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Reduced‑cost two‑level surrogate 
antenna modeling using domain 
confinement and response features
Anna Pietrenko‑Dabrowska1*, Slawomir Koziel1,2 & Ubaid Ullah3

Electromagnetic (EM) simulation tools have become indispensable in the design of contemporary 
antennas. Still, the major setback of EM-driven design is the associated computational overhead. 
This is because a single full-wave simulation may take from dozens of seconds up to several hours, 
thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This 
is where faster system representations (surrogates) come into play. Replacing expensive EM-based 
evaluations by cheap yet accurate metamodels seems to be an attractive solution. Still, in antenna 
design, application of surrogate models is hindered by the curse of dimensionality. A practical 
workaround has been offered by the recently reported reference-design-free constrained modeling 
techniques that restrict the metamodel domain to the parameter space region encompassing high-
quality designs. Therein, the domain is established using only a handful of EM-simulations. This paper 
proposes a novel modeling technique, which incorporates the response feature technology into the 
constrained modeling framework. Our methodology allows for rendering accurate surrogates using 
exceptionally small training data sets, at the expense of reducing the generality of the modeling 
procedure to antennas that exhibit consistent shape of input characteristics. The proposed technique 
can be employed in other fields that employ costly simulation models (e.g., mechanical or aerospace 
engineering).

Over the last few decades, various types of computational models have been extensively used in engineering 
design. They are more reliable than simpler representations due to the ability to adequately quantify various 
physical phenomena that impact the system operation in the most significant manner. Concurrent rapid develop-
ment of computer hardware and simulation methods allowed for devising sophisticated commercial simulation 
software packages that are nowadays utilized in various fields, such as mechanical1, aerospace engineering2, or 
multi-physics domains3. As a consequence, it has become possible to evaluate truly complex large-scale systems, 
e.g., civil aircrafts4, ships over a random sea surface5 or airflow through wind turbines6. Despite being time-
consuming to evaluate, simulation models permit to reduce the cost of prototyping. A representative example 
of an engineering field, where costly simulation models are largely employed, is antenna design.

Design of modern antenna systems faces numerous challenges, partially related to the increase of performance 
requirements, which may be attributed to emerging application areas such as internet of things7,8, 5G wireless 
communications9,10, medical imaging11, remote sensing12, as well as wearable13 or implantable devices14. Fur-
thermore, the designers have to address the demands for additional functionalities, including multi-band15 or 
MIMO operation16, circular polarization17, polarization/pattern diversity18, and band-notch operation19. Physi-
cal space limitations and the resulting miniaturization trends constitute yet another challenge20,21. Fulfilling 
the aforementioned requirements makes antenna design an intricate task, and more often than not leads to an 
increased complexity of the antenna topologies.

Enlarged numbers of geometry parameters is a by-product, but a troublesome one. Reliable evaluation of 
complex structures can only be carried out using electromagnetic (EM) analysis because simpler representations 
(e.g., equivalent network models) are either unavailable or incapable of providing sufficient accuracy. The lack or 
insufficiency of theoretical tools makes EM-driven design imperative. However, even a single full-wave analysis 
of a geometrically involved antenna may be CPU demanding. Therefore, the computational cost of such EM-
based procedures as numerical optimization22 or uncertainty quantification23, that require executing repetitive 
EM simulations, is often unacceptably high.
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One of the possible ways of reducing the computational overhead related to the aforementioned design tasks 
is to replace the EM model with its cheaper representation (surrogate or metamodel)24,25. In surrogate-assisted 
optimization, the said representation is employed as a prediction tool that routes the search process toward the 
optimum solution at a negligible cost. The two major classes of metamodels exist, physics-based and data-driven 
(or approximation) ones. The former typically involves an underlying low-fidelity model, the construction of 
which relies on problem-specific knowledge. In antenna design, various physics-based techniques have been 
developed, including space mapping26,27, response correction algorithms28, adaptive response scaling29, cognition-
driven design30, or shape-preserving response prediction31. The practical obstacle for this class of methods are 
limited options for low-fidelity modeling, which, in most cases, incorporate coarse-mesh EM simulations. This 
generally degrades the efficacy of the surrogate-assisted optimization frameworks to a large extent.

In the light of the mentioned issues, a more favorable choice seem to be approximation surrogates. The abun-
dance of techniques exploiting data-driven surrogates, along with an easy access through various third-party 
toolboxes (DACE32, SUMO33, UQLab34) made them a common choice in modeling and design of antenna struc-
tures. As a matter of fact, the list of advantages of data-driven surrogates is considerably longer: low evaluation 
cost, flexibility, no need for physical insight into the system under design, and transferability between various 
application areas. Some of widely used techniques of this class include kriging35,36, radial basis functions (RBF)37, 
Gaussian process regression (GPR)38, support vector regression39, and neural networks in many variations40,41. 
Still, a construction of data-driven surrogates for modern antennas featuring intricate topologies and large num-
bers of geometry parameters is challenging. The two main obstacles include the curse of dimensionality (i.e., a 
rapid increase in cardinality of training data sets as a function of the number of antenna parameters and their 
ranges42), as well as strong nonlinearity of antenna responses as a function of both geometry parameters and 
frequency. As a consequence, data-driven modeling of antenna structures using conventional techniques43,44 is 
limited to relatively simple structures over low dimensional parameter spaces. Some of the mentioned issues may 
be addressed using methods such as high-dimensional model representation (HDMR)45 or orthogonal matching 
pursuit46, yet, these solutions are not applicable to general purpose modeling.

An entirely different approach to handling dimensionality issues has been offered by the recently proposed 
performance-driven modeling frameworks47–49. The key concept of the methods belonging to this class is to 
restrict the metamodel domain to the most promising region of the parameter space, which encompasses the 
designs of high-quality with respect to the assumed performance figures. The domain defined according to this 
paradigm has a significantly smaller volume than the traditional, box-constrained domain delimited by the 
lower and upper bounds on design variables. As a consequence, the computational overhead of setting up a sur-
rogate therein is considerably smaller than within the conventional approach. Notwithstanding, in early versions 
of performance-driven modeling techniques (i.e., triangulation-based constrained modeling47 and the nested 
kriging48), surrogate domain definition involved a set of so-called reference designs: pre-optimized with respect 
to the selected combinations of the figures of interest and/or material parameters relevant to the particular design 
task. Clearly, the acquisition of the reference designs incurred substantial computational expenditures, which, 
in some cases, could be justified by multiple use of the framework, e.g., for redesigning the structure at hand 
for different operating conditions. This expenses have been largely reduced (by a factor of sixty percent) in the 
further advancement of the technique, i.e., reference-design-free constrained modeling49, where the constrained 
domain has been determined using a preselected set of random observables. Acquisition of these observables 
does not require solving any optimization tasks. Instead, a cost-efficient selection procedure is employed49, in 
which the decision on the acceptance of a specific observable is made using the knowledge extracted therefrom.

This paper proposes a novel surrogate modeling technique, which further improves the efficacy of the 
aforementioned reference-design-free constrained modeling method49 by incorporating the response features 
technology50. The key concept of our approach is to handle the modeling task at the level of the system response 
features (characteristic points), rather than the frequency characteristics in their entirety. This is motivated by the 
weakly nonlinear dependence between the feature point coordinates and design variables, in contrast to typically 
high nonlinearity of antenna characteristics (both as a function of geometry parameters and the frequency). The 
important benefit of incorporating the response features technology into the reference-design-free constrained 
modeling is a further and significant reduction of the training data acquisition cost. In our approach, the sur-
rogate domain is defined in a cost-efficient manner following methodology proposed in Ref.49, whereas the 
surrogate is set up at the level of the antenna response features, which allows for smoothing out the functional 
landscape to be approximated. Joint exploitation of both methodologies allows for constructing metamodels of 
antenna input characteristics using data set of truly low cardinalities without compromising the modeling accu-
racy. Moreover, the surrogates set up using the proposed approach are valid within broad ranges of geometry and 
operating parameters. Our approach is benchmarked against conventional kriging modeling technique26, as well 
as the three state-of-the-art performance-driven modeling techniques, i.e., nested kriging48, reference-design-
free constrained modeling49, and feature-based nested kriging technique51. As demonstrated using three antenna 
examples, the proposed technique is considerably more efficient than the benchmark procedures, allowing for 
achieving surrogate predictive power of less than one percent using as low as 230 data samples on average. This 
level of accuracy is beyond capacity of the conventional data-driven modeling technique even using 800 samples. 
In addition, the proposed technique outperforms other performance-driven techniques with the data acquisition 
cost reduced by the factor of eight (when rendering models of similar predictive power).

The main technical contributions of this work include:

•	 Incorporation of the response feature technology into reference-design-free constrained modeling frame-
work,
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•	 Constructing the surrogate at the level of the response features within a confined domain defined based on 
random observables,

•	 Demonstrating substantial computational savings as compared to the previously reported constrained mod-
eling techniques,

•	 Demonstrating superiority over conventional data-driven modeling techniques in terms of the CPU cost and 
surrogate model accuracy.

According to the authors’ knowledge, no comparable modeling technique ensuring this level of accuracy at 
such a low computational cost has not been reported in the context of antenna modeling in the literature thus far.

Two‑level constrained modeling with response features.  The purpose of this section is to intro-
duce the proposed modeling framework. Our technique capitalizes on the concept of performance-driven mod-
eling, specifically, reference-design-free constrained modeling49, as well as the response features technology50. 
“Constrained modeling: Concept and basic definitions” and “Reference-design-free constrained modeling” sec-
tions provide a recollection of the constrained modeling technique49. “Response features” section outlines the 
response feature methodology50, whose incorporation into the proposed modeling framework is discussed in 
“Constrained modeling at the level of response features”. The formulation of the complete two-level constrained 
modeling technique, accommodating both the aforementioned technologies, concludes the section.

Constrained modeling: concept and basic definitions.  We start by recollecting the performance-
driven modeling concept52, employed here for a surrogate domain definition purposes. In short, the techniques 
belonging to this group47–49 aim at identifying the parameter space regions that encompass the designs of high-
quality from the point of view of the relevant figures of interest. This allows for a significant reduction of the 
domain volume in comparison to the conventional one, i.e., delimited by the lower and upper bounds on the 
design variables. As a consequence, substantial savings in terms of training data acquisition cost may be achieved 
without degrading surrogate model predictive power. This is of paramount importance especially for higher-
dimensional cases. At the same time, this is achieved without formally narrowing down the ranges of neither 
antenna geometry parameters nor operating conditions47,48.

Table 1 gathers the basic objects utilized in constrained modeling48: the design variable vector x (typically 
geometry parameters of the device under study), as well as the two spaces of interest: the parameter space X, 
and the objective space F. The entries of the design objective vector F may include, e.g., antenna operating fre-
quency/frequencies or bandwidth/bandwidths, but also substrate permittivity the structure is implemented on. 
The region of validity of the surrogate is supposed to cover the objective space F, delimited by the user-specified 
ranges of performance figures.

In constrained modeling, the surrogate model domain is to encompass the designs optimal with respect to 
the assumed figures of merit. The optimal design is understood here as minimizing the scalar objective function 
U(x,f) that quantifies the design quality52

The set of designs optimal with respect to all the objective vectors f ∈ F, is denoted as UF(F) = {UF(f) : f ∈ F}. 
The surrogate is to be set within a domain that constitutes the region of the parameter space adjacent to the 
manifold UF(F). In nested kriging48, this region has been identified with the use of the set of pre-optimized 
reference designs x(j) = [x1

(j) … xn
(j)]T, j = 1, …, p, corresponding to the objective vectors f(j) = [f1

(j) … fN
(j)]. The 

pairs {f(j), x(j)}, j = 1, …, p, constitute a training data set to set up a first-level interpolation surrogate sI(f) : F → X, 
which served to render an initial approximation of the manifold UF(F).

Needless to say, acquisition of the reference designs is expensive in terms of a required number of full-wave 
EM-simulations. As a matter of fact, its overall cost has been typically as high as a several hundreds of EM 
analyses28. Furthermore, obtaining these designs required re-designing the antenna at hand over broad ranges 
of operating conditions. Therefore, the reference design acquisition has been laborious and difficult to automate. 
Recently, some attempts to make it less dependent on designer’s supervision have been reported53).

(1)x∗ = UF(f ) = argmin
x

U(x, f )

Table 1.   Constrained modeling: basic object definitions.

Description Notation

Design variables vector x = [x1 … xn]T

Conventionally defined parameter space X = [l, u]

Lower bounds on the design variables l = [l1 …, ln]T

Upper bounds on the design variables u = [u1 …, un]T

Performance figures fk, k = 1, …, N

Objective space F: fk.min ≤ fk
(j) ≤ fk.max, k = 1, …, N

Objective vector f = [f1 … fN]T
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Reference‑design‑free constrained modeling.  In the improved-efficiency constrained modeling 
technique49, the reference designs acquisition is abandoned altogether. Instead, a set of random observables is 
distributed in the parameter space X. These observables undergo a pre-selection process, in which their accept-
ance or rejection is based on the information about the design objectives extracted therefrom. The approved 
observables serve to construct an inverse regression model (a counterpart of the first-level interpolation model 
of the nested kriging48) for surrogate domain definition.

Let {xr
(j), fr(j)}, j = 1, 2, …, be a sequence of pairs containing random vectors xr

(j) uniformly distributed in the 
design space X, as well as the corresponding performance figure vectors fr(j) (extracted from the antenna model 
responses at xr

(j)). The acceptance/rejection process is carried out as follows: the jth observable is accepted if 
fr(j) ∈ F; otherwise (i.e., if either of the components of fr(j) is not within the assumed ranges on the performance 
figures or it is unidentifiable) the observable is rejected. The sample acquisition continues until the required 
number of observables Nr has been acquired (typically, Nr should be around ten times higher than the parameter 
space dimensionality). The said data pairs serve as a training set for setting up the inverse surrogate sr

49

Observe that (2) describes an inverse regression surrogate sr(f) that maps the antenna objective space into 
its design space. In other words, sr(f) is defined over the objective space F and assumes values in the parameter 
space X, or sr : F → X. The above inverse model yields an approximation of the optimum design manifold UF. 
Identification of the surrogate sr requires solving the following nonlinear regression problems

where xr.j
(k) denotes the jth entry of the observable vector xr

(k), whereas the weighting factors wk = [wmax 
– max{p1(x(j)), …, pN(x(j))}]2, k = 1, …, Nr, differentiate “good” observables from the “poor” ones. We have the 
maximum factor wmax = max{k = 1, …, Nr, j = 1, …, N : pj

(k)}, with pj
(k) assuming nonnegative values (a better design 

is assigned a lower value of pj
(k)). The factors pj

(k) are assembled into vectors pr
(j) = [pr.1

(j) … pr.N
(j)]T. The above 

mechanism of the weighted regression allows for ensuring that high-quality observables have more impact on 
the regression model, but also to take into account information contained in lower-quality ones. The vectors pr

(j) 
are extracted from EM-simulated antenna response, similarly as the vectors fr(j). As an example, let us consider 
a dual-band antenna with the operating frequencies being the performance figures of interest. In this case, the 
vector fr(j) comprises the actual operating frequencies, whereas the vector pr

(j) may contain the corresponding 
reflection levels. The concept of the inverse regression surrogate is visualized in Fig. 1.

In reference-design-free constrained modeling49, the surrogate domain definition procedure resembles that 
of the nested kriging technique48: the image of the inverse first-level surrogate sr(F) is extended in order to 
encompass the majority of the optimum design manifold UF(F). This is because sr(F) provides merely the initial 
inexact approximation of the location of UF(F). The coefficients of the said extension (towards the vectors normal 
to sr(F)) are given by

(2)sr(f ) = sr

�

[f1 . . . fN ]
T
�

=


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Figure 1.   Visualization of the regression surrogate sr constructed using the accepted observables xr
(j) and their 

respective objective vectors fr(j): each component of sr.j, corresponding to a consecutive antenna parameter x1 
(left), x2 (middle), and x3 (right), is shown as the grey-shaded manifold; black circles mark the observables, 
whereas black squares are their counterparts in the objective space.
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In (4), the orthonormal basis of vectors that are orthogonal to sr(F) at a given objective vector f is denoted 
as {vn

(k)(f)}, k = 1, …, n – N. Moreover, a vector τ = [τ1 … τn]T comprises positive real numbers determining the 
amount of the extension. Having these, the surrogate model domain XS is defined as

In other words, the domain XS encompasses all the vectors defined by (5) for all f ∈ F, and all the coefficients 
φk ∈  [–1, 1], k = 1, …, n – N. Thus, XS is confined between the surfaces S+ =

{

x ∈ X : x = sr

(

f
)

+
∑

n−N

k=1
αk(f )v

(k)
n (f )

}

 and S− =

{

x ∈ X : x = sr
(

f
)

−
∑n−N

k=1 αk(f )v
(k)
n (f )

}

.
In reference-design free modeling technique49, the values of the extension factors are set individually for 

each design variable based on the knowledge extracted from the available observable set. For each observable 
pair {xr

(j),fr(j)}, a vector Pk(xr
(j)) minimizing the distance between the observable and [sr.k(f) fT]T, f ∈ F is defined

The minimum distance between [xr.k
(j) (fr(j))T]T and the image of the kth component of the inverse regression 

model is dr.k(xr
(j)) =||[xr.k

(j)(fr(j))T]T – [sr(P(xr
(j))) P(xr

(j))T]T||. Thus, the extension factors Tk are given by49

All the factors are gathered in the extension vector T = [T1 … Tn–N]T.
The final, forward surrogate model s(x) is set up in the confined domain XS (defined using (4), (5) and (7)) as 

a kriging interpolation metamodel32 using the pairs {xB
(k),R(xB

(k))}k = 1, …, NB, where xB
(k)  ∈  XS denote the training 

data samples, whereas R is the EM-simulated antenna response. The training data set is also complemented by 
the observable set {xr

(l),R(xr
(l))}l = 1, …, Nr.

Response features.  Modeling of highly-nonlinear antenna characteristics often proves to be a challeng-
ing task. In some cases, it is possible to reduce its complexity by employing the response feature technology50, 
where the modeling problem is tackled at the level of suitably defined characteristic points of the antenna at 
hand. The response feature technology50 capitalizes on a significantly less nonlinear relationship between the 
feature coordinates and designable parameters54 than normally observed for entire antenna responses. In the 
context of modeling, (but also parameter tuning54 or yield optimization55) this allows for a notable reduction of 
the computational overhead, which is of paramount importance, especially for devices described by larger (over 
ten) numbers of geometry parameters.

Clearly, the employment of response feature technology is only realizable when the system outputs are char-
acterized by readily discernible characteristic points. From the practical point of view, the actual selection of 
response features has to account for the design goals. As an example, let us consider characteristics of a dual- and 
a triple-band antenna with characteristic points corresponding to antenna resonant frequencies and − 10 dB 
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Figure 2.   Exemplary antenna responses and their corresponding feature points marked with circles: (a) 
dual-band antenna, (b) triple-band antenna. Here, the response features include antenna resonances, as well 
as − 10 dB reflection levels; observe that not all the features can be distinguished for each antenna response 
shown in the pictures.
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reflection levels, as shown in Fig. 2. These points permit handling design tasks aimed at resonance allocation at 
the target operating frequencies or bandwidth enhancement.

Naturally, the designer has to bear in mind that, in some cases, not all the characteristic points may be 
distinguished for a specific design, and to handle this issue appropriately during the optimization or modeling 
process. Technically, the response features are extracted from the EM-simulated antenna responses. Observe, 
that the feature-based approach permits to directly access information about the performance figures relevant 
to the assumed design objectives. This is in contrast to the conventional approach, where the entire antenna 
characteristics are handled, and this knowledge needs to be extracted afterwards. For a more thorough account 
of the response feature technology see, e.g., Ref.52.

Constrained modeling at the level of response features.  In the proposed modeling technique, 
the construction of the first-level regression surrogate sr, as well as domain definition procedure follow exactly 
that Ref49, which is recapitulated in “Reference-design-free constrained modeling”. Yet, unlike49, the second-
level metamodel is set up using the training data pairs {xB

(k), FR(xB
(k))}k = 1, …, NB, (along with the observables 

{xr
(l),R(xr

(l))}l = 1, …, Nr.). Here, FR(x) = [f1(x) f2(x) … fp(x) λ1(x) λ2(x) … λp(x)]T denotes the response feature vector 
corresponding to a given design x. The entries of the vector FR are the frequency fj and level coordinates λj, j = 1, 
…, p, of p antenna resonances. In other words, the response of the second-level surrogate yields predictions 
only about the feature point coordinates rather than the entire antenna characteristic at a given design x ∈ XS. 
Naturally, focusing only on the response features does lead to some unavoidable loss of information. Still, this 
loss is irrelevant from the point of view of the design goals: as mentioned in “Response features”, the features 
are defined so as to allow for quantifying the design objectives unequivocally. In general, some of the feature 
points may not be distinguishable (e.g., − 10 dB reflection points do not exist if the antenna resonance level is 
above that limit). However, this is not an issue for the considered approach, because the very definition of the 
domain XS ensures that the antenna designs contained therein are of high quality, which ensures the existence 
of all feature points.

Figure 3 shows the conceptual illustration of the proposed modeling procedure. The user needs to define the 
parameter space and the objective space (by providing the respective lower and upper bounds), and also decide 

Parameter
space X

Objective
space F

EM
solver

Acquire observables xr(j), j = 1,...,Nr

Set up inverse regression surrogate sr

Evaluate extension vector T

Define constrained domain XS

Perform design of experiments in XS
and acquire training data

Extract response features from the
training designs and observables

{(xr(j),fr(j),pr(j))}j=1,…,Nr

sr

T

XS

{xB(j),R(xB(j))}j=1,…,NB

Identify final surrogate sf at the level of
response features

FR(xB(k))}k = 1, …, NB
FR(xr(k))}k = 1, …, Nr

Figure 3.   Flow diagram of the feature-based reference-design-free constrained modeling technique.
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upon the number of the observables Nr (typically several dozen or so) that are to be used for domain definition 
purposes. Moreover, the number of the training data samples NB for the construction of the final surrogate has 
to be selected. The modeling procedure consists of the following steps:

1.	 Acquisition of random observables xr
(j)  ∈ X (the process is terminated if the assumed number of Nr samples 

characterized by the objective vectors fr(j) belonging to the objective space F has been gathered), followed by 
the evaluation of auxiliary performance vectors pr

(j) for the accepted samples;
2.	 Construction of the inverse regression surrogate with the training data pairs {xr

(j),fr(j)}j = 1,…,Nr, and the weight-
ing factors assessed based on the vectors pr

(j);
3.	 Evaluation of the extension vector T (cf. (6)–(7)), along with the extension coefficients α using (4);
4.	 Definition of the constrained domain XS using (5);
5.	 Design of experiments: rendition of NB training samples {xB

(k),R(xB
(k))}k = 1, …, NB;

6.	 Extraction of the features FR(xB
(k))}k = 1, …, NB, from the training designs xB

(k);
7.	 Extraction of the features FR(xr

(k))}k = 1, …, Nr, from the observables xr
(k);

8.	 Construction of the final surrogate model sf with the training data set being the extracted features from both 
the training samples and the observable set.

Let us recall the examples of previous Sections to underline how straightforward the incorporation of the 
response features technology into the feature-based reference-free constrained modeling framework is. The 
entries of the objective vectors fr(j) of “Reference-design-free constrained modeling” are the antenna operating 
frequencies, whereas the auxiliary performance vectors pr

(j), utilized to quantify the quality of the observables, are 
the reflection levels at these frequencies. Observe that the first p entries of the feature vectors Fr

(j) of “Response 
features” (i.e., the frequency coordinates) coincide with the entries of fr(j). At the same time, the remaining p 
entries of Fr

(j) (i.e., the level coordinates) are simply the components of the performance vectors pr
(j). The operat-

ing flow of the presented modeling procedure has been shown in Fig. 3.

Results
This section provides numerical verification of the proposed modeling technique. The results have been obtained 
for three antenna structures and benchmarked against the conventional kriging interpolation, as well as the 
state-of-the-art constrained modeling frameworks: nested kriging, feature-based nested kriging, and reference-
design-free modeling.
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Figure 4.   Geometries of the benchmark antenna structures: (a) ring slot antenna56 (Antenna I) with microstrip 
feed marked using a dashed line, (b) dual-band dipole antenna57 (Antenna II), and (c) quasi-Yagi antenna58 
(Antenna III) top layer (left), and bottom layer (right).
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Antenna structures used as verification cases.  The proposed modeling framework has been demon-
strated using the following antenna structures: a ring-slot antenna56 (Antenna I), a dual-band dipole antenna57 
(Antenna II), and a quasi-Yagi antenna58 (Antenna III) presented in Fig. 4a, b and c, respectively. The details con-
cerning the design variables and objectives, as well as simulation models for all the benchmark structures have 
been gathered in Table 2. For Antenna I and III, the substrate relative permittivity εr is one of the performance 
figures, therefore, its ranges are provided under the design objective ranges of Table 2. The computational models 
are evaluated in CST Microwave Studio and simulated using its time-domain solver.

Modeling results.  The surrogate models have been constructed within the respective regions of validity 
given in Table 2, using the following sizes of the training data sets: 20, 50, 100, 200, 400, and 800 samples. The 
benchmark techniques include: (i) conventional kriging in an unconstrained domain32 (Algorithm 1), (ii) basic 
nested kriging technique48 (Algorithm 2), (iii) reference-design-free constrained modeling49 (Algorithm 3), (iv) 
feature-based nested kriging technique51 (Algorithm 4). The proposed feature-based reference-design-free con-
strained modeling framework is referred to as Algorithm 5. The main features of the frameworks considered in 
this paper are summarized in Table 3, where the surrogate model definition setup and costs are compared, along 
with the modeling task formulation: conventional (operating on the entire responses) or feature-based. Tables 4, 
5 and 6 provide the modeling results: the computational costs of model setup and its accuracy. Observe that in 
the case of the feature-based performance-driven techniques (i.e., Algorithm 4, and the proposed Algorithm 5), 
the modeling accuracies of the frequency and level coordinates of the response features are provided.

For each antenna structure, a relevant set of characteristic points has been selected: (i) the operating frequency 
(ring-slot antenna of Fig. 4a), (ii) two operating frequencies (dual-band antenna of Fig. 4b), and (iii) the lower 
and upper frequencies for which the reflection response assumes − 10 dB levels, as well as the corresponding 
values of the realized gain characteristic, supplemented by five additional points equally distributed in frequency 
in between these points (quasi-Yagi antenna of Fig. 4c). The supplementary points are required to adequately 
reconstruct the gain characteristics within the operating band in order to assess the antenna average in-band gain.

Table 2.   Verification antenna structures.

Antenna Antenna I Antenna II Antenna III

Substrate h = 0.76 mm h = 0.76 mm, εr = 3.5 h = 1.5 mm

Designable parameters x = [lf ld wd r s sd o g]T x = [l1 l2 l3 w1 w2 w3]T x = [W L Lm Lp Sd Sr W2 Wa Wd g]T

Other parameters (mm) – l0 = 30, w0 = 3, s0 = 0.15, o = 5 –

Lower bounds (mm) l = [22.0 3.5 0.3 6.5 3.0 0.5 3.5 0.2]T l = [29 5.0 17 0.2 1.5 0.5]T l = [100 55 10 14.5 6.0 10.0 2.0 7.5 16.3 0.5]T

Upper bounds (mm) u = [27.0 8.0 2.3 16.0 7.0 5.5 6.0 2.3]T u = [42 12 25 0.6 5.2 3.5]T u = [137 81 29 28 21 18 5.0 20 40 1.0]T

Fine model  ~ 300,000 cells  ~ 100,000 cells  ~ 600,000 cells

LPW 20 20 20

Simulation accuracy –40 dB –35 dB –30 dB

Simulation time 90 s 60 s 240 s

Design objectives
minimize the antenna reflection at f0 minimize the antenna reflection at f1 and f2

minimize the antenna reflection and enhance gain within 8-percent 
fractional bandwidth around f0

Design objective ranges

F1
Substrate permittivity Operating frequency (lower band) Substrate permittivity

2.0 ≤ εr ≤ 5.0 2.0 GHz ≤ f1 ≤ 3.0 GHz 2.5 ≤ εr ≤ 4.5

F2
Operating frequency Operating frequency (upper band) Operating frequency

2.5 GHz ≤ f0 ≤ 6.5 GHz 4.0 GHz ≤ f2 ≤ 5.5 GHz 2.5 GHz ≤ f0 ≤ 5.0 GHz

Table 3.   Constrained modeling: basic object definitions. $ n denotes the number of the antenna geometry 
paramers.

Modeling framework Surrogate domain Surrogate domain definition Surrogate domain definition cost Modeling task formulation

1 Conventional kriging32 Defined by the lower and upper 
bound on geometry parameters N/A N/A Conventional

2 Nested kriging48 Constrained Set up using a set of reference 
designs Approx. 100n$ Conventional

3 Reference-design-free constrained 
modeling49 Constrained Set up using random observables Approx. 10n$ Conventional

4 Feature-based nested kriging51 Constrained Set up using a set of reference 
designs Approx. 100n$ Feature-based

5
Feature-based reference-design-
free constrained modelling (This 
work)

Constrained Set up using random observables Approx. 10n$ Feature-based
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The results of Tables 4, 5 and 6 demonstrate that carrying out the modeling process at the level of the response 
features allows for achieving superior accuracy of representing the characteristic points relevant to the assumed 
design objectives at a remarkably small computational cost. For all the benchmark antennas, the proposed sur-
rogate allows for achieving accuracy of less than one percent for training data sizes containing merely 50 samples 
from the constrained domain. Observe that the total cost of training data acquisition includes also the cost of 
generating 106, 230, and 192 observables for each antenna, respectively, which are necessary to define the sur-
rogate domain. Even when taking into account these additional computational expenses, our approach requires 
as low as 126, 250 and 212 data samples to assess the operating frequencies of each antenna structure with the 

Table 4.   Ring-slot antenna of Fig. 4a: modeling results and benchmarking. $ The cost includes acquisition of 
the reference designs, which is 864 EM simulations of the antenna when using feature-based optimization50 as 
listed in the table. # The cost includes generation of random observables, here, 106 simulations in total to yield 
Nr = 50 accepted samples.

Number 
of training 
samples

Modeling technique

Kriging32 Nested kriging48
Reference-design-free 
modeling49 Feature-based nested kriging51 This work

Modeling 
error (%)

Model 
setup cost

Modeling 
error (%)

Model 
setup cost$

Modeling 
error (%)

Model 
setup cost$

Modeling 
error f (%)

Modeling 
error l (%)

Model 
setup cost$

Modeling 
error f (%)

Modeling 
error l (%)

Model 
setup cost

20 93.8 20 59.5 884 45.1 126 3.91 32.8 884 0.71 12.8 126

50 56.9 50 19.4 914 13.4 156 3.29 27.8 914 0.43 8.5 156

100 50.8 100 12.9 964 9.9 206 0.38 20.6 964 0.26 7.7 206

200 35.8 200 7.7 1064 6.9 306 0.32 22.8 1064 0.18 6.6 306

400 31.5 400 5.1 1264 5.4 506 0.19 13.4 1264 0.17 6.8 506

800 25.6 800 3.7 1664 4.4 906 0.23 11.9 1664 0.15 6.2 906

Table 5.   Dual-band antenna of Fig. 4b: modeling results and benchmarking. $ The cost includes acquisition 
of the reference designs, which is 930 EM simulations of the antenna when using feature-based optimization50 
as listed in the table. Conventional (minimax) optimization required 1201 simulations. # The cost includes 
generation of random observables, here, 230 simulations in total to yield Nr = 50 accepted samples.

Number 
of training 
samples

Modeling technique

Kriging32 Nested kriging48
Reference-design-free 
modeling49 Feature-based nested kriging51 This work

Modeling 
error (%)

Model 
setup cost

Modeling 
error (%)

Model 
setup cost$

Modeling 
error (%)

Model 
setup cost$

Modeling 
error f (%)

Modeling 
error l (%)

Model 
setup cost$

Modeling 
error f (%)

Modeling 
error l (%)

Model 
setup cost

20 24.5 20 19.0 950 8.8 250 1.43 19.8 950 0.25 11.6 250

50 21.7 50 9.9 980 7.3 280 0.51 10.8 980 0.13 7.8 280

100 17.3 100 6.4 1030 5.1 330 0.39 8.4 1030 0.09 7.6 330

200 12.6 200 4.4 1130 3.8 430 0.56 6.7 1130 0.08 5.5 430

400 9.3 400 3.8 1330 3.1 630 0.43 6.3 1330 0.07 4.5 630

800 7.2 800 3.4 1730 2.5 1030 0.46 4.7 1730 0.05 3.2 1030

Table 6.   Quasi-Yagi antenna of Fig. 4c: modeling results and benchmarking. $ The cost includes acquisition of 
the reference designs, which is 1899 EM simulations of the antenna when using feature-based optimization50 as 
listed in the table. # The cost includes generation of random observables, here, 192 simulations in total to yield 
Nr = 50 accepted samples.

Number 
of training 
samples

Modeling technique

Kriging32 Nested kriging48
Reference-design-free 
modeling49 Feature-based nested kriging51 This work

Modeling 
error (%)

Model 
setup cost

Modeling 
error (%)

Model 
setup cost$

Modeling 
error (%)

Model 
setup cost$

Modeling 
error f (%)

Modeling 
error l (%)

Model 
setup cost$

Modeling 
error f (%)

Modeling 
error l (%)

Model 
setup cost

20 69.3 20 39.4 1919 17.0 212 3.3 6.33 1919 1.28 5.2 212

50 61.4 50 17.9 1949 10.8 242 2.8 6.93 1949 0.89 3.6 242

100 50.7 100 13.3 1999 8.4 292 2.8 6.55 1999 0.74 3.8 292

200 39.8 200 7.5 2099 7.1 392 2.3 6.10 2099 0.40 2.4 392

400 32.8 400 5.4 2299 5.9 592 2.4 6.53 2299 0.40 2.2 592

800 31.8 800 4.5 2699 5.0 992 2.3 5.96 2699 0.34 1.8 992
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accuracy of around one percent, which makes it a very cost-efficient modeling technique. The conventional sur-
rogate does not ensure satisfactory accuracy even for the training data set of 800 samples for two out of three 
benchmark antenna structures (Antenna I and III).

It should be noted that the accuracy of representing the frequency coordinates of the feature points is excep-
tionally good even for small data sets, whereas it is not as good for the level coordinates. On the one hand, this is 
of little practical significance because, for antenna design procedures, it is the frequency allocation that is of pri-
mary importance; reflection level, as long as it is below − 10 dB is of secondary relevance. On the other hand, the 
reason for degraded level rendition are low values of reflection coefficients at the antenna resonances (typically, 
− 20 dB or less), which implies a considerable amount of numerical noise caused by the EM simulation process 
itself (related to adaptive meshing techniques as well as terminating the time-domain simulation at relatively 
high levels of residual energy). The latter is corroborated by considerably better accuracy of representing the 
levels of the feature-points for Antenna III, which are primarily associated with the antenna gain, less affected 
by numerical noise due to being integral quantity.
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Figure 5.   Ring-slot antenna of Fig. 4a: scatter plots of the center frequency f0 [GHz] yielded by the proposed 
surrogate against their EM-simulated counterparts; surrogates constructed using (a) NB = 20 and (b) NB = 100 
samples.
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Figure 6.   Dual-band antenna of Fig. 4b: scatter plots of the center frequencies f1 and f2 [GHz] yielded by the 
proposed surrogate against their EM-simulated counterparts; surrogates constructed using (a) NB = 20 and (b) 
NB = 100 samples.
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Another observation is that both reference-design-free constrained modeling approaches (Algorithm 3 and 
5) provide similar (Antenna I) or better (Antennas II and III) accuracies than both nested kriging frameworks 
using the set of reference designs (Algorithm 2 and 4). At the same time, the expenditures required by the pro-
posed approach to determine the surrogate domain are significantly (from five to ten times) lower than that for 
the nested kriging technique.

For better visualization, Figs. 5, 6 and 7 shows the scatter plots of the relevant feature points for all the bench-
mark antennas (the operating frequencies in the case of Antennas I and II, and the frequencies of − 10 dB reflec-
tion levels for Antenna III). In all cases, correlation between the surrogate-model-predicted and EM-simulated 
results is good, even in the case of the model set up using only 20 training data samples. For one hundred data 
samples, the said correlation is excellent. In addition, Fig. 8 provides also EM-simulated antenna reflection 
characteristics at the selected test locations, along with the characteristic points yielded by the proposed sur-
rogate. For all antennas, the accuracy of predicting the frequencies that are relevant from the point of view of 
the assumed design objectives is very good.

In this work, we provided numerical verification of the predictive power of the proposed model. In engineer-
ing practice, the purpose of constructing surrogate models for antenna structures is to facilitate design proce-
dures. In particular, the models rendered using the technique presented in this paper can be employed to optimize 
the antenna structures with respect to performance figures assumed as a part of the objective space. Examples 
include allocating the operating frequency/bandwidth at their target values, allocating resonant frequencies and 
improving impedance matching therein, maximizing in-band gain, as well as optimizing dimensions to achieve 
specific values of the operating frequencies for antenna implemented on the substrate of a specific dielectric per-
mittivity. Application case studies have been provided in our prior works on performance-driven modelling49,52.

Conclusion
This work introduced a novel approach to low-cost feature-based surrogate modeling of antenna input charac-
teristics. The proposed surrogate is constructed in the constrained domain, which is determined cost-efficiently 
using a set of random observables. Our technique enhances the original reference-design-free constrained mod-
eling framework by incorporating the response features technology, thereby allowing for further reduction of the 
training data acquisition cost. At the same time, it improves the surrogate model predictive power. The proposed 
modeling procedure has been comprehensively verified using three antenna structures. In all cases, the rendered 
surrogates are valid for broad ranges of geometry, material and operating parameters. Our approach has been 
favourably compared to several benchmark techniques: conventional data-driven model, and performance-driven 
methods operating on the complete antenna responses. The obtained results demonstrate that combining two 
algorithmic approaches, the reference-design-free model domain definition, and reformulating the modeling 
task in terms of characteristic points of antenna responses, enables notable computational savings without 
compromising surrogate model accuracy. The proposed framework may be a viable alternative to conventional 
data-driven procedures, especially for modeling scenarios that involve multi-parameter spaces and highly non-
linear system outputs. It is particularly suitable for constructing design-ready replacement models valid over 
broad ranges of operating conditions. Owing to its generic formulation, it can also find applications in various 
engineering fields that rely on costly simulation models.
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Figure 7.   Quasi-Yagi antenna of Fig. 4c: scatter plots of the lower and upper frequencies corresponding 
to − 10 dB reflection levels [GHz] yielded by the proposed surrogate against their EM-simulated counterparts; 
surrogates constructed using (a) NB = 20 and (b) NB = 100 samples.
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