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Analytical expressions of heat-partition coefficient and contact temperatures for two sliding semispaces with account 
for adhesion-deformational heat generation and contact heat exchange have been obtained. The rate of deformational 
heat generation is assumed to decay exponentially with increase of distance from the interface. It has been shown that 
heat-generation configuration and the intensity of contact heat exchange have impact on heat partition only within a 
transient interval. The features of perfect thermal contact have been analyzed. Perfect thermal contact implies variation 
of heat partition in time. Heat partition and contact temperature for a semispace, sliding over a semispace with a 
constant temperature, have been studied. Adhesion-deformational heat generation results in a change of the direction of 
surface heat flow. 
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1. Introduction
It is well recognized that one of the most important factors in sliding systems is temperature at the interface. 

This influences the friction processes in a variety of ways. Generally, temperature has effects on friction coefficient, 
mechanical properties, such as elastic modulus and hardness, wear rate, etc. Therefore, an estimate of its magnitude is 
often required. 

Most of the studies on temperature at sliding interfaces have been based on the flash temperature theory [1–3] 
where perfect thermal contact, i.e. heat balance and temperature continuity, is assumed in the microscopic regions of 
roughness asperities interaction. Heat-partition coefficient ߙ has been introduced to divide friction heat between the 
sliding bodies. ߙ enables defining a boundary thermal condition in the form of heat-flow rate ݍ per unit surface area of 
each ݅-th body, ݅ ∈ ሼ1, 2ሽ, as illustrated in Fig.1(a). A sum ݍଵ   of friction-heat ݍ ଶ is equal to specific powerݍ
generation. 

For simplicity, temperature continuity at macroscopic interface is sometimes assumed [4]. This implies the 
equality of the temperatures ܶ of the sliding bodies, as shown in Fig.1(b). 

In reality, at macroscopic interface ଵܶ ് ଶܶ, i.e. thermal interaction is imperfect, and contact heat exchange is 
observed [5]. Its intensity is characterized by a value ܴ of thermal contact resistance or by contact heat exchange 
coefficient ߛ ൌ 1/ܴ. One of the simplest frictional thermal models considering ܴ is depicted in Fig.1(c) [6]. According 
to experimental data [7], contact heat exchange can result in a considerable variation of ߙ in the course of friction. 
Therefore, ߙ should be generally treated as not a parameter but a variable quantity. 

It is common knowledge [8] that dry friction has two basic components: the interfacial bonds between the 
bodies (adhesive component) and the deformation of roughness asperities and neighboring volumes of materials 
(deformational component). Both components are related to generation of heat. Adhesive component contributes to heat 
generation at the sliding surfaces, while deformational one contributes to volumetric heat generation in the subsurface 
layers. A fraction ߰ of friction heat released due to the adhesive mechanism may be different in relation to friction 
materials. For metals, ߰ is considered to be small, e.g. for copper / steel pair ߰ ൏ 0.15, i.e. adhesive component 
provides less than 15% of friction heat [9]. 

Heat generation in the subsurface layers is induced mainly by plastic deformation. Volumetric rate ߱ of heat 
generation depends on the distance ݔ from the interface and cannot be measured directly. However, a distribution ߱ሺݔሻ 
is supposed to be of the same profile as plastic-deformation distribution [10]. That deformation is estimated through the 
observation of a transverse section of a worn surface. Experiments show [11, 12] that plastic displacement ߜ diminishes 
rapidly with ݔ. For approximation of ߜሺݔሻ, the exponential is sometimes used [13–15]. As an example, a profile ߜሺݔሻ in 
a copper specimen after sliding against a steel slider is presented in Fig.2 [10]. 

A model [16, 17] depicted in Fig.1(d) has been developed to take into account the deformational component of 
heat generation. The parameters of the model are heat-generation coefficient ߙ and ߛ. The coefficient ߙ specifies a 
fraction of friction heat which is generated at the surface and in the subsurface layer of the first body. 
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 There is a principal difference between ߙ and ߙ: the former means a partition of friction heat, whereas the 
latter specifies a partition of heat-generation rate between the sliding bodies. When using the models Figs.1(b),(c),(d), 
 . is a priori unknownߙ
 A number of analytical studies on temperatures in sliding systems have been conducted. We mention non-
stationary problems in which the bodies are represented in the form of the semispaces or geometrically generalized 
systems (layer–semispace, plane-parallel layers, semispace–layer–semispace). A classical solution for the semispaces 
with perfect thermal contact Fig.1(b) has been provided in [4]. Imperfect thermal contact for the semispaces and for 
plane-parallel layers has been thoroughly studied: with account for [19 ,18] ߛ due to the model Fig.1(c); with account 
for ߙ and [21 ,20] ߛ due to the model Fig.1(d). There have been also obtained the solutions for a layer–semispace 
system [22, 23] and for the semispaces where one of them is homogeneous and the other is a semi-infinite foundation 
covered by a layer [24].  
 The solutions referred above assume heat generation localized at the interface. In some cases the validity of 
this assumption is subject to question.  
 Temperature in a semispace with a moving band heat source has been analyzed [25]. It was shown that 
maximum surface temperatures obtained for the distributions ߱ሺݔሻ, similar to the exponential approximation in Fig.2, 
are noticeably lower than the maximum temperature corresponding to localized heat source. Low surface temperatures 
may be observed in the real friction systems when the deformational component is considerable [26]. 
 Temperature distribution in a titanium sample, sliding over a molybdenum braking disk, has been studied 
experimentally [27]. It was found that a subsurface temperature can exceed the temperature at the surface in the course 
of friction. Since the subsurface layer of the sample was subjected to large plastic deformations, the effect of ߱ሺݔሻ on 
the temperature distribution was concluded to be significant. 
 According to these reports, generation of friction heat may be essentially volumetric and in this case ߱ሺݔሻ 
cannot be neglected. In the present work the model Fig.1(d) is modified to take into account ߱ሺݔሻ. For simplicity, ߱ሺݔሻ 
is defined by the exponential. Analytical study of heat partition and contact temperatures for the sliding semispaces is 
conducted. ߙ is expressed as a time function depending on the thermophysical properties of the semispaces, the 
coefficients ߛ ,ߙ and ߰ for each ݅-th semispace. The features of perfect thermal contact for adhesive and adhesion-
deformational heat generation are analyzed. The influence of heat-generation configuration on heat partition and contact 
temperature for a semispace, sliding over a constant-temperature semispace, is studied. 
 
2. Heat-generation coefficient ࢻ 
 There are several theoretical approaches to determine ߙ. 
 A model [28, 29] depicted in Fig.1(e) corresponds to the case of pure adhesive heat generation, i.e. ߰ଵ ൌ ߰ଶ ൌ
1. The roughness of each ݅-th body is characterized by a microscopic thermal resistance ܴ. From the condition of 
identity of the models in Figs.(d) and (e), it follows that 

ߙ ൌ
ܴଶ

ܴଵ  ܴଶ
; ߛ ൌ

1
ܴଵ  ܴଶ

  

 Thermomechanical approach has been reported [16]. Roughness asperities of each ݅-th body are represented as 
a set of equal spherical segments with a radius ݎ. Adhesive and deformational interactions within a single couple of 
asperities are studied. ߙ is obtained as a complicated expression which includes mechanical, thermophysical and 
geometrical characteristics. We restrict ourselves to the consideration of two limiting cases 

టభୀటమୀଵ|ߙ ൌ ൭1 
ܿଶ݇ଶ
ܿଵ݇ଵ

ቆ
ଵሺ1ܧଶݎ െ ଶߥ
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ቇ
ଶ/ଷ

൱

ିଵ

;

టభୀటమୀ|ߙ ൌ ൭1  ൬
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ቆ
ଵሺ1ܧ െ ଶߥ

ଶሻ
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ଶሻ
ቇ
ଶ/ଷ

൱
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where ܿ is specific heat capacity; ݇ is thermal diffusivity coefficient; ܧ is elastic modulus; ߥ is Poisson's ratio. 
 Sliding between a body with periodic asperities (݅ ൌ 1) and a perfectly smooth body (݅ ൌ 2) has been analyzed 
in [30, 31]. For each ݅-th body, friction heat is assumed to be generated in the subsurface layer with a thickness ݀ due 
to some distribution ߱ሺݔሻ. Adhesive heat generation is neglected, i.e. ߰ଵ ൌ ߰ଶ ൌ 0. With the preceding notation, the 
following expression is derived: 

ߙ ൌ න
ܴଶ  ܴଵ	ݔ/݀ଵ
ܴଵ  ܴଶ

߱ଵሺݔሻ

ݍ
ݔ݀

ௗభ


 න

ܴଶሺ1 െ ଶሻ݀/ݔ

ܴଵ  ܴଶ

߱ଶሺݔሻ

ݍ
ݔ݀

ௗమ
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3. Problem definition 
 We consider two semispaces. Each ݅-th semispace occupies a domain ሺെ1ሻାଵ	ݔ  0 and possesses a thermal 
conductivity coefficient ܭ and a thermal diffusivity coefficient ݇. At initial moment ݐ ൌ 0 the temperature of the 
semispaces is ܶ. Starting from this moment the semispaces slide relative to each other in the plane ݔ ൌ 0 so that there 
is generation of friction heat with a specific power ݍ. 
 It should be noted that in the present formulation the quantity ݔ is a coordinate. Accordingly, a distance from 
the interfacial plane is equal to ݔ for the first semispace and |ݔ| for the second one. 

Let us assume the following. A fraction ߙ of friction heat is generated in the first semispace, while the 
complementary fraction ሺ1 െ  ሻ is generated in the second one. For each ݅-th semispace, a fraction ߰ of relevant heatߙ
is released in the plane ݔ ൌ 0 due to the adhesive mechanism and the reminder ሺ1 െ ߰ሻ is released in the volume 
through the deformational mechanism, as shown in Fig.1(f). The volumetric rates ߱ of heat generation are distributed 
by the exponential law 

߱ଵ ൌ
ሺ1ߙ െ ߰ଵሻݍ

݄ଵ
exp ൬െ

ݔ
݄ଵ
൰ , ݔ  0;

߱ଶ ൌ
ሺ1 െ ሻሺ1ߙ െ ߰ଶሻݍ

݄ଶ
exp ൬

ݔ
݄ଶ
൰ , ݔ ൏ 0 

 

where ݄ is effective thickness of the ݅-th subsurface layer determined from plastic-deformation distribution. In the 
plane ݔ ൌ 0 there is contact heat exchange between the semispaces with intensity specified by ߛ. 
 In agreement with the mentioned assumptions, the temperatures ܶ in the semispaces are governed by the 
equations 

߲ ଵܶ

ݐ߲
ൌ ݇ଵ

߲ଶ ଵܶ

ଶݔ߲

ሺ1ߙ െ ߰ଵሻ݇ଵݍ

݄ଵܭଵ
exp ൬െ

ݔ
݄ଵ
൰ , ݔ  0, ݐ  0;

߲ ଶܶ

ݐ߲
ൌ ݇ଶ

߲ଶ ଶܶ

ଶݔ߲

ሺ1 െ ሻሺ1ߙ െ ߰ଶሻ݇ଶݍ

݄ଶܭଶ
exp ൬

ݔ
݄ଶ
൰ , ݔ ൏ 0, ݐ  0;	

ଵܶ|௧ୀ ൌ ଶܶ|௧ୀ ൌ ܶ;	

െܭଵ
߲ ଵܶ

ݔ߲
ฬ
௫ୀ

ൌ ݍଵ߰ߙ െ ሺߛ ଵܶ െ ଶܶሻ|௫ୀ;	

ଶܭ
߲ ଶܶ

ݔ߲
ฬ
௫ୀ

ൌ ሺ1 െ ݍሻ߰ଶߙ  ሺߛ ଵܶ െ ଶܶሻ|௫ୀ;	

߲ ଵܶ

ݔ߲
ฬ
௫→ାஶ

ൌ
߲ ଶܶ

ݔ߲
ฬ
௫→ିஶ

ൌ 0 

(1) 

 All four components of heat generation for both semispaces satisfy the heat-balance condition 

ݍଵ߰ߙ  න
ሺ1ߙ െ ߰ଵሻݍ

݄ଵ
exp ൬െ

ݔ
݄ଵ
൰ ݔ݀

ାஶ


 ሺ1 െ ݍሻ߰ଶߙ  න

ሺ1 െ ሻሺ1ߙ െ ߰ଶሻݍ
݄ଶ

exp ൬
ݔ
݄ଶ
൰݀ݔ



ିஶ
ൌ   ݍ

 After introducing dimensionless coordinate ߦ ൌ ݔ ݄ଵ⁄ , dimensionless time variable (Fourier number) Fo ൌ
݇ଵݐ ݄ଵଶ⁄ , dimensionless temperatures ߴ ൌ ଵሺܭ ܶ െ ܶሻ ⁄ଵ݄ݍ ߉ , ൌ ଵܭ ⁄ଶܭ , ߯ ൌ ݇ଶ ݇ଵ⁄ ܪ , ൌ ݄ଶ ݄ଵ⁄ ܤ , ൌ ଵ݄ߛ ⁄ଵܭ , Eq.(1) 
is represented as 

ଵߴ߲
߲Fo

ൌ
߲ଶߴଵ
ଶߦ߲

 ሺ1ߙ െ ߰ଵሻ expሺെߦሻ , ߦ  0, Fo  0;

ଶߴ߲
߲Fo

ൌ ߯
߲ଶߴଶ
ଶߦ߲

 ሺ1 െ ሻሺ1ߙ െ ߰ଶሻ
߯߉
ܪ
exp ൬

ߦ
ܪ
൰ , ߦ ൏ 0, Fo  0;	

ଵ|୭ୀߴ ൌ ଶ|୭ୀߴ ൌ 0;	

െ
ଵߴ߲
ߦ߲

ฬ
కୀ

ൌ ଵ߰ߙ െ ଵߴሺܤ െ 	;ଶሻ|కୀߴ

ଵି߉
ଶߴ߲
ߦ߲

ฬ
కୀ

ൌ ሺ1 െ ሻ߰ଶߙ  ଵߴሺܤ െ 	;ଶሻ|కୀߴ

ଵߴ߲
ߦ߲

ฬ
క→ାஶ

ൌ
ଶߴ߲
ߦ߲

ฬ
క→ିஶ

ൌ 0 

(2) 

 The problem defined by Eq.(2) includes special cases: 

 perfect thermal contact at ܤ → ∞; 

 absence of contact heat exchange at ܤ ൌ 0; 

 pure adhesive heat generation at  ߰ଵ ൌ ߰ଶ ൌ 1; 
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 pure deformational heat generation at ߰ଵ ൌ ߰ଶ ൌ 0; 

 contact with constant-temperature semispace at ߯ → 0. 
 
4. Problem solution 
 We apply Laplace integral transform ࣦ to Eq.(2) and obtain the images ߴሺߦ, ሻݏ ൌ ࣦሾߴሺߦ, Foሻሿ as follows 

ଵߴ ൌ
ሺ1ߙ െ ߰ଵሻ

ݏሺݏ െ 1ሻ
expሺെߦሻ  ቌ

ଵ߰ߙ

ݏ ቀ√ݏ  ሺ1ܤ  ሻቁߤ

ሺ߰ߙଵ  ሺ1 െ ߤܤሻ߰ଶሻߙ

ݏ√ݏ ቀ√ݏ  ሺ1ܤ  ሻቁߤ

െ
ሺ1ߙ െ ߰ଵሻሺ1  ሻܤ

ݏሺݏ െ 1ሻ ቀ√ݏ  ሺ1ܤ  ሻቁߤ
െ

ሺ1ߙ െ ߰ଵሻߤܤ

ݏሺݏ√ݏ െ 1ሻ ቀ√ݏ  ሺ1ܤ  ሻቁߤ


ሺ1 െ ሻሺ1ߙ െ ߰ଶሻߣߤܤ

ݏ√൫ݏ√ݏ  ൯ߣ ቀ√ݏ  ሺ1ܤ  ሻቁߤ
ቍ exp൫െݏ√ߦ൯ ;	

ଶߴ ൌ
ሺ1 െ ሻሺ1ߙ െ ߰ଶሻߣߤ

ݏሺݏ െ ଶሻߣ
exp ൬

ߦ
ܪ
൰  ቌ

ሺ1 െ ߤሻ߰ଶߙ

ݏ ቀ√ݏ  ሺ1ܤ  ሻቁߤ

ሺ߰ߙଵ  ሺ1 െ ߤܤሻ߰ଶሻߙ

ݏ√ݏ ቀ√ݏ  ሺ1ܤ  ሻቁߤ
	

െ
ሺ1 െ ሻሺ1ߙ െ ߰ଶሻሺߤܤ  ߣߤሻߣ

ݏሺݏ െ ଶሻߣ ቀ√ݏ  ሺ1ܤ  ሻቁߤ
െ

ሺ1 െ ሻሺ1ߙ െ ߰ଶሻߣߤܤଶ

ݏሺݏ√ݏ െ ଶሻߣ ቀ√ݏ  ሺ1ܤ  ሻቁߤ


ሺ1ߙ െ ߰ଵሻߤܤ

ݏ√൫ݏ√ݏ  1൯ ቀ√ݏ  ሺ1ܤ  ሻቁߤ
ቍ expቌߦඨ

ݏ
߯
ቍ 

(3) 

where ݏ is transform parameter; ߣ ൌ ߤ ;ܪ/߯√ ൌ  .߯√߉
 By setting ߦ ൌ 0 in Eq.(3) and using the known inverse Laplace transforms [4] 

ࣦିଵ ቈ
ܽଶ

ݏሺݏ െ ܽଶሻ
 ൌ expሺܽଶ	Foሻ െ 1;	

ࣦିଵ ቈ
ܾ

ݏ√൫ݏ  ܾ൯
 ൌ 1 െ expሺܾଶ	Foሻ	erfc൫ܾ√Fo൯;	

ࣦିଵ ቈ
ܾଶ

ݏ√൫ݏ√ݏ  ܾ൯
 ൌ

2ܾ√Fo

ߨ√
 expሺܾଶ	Foሻ erfc൫ܾ√Fo൯ െ 1;	

ࣦିଵ ቈ
ܽଶܾ

ݏሺݏ െ ܽଶሻ൫√ݏ  ܾ൯
 ൌ

ܾ expሺܽଶ	Foሻ ൫ܾ െ ܽ  ܽ erfc൫ܽ√Fo൯൯
ܾଶ െ ܽଶ

െ
ܽଶ expሺܾଶ	Foሻ erfc൫ܾ√Fo൯

ܾଶ െ ܽଶ
െ 1;	

ࣦିଵ ቈ
ܽଶܾଶ

ݏሺݏ√ݏ െ ܽଶሻ൫√ݏ  ܾ൯
 ൌ 1 െ

2ܾ√Fo

ߨ√
െ
ܾଶexpሺܽଶ	Foሻ ൫ܽ െ ܾ  ܾ erfc൫ܽ√Fo൯൯

ܽሺܾଶ െ ܽଶሻ

ܽଶ expሺܾଶ	Foሻ erfc൫ܾ√Fo൯

ܾଶ െ ܽଶ
;	

ࣦିଵ ቈ
ܾܽ

ݏ√൫ݏ√ݏ  ܽ൯൫√ݏ  ܾ൯
 ൌ

2√Fo

ߨ√
െ
ܽ  ܾ
ܾܽ


ܾ expሺܽଶ Foሻ erfc൫ܽ√Fo൯

ܽሺܾ െ ܽሻ
െ
ܽ expሺܾଶ Foሻ erfc൫ܾ√Fo൯

ܾሺܾ െ ܽሻ
 

we derive ߠ and ߙ in the form 

ଵߠ ൌ ଵ|కୀߴ ൌ
ߤ2

ሺ1ߨ√  ሻߤ
√Fo െ

ሺ1ߙ െ ߰ଵሻሺ1 െ ሻߤܤ

1 െ ሺ1ܤ  ሻߤ
ሺFoሻߖ 

ሺ1 െ ሻሺ1ߙ െ ߰ଶሻߤܤ

ߣ൫ߣ െ ሺ1ܤ  ሻ൯ߤ
	ଶFoሻߣሺߖ


1

1  ߤ
ቆ

1
ሺ1ܤ  ሻߤ


ሺ1ߙ െ ߰ଵሻ

1 െ ሺ1ܤ  ሻߤ
െ
ሺ1 െ ߣሻ൫ߙ െ ሺ1ܤ  ߰ଶߤሻ൯

ߣ൫ܤ െ ሺ1ܤ  ሻ൯ߤ
ቇ ଶሺ1ܤሺߖ	  	;ሻଶFoሻߤ

ଶߠ ൌ ଶ|కୀߴ ൌ
ߤ2

ሺ1ߨ√  ሻߤ
√Fo 

ሺ1ߙ െ ߰ଵሻߤܤ
1 െ ሺ1ܤ  ሻߤ

ሺFoሻߖ	 െ
ሺ1 െ ሻሺ1ߙ െ ߰ଶሻሺߣ െ ߤሻܤ

ߣ൫ߣ െ ሺ1ܤ  ሻ൯ߤ
	ଶFoሻߣሺߖ	


1

ሺ1ܤ  ሻߤ
ቆ
ܤ െ ሺ1 െ ሻሺ1ߙ  ߣሻߤ

ሺ1ܤ  ሻߤ

ሺ1 െ ߣሻሺሺߙ െ ሻଶܤ െ ߰ଶܤଶߤଶሻ

ߣ൫ܤ െ ሺ1ܤ  ሻ൯ߤ
െ
൫1ߙ െ ሺ1ܤ  ߰ଵߤሻ൯

1 െ ሺ1ܤ  ሻߤ
ቇߖሺܤଶሺ1  ;ሻଶFoሻߤ

ߙ ൌ ߙ െ ଵߠሺܤ െ ଶሻߠ ൌ ߙ 
ሺ1ߙ െ ߰ଵሻܤ
1 െ ሺ1ܤ  ሻߤ

ሺFoሻߖ	 െ
ሺ1 െ ሻሺ1ߙ െ ߰ଶሻߤܤ

ߣ െ ሺ1ܤ  ሻߤ
	ଶFoሻߣሺߖ	

െ
1

1  ߤ
ቆ
ሺ1 െ ߣሻߙ

ܤ

൫1ߙ െ ߰ଵܤሺ1  ሻ൯ߤ

1 െ ሺ1ܤ  ሻߤ
െ
ሺ1 െ ߣሻ൫ሺߙ െ ߣሻܤ െ ߰ଶܤଶߤሺ1  ሻ൯ߤ

ߣ൫ܤ െ ሺ1ܤ  ሻ൯ߤ
ቇ ଶሺ1ܤሺߖ   ሻଶFoሻߤ

(4) 

where erfcሺ∙ሻ is complementary error function; ܽ and ܾ are positive numbers; ߖሺݖሻ ൌ 1 െ expሺݖሻ erfc൫√ݖ൯. 
 The function ߖ increases monotonically from zero value at ݖ ൌ 0 to the unit at infinite point ݖ ൌ ∞ (Table 1). 
 
 
 
 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5 
 

Table 1. Threshold values of the function ߖ and its argument, ߖୱ ൌ  ୱሻݖሺߖ
 ୱ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7ߖ

 ୱ 0 0.009270 0.04465 0.1242 0.2823 0.5915 1.226 2.692ݖ

 ୱ 0.8 0.9 0.95 0.96 0.97 0.98 0.99 1ߖ

 ∞ୱ 7.037 30.85 126.3 197.9 352.7 794.8 3182 ݖ

 Thus, ߠ and ߙ are represented as analytical expressions depending on 6 dimensionless parameters, namely, ߙ, 
߰ଵ, ߰ଶ, ܤ ,ߣ and ߤ. The parameters ߙ, ߰ଵ, ߰ଶ and ߣ define heat-generation configuration. ܤ is dimensionless contact 
heat exchange coefficient. ߤ is the ratio of thermal effusivities of the semispaces. 
 It should be mentioned that Eq.(4) can be obtained as a superposition of a solution for the localized heat 
generation due to the model Fig.1(d) and a solution for the volumetric heat generation with exponentially decaying 
߱ሺݔሻ. These solutions have been reported, for instance, in [20]. 
 
5. Transient process 
 For small values of Fo it is true 

ଵߠ ൌ
ଵ߰ߙ2
ߨ√

√Fo  ሺߙ െ ଵሺ1߰	ߙ  ሻܤ  ሺ1 െ ሻFoߤܤሻ߰ଶߙ  O൫Foଷ/ଶ൯;

ଶߠ ൌ
2ሺ1 െ ߤሻ߰ଶߙ

ߨ√
√Fo  ൫ሺ1ߤ െ ߣሻߙ  ܤଵ߰ߙ െ ሺ1 െ ߤܤሻ߰ଶሺߙ  ሻ൯Foߣ  O൫Foଷ/ଶ൯;	

ߙ ൌ ߙ  O൫Foଵ/ଶ൯ 

(5) 

At Fo → 0 the temperatures ߠ rise as √Fo. However, if pure deformational heat generation occurs, i.e. ߰ ൌ 0, they are 
proportional to Fo. 
 When Fo → ∞, the quantities under study tend to 

ଵߠ ൌ ଶߠ ൌ
ߤ2

ሺ1ߨ√  ሻߤ
√Fo; ߙ ൌ

ߤ
1  ߤ

  (6) 

At large values of Fo the temperatures ߠ as well as ߙ are independent of heat-generation configuration and ܤ. They 
exhibit behavior intrinsic to the sliding semispaces with perfect thermal contact and pure adhesive heat generation [4]. 
 Eq.(4) describes a transient process [8, 16]: friction is initially inequilibrium and heat partition is governed by 
the properties of rough surfaces, as indicated by Eq.(5); eventually friction tends to equilibrium state Eq.(6) where heat 
partition is due to thermophysical properties of the sliding bodies. ߙ includes three variable terms which change in 
accordance with the functions ߖሺFoሻ, ߖሺߣଶFoሻ and ߖሺܤଶሺ1   ሻଶFoሻ, respectively. If the slowest of them is acceptedߤ
as governing, then saturation of ߙ to a level ߖୱ occurs at the moment 

Foୱ ൌ
ୱݖ

minሼ1, ,ଶߣ ଶሺ1ܤ  ሻଶሽߤ
   

Hence, it is advisable to use Eq.(4) for the transient interval Fo  Foୱ. For Fo  Foୱ the simpler Eq.(6) can be used. 
 
6. Perfect thermal contact 
 Generally, the temperatures ߠ are different. It is explained by that a capacity of each semispace to remove heat 
from the interfacial zone does not correspond to the amount of heat generated in this semispace [32]. Nevertheless, 
there exist certain conditions under which a balance between the heat generation and the heat removal is established and 
thermal contact becomes perfect. These conditions are of special interest. 
 If pure adhesive heat generation occurs, i.e. ߰ଵ ൌ ߰ଶ ൌ 1, then 

ଵߠ ൌ
ߤ2

ሺ1ߨ√  ሻߤ
√Fo െ

ߤ െ ሺ1ߙ  ሻߤ

ሺ1ܤ  ሻଶߤ
ଶሺ1ܤሺߖ  ;ሻଶFoሻߤ

ଶߠ ൌ
ߤ2

ሺ1ߨ√  ሻߤ
√Fo 

ߤ൫ߤ െ ሺ1ߙ  ሻ൯ߤ
ሺ1ܤ  ሻଶߤ

ଶሺ1ܤሺߖ	  	;ሻଶFoሻߤ

ߙ ൌ ߙ  ൬
ߤ

1  ߤ
െ ൰ߙ ଶሺ1ܤሺߖ   ሻଶFoሻߤ

(7) 

Identical equality of ߠ in Eq.(7) is valid in the case ߙ ൌ ሺ1/ߤ  ܤ ሻ or in the caseߤ → ∞. In both these cases Eq.(7) 
transforms into Eq.(6) where heat partition occurs due to thermal-effusivities proportion. Consequently, perfect thermal 
contact Eq.(6) has two interpretations: 

 at ߙ ൌ ሺ1/ߤ  ଵߠ ሻ friction heat is initially released so thatߤ ൌ  whatever it is, has no ,ܤ ଶ and the coefficientߠ
effect on thermal processes; 
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 at ܤ → ∞ heat-generation disproportion ߙ ് ሺ1/ߤ   ሻ is neutralized by the «ability» of the interface to equalizeߤ
the temperatures ߠ immediately. 

 Now we consider a general case of heat generation involving deformational component. 
 If there is no contact heat exchange, i.e. ܤ → 0, it is true 

ଵߠ ൌ
ߙ2

ߨ√
√Fo െ ሺ1ߙ െ ߰ଵሻ ;ሺFoሻߖ

ଶߠ ൌ
2ሺ1 െ ߤሻߙ

ߨ√
√Fo െ

ሺ1 െ ሻሺ1ߙ െ ߰ଶሻߤ
ߣ

;ଶFoሻߣሺߖ

ߙ ൌ  ߙ

(8) 

After equalizing ߠ given by Eq.(8) we obtain 

ߙ ൌ

ۉ

ۈ
ۇ
1 

2
ߨ√

√Fo െ ሺ1 െ ߰ଵሻߖሺFoሻ

ߤ ቆ
2
ߨ√

√Fo െ
1 െ ߰ଶ
ߣ ଶFoሻቇߣሺߖ

ی

ۋ
ۊ

ିଵ

   

from which it follows that ߙ is constant when and only when ߣ ൌ 1 and ߰ଵ ൌ ߰ଶ. Under conditions 
ߣ ൌ 1, ߰ଵ ൌ ߰ଶ, ߙ ൌ ሺ1/ߤ  ሻߤ (9) 

 the temperatures ߠ in Eq.(4) are identically equal regardless of the value of ܤ, that is 

ଵߠ ൌ ଶߠ ൌ
ߤ

1  ߤ
൭
2

ߨ√
√Fo െ ሺ1 െ ߰ଵሻ ሺFoሻ൱ߖ ;

ߙ ൌ ߙ ൌ
ߤ

1  ߤ
 

(10) 

The conditions Eq.(9) are simultaneously met for friction pairs consisting of similar materials with equal roughness 
parameters. Therefore, Eq.(10) should be considered as a particular case of perfect thermal contact. 
 There are combinations of friction pairs and sliding regimes for which contact heat exchange is intensive and 
hence ܤ takes a large value. In the limiting case ܤ → ∞ we derive 

ଵߠ ൌ ଶߠ ൌ
ߤ

1  ߤ
൭
2

ߨ√
√Fo െ ሺ1ߙ െ ߰ଵሻ ሺFoሻߖ െ

ሺ1 െ ሻሺ1ߙ െ ߰ଶሻ

ߣ
ଶFoሻ൱ߣሺߖ ;	

ߙ ൌ ߙ െ
ଵ߰ߙ
1  ߤ


ሺ1 െ ߤሻ߰ଶߙ

1  ߤ
െ
ሺ1ߙ െ ߰ଵሻ

1  ߤ
ሺFoሻߖ 

ሺ1 െ ሻሺ1ߙ െ ߰ଶሻߤ
1  ߤ

 ଶFoሻߣሺߖ

(11) 

Eq.(11) describes a thermal balance when the amount of heat, supplied to each semispace as a result of heat generation 
and contact heat exchange, corresponds to its heat-removal capability. This balance implies ߙ varying in time. 
 
7. Contact with constant-temperature semispace 
 There are instances when temperature variation in one of the sliding bodies is negligible. They can be 
simulated by Eq.(4) with ߯ → 0, that is 

ଵߠ ⁄ߙ ൌ
1 െ ߰ଵ
ܤ െ 1

ሺFoሻߖ	 െ
1 െ ߰ଵܤ
ܤሺܤ െ 1ሻ

;ଶFoሻܤሺߖ ଶߠ ൌ 0;

ߙ ⁄ߙ ൌ 1 െ
ሺ1 െ ߰ଵሻܤ
ܤ െ 1

ሺFoሻߖ 
1 െ ߰ଵܤ
ܤ െ 1

 ଶFoሻܤሺߖ
(12) 

According to Eq.(12), a dimensionless rate ܬ ൌ െ߲ߴଵ ⁄ߦ߲ |కୀ of heat flow, going to the semispace across its unit 

surface area, takes the form 

ܬ ⁄ߙ ൌ ߰ଵ െ
ሺ1 െ ߰ଵሻܤ
ܤ െ 1

ሺFoሻߖ 
1 െ ߰ଵܤ
ܤ െ 1

 ଶFoሻܤሺߖ  

Depending on ߰ଵ there are three different cases shown in Fig.3: 

 ߰ଵ ൌ ܬ ,1 ൌ  is positive at Foߙ  0; 

 0 ൏ ߰ଵ ൏ 1 (߰ଵ ൌ 0.5 in Fig.3), ܬ is positive on the interval 0 ൏ Fo ൏ Foୡ and negative at Fo  Foୡ; 
 ߰ଵ ൌ is negative at Fo ܬ ,0  0. 
In general case, at Fo ൌ Foୡ surface heat flow changes its direction. Accordingly, at Fo  Foୡ a temperature peak is 
located in the subsurface layer at some distance from the surface ߦ ൌ 0. The dependence of Foୡ on ߰ଵ and ܤ, 
determined numerically from the condition ܬ ൌ 0, is depicted in Fig.4. 
 Subsurface temperature peaks have been investigated in [33, 34]. It was concluded that they are feasible for the 
regime of deceleration, i.e. for ݍ decreasing. The analysis above shows that they may also occur under constant ݍ. 
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 Effect of ߰ଵ on ߠଵ is illustrated in Fig.5. It is seen that ߠଵ increases with ߰ଵ, i.e. adhesive heat generation 
induces a higher contact temperature than generation of the same quantity of heat through the deformational mechanism 
[25]. 
 Let us consider a maximum relative deviation ߝ of ߠଵ caused by a change in ߰ଵ: 

ߝ ൌ
ଵ|టభୀଵߠ െ ଵ|టభୀߠ

ଵ|టభୀߠ
ൌ
ܤ ሺFoሻߖ െ ܤ ଶFoሻܤሺߖ

ଶFoሻܤሺߖ െ ܤ ሺFoሻߖ
   

Variation range of ߝ is shown in Fig.6. Since ܤ has a limited effect on ߝ so that 
2
ߨ
൏
→ାஶ|ߝ
→|ߝ

൏
ߨ
4
   

it is reasonable to use ߝ ൌ  :ߝ → as an upper-bound estimate for|ߝ

ߝ ൌ
ߨ√ ሺFoሻߖ

2√Fo െ ߨ√ ሺFoሻߖ
   

The function ߝ monotonically decreases and approaches zero at Fo → ∞ (Table 2). 
Table 2. Threshold values of the function ߝ and its argument, ߝ ൌ  ሺFoሻߝ

  1 0.9 0.8 0.7 0.6 0.5 0.4 0.3ߝ

Fo 1.057 1.288 1.608 2.066 2.760 3.887 5.914 10.18 

  0.2 0.1 0.05 0.04 0.03 0.02 0.01 0ߝ

Fo 22.01 83.74 325.1 504.6 891.2 1992 7911 ∞ 

 Thus, for a specified level ߝ of temperature deviation it is recommended to take into account the influence of 
߰ଵ on ߠଵ within the interval Fo  Fo. At Fo  Fo the ratio of the rates of heat-generation components is not 
important and pure adhesive heat generation can be assumed for simplicity. 
 
8. Conclusions 
 Exact expressions Eq.(4) of heat-partition coefficient and contact temperatures for sliding semispaces with 
adhesion-deformational heat generation and contact heat exchange have been derived. On the basis of analytical study it 
has been established the following. 
1. Heat partition depends on heat-generation configuration and contact heat exchange intensity on the transient 

interval Fo  Foୱ, while at Fo  Foୱ it occurs due to thermal-effusivities proportion. 

2. At low Fo numbers, contact temperatures rise as Fo for pure deformational heat generation and as √Fo in the 
presence of adhesive heat generation. 

3. Under adhesion-deformational heat generation, perfect thermal contact is accompanied by variation of heat 
partition in time due to Eq.(11). 

4. Heat flow at the surface of a semispace, sliding over a constant-temperature semispace, changes its direction at 
Fo ൌ Foୡ. 

5. For a semispace, sliding over a constant-temperature semispace, the ratio of the rates of adhesive and deformational 
heat generation has a noticeable influence on contact temperature on the interval Fo  Fo. 
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List of figure captions 

Fig.1. Boundary thermal conditions at sliding interface: 
(a) heat partition ߙ; 
(b) perfect thermal contact; 
(c) contact heat exchange;  
(d) partition ߙ of heat-generation rate and contact heat exchange;  
(e) heat partition with account for microscopic thermal resistances ܴ;  
(f) adhesion-deformational heat generation and contact heat exchange 
 
Fig.2. Typical profile of plastic displacement ߜ 

 

Fig.3. Evolutions of ܬ ⁄ߙ  and ߙ ⁄ߙ  in relation to ߰ଵ at ܤ → 1 

 

Fig.4. Relation between Foୡ and ߰ଵ at various ܤ 

 

Fig.5. Evolution of ߠଵ ⁄ߙ  in relation to ߰ଵ at ܤ → 1 

 
Fig.6. Variation range of ߝ 
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