methods to estimate (A,C) are used in this work. First, consider computing (Â, Ĉ) directly from

Ô. An estimate of the observation matrix C is obtained from the first block-row of Ô. The state transition

matrix A is estimated from the shift invariance property of Ô, namely Â = ̂̄O† ̂̄O, where ̂̄O, ̂̄O ∈ R(p−1)r×n are

respectively the matrix Ô without the first and the last block rows. Second, matrices (Â, Ĉ) are obtained

from the regression of shifted state sequences. This is explained in detail in [3]. Note that while the

first approach is universal for every algorithm recalled in Sections 3.1.1-3.1.4, the second approach yields

consistent estimates of (A,C) for the output-only data-driven UPC projection method from Section 3.1.4

but not for the input-output data-driven oblique projection algorithm from Section 3.1.2 [3].
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4. Uncertainty quantification

The covariance related to the modal parameter estimates can be obtained with the first-order Delta

method, which is a statistical tool to derive an approximate probability distribution for a function of an

asymptotically Gaussian variable by using the first-order Taylor series approximation of that function [42].

The validity of its application stems from the fact that modal parameters estimated with the subspace

algorithms can be expressed as a function of data covariance matrices, which are asymptotically Gaussian

distributed [43], and are easy to compute. Then, the first-order Delta method is used to propagate the

sample covariance of data covariance estimates onto modal parameter estimates, through all the steps of the

chosen identification algorithm. Therefore, the covariance of the modal parameters can be evaluated directly

from a single set of measurements and their statistical distribution is, in theory, asymptotically Gaussian.

The link between the data covariance matrices and the modal parameters is established with sensitivity

matrices. These matrices are derived with the perturbation theory and depend on the chosen identification

algorithm. The purpose of this section is to sketch the general principles of the first-order Delta method-

based scheme for uncertainty quantification of modal parameters, which will be applied in the next section.

4.1. Covariance of modal parameter estimates

Let R̂1, . . . , R̂11 be the data covariance matrices computed on N data samples as

R̂1 = Y+Y+T , R̂2 = Y+Y−T , R̂3 = Y−Y−T , R̂4 = Y+U+T , R̂5 = Y−U+T , R̂6 = Y+U−T ,

R̂7 = Y−U−T , R̂8 = U+U+T , R̂9 = Y+W−T , R̂10 =W−U+T , R̂11 =W−W−T ,

and let R1, . . . ,R11 be their respective theoretical (exact) counterparts. Next, denote vec(R̂) as an array

stacking a subset of R̂1, . . . , R̂11 of the matrices required for a chosen subspace method, where vec(·) is

the column-stacking vectorization operator. The vec(R̂) is an estimate of the exact (unknown) vec(R) and

satisfies the Central Limit Theorem (CLT) [28, 43]

√
N(vec(R̂)− vec(R)) −→ N (0,ΣR), (15)

where ΣR is the asymptotic covariance of vec(R̂) containing auto and cross-covariance matrices of the chosen

subset of R̂1, . . . , R̂11.

The choice of covariance matrices contained in vec(R̂) relates to the choice of the data projection algo-

rithm used to compute Ĥ [28]. In case of the covariance-driven algorithms (11) and (13), Ĥ can be expressed
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as

ĤIOcov = R̂2 − R̂4R̂†8R̂T5 and ĤOOcov = R̂2.

For the data-driven algorithms (12) and (14), Ĥ depends not only on the data covariance matrices but also

on the data matrices. This is problematic for uncertainty propagation, since Ĥ does not converge to a fixed

limit as the number of its columns increases with the sample size. However, the estimates of (A,C) (as well

as modal parameter estimates) would be equivalent if obtained from the “square” matrix Ĥs = ĤĤT [28].

Thus, their uncertainties can be derived from Ĥs that is related directly to the data covariance matrices as

ĤsIOdat = ĤIOdatĤTIOdat = Ẑ1Ẑ†2R̂11Ẑ†2ẐT1 and Ĥs
OOdat = ĤOOdatĤT

OOdat = R̂2R̂†3R̂T
2 ,

where Ẑ1 = R9−R4R†8RT10 and Ẑ2 = R11−R10R†8RT10. Subsequently, as Ĥ can be expressed as a function

of R̂, its first-order Taylor expansion writes as

vec(Ĥ) ≈ vec(H) + JHR (vec(R̂)− vec(R)), (16)

where JHR is a a non-zero first-order derivative of H w.r.t. R and H is the limit of Ĥ. Delta method states

that an associated CLT holds for vec(Ĥ) as

√
N(vec(Ĥ)− vec(H)) −→ N (0,ΣH)

where the asymptotic covariance ΣH = JHR ΣR(JHR )T . This allows to propagate the covariance related to

R̂ to Ĥ, or to any other quantity obtained from R̂. Consistent estimates of the sensitivity JHR and the

covariance ΣR are required for the estimation of ΣH. The sensitivity JHR is consistently estimated with the

first-order perturbation vec(∆H) ≈ JHR vec(∆R), where ∆H = Ĥ − H and ∆R = R̂ − R. A consistent

estimate of ΣR can be easily obtained from a sample covariance, as detailed in [28]. It follows that, the

asymptotic covariance of vec(Ĥ) is consistently approximated by Σ̂H = vec(∆H)vec(∆H)T = JHR Σ̂R(JHR )T .

With these tools, the covariance of R̂ is propagated through all the steps of the chosen identification
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algorithm and onto the i-th modal parameter estimate f̂i, ζ̂i, ϕ̂
R
i , based on the relation

∆fi ≈ J fiH J
H
R vec(∆R), σ̂2

fi = ∆fi(∆fi)
T , (17)

∆ζi ≈ J ζiH J
H
R vec(∆R), σ̂2

ζi = ∆ζi(∆ζi)
T , (18)

∆ϕR
i ≈ J

ϕR
i

H J
H
R vec(∆R), Σ̂ϕR

i
= ∆ϕR

i (∆ϕR
i )T , (19)

where J fiH , J ζiH and J ϕ
R
i

H are the real-valued sensitivity matrices of the chosen modal parameters w.r.t.

matrix H, and σ̂2
fi
∈ R, σ̂2

ζi
∈ R and Σ̂ϕR

i
∈ R2r×2r are the related covariance matrix estimates, obtained

using consistent estimates of the respective sensitivity matrices and the sample covariance estimates of

the data covariance (matrices). Consequently, thanks to the first-order Delta method, the asymptotic

distribution of the modal parameter estimates can be approximated as Gaussian with

f̂i ≈ N
(
fi,

1
N σ̂

2
fi

)
, ζ̂i ≈ N

(
ζi,

1
N σ̂

2
ζi

)
, ϕ̂R

i ≈ N
(
ϕR
i ,

1
N Σ̂ϕR

i

)
.

The covariance related to the mode shape estimates can be propagated further onto MAC and MPC esti-

mates, whose uncertainty quantification is recalled next.

4.2. Covariance of MAC estimate

Hereafter the index i is dropped for simplicity. Let ϕ and ψ be two complex-valued and independent

mode shape vectors. The MAC computed between those vectors writes [44]

MAC(ϕ,ψ) =
|ϕHψ|2

ϕHϕψHψ
=

(ϕHψ)(ψHϕ)

(ϕHϕ)(ψHψ)
. (20)

The MAC is bounded between 0 and 1. A value of 1 indicates that ϕ and ψ are collinear, that is ϕ = hψ

for some scalar h ∈ C since mode shapes are defined up to a constant. When ϕ is different from ψ the

associated MAC(ϕ,ψ) 6= 1, and the MAC(ϕ,ψ) = 0 for (in practice unlikely) case of orthogonal mode

shapes. The approach for uncertainty quantification of MAC(ϕ̂, ψ̂) derived in [38] distinguishes two cases

for approximating the asymptotic distribution of MAC estimates.

4.2.1. Gaussian approximation of MAC(ϕ̂, ψ̂) distribution

When ϕ 6= hψ and MAC(ϕ,ψ) is strictly between 0 and 1, the distribution of MAC(ϕ̂, ψ̂) can be

approximated with a Gaussian function by means of the first-order Delta method. To illustrate this, define

X̂ =

[
<(ϕ̂− ϕ)T =(ϕ̂− ϕ)T <(ψ̂ − ψ)T =(ψ̂ − ψ)T

]T
and let the derivative of the MAC w.r.t. to

10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


real and imaginary mode shape components be defined as JMAC
ϕ,ψ =

[
∂MAC

∂<(ϕ)

∂MAC

∂=(ϕ)

∂MAC

∂<(ψ)

∂MAC

∂=(ψ)

]
.

Then, the first-order Taylor expansion of MAC writes

MAC(ϕ̂, ψ̂) ≈ MAC(ϕ,ψ) + JMAC
ϕ,ψ X̂ , (21)

and the distribution of MAC estimates is approximated as

MAC(ϕ̂, ψ̂) ≈ N
(

MAC(ϕ,ψ),
1

N
σ̂2
MAC

)
, (22)

where σ̂2
MAC = JMAC

ϕ̂,ψ̂
Σ̂ϕR,ψR(JMAC

ϕ̂,ψ̂
)T is the estimate of the asymptotic variance of the MAC, JMAC

ϕ̂,ψ̂
is an

estimate of the MAC derivative defined in [38], and Σ̂ϕR,ψR contains the mode shape covariance estimates

Σ̂ϕR and Σ̂ψR obtained from the chosen system identification method.

4.2.2. χ2 approximation of MAC(ϕ̂, ψ̂) distribution

When ϕ̂ and ψ̂ estimate the same mode shape i.e., MAC(ϕ,ψ) = 1, then the MAC derivative JMAC
ϕ,ψ = 0,

as shown in [38]. Then, the first-order Taylor series as in (21), is not sufficient to express MAC(ϕ̂, ψ̂)

and hence the first-order Delta method is not adequate to approximate the distribution of MAC estimates.

Following that, a second-order Taylor expansion of MAC(ϕ̂, ψ̂) writes

MAC(ϕ̂, ψ̂) ≈ 1 + 1
2X̂

THMAC
ϕ,ψ X̂, (23)

where the Hessian HMAC
ϕ,ψ ∈ R4r×4r is the second derivative of MAC(ϕ,ψ) in ϕ and ψ, which was derived in

detail in [38]. The asymptotic properties of MAC(ϕ̂, ψ̂) follow from (23) as

N(1−MAC(ϕ̂, ψ̂)) ≈ X̂T
NH

MAC

ϕ,ψ X̂N = Q(X̂N ) , (24)

where H
MAC

ϕ,ψ = − 1
2 HMAC

ϕ,ψ , and X̂N =
√
NX̂ ≈ N (0,ΣϕR,ψR). Subsequently, Q(X̂N ) describes a quadratic

form of X̂N , which is related to the MAC estimate by the Hessian matrix H
MAC

ϕ,ψ . The distribution of

this quadratic form, and consequently the MAC estimate, can be approximated by estimating its first four

cumulants, which are then used to obtain a scaled and shifted χ2 distribution, as detailed in [38].
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4.3. Covariance of MPC estimate

The MPC is a modal indicator used to determine the degree of complexity of a mode shape vector ϕ. It

is defined as

MPC(ϕ) =

(
<(ϕ)T<(ϕ)−=(ϕ)T=(ϕ)

)2
+ 4(<(ϕ)T=(ϕ))2

(<(ϕ)T<(ϕ) + =(ϕ)T=(ϕ))
2 . (25)

Similar to MAC, MPC is bounded between 0 and 1. For real-valued mode shapes its value is 1, and the

lower the MPC the more complex-valued the mode shape is. Boundness of the MPC makes its uncertainty

quantification with the first-order Delta method non-trivial, since the Gaussian function cannot approximate

the distribution of its estimates when the underlying true value of MPC is at either 0 or 1 [37].

4.3.1. Gaussian approximation of MPC(ϕ̂) distribution

In this section, the uncertainty quantification of MPC whose true values lie strictly between 0 and 1 is

considered. Let the first-order derivative of the MPC w.r.t. to real and imaginary mode shape components

be defined as JMPC
ϕ =

[
∂MPC

∂<(ϕ)

∂MPC

∂=(ϕ)

]
. Then, the first-order Taylor expansion of MPC estimate writes

MPC(ϕ̂) ≈ MPC(ϕ) + JMPC
ϕ

<(ϕ̂− ϕ)

=(ϕ̂− ϕ)

 . (26)

Its distribution can be approximated as Gaussian with the first-order Delta method [42] as

MPC(ϕ̂) ≈ N
(

MPC(ϕ),
1

N
σ̂2
MPC

)
, (27)

where σ̂2
MPC = JMPC

ϕ Σ̂ϕR(JMPC
ϕ )T is the estimate of the asymptotic variance of the MPC and the detailed

expression for JMPC
ϕ can be found in [37].

4.3.2. χ2 approximation of MPC(ϕ̂) distribution

In case MPC is obtained from asymptotically real-valued mode shape estimates i.e., its true value lies

at 1, the Jacobian JMPC
ϕ = 0 [37] and the first-order Taylor series as in (26) is not sufficient to express

the related estimate of MPC. Following that, similar to the MAC obtained between estimates of equal

mode shapes, a quadratic form of MPC(ϕ̂) can be developed with a second-order Taylor expansion whose

distribution can be approximated by estimating its first four cumulants, which are then used to obtain a

scaled and shifted χ2 distribution. For brevity, the derivation of the quadratic form of MPC(ϕ̂) is hereby

skipped and the interested reader is referred to [45] for more details.
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4.4. Summary of the applied approaches

For uncertainty quantification of modal parameters and modal indicators, the subspace algorithms from

Section 3 require derivation of the dedicated Jacobian matrices and each identification algorithm yields

different statistical proprieties of the investigated parameters. An algorithmic summary is outlined below.

IOcov: Input/output covariance-driven algorithm (11), where JHIOcov

R is computed after [28, Section 5.3.2.3]

and the related sensitivity matrices are evaluated after [26, Algorithm 2],

IOdat: Input/output data-driven algorithm (12), where JHIOdat

R is computed after [28, Section 5.3.2.1] and

the related sensitivity matrices are evaluated after [26, Algorithm 2],

OOcov: Output-only covariance-driven algorithm (13), where JHOdat

R is computed after [28, Section 5.3.1.1]

and the related sensitivity matrices are evaluated after [26, Algorithm 2],

OOdata: Output-only data-driven algorithm (14), where JHOcov

R is computed after [28, Section 5.3.1.2] and

the related sensitivity matrices are evaluated after [26, Algorithm 2],

OOdatb: Output-only data-driven algorithm (14), where the sensitivity matrices are evaluated after [27].

The difference between OOdata and OOdatb algorithms is the approach to obtain the estimates of

(A,C). For OOdata algorithm, (Â, Ĉ) are obtained from the shift invariance property of Ô, and for OOdatb

algorithm (Â, Ĉ) are obtained from the state regression.

5. Validation

This section presents a validation of the uncertainty quantification schemes outlined in Section 4.4. The

validation is carried out on the measurement data from modal analysis of a 12.6 meter wind turbine blade

[46], shown in Figure 1.

The modal analysis was conducted for the blade oriented with the leading edge facing downwards and

supported with two elastic cord coils in the root and in the mid-section, as illustrated in Figure 1. An

uncorrelated white noise excitation was exerted both in the flap-wise and the edge-wise directions by two

Modal Exciter 100 shakers from Modal Shop, respectively fixed to the trailing edge and the leading edge mid

span of the blade. The input force signals were generated in Siemens TestLab software and were measured by

PCB mechanical impedance sensors attached between the structure and the stingers. The resultant vibration

responses were measured with 19 PCB MEMS acceleration sensors. For modal analysis 19 measurement

channels were used, i.e., 7 biaxial channels attached to the main axis of the blade, 1 biaxial and 1 uniaxial

13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


channel located at the mid span of the trailing edge of the blade and 2 uniaxial channels located mid span

of the leading edge of the blade. The biaxial sensors are measuring both the flap-wise and the edge-wise

acceleration and the uniaxial sensors are measuring the flap-wise accelerations only. A detailed sensor layout

is illustrated on Figure 2. Both input and output measurements were sampled with a frequency of 256 Hz for

the period of 240 seconds. This experimental procedure was repeated 101 times, yielding 101 data sets, each

comprising a set of input and output measurements of length N = 61,600. Prior to the modal parameter

estimation data are decimated to 128 Hz. The modal parameters and their covariances are estimated for

p = 20 at model order ranging from 20 − 100 using the algorithms outlined in Section 4.4. The number of

blocks used to obtain the sample covariance estimate of the data covariance matrix is equal to nb = 100.

The stabilization diagram of natural frequency estimates and their 95% confidence intervals obtained with

the IOcov method is plotted together with the singular values of the cross power spectral density (CPSD)

matrix evaluated for each frequency line [47, 48] on the left part of Figure 3.

To filter stabilization diagram from the modal parameter estimates that do not correspond to the physical

modes of the blade, a threshold on the maximum Coefficient of Variation (CoV) [49] for the natural frequency

equal to 2% and for the damping ratio equal to 20% is enforced, i.e., any mode whose CoV of the natural

frequency exceeds 2% and 20% for the damping ratio, is discarded from the diagram on the left part of Figure

3. As a result, the non-physical mode estimates are discarded and modes of the blade are automatically

extracted from the stabilization diagram. Other criteria for an automated analysis of the stabilization

diagrams can also be used, see e.g., [5, 50]. A zoom on the natural frequency and the corresponding

damping ratio estimates with their Delta method-based 95% confidence intervals is illustrated on the right

part of Figure 3. It can be viewed that while the modal parameter estimates and the related confidence

intervals depicted on the right part of Figure 3 differ for each model order, the majority of the estimates are

contained by the confidence intervals of modal parameters obtained at different model orders, suggesting

Figure 1: Wind turbine blade supported in a free-free boundary conditions on a test stand.
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Figure 2: Sensor layout of the experimental setup.

that they are statistically equivalent and correspond to the same mode. Subsequently, the modal parameter

estimates and their confidence intervals at model order 80 are selected and are tracked for each data set.

Their averages obtained for the investigated subspace methods are depicted in Table 1. The eighth mode is

close to the Nyquist frequency and its estimates are affected by the decimation. Thus, it is discarded from

the study.

It can be viewed that while the average estimates of the natural frequency are very similar for all the in-

Figure 3: Stabilization diagram of the natural frequencies estimated from the first data set with IOcov algorithm (left). A
zoom on the natural frequency and the corresponding damping ratio estimates with their Delta method-based 95% confidence
intervals (right).

Table 1: Average estimates of the natural frequencies and the damping ratios obtained throughout the experimental campaign.

Algorithm/Mode 1 2 3 4 5 6 7

IOcov
f̄ [Hz] 4.31 11.65 14.29 15.82 22.30 34.88 38.24
ζ̄[%] 0.163 0.225 0.438 2.334 0.230 0.468 0.604

IOdat
f̄ [Hz] 4.31 11.65 14.28 15.93 22.30 34.87 38.25
ζ̄ [%] 0.206 0.224 0.473 2.652 0.232 0.485 0.595

OOcov
f̄ [Hz] 4.26 11.66 14.31 15.88 22.31 34.99 38.25
ζ̄ [%] 3.525 0.409 1.178 2.865 0.484 1.120 0.651

OOdata
f̄ [Hz] 4.26 11.65 14.31 15.94 22.31 34.97 38.26
ζ̄ [%] 2.975 0.395 1.194 2.603 0.495 1.415 0.603

OOdatb
f̄ [Hz] 4.25 11.66 14.30 15.93 22.31 34.93 38.26
ζ̄ [%] 3.289 0.398 1.084 2.763 0.487 1.182 0.671
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Table 2: Average variance estimates obtained from Delta method and empirical variances computed from the Monte Carlo.

Algorithm/Mode 1 2 3 4 5 6 7

IOcov

σ̄DM
f ×10−3 [Hz] 0.83 0.64 1.81 44.48 0.32 6.96 8.96

σMC
f ×10−3 [Hz] 1.01 0.72 2.40 37.92 0.46 8.01 12.71

σ̄DM
ζ ×10−3 [%] 24.13 2.07 12.97 278.01 1.72 11.99 21.73

σMC
ζ ×10−3 [%] 23.22 2.23 14.02 364.72 2.06 17.62 27.45

IOdat

σ̄DM
f ×10−3 [Hz] 0.69 0.61 0.54 60.89 0.32 5.37 12.37

σMC
f ×10−3 [Hz] 0.90 0.80 0.75 50.11 0.45 9.36 19.74

σ̄DM
ζ ×10−3 [%] 17.69 1.83 3.79 32.04 1.56 14.50 21.38

σMC
ζ ×10−3 [%] 19.03 1.72 4.28 35.20 1.97 20.16 25.64

OOcov

σ̄DM
f ×10−3 [Hz] 16.91 5.51 17.79 44.22 12.26 121.08 46.11

σMC
f ×10−3 [Hz] 21.40 6.13 16.36 50.07 12.55 125.74 36.23

σ̄DM
ζ ×10−3 [%] 374.50 47.46 125.17 300.04 48.78 214.74 71.39

σMC
ζ ×10−3 [%] 363.95 42.82 100.86 335.99 49.42 173.84 70.40

OOdata

σ̄DM
f ×10−3 [Hz] 14.68 5.27 12.01 32.34 9.56 96.99 18.15

σMC
f ×10−3 [Hz] 15.96 6.09 13.37 39.72 10.22 121.28 23.19

σ̄DM
ζ ×10−3 [%] 288.92 45.40 85.70 193.05 42.22 243.85 45.51

σMC
ζ ×10−3 [%] 275.30 40.02 91.76 233.49 41.84 216.98 46.40

OOdatb

σ̄DM
f ×10−3 [Hz] 16.72 5.07 11.47 9.21 103.60 25.06 155.16

σMC
f ×10−3 [Hz] 15.61 5.91 13.28 9.94 117.70 22.45 135.39

σ̄DM
ζ ×10−3 [%] 300.25 43.58 79.37 230.05 41.06 295.92 41.50

σMC
ζ ×10−3 [%] 297.45 37.78 84.13 265.69 42.78 221.79 47.61

vestigated algorithms, there are significant differences in the damping ratios obtained from the input/output

and the output-only approaches. The true value of the damping ratio is unknown, however, the first mode

damping estimates of a similar blade analyzed in [51] are close to input/output estimates from Table 1. Sim-

ilar discrepancies in the damping ratio estimates from the input/output and the output-only methods were

also reported in [52][53]. This can be possibly due to a shaker-structure interaction [54] or a bias stemming

from the identification at a misspecified model order. It also suggests that the input/output identification

methods are more accurate than the output-only algorithms, due to the additional information stemming

from the knowledge about the inputs, which comes at the price of their availability [28, 55][4].

The Delta method-based variance estimate should correspond to the sample variance of the selected

parameter. Denote σMC as the sample variance of a selected parameter and σ̄DM = 1
l

∑l
j=1 σ

DM,j as an

average of Delta method-based variance σDM,j, where j = 1 . . . l and l is the number of experimental data

sets. The comparison of σMC and σ̄DM evaluated for the natural frequency and the damping ratio estimates

is depicted in Table 2.

Few comments about the results presented in Table 2 are in place. First, it can be viewed that the

variance of the natural frequency and the damping ratio estimates computed with the input/output subspace

methods is lower than the corresponding variances obtained from the output-only methods. This stems from
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Table 3: Average Delta method-based coefficients of variation of real and imaginary parts of the mode shape components and
their experimental Monte Carlo equivalents.

Algorithm/Mode 1 2 3 4 5 6 7

IOcov

CoV
DM
<(ϕ) ×102 [%] 0.086 0.061 0.088 0.029 0.083 0.037 0.031

CoV
MC
<(ϕ) ×102 [%] 0.079 0.056 0.084 0.049 0.097 0.023 0.029

CoV
DM
=(ϕ) ×102 [%] 3.593 2.058 3.113 4.125 1.872 0.747 0.911

CoV
MC
=(ϕ) ×102 [%] 3.217 1.297 3.024 4.279 2.294 1.041 0.947

IOdat

CoV
DM
<(ϕ) ×102 [%] 0.069 0.072 0.089 0.089 0.104 0.029 0.030

CoV
MC
<(ϕ) ×102 [%] 0.059 0.069 0.094 0.073 0.095 0.021 0.031

CoV
DM
=(ϕ) ×102 [%] 3.990 4.525 3.512 5.298 3.253 1.344 1.142

CoV
MC
=(ϕ) ×102 [%] 3.874 3.922 3.771 5.761 2.880 1.061 1.121

OOcov

CoV
DM
<(ϕ) ×102 [%] 0.263 0.053 0.262 0.054 0.233 0.295 0.274

CoV
MC
<(ϕ) ×102 [%] 0.249 0.046 0.373 0.039 0.393 0.342 0.312

CoV
DM
=(ϕ) ×102 [%] 1.572 3.919 1.430 6.589 7.521 8.723 7.712

CoV
MC
=(ϕ) ×102 [%] 1.505 2.069 1.534 7.367 8.812 9.564 8.596

OOdata

CoV
DM
<(ϕ) ×102 [%] 0.307 0.197 0.476 0.116 0.712 0.377 0.287

CoV
MC
<(ϕ) ×102 [%] 0.272 0.257 0.434 0.097 0.829 0.295 0.259

CoV
DM
=(ϕ) ×102 [%] 1.738 4.800 3.530 1.245 7.363 8.762 8.412

CoV
MC
=(ϕ) ×102 [%] 1.410 3.842 3.660 0.927 8.100 6.935 7.531

OOdatb

CoV
DM
<(ϕ) ×102 [%] 0.139 0.021 0.189 0.037 0.193 0.088 0.081

CoV
MC
<(ϕ) ×102 [%] 0.123 0.026 0.204 0.039 0.204 0.097 0.084

CoV
DM
=(ϕ) ×102 [%] 2.445 3.668 3.433 5.504 8.264 4.643 5.133

CoV
MC
=(ϕ) ×102 [%] 2.583 4.222 3.078 5.954 8.437 6.373 6.778

the additional information given by the known inputs, which is also one of the conclusions of the simulation

studies in [28][4]. Second, the difference in the variance obtained between the OOdata and the OOdatb

algorithms is small, suggesting that the choice of the method to obtain (Â, Ĉ) has a small impact on the

statistical errors on their estimates.

The covariance related to the mode shape estimates is investigated next. For this purpose an average CoV

of their components is introduced. Recall that the mode shape estimates are defined up to a constant and for

a statistical comparison in Monte Carlo experiment their components should be normalized. For this purpose,

mode shapes are normalized by a component with the largest amplitude [25]. Let σ̄DM
<(ϕc)

= 1
l

∑l
j=1 σ

DM,j
<(ϕc)

and σ̄DM
=(ϕc)

= 1
l

∑l
j=1 σ

DM,j
=(ϕc)

be respectively the average Delta method-based standard deviation of the real

and the imaginary c = 1 . . . r−1 components of a mode shape, where r−1 denotes the number of mode shape

components without the normalization component. Subsequently, let CoV
DM

<(ϕ) = 1
r−1

∑r−1
c=1 σ̄

DM
<(ϕc)

/<(ϕc)

and CoV
DM

=(ϕ) = 1
r−1

∑r−1
c=1 σ̄

DM
=(ϕc)

/=(ϕc) be the average CoV of all the real and the imaginary mode shape

components for a selected mode. Those quantities are compared against the experimental Monte Carlo-based

CoV
MC

<(ϕ) = 1
r−1

∑r−1
c=1 σ

MC
<(ϕc)

/<(ϕc) and CoV
MC

=(ϕ) = 1
r−1

∑r−1
c=1 σ

MC
=(ϕc)

/=(ϕc) in Table 3.
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It can be observed that the average CoV in Table 3 is approximately an order of magnitude smaller for

the real parts of mode shape components than for their imaginary parts. This suggests that the standard

deviation of the imaginary parts is relatively large in relation to the value of the component itself. This

might indicate that the complexity of the investigated mode shapes is low and the related MPC values

will approach 1. In addition to that, it can be viewed that the input-output identification algorithms yield

smaller variation in the mode shape estimates than the output-only methods. This aligns well with the

observations stemming from the results in Table 2.

The main outcome of both Table 2 and Table 3 is that the average Delta method-based quantities match

the experimental Monte Carlo statistics quite well. For some modal parameter estimates, however, the

average Delta method-based results are slightly mismatched. A detailed analysis of the validity of Delta

method-based framework to approximate their distribution and to derive the related confidence intervals is

investigated next.

5.1. Covariance related to the modal parameter estimates

In this section, a strategy to validate the statistical properties of the modal parameter estimates is

devised. Firstly, the quality of the Gaussian approximation of the distribution of natural frequency, damping

ratio and mode shape estimates is analyzed based on two-sample Kolmogorov-Smirnov test. Secondly, the

correctness of the uncertainty quantification schemes for approximating the distribution of MAC and MPC

estimates is analyzed.

5.1.1. Assessment of the Gaussian approximation of modal parameter estimates

The two-sample Kolmogorov-Smirnov test is a non-parametric test used to decide about the equality of

two empirical cumulative probability distribution functions. In the context of validating Delta method-based

variance estimates considered herein, the reference distribution is obtained empirically from the sample

properties of the parameter estimates from the experimental Monte Carlo and the tested distribution is

obtained using the variance obtained from Delta method. Subsequently, a decision about their equality is

taken by comparing the value of test statistics to a quantile of the distribution of the test derived under

the null hypothesis that the both sets of samples are drawn from the same distribution [56]. The quantile

of the test distribution under the null hypothesis is evaluated for some confidence level α, where 1 − α

denotes the statistical significance level i.e., the probability of rejecting the null hypothesis, given that the

null hypothesis is assumed to be true.
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Let θ ∈ Rl be a placeholder for a vector of a chosen parameter estimates e.g., the set of j = 1 . . . l natural

frequency, damping ratio or a chosen mode shape component estimates of the first mode, and let θ̃∈ Rl be

centered and normalized θ, such that for each entry j = 1 . . . l

θ̃j = (θj − µθ) /σθ, (28)

where µθ and σθ are respectively the mean and the standard deviation of θ. Assuming the Gaussian as-

sumption for the distribution of θ, each θ̃j follows a standard Gaussian distribution N (0, 1). Subsequently,

let FMC(θ̃) and FDM(θ̃) be cumulative distribution functions of the modal parameter estimates normalized

respectively by the variance of the considered Monte Carlo histogram and the corresponding variance ob-

tained from Delta method. The FDM(θ̃) is evaluated for each j = 1 . . . l data set using Delta method-based

standard deviation σDM,j and the sample mean of the considered parameter. Then, the Kolmogorov-Smirnov

test is calculated as

S = sup
θ̃

|FMC(θ̃)− FDM(θ̃)|, (29)

where the test statistics S boils down to a largest absolute difference between two cumulative distribution

functions. Notice, that the two-sample test used herein does not assume that data are sampled from Gaussian

distribution, or any other distribution [49]. For a decision that the Delta method-based distribution follows

the sample distribution of the experimental Monte Carlo estimates, the test statistics S is compared to a

quantile of the Kolmogorov distribution, where the type I error is set to 1%, i.e., the probability of rejecting

the null hypothesis given it is true is 1%.

The two-sample Kolmogorov-Smirnov test is computed for each tracked modal parameter and the corre-

sponding Delta method-based variance estimate. The ratio Tθ̃ of the test statistics obtained from l data sets

i.e., the average number of the test statistics satisfying the null hypothesis for the natural frequency and

the damping ratio estimates is depicted in Table 4. For the mode shape estimates, the ratio T θ̃ is presented

as an average value of the test statistics ratio over all components. The ratio of 100% suggests that each

standard deviation obtained with Delta method matches, in a statistical sense, to the standard deviation

obtained empirically. On the contrary, the ratio of 0% suggests that none of Delta method-based standard

deviations match their empirical counterparts. Results presented in Table 4 indicate that the distributions

derived using the variance obtained with Delta method match the empirical distributions well. The average

ratio of Kolmogorov-Smirnov test statistics satisfying the null hypothesis yields 86.57%, and for most of

the cases the natural frequency and damping ratio estimates have higher scores than the average results
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Table 4: Ratios of Kolmogorov-Smirnov test statistics for the natural frequency, the damping ratio and the mode shape
component estimates.

Algorithm/Mode 1 2 3 4 5 6 7

IOcov

Tf 100% 85.6% 78.5% 87.6% 69.4% 75.5% 82.1%
Tζ 100% 100% 88.4% 93.8% 68.9% 81.2% 78.6%

T<(ϕ) 99.0% 85.5% 81.5% 74.9% 81.8% 77.5% 71.6%

T=(ϕ) 89.1% 79.5% 78.9% 75.3% 92.4% 85.3% 83.1%

IOdat

Tf 100% 81.6% 100% 85.8% 72.3% 92.1% 78.2%
Tζ 100% 100% 100% 67.8% 69.1% 59.1% 71.8%

T<(ϕ) 85.4% 89.4% 96.1% 82.4% 94.4% 81.9% 85.5%

T=(ϕ) 75.4% 87.4% 97.3% 77.1% 94.4% 89.7% 78.6%

OOcov

Tf 98.8% 100% 93.9% 100% 99.0% 96.8% 93.8%
Tζ 98.8% 100% 90.9% 100% 100% 79.6% 93.8%

T<(ϕ) 85.5% 77.1% 73.5% 78.6% 81.8% 73.5% 77.1%

T=(ϕ) 91.6% 73.5% 80.1% 80.1% 77.1% 81.8% 75.4%

OOdata

Tf 100% 100% 100% 87.7% 100% 79.2% 99.0%
Tζ 100% 100% 100% 100% 100% 93.8% 99.0%

T<(ϕ) 91.6% 78.5% 70.3% 78.5% 65.3% 72.2% 73.9%

T=(ϕ) 86.0% 72.3% 74.2% 65.3% 65.3% 72.2% 65.3%

OOdatb

Tf 96.9% 100% 100% 93.1% 100% 94.8% 99.0%
Tζ 98.9% 98.0% 98.0% 88.1% 99.0% 85.4% 99.0%

T<(ϕ) 99.6% 94.8% 86.7% 93.1% 93.1% 85.8% 85.8%

T=(ϕ) 93.1% 86.0% 70.8% 80.1% 86.1% 74.2% 78.5%

for the estimates of mode shape components. These results comply with the comparison of the empirical

and Delta method-based standard deviations enclosed in Table 2. As expected, for the modal parameters

whose Delta method-based standard deviation is far from the experimental one, the test statistics indicate

that few Delta method-based distributions match the empirical distribution of the parameter. The average

ratios of the test statistics for all mode shape components suggest that the Delta method-based fits for the

low order mode shapes match the corresponding Monte Carlo distributions well. For the high order mode

shapes, however, the average ratios are slightly mismatched. This possibly indicates that the uncertainty

estimation might be less validated for the high order modes obtained at a high model order, which might

be due to worse conditioning of the involved matrices for (pseudo-)inverting in the subspace methods [28].

The value of the test statistics S can be used as an empirical indicator for the quality assessment of

the distribution matching. A small value of S indicates a small difference between the Monte Carlo-based

and the Delta method-based cumulative distributions and their good fit, and a high value signifies a large

difference between two tested cumulative distribution functions, which indicates that the distribution derived

using the variance obtained from Delta method fits poorly to the empirical distribution. To illustrate an

average outcome of the Delta method, the distribution fits corresponding to the mean value of the test

statistics are shown in Figure 4.

As expected, the considered fits match the distributions of the natural frequency and the damping ratio
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Figure 4: Histograms of the modal parameter estimates of the first and the seventh mode obtained from IOcov algorithm,
together with the corresponding Delta method-based distribution fits. From the left: natural frequency of the first mode,
damping ratio of the first mode, natural frequency of the seventh mode, damping ratio of the seventh mode.

estimates well. Equally good fits are expected for the low order mode shape components and slightly worse

fits for the high order components. These results confirm that the variance of modal parameter estimates

obtained from one data set using the first-order Delta method complies with the sample variance obtained

from an exhaustive Monte Carlo experiment.

5.1.2. Assessment of the uncertainty quantification of MAC estimates

The distribution of MAC estimates depends on the geometric relation of the compared mode shapes. For

estimates of different mode shapes, the corresponding MAC estimate lies strictly between 0 and 1, and is

approximately Gaussian distributed, as recalled in Section 4.2.1. For estimates of the same mode shape, the

MAC estimates accumulate at 1, and its distribution can be approximated by a shifted and scaled χ2 function,

as recalled in Section 4.2.2. Those two cases are considered herein. First, the Gaussian assumption for

approximating the distribution of MAC estimated between two different mode shape estimates is validated.

Second, the χ2 approximation of the distribution of the MAC between estimates of the same mode shapes

is empirically verified.

For the first case consider MAC calculated between the first and the second mode shape estimated from

the same data set. For the second case consider MAC calculated between estimates of the same mode shape

from different data sets. In the latter case the first MAC estimate is calculated between the same mode

shape estimated from the first and the second data set, the second MAC estimate is calculated between the

same mode shape estimated from the third and the fourth data set, and so on. For this purpose estimates of

the mode shapes corresponding to the first and the third mode are considered. The empirical distributions

of the aforementioned MAC estimates are depicted in Figure 5.

It can be observed that the histogram of MAC estimated between the different mode shapes is symmetric

and the mean value of the histogram is in between 0 and 1. The histograms of MAC obtained from the

estimates of the same mode shape accumulates close to 1 and its mass is skewed to the right.
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Table 5: Ratios of Kolmogorov-Smirnov test statistics for MAC estimated between mode shapes corresponding to different
modes.

Algorithm/Parameter TMAC12
TMAC13

TMAC14
TMAC15

TMAC16
TMAC17

IOcov 83.2% 90.7% 94.1% 86.1% 52.9% 55.9%
IOdat 80.4% 98.9% 71.9% 74.3% 53.4% 57.6%
OOcov 83.1% 74.9% 89.2% 73.5% 50.2% 51.7%
OOdata 96% 82.3% 96% 89% 51.7% 56.7%
OOdatb 96.9% 96.9% 97.9% 100% 52.1% 58.9%

Table 6: Ratios of Kolmogorov-Smirnov test statistics for MAC estimated between mode shapes corresponding to the same
mode.

Algorithm/Parameter TMAC11 TMAC22 TMAC33 TMAC44 TMAC55 TMAC66 TMAC77

IOcov 74.4% 68% 93.7% 84% 96.6% 56% 57.5%
IOdat 70% 90% 78% 64% 86% 70% 51.6%
OOcov 77.08% 82% 92.3% 68% 68% 57.0% 66.6%
OOdata 96% 54% 84.4% 57.5% 85.4% 72.4% 50%
OOdatb 89.5% 100% 78% 54% 81.6% 68% 54%

Subsequently, both the Gaussian framework from Section 4.2.1 and the χ2 framework from Section 4.2.2

are validated with using the two-sample Kolmogorov-Smirnov test. In case of the χ2 approximation, the

reference distribution is obtained after [57] from the cumulants of the empirical histogram. The resultant

ratios Tθ̃ of the test statistics are enclosed in Table 5 and Table 6 respectively for the Gaussian and the χ2

approximations.

Table 5 shows that the ratio of test statistics for the MAC obtained from different mode shape estimates

is larger than 50% for each of the considered MAC case, suggesting that the covariances obtained with Delta

method are on average matching the empirical distribution of the investigated MAC. Similar conclusions can

be drawn from Table 6, confirming the validity of the second-order Delta method to compute the cumulants

needed to characterize the quadratic distribution, yielding similar distribution parameters as the full Monte

Carlo histogram.

As a side comment, it can be viewed that on average the ratios of test statistics in Table 6 are lower,

Figure 5: Histograms of MAC estimates obtained from the estimates of a different mode shape (left) and the estimates of the
same mode shape (middle and right) using IOcov algorithm.
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Figure 6: Histograms of MAC estimates obtained from the estimates of a different mode shape (left) and the estimates of the
same mode shape (middle and right) using IOcov algorithm, together with the corresponding Delta method-based fits.

compared to the first-order results in Table 5. This can be explained by the fact that the second-order

approximation of the quadratic form of MAC uses the first four cumunlants of the quadratic form to

approximate the χ2 distribution of MAC estimates, while the first-order Gaussian framework requires solely

the first two cumulants (the mean and the covariance). The higher the order of the estimated cumulant, the

larger tends to be its estimation variance [58], which results in higher accumulation of the statistical errors

in the approximation of the distribution of MAC estimates. Also notice that the ratios of the Kolmogorov-

Smirnov test statistics from Table 5 and Table 6 are lower for the last two MAC estimates when compared

to the first five estimates. This is caused by the lower precision in the estimates of the sixth and the seventh

mode shape, as indicated by the ratios related to the mode shape components enclosed in Table 4.

To conclude the MAC validation section, the mean Delta method-based fits corresponding to the mean

value of the test statistics are shown in Figure 6.

It can be observed that the mean Delta method-based Gaussian fit to MAC12 and the mean shifted

and scaled χ2 fit to MAC33 match the empirical histograms well, which is supported by the high values of

the test statistics ratios in Table 5 and Table 6. The mean shifted and scaled χ2 fit to MAC11 is slightly

mismatched, however it is expected that with larger sample sizes both the cumulants and the mode shape

estimates will be estimated more precisely and the distribution fits will match the empirical histograms

closer. This illustrates that the uncertainty quantification framework from Section 4.2 is, in practice, valid

to obtain the distribution needed to characterize MAC computed for estimates of different and the same

mode shapes.

5.1.3. Assessment of the uncertainty quantification of MPC estimates

Similar to the estimates of MAC, the distribution of MPC estimates is bounded between 0 and 1, which

is related to the structural damping type. For non-proportionally damped modes, mode shapes are complex-
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Figure 7: Histograms of MPC estimates obtained from the estimates of the first mode shape (left) and the estimates of the
fifth mode shape (right) using IOcov algorithm.

valued vectors and the resulting MPC estimates are approximately Gaussian, as recalled in Section 4.1. For

proportionally damped modes, mode shapes are real-valued vectors and the related MPC distribution can

be approximated by a shifted and scaled χ2 function, as proved in [45]. To show these two distribution

types, consider MPC obtained for the mode shape estimates of the first and the fifth modes of the blade.

Their histograms are showed in Figure 7.

While the MPC estimates are close to 1 in both cases, the histogram on the left part of Figure 7 is

symmetric and resembles a Gaussian distribution, and the histogram on the right part of Figure 7 accumu-

lates close to the distribution boarder and resembles a shifted and scaled χ2 function. The latter can be a

consequence of not only the proportional damping type but also errors in the mode shape estimates caused

by a low sample size, as detailed in [37].

When no Monte Carlo histograms of MPC estimates are available, the choice between the Gaussian

and the scaled and shifted χ2 approximations needs to be made based on the MPC estimates and the

related uncertainties. For this purpose, the decision framework from [38] can be adapted. In this particular

validation study such Monte Carlo histograms are available. Consequently, they are used together with

the ratios of Kolmogorov-Smirnov test statistic for the choice between the two uncertainty quantification

frameworks.

First, consider a Gaussian validation as for the modal parameter estimates in Section 5.1.1. The ratio Tθ̃

of the Kolmogorov-Smirnov test statistics satisfying the null hypothesis with the confidence level α = 99% for

MPC estimates is depicted in Table 7. Results from Table 7 suggest that the distributions calculated using

the variances obtained from Delta method match well the empirical distribution of the MPC estimates for

MPC1, MPC2, MPC4 and MPC6. The low values of Tθ̃ for the MPC3, MPC5 and MPC7 estimates suggests

that the distributions obtained using Delta method-based variances mismatch the empirical distribution.

In such a case, either the data length N has been too short for an adequate Gaussian approximation, or
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Table 7: Ratios of Kolmogorov-Smirnov test statistics for MPC estimates- Gaussian fit case.

Algorithm/Parameter TMPC1 TMPC2 TMPC3 TMPC4 TMPC5 TMPC6 TMPC7

IOcov 92.1% 84.9% 56.1% 86.7% 16.8% 72.4% 0%
IOdat 96.0% 96.0% 3.1% 78.5% 0% 67.6% 0%
OOcov 84.3% 77.2% 32.1% 61.2% 31.2% 65.1% 8.3%
OOdata 83% 71.3% 6.9% 79.4% 35.2% 66.5% 12.4%
OOdatb 98.9% 98.0% 21.8% 99.0% 13.5% 89.1% 15.8%

Table 8: Ratios of Kolmogorov-Smirnov test statistics for MPC estimates- χ2 fit case.

Algorithm/Parameter TMPC3
TMPC5

TMPC7

IOcov 77.4% 62.6% 62.4%
IOdat 74.5% 72.4% 75.6%
OOcov 87.4% 63.4% 51.5%
OOdata 89.1% 95.8% 55.6%
OOdatb 94.1% 96.9% 36.4%

Figure 8: Histograms of MPC estimates obtained from the estimates of the first mode shape (left) and the estimates of the
fifth mode shape (right) using IOcov algorithm, together with the corresponding Delta method-based distribution fits.

the underlying mode shape is not complex-valued but real-valued. In the latter case, the first-order Delta

method reaches its limits, and the second-order Delta method after Section 4.3.2 and [45] is deployed to

approximate the distribution of the related MPC estimates. The ratio Tθ̃ of the test statistics for the MPC

obtained from the third, the fifth and the seventh mode shape estimates is depicted in Table 8.

As expected, the ratios of test statistics obtained with the second-order approximation in Table 8 are

higher for MPC3, MPC5 and MPC7 than the corresponding ratio in Table 7. This indicates that the

corresponding mode shapes are likely an asymptotically real-valued vectors.

The mean fits corresponding to the mean value of the test statistics are shown in Figure 8. It can be

observed that, the mean first-order Delta method-based distribution fit matches the empirical histogram of

MPC1 estimates well. This confirms the validity of the Gaussian approximation for MPC1 and suggests that

the corresponding mode shapes are most likely complex-valued. The shifted and scaled χ2 fit is adequate

to characterize the shape of the MPC histogram accumulating close to the distribution border at 1. This

confirms that the second-order Delta method framework and the shifted and scaled χ2 distribution is capable
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Figure 9: First-order Delta method-based 95% confidence intervals of the natural frequency and the damping ratio estimates
with the sample mean of the respective parameters.

of approximating the distribution of the estimates of MPC5 and suggests that the corresponding mode shapes

are most likely real-valued.

5.2. Validation of the confidence intervals obtained from Delta method

The practical application of the uncertainty quantification algorithms investigated in the previous section

is, however, not to establish a distribution function, but to estimate the corresponding confidence intervals

(CIs). Therefore to finalize the validation, the CIs are obtained for both the modal parameter and the

modal indicator estimates and their merit is studied based on the empirical statistics obtained from the

blade experiment.

Two frameworks for uncertainty quantification considered in this paper require establishing separate

validation cases. First, consider Guassian CIs obtained with the first-order Delta method. These intervals

are centered around the parameter estimates and with some confidence level α contain the true value of the

considered parameter i.e., for α = 95%, at least 95% of the confidence intervals encompass its true value

[59]. To validate this, assume that the sample mean obtained from all the estimates of the chosen parameter

is close to its expected value. Then, around 95% of Gaussian CIs should contain the sample mean of the

considered parameter. The Delta method-based CIs obtained with IOcov algorithm for the estimates of the

natural frequency and the damping ratio of the first mode are illustrated in Figure 9. The percentage of the

CIs containing the sample mean of the natural frequency, the damping ratio and the mode shape estimates

is enclosed in Table 9. For the mode shape components, the related percentage is calculated as an average

over all the components. The validation results of Gaussian CIs for the MAC and the MPC estimates are

similar as for the modal parameter estimates and are omitted here for brevity.

The average percentage of the CIs containing the sample mean of the natural frequency and the damping

ratio estimates is 82.33% and of the mode shape components estimates is 98.89% for the input/output

methods, and 94.81% and 93.83% respectively for the output-only algorithms. The slightly low score for the
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Table 9: Percentage of the Delta method-based CIs containing the sample mean of the natural frequency, the damping ratio
and the mode shape component estimates.

Algorithm/Mode 1 2 3 4 5 6 7

IOcov

f 94.0% 89.3% 75.2% 89.6% 84.2% 80.2% 72.8%
ζ 94.1% 97.0% 93.1% 92.8% 79.3% 80.2% 76.9%
<(ϕ) 98.6% 100% 100% 99.4% 100% 94.4% 99.9%
=(ϕ) 99.5% 100% 99.9% 99.7% 100% 94.9% 100%

IOdat

f 88.1% 84.5% 75.7% 71.4% 74.5% 73.8% 51.9%
ζ 96.0% 98.0% 87.1% 77.6% 81.7% 85.5% 60.4%
<(ϕ) 100% 100% 95.9% 92.3% 100% 100% 100%
=(ϕ) 100% 100% 99.9% 94.8% 100% 100% 100%

OOcov

f 93.9% 99.0% 94.9% 94.9% 100% 94.6% 93.8%
ζ 100% 100% 96.9% 94.9% 99.0% 100% 97.9%
<(ϕ) 100% 100% 100% 96.7% 100% 100% 100%
=(ϕ) 100% 100% 100% 100% 100% 100% 100%

OOdata

f 95% 98.0% 93.1% 94.5% 99.0% 93.8% 86.1%
ζ 99% 100% 95.1% 97.3% 99.0% 97.9% 98.0%
<(ϕ) 100% 100% 97.7% 96.5% 100% 100% 99.9%
=(ϕ) 100% 100% 99.2% 94.8% 100% 100% 100%

OOdatb

f 100% 98.0% 93.1% 89.8% 98.0% 97.9% 91.1%
ζ 98.9% 100% 93.8% 93.2% 98.0% 97.9% 96.0%
<(ϕ) 98.6% 90.8% 94.8% 97.3% 96.8% 99.1% 95.1%
=(ϕ) 75.9% 64.3% 92.7% 93% 68.6% 62.6% 78.9%

input/output methods can be explained by a lower accuracy in estimating the parameters of the seventh

mode. The high scores for the mode shape components and the output-only algorithms show that even if the

empirical distributions are not always perfectly matching the first-order Delta method-based approximations,

as suggested by the ratio of the Kolmogorov-Smirnov test statistics in Table 4, the computed confidence

intervals are quite accurate.

Second, the Delta method-based quantiles of the shifted and scaled χ2 distribution are examined in the

context of MAC and MPC estimates. Recall that in the Gaussian case, the computed CIs are centered

around the estimate and describe with some confidence level a plausible range for the true value of the

considered parameter. In the case of the scaled and shifted χ2 approximation of the distribution of MAC

and MPC estimates, the true value of either parameters is already known and equal to 1. Therefore it is not

practical to define a confidence interval around the estimate to encompass the true value of the considered

parameter, as its true value is assumed to be known. Instead, the related quantile is defined starting from

the parameter true value at the distribution boarder at 1 to contain a plausible range of the parameter

estimates. Such 95% quantiles are obtained for the MAC11 estimates validated previously in Section 5.1.2

and the MPC3 estimates from Section 5.1.3, and shown in the respective parts in Figure 10. To validate

these intervals, it is checked how many of the related estimates of MAC and MPC lie within their bounds.

Percentage of the estimates of MAC and MPC indicators contained in the 95% intervals of the shifted and
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Figure 10: Second-order Delta method-based 95% quantiles of the shifted and scaled χ2 approximation of MAC and MPC
distribution.

Table 10: Percentage of the 95% shifted and scaled χ2 distribution quantiles containing the MAC computed between the
estimates of equal mode shapes.

Algorithm/Parameter MAC11 MAC22 MAC33 MAC44 MAC55 MAC66 MAC77

IOcov 100% 100% 100% 74% 100% 86% 98%
IOdat 100% 100% 100% 58.5% 100% 100% 94%
OOcov 100% 100% 100% 80.9% 100% 78% 94%
OOdata 98% 74% 100% 54% 100% 100% 80%
OOdatb 100% 68.8% 94% 54% 94% 97.7% 78%

Table 11: Percentage of the 95% shifted and scaled χ2 distribution quantiles containing the MPC computed from the estimates
of real mode shapes.

Algorithm/Parameter MPC3 MPC5 MPC7

IOcov 82.2% 92.1% 65.5%
IOdat 95.1% 100% 75.4%
OOcov 100% 95.7% 70.7%
OOdata 97.1% 81.2% 61.4%
OOdatb 92.1% 98.9% 46.5%

scaled χ2 approximation of MAC and MPC distributions are enclosed respectively in Table 10 and Table

11.

High percentage of MAC estimates within the 95% quantiles suggests that the related shifted and scaled

χ2 distribution possibly slightly overestimates the distribution of MAC estimates, which can also be conjec-

tured from the distribution fits in Figure 6. Despite obtained using the second-order statistics, the quantiles

of the MAC and MPC distribution approximation are quite accurate and for most of the cases contain

majority of the related estimates.

6. Conclusions

In this paper, an extensive case study validating the statistical Delta method-based framework to obtain

the distribution characteristics of the modal parameter and the modal indicator estimates was presented

for several subspace algorithms. The input/output subspace methods exhibited lower variances in modal

parameter estimates than the output-only methods. Methods to obtain the estimates of (A,C) i.e., the
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shift invariance and the state regression, were found to have no significant influence on the covariance of

estimated parameters. The results confirmed that the statistical properties of the modal parameter estimates

obtained from one data set with the first-order Delta method are, on average, equivalent to the empirical

statistics obtained from the Monte Carlo experiment. It was also shown that for most of the estimates the

first-order Delta method-based confidence intervals are accurate and contain the Monte Carlo mean of the

estimated parameter. Although some second-order Delta method distribution fits were slightly mismatched

with the histograms of MAC between equal mode shape estimates and MPC of asymptotically real-valued

mode shapes, it is expected that with larger sample sizes, the variance errors on the estimated parameters

and the higher order cumulants of the distribution approximating MAC and MPC estimates will decrease,

and the second-order Delta method-based distribution characteristics will match their empirical equivalents

better.
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[9] F. Magalhães, Á. Cunha, Explaining operational modal analysis with data from an arch bridge, Mechanical Systems and

Signal Processing 25 (5) (2011) 1431 – 1450.
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[30] S. Greś, M. Döhler, N.-J. Jacobsen, L. Mevel, Uncertainty quantification of input matrices and transfer function in

input/output subspace system identification, Mechanical Systems and Signal Processing 167 (2022) 108581.
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