
Engineering Geology 301 (2022) 106615

Available online 12 March 2022
0013-7952/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Automatic classification and mapping of the seabed using airborne 
LiDAR bathymetry 

Lukasz Janowski a,*, Radoslaw Wroblewski b,c, Maria Rucinska d, 
Agnieszka Kubowicz-Grajewska d, Pawel Tysiac e,f 

a Maritime Institute, Gdynia Maritime University, Dlugi Targ 41/42, 80-830 Gdansk, Poland 
b Institute of Geography, University of Gdansk, ul. Bazynskiego 4, 80-309 Gdansk, Poland 
c MEWO S.A, Starogardzka 16, 83-010 Straszyn, Poland 
d Institute of Oceanography, University of Gdansk, al. Marszalka Pilsudskiego 46, 81-378 Gdynia, Poland 
e Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland 
f Apeks Company Ltd., Jaskowa Dolina 81, 80-286 Gdansk, Poland   

A R T I C L E  I N F O   

Keywords: 
Airborne LiDAR bathymetry 
Underwater bottom topography 
Bedform classification 
Coastal protection structures 
Sustainable management 
GEOBIA 

A B S T R A C T   

Shallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the 
economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive 
exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these 
areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess the 
suitability of Airborne LiDAR Bathymetry for automatic classification and mapping of the seafloor. Nine classes 
of geomorphological bedforms and three classes of anthropogenic structures were identified. They were auto
matically mapped by Geographic Object-Based Image Analysis and machine learning supervised classifiers. The 
developed method was applied to six study sites and a 48 km submerged coastal zone in the Southern Baltic, 
achieving an overall accuracy of up to 94%. This study shows that calculation of the Multiresolution Index of 
Ridge Top Flatness (secondary feature) can be used to quickly and automatically determine sandbar crests and 
ridge tops. The methodical approach developed in this study can help evaluate and protect other shallow coastal 
environments and coastal protection structures.   

1. Introduction 

The expansion of human activity to coastal areas leads to an inten
sification of the economic, tourist, and recreational use of these areas. 
Therefore, information is needed on the conditions, development and 
functioning of these areas. Today, coastal administrations and the 
coastal community face the challenges of climate change, including sea 
level rise, intense coastal erosion, and flooding of low-lying coastal 
areas. The shallow coastal zone is characterised by a complex bathym
etry. It includes many different-scale systems of nearshore bedforms that 
dynamically change at different spatial and temporal scales. In addition, 
sandbars are very important structures that cause waves to break. They 
are essential to protect coastal and beach areas from intense waves and 
currents, especially during storms. An important parameter for the 
condition of sandbars is their longshore integrity. In the event of 

temporary damage to the sandbar system, sections of sandbars are 
exposed to increased energy transmission from the open sea to the shore. 
This therefore leads to increased erosion of the beach and coastline 
retreat. Identification of the bottom relief in the coastal zone allows 
assessment of dynamic coastal structures and description of their spatial 
stability and equilibrium state. 

The geological-engineering aspects of the nearshore Baltic seabed 
sediments relate to geological factors such as lithology, origin and age of 
sediments, as well as geotechnical parameters: density index, consis
tency index, internal friction angle, cohesion, shear strength, and 
oedometric modulus. Due to the fact that geotechnical parameters can 
vary locally owing to different angles of inclination of the seabed sur
face, the classification of geomorphological forms is important. 
Furthermore, the upper 1.5–2.0 m layer of seabed sediment is continu
ously exposed to the impact of seawater. Depending on its composition, 
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cohesive soils in the upper seabed can be in a soft or even liquid state, 
while in non-cohesive soils the seabed is fully saturated with seawater. A 
detailed study of local conditions is often required to assess the necessity 
and design of coastal protection. 

Coastal mapping is one of the fundamental tools that support coastal 
engineering. It is an important element in monitoring and assessing the 
condition of both the shore and the coast. It allows the identification of 
areas most sensitive to changes caused by erosion, which enables 
effective and economical management of shore protection. In the case of 
protected shores, coastal mapping allows quick verification of the 
functionality and efficiency of the reinforcement applied, which further 
contributes to the improvement of engineering practice. Therefore, 
effective coastal management requires monitoring and mapping. This is 
a technical and logistic challenge (Wozencraft and Millar, 2005). It in
volves both an accurate and detailed exploration of coastal areas and a 
comprehensive spatial understanding of the processes occurring there. 
Bathymetric LiDAR (Light Detection and Ranging) surveys may provide 
such a possibility for shallow coastal areas. 

The use of Airborne LiDAR Bathymetry (ALB) has become a wide
spread technology for high-resolution mapping of shallow areas (Wehr 
and Lohr, 1999). Compared to underwater acoustic systems, ALB is 
suitable for large areas, providing dense and accurate data (Schmidt 
et al., 2013). The experience gained by the Irish national mapping 
programme INFOMAR showed that, beyond hydroacoustics, bathy
metric LiDAR provides an excellent source of high-resolution spatial 
data for the nearshore zone (Coveney and Monteys, 2011). Furthermore, 
time series of ALB datasets can successfully support accurate change 
detection analysis in this challenging environment (Robertson et al., 
2018). 

In recent years, aerial remote sensing has been applied in various 
types of research related to water and coastal areas. LiDAR technology 
enables very precise determination of water depth, useful for coastal 
monitoring and protection (Tysiac, 2020). LiDAR bathymetry relies on 
wavelengths (spectra) of the visible spectrum, which are less absorbed 
by water. Longer wavelengths are absorbed faster as they travel through 
the water column, while shorter wavelengths penetrate at greater 
depths. Water penetration at different wavelengths is further affected by 
the content of substances, such as chlorophyll and suspended solids, 
which absorb certain wavelengths (Kutser et al., 2006). The approach to 
bathymetry determination is often referred to as describing methods for 
taking measurements (Genchi et al., 2015) or optimising their process
ing (Guo et al., 2021). One of the contributions of this research is to 
propose a specific solution for the classification of morphological forms, 
whose continuous monitoring improves the quality of coastal protec
tion. With regard to the classification of seafloor relief, bathymetric 
LiDAR has not been widely used to date. The technology is expensive 
and generates an enormous amount of data (Tysiac, 2020). Potential 
applications available in the literature include monitoring of shallow 
coastal areas (Cottin et al., 2014), classification of tidal environment 
(Andersen et al., 2017), benthic habitat mapping (Collin et al., 2008), 
monitoring of the condition of navigation channels and protective 
structures (Wozencraft and Millar, 2005), geomorphology (Xhardé 
et al., 2011), organisation and distribution of archaeological sites in 
shallow water (Doneus et al., 2015). Moreover, sedimentological (den
sity, compaction) and hydrodynamical (suspended sediment concen
tration, turbulence) information was acquired from ALB based on the 
analysis of laser return intensity waveforms (Long et al., 2011). It was 
noted, however, that the available publications that refer to small 
coastal areas are based on studies conducted several years ago. 

Airborne measuring systems enable much faster surveys in shallow 
areas compared to acoustic systems. The use of airborne measurement 
techniques reduces the cost of mapping large coastal areas. Hydro
acoustic measurements are often assumed to fill gaps in airborne data 
coverage as there are many features that relate to water penetration by 
the laser beam, e.g. siltation, disturbance level, water level, type of 
scanning system, and signal processing methods. Various applications 

were presented by Lague and Feldmann (2020), who identified the 
applicability of solutions in terms of geometric changes, calculation of 
optical properties of points, or high-resolution mapping methods. The 
presented solutions are strictly engineering solutions. As a consequence, 
there are gaps in the literature regarding the classification of morpho
logical forms with the use of ALB. 

The identification and classification of seabed geomorphology from 
remote sensing datasets can be performed based on several approaches, 
for example with the support of additional morphometric features or 
backscatter intensity measurements. The whole procedure is performed 
manually and involves expert knowledge by preferably a single inter
preter (Diesing et al., 2016). The generation of manual maps is therefore 
labour intensive and time consuming. Automatic or semi-automatic 
methods of seabed classification, on the other hand, consist of unsu
pervised or supervised approaches. In the first approach, the seafloor is 
extracted based on properties and relationships within the remote 
sensing dataset (e.g., unsupervised Jenks classifier; see Fogarin et al., 
2019). The second approach involves training a classifier with a ground- 
truth input dataset that can be determined manually or in the field 
(Brown et al., 2011). Both techniques can be applied in pixel-based or 
geographic object-based image analysis. The latter was used in seafloor 
research for more than ten years (Lucieer, 2008). 

So far, geomorphological assessment and high-resolution maps of 
Polish shallow waters have been available only for dispersed and iso
lated areas. The sources of these data were: discrete sediment collec
tions, in situ measurements, singlebeam echosounder profiles, MBES, or 
bathymetric LiDAR (Tysiac, 2020). Recent nearshore data shared by the 
Maritime Office in Gdynia have provided a unique opportunity to un
derstand and validate the usefulness of ALB data for geomorphological 
studies. As an inland sea with relatively low water exchange with the 
ocean, the Baltic Sea requires constant monitoring (Reusch et al., 2018). 
Destructive wave action and climate change are one of the main chal
lenges facing the Baltic Sea and the proper development of its coastal 
regions (Kundzewicz et al., 2018). 

Analysis of the dynamics of coastal changes in the Southern Baltic 
Sea in the late 19th and 20th century indicated an increase in erosion 
phenomena. In recent decades, the frequency of storm surges has 
increased due to changes in atmospheric circulation (Pruszak and 
Zawadzka, 2008). These phenomena have exacerbated erosional 
changes and necessitated larger-scale monitoring using LIDAR technol
ogy. In Poland, airborne surveys conducted as part of the coastal 
monitoring programme of the Maritime Office in Gdynia have largely 
filled the gap of high-resolution maps of the shallowest Polish waters. 
The availability of such datasets provides the first opportunity to accu
rately identify and classify the existing bedforms. This task is essential 
for environmental policy management, sustainable development, 
coastal protection, and decision-making. Furthermore, to our knowl
edge, this study represents one of the first high-resolution ALB assess
ment approaches to the identification, classification, and automatic 
mapping of natural bedforms and coastal engineering structures. The 
execution of this demanding task required the pursuit of more specific 
research objectives. 

The following research objectives were addressed in this study: (a) 
identification and classification of geomorphological bedforms occur
ring in both natural and anthropogenic sections of the coastal zone of the 
Southern Baltic; (b) development of an accurate automatic mapping 
method for geomorphological bedforms and coastal protection struc
tures based on topo-bathymetric LiDAR measurements; (c) comparison 
of machine learning classification results with manual characterisation 
of seabed forms and coastal protection structures; (d) determination of a 
predictor variable suitable for automatic delineation of sandbar crests; 
(e) evaluation of machine learning classification procedures for ALB 
areas without previous manual identification. 

L. Janowski et al.                                                                                                                                                                                                                               

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Engineering Geology 301 (2022) 106615

3

2. Materials and methods 

2.1. Study sites 

The study area is located in the Polish coast of the Southern Baltic, 
exposed to increased coastal erosion (Musielak et al., 2017). Recognis
ing the challenges associated with coastal protection, the Maritime Of
fice in Gdynia commissioned a topo-bathymetric airborne LiDAR survey 
as part of the coastal monitoring programme. The dataset from 2020 is 
the first high-resolution wide-range bathymetry acquired using the 
LiDAR technique in the very shallow nearshore zone of the Polish coast 
of the Southern Baltic. The study area is a 48 km section of the Polish 
coastal zone of the Southern Baltic Sea, managed by the Maritime Office 
in Gdynia (Fig. 1). The Baltic Sea is a relatively small, basically nontidal 
(6 cm range in Poland) body of water, connected with the North Sea by 
the narrow and shallow Danish Straits. The Polish coast is about 500 km 
long, and the geomorphology and geology of its shores are associated 
with the last glaciation and development phases of the Southern Baltic 
Sea (Pruszak and Zawadzka, 2008). 

There are mainly two natural types of seashore: cliffs and dunes. Cliff 
shores constitute about 20% of the entire coastline length, whereas dune 
shores account for more than 75%. The remaining small part is occupied 
by coastal wetlands (Dubrawski and Zawadzka-Kahlau, 2006). Dune 
coasts are primarily composed of modern aeolian and marine sands 
overlying Holocene dammed-lake deposits and/or Pleistocene fluvio
glacial and glacial deposits. Cliffs are composed mainly of Pleistocene 
glacial and fluvioglacial sediments with a thin cover of Holocene sedi
ments – dammed-lake and lacustrine silts and clays with occasional 
aeolian sands. 

The nearshore zone to a depth of approximately 10 m consists mainly 
of fine-grained sands. Coarse-grained sediments occur locally in the 

vicinity of abraded cliffs. Recent marine sediments directly overlie 
Pleistocene deposits (Uścinowicz, 2011). The nearshore profile often 
include 2–5 sandbars aligned approximately parallel to the shore. The 
sandbar closest to the shore develops at a depth of 0.5–1.5 m, ranging 
from 500 m to 1200 m, whereas the outermost sandbar develops at 
approximately 8.0–9.0 m. The selected sites are seabed strips extending 
from the shoreline to a depth of approximately 5.5 m. They are located 
within the sandbar zone of dune coasts. 

Study sites N1, N2, N3 and N4 are associated with natural sections of 
the shoreline, whereas study sites A1 and A2 are associated with 
anthropogenically modified coastal areas in close vicinity of the towns of 
Rowy and Ustka (Fig. 1). In the latter, three types of coastal protection 
structures were used simultaneously: groynes, submerged breakwaters, 
and artificial reef modules. 

2.2. Engineering geology aspects of the study area 

Spatial distribution of the main sediments covering the study area is 
presented in Fig. 2. According to the estimates provided in Kaszubowski 
and Coufal (2010), the engineering geology parameters of fine and 
gravelly sands occurring here are within the following range: degree of 
compaction – approx. 0.5, angle of internal friction <30◦, shear strength 
– 300–350 MPa, primary oedometric modulus – 80–100 MPa. Because 
sediment stability is directly related to slope, inspired by Kaszubowski 
and Coufal (2010), we implemented a local seafloor morphology 
assessment based on slope values to assess the necessity of coastal pro
tection. The scale used is as follows: 1) flat bottom < 0.5◦, inclined 
bottom 0.5–1.5◦, low steep bottom 1.5–3◦, steep bottom 3–5◦, high steep 
bottom 5–10◦, very steep bottom > 10◦. 

Fig. 1. Location of the study sites within the Polish coast of the Southern Baltic (size of the sites provided in brackets). A – study site N1 (0.90 km2); B – study site N2 
(0.71 km2); C – study site A1 (2.62 km2); D – study site N3 (1.19 km2); E – study site N4 (0.93 km2); F – study site A2 (2.23 km2). Original ALB DEM provided by the 
Maritime Office in Gdynia. Basemap: Openstreetmap. 
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2.3. Data acquisition and processing 

The ALB data were provided by the Opegieka Company (HQ: Elblag, 
Poland). Table 1 shows the instruments and software used in the 
experiment. At the request of the Maritime Office in Gdynia, the con
tractors provided technical reports from the conducted survey (Maritime 
Office in Gdynia, 2020). These included measurement equipment, sta
tistical values for trajectory alignment and average point density from 
the bathymetric scanner. Table 1 presents a summary of this 
information. 

The measurement capabilities are described in the manufacturer's 
specification (Riegl., 2019) and in Tysiac (2020), referring to direct 
measurement possibilities in the Baltic Sea. It follows from these refer
ences that an appropriate flight should be performed in accordance with 
technical standards while maintaining the best detail of data. Data 

records from the ALB must be performed with the required accuracy. 
It should be noted here that water siltation has not been taken into 

account (according to Riegl., 2019, the scanner can register points down 
to a depth of 0.7 Secchi). Therefore, the Riegl VQ-1560i-DW bathymetric 
scanner may not provide complete spatial data on the seabed. There is a 
possibility that artefacts consist of too high beam absorption in water, so 
there is no point registration. The entire research process is presented in 
Fig. 3. Processing of airborne scanner data included preparation of raw 
ALB data, data alignment without manually measured control points, 
adjustment of the point cloud to the ground control network, followed 
by automatic classification, manual classification, Digital Elevation 
Model (DEM) building, and data control. 

A geodetic network was used to georeference the point cloud. The 
alignment is based on control planes that allow point cloud geometry 
calibration. The observed and measured systematic errors are converted 
into shift vectors. The RiProcess software calculates and corrects sys
tematic errors such as shift, drift in all directions (XYZ) together with 
yaw, roll, and pitch angles. Using a control network in the form of 
reference planes, the point cloud displacement vector is determined to 
optimise its position. The study used nine reference objects designed 
along the flightlines. The reference object consists of roof slope. For each 
roof slope, a theoretical roof plane was fitted into the point cloud. The 
plane fitted by the point cloud was then compared with the plane formed 
by the measured ground points. For each slope, a vector was calculated 
to determine the shift between field measurements and the point cloud. 

In the processing of bathymetry data, two physical phenomena were 
taken into account to obtain reliable results:  

• refraction of the radiation beam passing through the water surface;  
• lower speed of the laser beam propagation in the water medium. 

Accounting for the effects of the above-mentioned physical 

Fig. 2. Sediments occurring at the study sites. A – study site N1; B – study site N2; C – study site A1; D – study site N3; E – study site N4; F – study site A2. Basemap 
dataset: Geological map of the Polish maritime areas at a scale of 1:200,000. Polish Geological Institute – National Research Institute. 

Table 1 
Instruments and software used by the Maritime Office in Gdynia (Maritime 
Office in Gdynia, 2020) for data acquisition.  

Instruments Specifications Software Manufacturer 

Plane: Vulcanair 
P68 TC 
Observer – 
Flight 
Execution 

– RAW Point Cloud 
processing: SDCImport 
3.0, RiWORLD v6.0, 
RiProcess v1.8.6, 
RiHydro v1.8.5 

Riegl GmbH, 
Horn, Austria 

Bathymetry 
Laser 
Scanner: Riegl 
VQ-1560i- 
DW 

Average 
scanning 
density: 2 × 12.4 
points/m2 

Point Cloud 
postprocessing: 
Microstation V8i +
TerraScan and 
TerraModeler 

Bentley, 
Pennsylvania, 
USA 
Terrasolid Ltd., 
Helsinki, 
Finland 

Navigation: 
GPS- IMU 
Applanix AP 

Accuracy: 
XY: 0.02 m 
Z: 0.07 m 

Trajectory adjustment: 
PosPac 

Applanix, 
Richmond Hill, 
Canada  
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phenomena is referred to as “refractive correction”. To this end, a Water 
Surface Model (WSM) was created for each series of points defining the 
water surface. Based on the WSM model, a refraction correction was 
applied to the data defining the bottom rebound using Riegl's RiHydro 
tool. The TerraScan and TerraModeler software were used to build a 
DEM. 

The airborne LiDAR bathymetry grids provided by the Maritime 
Office in Gdynia are available as raster grids with 0.5 m × 0.5 m spatial 
resolution. The depth of the original LiDAR DEM grid was limited from 
the deepest range of − 8.5 m to 0 m. For the sake of data quality, we 
removed the most visible triangular interpolation artefacts that were 
introduced to fill gaps in the original LiDAR DEM data coverage. To this 
end, we exposed the triangular interpolation artefacts by extracting the 
hillshade feature of the DEM in ArcGIS software (manufactured by 
Environmental Systems Research Institute ESRI). Hillshade was then 
segmented using multiresolution segmentation in eCognition software 
(working principles of the segmentation algorithm are described in the 
following section of this article). The resulting segments with a rela
tively low mean standard deviation of hillshade (lower than 1.2–1.4) 
were then classified as triangular artefacts. The resulting DEMs were 
further refined manually to remove triangulation residues. The ALB 
grids processed in this way had gaps in spatial coverage compared to the 
original rasters. In return, the quality of DEM was much improved, so we 
could be confident that further stages of the automatic classification 
would not be affected by errors resulting from significant triangular 
interpolation artefacts. 

2.4. Data analysis 

2.4.1. Manual investigation and interpretation of bedforms 
Detailed manual investigation of bedforms involved the analysis of 

seafloor relief by delineating boundaries of bedforms based on the 
interpretation of depth, slope, and aspect (including delineation of 
edges, slope bases, bedform ridges, and trough forms axes). The analysis 
was based on bathymetry derived at a scale of 1:5000 or greater. The 
slope, aspect and bathymetric profiles were generated using Global 
Mapper 21.1 software (manufactured by Blue Marble Geographics). 

Nine types of bedforms and three types of anthropogenic objects 
were distinguished. Prior to manual interpretation of the data, the most 
visible triangular interpolation artefacts were removed, although small 
interpolation residues still remained. We included them in the separate 
class, named artefacts (class 1, Table 2). Similarly, some geomorpho
logical classes were separated into bedforms as well as bedforms with 
artefacts (Table 2). Sandbars and interbar depressions are characterised 
by an irregular pattern of rises and depressions forming an undulating 
seabed (classes 2 and 3). Risings range from 0.3 to 0.5 m above the 
surrounding seabed, with distances between the forms ranging from 
10.0 to 40.0 m. Each study site consists of sandbars with relatively 
smooth top surfaces and distal slopes (classes 4 and 5). The seabed often 

includes many irregularities of varying sizes between the first sandbar 
and the shore (class 6) and interbar depressions (class 7). Residual traces 
of microforms usually cover the rough surface of the latter. Classes 8 and 
9 represent bedforms that form a pattern indicating the flow of water 
parallel to the shore (Table 2). Linguoid ripples have a spacing of 2.0 to 
7.0 m and a height of 0.2 to 0.3 m (maximum up to 0.5 m). Straight or 
sinuous ripples are characterised by a ripple crest spacing of 2.0 to 5.0 m 
(maximum 12.0 m) and a ripple height of 0.2 to 0.4 m (maximum up to 
0.5 m). 

Groynes are located only at study sites A1–A2 (class 10). These 
structures are perpendicular to the shore and built of wooden piles with 
a diameter of ~0.25–0.4 m and an elevation of +0.6 m above sea level. 
They are 150 m long with a 60 m spacing at study site A1 and a 180 m 
long and 110 m spacing at study site A2. The submerged breakwaters are 
constructed of granite blocks with gaps between the segments filled with 
habitat modules (class 11). Habitat modules are also found at the ends of 
submerged breakwaters. The last type of hard construction found in the 
study area are concrete modules arranged in trapezoidal form in the 
spaces between the submerged breakwaters and at their ends (class 12). 
In the head area, the modules form reinforced concrete circles with an 
internal diameter of 2 m, a height of 1.5, 2.0, and 2.5 m (adjusted to the 
depth of the water body in the area). The module surface consists of 
many inlet openings, with the main outlet opening located in the upper 
surface. The modules are arranged with a spacing of 4 × 4 m. The 
maximum depth of the upper part of the element to the water level is 1.2 
m. Class 13 was found only at study site A2. It is a flat surface between 
the first bar and the shore built of strongly compressed peat. Its identi
fication was possible on the basis of the interpretation of LiDAR data, an 
orthophotomap, and fieldwork at this study site. The identified distinct 
bedform areas are presented in terms of seabed surface characteristics in 
Table 2. Table 3 shows the parameters of the submerged breakwaters 
located at the artificial study sites (A1–A2). 

Interpretation and manual classification also included the determi
nation of sandbar crests for the selected study site (N1; Fig. 1A). Sandbar 
crests are represented by lines indicating the highest tops of underwater 
sandbars in the coastal/sandbar zone. They were manually digitised on 
the basis of the DEM, hillshade, slope, and aspect features. They were 
determined as the highest parts of the ridges and the areas with clearly 
the largest changes in aspect. We assumed a 5 m cross-sectional width 
range of sandbar crests to replace lines with the study sites. 

2.4.2. Feature extraction and selection 
Automatic processing of the ALB datasets consisted of the following 

steps: 1) feature extraction and selection, 2) determination of ground- 
truth control points, 3) GEOBIA (Geographic Object-Based Image 
Analysis) image segmentation and classification, 4) map generalisation, 
5) accuracy assessment. The following sections describe details of the 
above-mentioned steps. 

The DEM processed in the previous step formed the basis for 

Fig. 3. Point cloud processing scheme.  
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extracting secondary features (also known as derivatives, geomorphic 
attributes, or predictor variables). They include simple statistics of ALB, 
like standard deviation and variance, geomorphometric attributes, like 
aspect (maximum downslope direction), slope (in degrees), and curva
ture (slope of slope), and more advanced derivatives, based on i.a. 
geometric properties of the surface (morphometric features), machine 
vision approach (geomorphons), slope and curvature properties (Fuzzy 
Landform Element Classification). Table 4 presents the list of all 21 
predictor variables. They were extracted using ArcGIS 10.8 and SAGA 
(System for Automated Geoscientific Analyses) 7.9.0 software. 

The extracted features may provide relevant ecological and 

Table 2 
List of the identified and classified bedforms and anthropogenic objects with 
their description.  

No. Bathymetry Name Description 

1 Artefacts Seabed areas with 
visible interpolation 
residues 

2 Undulating 
bed 

Slightly undulating 
sandy seafloor area 
within sandbars and 
depressions between 
them 

3 Undulating 
bed with 
artefacts 

The same surface 
character as in unit 2, 
but with artefact 
disturbances 

4 Plain bed Levelled surface of 
sandy bottom, mainly 
tops of bars and distal 
slopes of bars 

5 Plain bed with 
artefacts 

The same surface 
character as in unit 4, 
but with artefact 
disturbances 

6 Other 
irregularities 

Irregularities of the 
bottom surface forming 
a chaotic pattern of 
small hills and 
depressions 

7 Uneven trough 
bed 

Rough bottom surface 
usually in interbar 
depressions with 
residual traces of 
microforms 

8  

Table 2 (continued ) 

No. Bathymetry Name Description 

Linguoid 
(tongue- 
shaped) ripples 

Ripples usually in a 
pattern indicating 
water flow parallel to 
the shore 

9 Straight or 
sinuous ripples 

Large ripples usually in 
a pattern indicating 
water flow parallel to 
the shore 

10 Groynes Groynes perpendicular 
to the shore built of 
wooden piles 

11 Submerged 
breakwaters 

Submerged 
breakwaters built of 
granite blocks with 
habitat modules 

12 Artificial reef 
modules 

Concrete modules 
arranged in trapezoid 
form in the spaces 
between submerged 
breakwaters and at 
their ends 

13 Peat Flat surface between 
the first bar and the 
shore built of strongly 
compressed peat  
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geomorphological information. For example, as mentioned earlier, slope 
is a good predictor of sediment stability and local acceleration of cur
rents, processes that have a strong impact on the formation of bedforms. 
The aspect is related to the general direction of geomorphic processes, 
and curvature can help to distinguish peaks or hollows that are more or 
less exposed to or sheltered from the water flow. The vertical ruggedness 
measure indicates the rugosity of the terrain that may result from the 
variability and biodiversity of the seafloor. The description of other 
geomorphic attributes can be found in the relevant software documen
tation and literature. 

Feature selection refers to the selection of features (or derivatives/ 
variables/attributes) that were extracted from the DEM and are suitable 
for automatic classification (Diesing et al., 2016). The features listed in 
Table 4 were tested in terms of their suitability to improve classification 
performance. We incorporated several approaches to feature selection, 
such as rejection of cross-correlated features, the Boruta algorithm for 
all relevant feature selection (Kursa and Rudnicki, 2016), and feature 
selection algorithms embedded in supervised classification algorithms 
(Breiman, 2001; Breiman et al., 1984). To find a minimum optimal 
number of features yielding the classification model with the best per
formance, the number of active variables was adjusted to the square root 
of all variables or the natural logarithm of all ground-truth control 
points. The implementation of the Boruta algorithm and the cross- 
correlation of features was performed in the R software (manufactured 
by the R Foundation for Statistical Computing), whereas implementa
tions of the embedded feature selection were performed in the 

eCognition software (manufactured by Trimble Inc.). 

2.4.3. Determination and use of ground-truth control points 
Manual maps of geomorphological bedforms were used to generate 

ground-truth control points (or samples). Control points were necessary 
to train the supervised classifiers and calculate the accuracy of the re
sults. Ground-truth samples were determined in a random way using the 
Create Random Points tool in the ArcGIS software. They were generated 
within the study sites by manual classification with a minimum distance 
of 1 m for each point, not closer than 2–4 m from the boundaries of the 
study sites (2 m at study sites A1–A2). The number of control points 
(pixels) reached approximately 5000 for each study site. Their distri
bution between the bedform classes varied proportionally depending on 
the percentage aerial coverage of all units. In the case of minimal aerial 
coverage of some classes, such as anthropogenic objects, the number of 
samples was increased to 50 to ensure the statistical significance of 
future calculations. Ground-truth samples were divided into training 
and test subsets in a 70/30 ratio for each study site. The Subset Features 
tool in ArcGIS was used to perform this step in a random way. 

Moreover, classification models were applied to the entire 48 km 
study area. For this purpose, supervised classifiers were trained and 
tested based on a total dataset of ground-truth samples from the four 
natural study sites (Fig. 1A, B, D, F). As one particular class of artefacts 
was only present at study sites N1 and N4, we combined the training and 
validation subsets from both study sites. The following description ap
plies to the remaining samples from other bedform classes. In the first 
model (G1), all samples from N1/N3/N4 study sites were assigned to 
training, and the remaining samples from study site N2 were allocated to 
validate the model. In the latter approach (model G2), all samples from 
N1/N2/N4 study sites were selected for training, whereas the other 
samples from study site N3 were used for model testing. 

2.4.4. Geographic object-based image analysis 
GEOBIA is a widely used approach to remote sensing image analysis. 

It was developed over approximately two decades, mainly using the 
eCognition software (as in this study). Image segmentation and classi
fication are the main components of the GEOBIA approach. The working 
principle of image segmentation is to separate images into homogenous 
segments (or image objects) with similar spectral properties, which can 
be used for further analysis instead of pixels. Due to the high-resolution 
of current remote sensing images, the most detailed measurements 
represented in pixel values can be disrupted by various environmental 
and physical factors, causing data artefacts. The GEOBIA approach en
ables the generation of image objects free of these artefacts, similar to 
human vision. In addition, image objects contain much more detailed 
information (like textural and shape characteristics) than pixels. The 
GEOBIA approach is recommended especially for high-resolution 
remote sensing images with heterogeneous pixel information 
(Blaschke, 2010). 

Image objects were generated based on the multiresolution seg
mentation algorithm (Benz et al., 2004). The working principle of this 
approach is to merge image pixels with similar spectral properties 
constrained by several parameters – scale, shape, and compactness 
(Benz et al., 2004). After multiple tests, we evaluated the following 
settings of these parameters: scale 5, shape 0.1, compactness 0.1. The 
same settings were applied to all study sites based on two layers: DEM 
and Fuzzy Landform Element Classification with equal weights. 

As each supervised classifier has its own specific strong and weak 
aspects, we tested different algorithms following the recommendations 
of Diesing et al. (2016). Image classifications were performed based on: 
K-Nearest Neighbour (KNN), Support Vector Machines (SVM), Classifi
cation and Regression Trees (CART; Breiman et al., 1984), and Random 
Forest (RF; Breiman, 2001). All classifiers were trained based on training 
sets of ground-truth samples and different sets of predictor variables, 
selected using the methods described in the previous paragraphs. 

Table 3 
Parameters of submerged breakwaters located at study sites A1–A2.  

Submerged breakwaters 
parameters 

Rowy (A1) Ustka (A2) 

Length 950 m (four segments 
187.5 m long) 

850 m (two segments 200 m 
long and two segments 150 
m long) 

Gap width two segments 66 m 
wide and one 68 m 
wide 

50 m 

Distance from the 
shoreline 

ca. 150 m ca. 200–230 m 

Crest submergence − 0.62 m b.s.l. − 0.62 m b.s.l. 
Crest width/base width 6 m/22.6 m 6 m/22.6 m 
Inclination of the 

landward and seaward 
escarpment 

1:2/1:4 1:2/1:4  

Table 4 
List of all ALB geomorphic attributes extracted in this study.  

ID Feature Software 

1 Aspect ArcGIS 
2 Northness ArcGIS 
3 Eastness ArcGIS 
4 Slope ArcGIS 
5 Curvature ArcGIS 
6 Profile curvature ArcGIS 
7 Planar curvature ArcGIS 
8 Surface area to planar area ArcGIS 
9 Standard deviation of ALB ArcGIS 
10 Variance ArcGIS 
11 Vertical ruggedness measure (VRM) ArcGIS 
12 Curvature classification SAGA GIS 
13 Fuzzy Landform Element Classification SAGA GIS 
14 Geomorphons SAGA GIS 
15 Morphometric features SAGA GIS 
16 Multiresolution Index of Valley Bottom Flatness (MRVBF) SAGA GIS 
17 Multiresolution Index of Ridge Top Flatness (MRRTF) SAGA GIS 
18 Topographic Position Index (TPI) SAGA GIS 
19 Terrain Ruggedness Index (TRI) SAGA GIS 
20 Terrain Surface Classification Landforms SAGA GIS 
21 Terrain Surface Classification Convexity SAGA GIS  
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2.4.5. Map generalisation 
The Polish Chief Inspectorate of Environmental Protection has set the 

initial requirement for the scale of seafloor maps at 1:25000. Since 
cartographers generally consider areas smaller than 2 mm as an error 
limit, we decided to eliminate areas smaller than 2 × 2 mm, adopting a 
scale of 1:10000, which was more accurate than the mentioned pre
liminary requirements. Therefore, once the resulting maps were ob
tained, the map generalisation approach was applied to improve the 
overall readability and quality of the classification results. Minor clas
sification artefacts in areas smaller than 400 m2 were merged into 
neighbouring classes. Map generalisation was performed using the 
Eliminate Study site Part algorithm in ArcGIS software. 

2.4.6. Accuracy assessment 
The accuracy of the classification results was assessed based on the 

test sets of ground-truth control points. Error matrices represent collated 
occurrences of all samples with predicted and reference membership 
(Foody, 2002). The following statistics were then determined: User's, 
Producer's, and Overall Accuracy. While the User's accuracy provides a 
statistic from the map user's perspective, the Producer's accuracy esti
mates it from the map maker's perspective. The overall accuracy pro
vides the ratio of correctly classified samples to all test samples. To 
ensure readability and comparability of the results, all error matrices 
provided in this study were presented as percentages. Error matrices and 
accuracy assessment results were calculated using ArcGIS and R 
software. 

3. Results 

3.1. Feature extraction and selection 

Fig. 4 represents the slope extracted from ALB, divided for the units 
described in the methodology section. It shows that the majority of areas 
are within flat, inclined and low steep areas, whereas some sandbars and 
coastal protection structures are characterised by steeper slope. 

The other predictor variable was diagnostic for the determination of 
sandbar crests – the Multiresolution Index of Ridge Top Flatness (Gallant 
and Dowling, 2003, see Table 4). MRRTF values higher than 0.5 corre
spond to the steepest and smallest distinguishable ridge tops. Flatter and 
larger ridge tops are represented by higher values. Similarly, high values 
of MRRTF show good agreement with ridge tops, manually determined 
for selected areas (Fig. 5A-C). In addition, there is a clear boundary 
between low and high values in the MRRTF derivative. Thus, MRRTF is 
an appropriate feature for the automatic determination of the course and 
widths of sandbar crests and ridge tops of smaller bedforms, such as 
megaripples (Fig. 5). 

The results of the Boruta feature selection algorithm indicate that all 
extracted features were relevant for classification in all scenarios. Since 
the Boruta algorithm creates “shadow variables” by perturbing the 
original features to generate a randomised version of them, the features 
become relevant when they exceed an importance score higher than the 
best randomised feature. For this reason, all supervised classifiers were 
trained with all features in this study. 

3.2. Comparison of manual and supervised classification results 

Manual classifications were conducted by a single interpreter to 

Fig. 4. Results of the slope predictor variable divided for separate units. A – study site N1; B – study site N2; C – study site A1; D – study site N3; E – study site N4; F – 
study site A2. Basemap: Openstreetmap. 
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obtain a uniform, interpretatively consistent picture of the seafloor. 
Separations were introduced during one interpretation period lasting 
three days. Interpretation was performed on the first two days, while the 
uniformity and consistency of the introduced separations were checked 
on the third day. 

Of all the supervised classifiers tested, RF had the highest perfor
mance and accuracy in all scenarios. Therefore, all maps provided below 
show results of the RF classification after the map generalisation 
described in the methods (Figs. 6–8). The automatic classification results 
were collated with manual determined maps on the left side of the 
following figures (Figs. 6–8). 

Comparison of the supervised classification results for study sites 
N1–N4 shows good agreement for all major classes covering large areas 
of the study sites (Fig. 6). This is particularly evident when comparing 
the spatial coverage of bedform units such as undulating bed, plain bed, 
and ripples. There are some shortcomings in the supervised classifica
tion results, for example, in the spatial coverage of artefacts at study 
sites N2 and N4, but they do not distort the overall good picture of the 
results. 

The comparison of the supervised classification results for study sites 
A1–A2 is presented in Fig. 7. Although both areas are similarly complex 
in terms of the occurrence of bedforms, the supervised classification 
result for area A1 was of lower quality than for area A2. The difference is 
not significant, the main bedforms were correctly determined, but study 
site A1 contains some scattered irregularities that may be remnants of 
the generalisation procedure or the result of data heterogeneity. 
Furthermore, the spatial arrangement of the areas occupied by different 
bedforms at study site A1 is more varied than at study site A2, where the 
plain bed of one class covers the vast majority of the area (57.85%). The 
strengths and weaknesses of the classification, as well as the classifier 
performance, are also reflected in the error matrices presented and 
explained in the next section. 

The application of the supervised classification for 48 km of the 
Polish coast of the Southern Baltic is shown in Fig. 8. The map is the 
result of the second model (G2), described in the Methods section 
(classification trained with samples from study sites N1/N2/N4, vali
dated with samples from study site N3). The subsets presented in Fig. 7 

represent regions classified based on ground-truth control points located 
in other areas, demonstrating the good performance of the RF classifier. 
While the overall delineations of the main bedform units were correctly 
determined, residuals of the classification artefacts are visible. The 
following section describes the qualitative accuracy results for all study 
sites presented in this study. 

3.3. Accuracy assessment 

Fig. 9 provides an insight into the overall statistics for all supervised 
classification results obtained in this study. The results indicate that the 
RF classifier had the highest classification performance, while the SVM 
algorithm had the worst accuracy statistics for most of the study sites. 

The tables in Appendix A provide detailed error matrices and accu
racy assessment statistics for all areas and classifiers. Tables A1–A16 
present accuracy results for study sites N1–N4, Tables A17–A24 show 
results for anthropogenic study sites A1–A2, A25–26 present results for 
two models (G1–G2) for the 48 km nearshore zone of the Polish coast. 
All RF results represent good to very good accuracy of the developed 
classification models. The overall accuracy in all scenarios ranged from 
more than 75% to 91%, with a median of 84%. 

Study site N1 reached the highest accuracy in automatic classifica
tion (Table A4). It was high for all classes except for the Producer's ac
curacy for the undulating bed class (53%). The overall accuracy of the 
RF classification results for other natural study sites was in the range of 
83–86% (Table A4; A8; A12; A16). Potential shortcomings of the RF 
classification per class were related, for example, to the class of undu
lating bed with artefacts at study site N3 (Table A12), the class of ar
tefacts in area N4 (Table A16), and the class of straight or sinuous ripples 
at study site N4 (Table A16). As the study sites were divided into 7–8 
classes of bedforms, the obtained results were evaluated as sufficient for 
a comprehensive description of the nearshore zone in the analysed areas. 

The results of the RF supervised classification for anthropogenic 
study sites A1–A2 are presented in Table A20/A24. Area A1 was divided 
into 11 units, whereas study site A2 was divided into 10 classes. The 
overall accuracy of the RF classifier of study site A1 was the lowest of all 
the results presented. In comparison, the RF results for area A2 reached 

Fig. 5. Results of MRRTF predictor variable extraction for 48 km of the nearshore area of the Polish coast; A–C – subsets marked on the general map (subsets apply 
only to this particular figure). Black lines represent manually digitised shapes of sandbar crests (1–3). Basemap: Openstreetmap. 
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85% overall accuracy (Table A24). In both areas, all classes were 
distinguished rather properly, with some minor shortcomings. At study 
site A1, these include i.a. units of artefacts, other irregularities, and 
submerged breakwaters. In comparison, in scenario A2 they include i.a. 
artefacts and straight or sinuous ripples. On the other hand, given the 
variety of classes and complexity of the survey task, the quantitative 
results of both scenarios should be regarded as highly satisfactory. 

As mentioned in the Methods section, the maps for the 48 km 
nearshore area were generated and validated based on the data set of the 
merged control points of study sites N1–N4. Therefore, the supervised 
classification results for two models G1–G2 covering the large spatial 
dataset can be considered statistically significant. Both models classified 
the area into nine units of natural bedforms and artefacts. The first 
model had an overall accuracy of 81%, whereas the second one reached 
an accuracy of 85% (Table A25; A26). Some classes were accurately 
determined in both models, e.g. units of the undulating bed, undulating 

bed with artefacts, and uneven trough bed. In addition, both models had 
some shortcomings, like weak Producer's accuracy for the class of ar
tefacts in both models, weak User's accuracy for the plain bed with ar
tefacts/other irregularities in model G1, weak Producer's accuracy for 
linguoid ripples in model G2. However, a large discrepancy between the 
User's and Producer's accuracy can be observed (Table A25; A26). As the 
evaluation of the trained classifiers for a new area cannot be performed 
solely based on quantitative results, we compared them with visual 
image interpretation. In this way, we decided that model G2 showed 
better classification performance and generated fewer residual mis
calculations. An independent expert interpretation confirmed that the 
resulting separations are possible and correct. 

Fig. 6. Comparison of the manual (A, C, E, G) and RF supervised classification (B, D, F, H) results. Specific rows represent subsequent study sites N1–N4 (top–down). 
Basemap – auxiliary orthophotomap from the same aerial survey. 
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4. Discussion 

4.1. Relevance of the main findings of the article 

This study has shown that the RF classifier is most suitable for ac
curate automatic classification of geomorphological bedforms and 
anthropogenic structures based on ALB datasets. Our study sites N1–N4, 
A1–A2 and models G1–G2 have demonstrated that RF can successfully 
handle complex classification tasks with numerous separations. In 
addition, the algorithm performed well on large sets of all predictor 
variables that were evaluated as significant after applying the Boruta 
feature selection algorithm. 

Many other studies addressing automatic classification of underwa
ter bedforms confirm the robustness of the RF classification algorithm 
(e.g., Turner et al., 2018). RF is already occasionally used as the only 
classifier in some underwater seafloor studies (e.g., Dolan et al., 2021). 
Our results suggest that RF is the most suitable algorithm for automatic 
mapping of bedforms based on ALB datasets. 

Initially developed for hydrological purposes (Gallant and Dowling, 
2003), the MRRTF was successfully applied to swiftly delineate sandbar 
crests in the nearshore zone of the study sites presented in this study. 
Although, to the best of our knowledge, the MRRTF has only been used 
once in underwater applications (Janowski et al., 2021), it appears to be 
very useful and relevant for underwater exploration of the seabed. 

Possible applications include not only the determination of the course of 
crests but also their relative width. 

The results of the automatic analyses were compared with the results 
of the manual analyses. Human vision aggregates similar pixels in an 
image into groups and distinguishes different forms and spatial re
lationships. However, to make these associations visible, the image must 
be analysed at a certain scale that allows the distinction of geomor
phological forms. As mentioned in the Methods, manual interpretation 
was determined with a scale precision of 1:5000 or greater to capture the 
course of geomorphological forms. Automatic segmentation can perform 
the same task, attributing the texture of an area, its shape and contextual 
information, allowing accurate boundary delineation at a very high 
scale (even considering pixel to pixel boundaries). Therefore, automatic 
classifications may be much more detailed than their manual counter
parts. In our work, the precision of separations is lower on the manual 
maps compared to automatic interpretation. During the manual seabed 
geomorphological analysis, the boundaries between individual seabed 
types were plotted with generalisation resulting from the scale of a map 
on which they were interpreted. During automatic segmentation and 
classification, these boundaries retain full resolution of the source data, 
hence their more varied course. Furthermore, the automatic interpre
tation maps provide greater detail by indicating study sites that were not 
separated during manual classification. Areas that were automatically 
delineated, but were not indicated during manual interpretation, were 

Fig. 7. Comparison of the manual (A, C) and RF supervised classification (B, D) results for study sites A1 (top) and A2 (down). Basemap – supporting orthophotomap 
from the same aerial survey. 
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checked for the possibility of introducing such delineations into the 
manually interpreted maps. The analysis shows that such an interpre
tation is possible and correct. 

Both manual and automatic interpretation involve the preparation of 
interpretation assumptions by author. This entails a subjective approach 
to separation and was not pointed out as an error. It is important to note, 
however, that during automatic analysis the level of subjectivity is far 
more “stable” than during manual interpretation. It is usually more 
challenging to maintain the uniformity and homogeneity of the intro
duced separations during manual analysis. This is due to the author's 
approach to analysis and the subjective view of the analysed area, which 
varies depending on the interpreting person. Therefore, in our research, 
the study sites were interpreted by one person in a relatively short time 
(approximately one hour for one study site). Such problems do not exist 
during automated analysis. The advantage of automatic analysis is its 
greater interpretative homogeneity and the time required to perform the 

analysis. Once generated, a single run of the GEOBIA model took several 
seconds, which is negligible compared to the time required for manual 
delineation. 

The smallest differences between the manual and automatic inter
pretation results were in the flat and rippled areas of the seabed. The 
largest differences were observed within the uneven seabed. Within such 
sections of the seabed, general separations of the “uneven trough bed” 
type or “other irregularities” were more frequently introduced during 
the manual analysis. As a result of the automatic analysis, additional, 
more detailed separations were introduced in the same areas due to 
higher resolution of the analyses. Some of these separations, due to their 
small areas, were removed in accordance with the adopted minimum 
area of a single study site (400 m2). 

4.2. Limitations of our research 

The results of the accuracy assessment showed that determinations 
of the classes were less precise for the study sites with artefacts. For 
example, an undulating bed with artefacts may be interpreted in the 
same way as a plain bed with artefacts. Since the area occupied by ar
tefacts can be morphometrically heterogeneous, it was difficult for the 
classifiers to adequately separate these units. In contrast, other bedforms 
with a higher quality of data measurement were clearly separated. 

Moreover, without the presence of artefacts, the overall accuracy 
would probably be higher. In order to check how artefacts may disturb 
the final result of the best classifiers, we merged the class of undulating 
bed with the class of undulating bed with artefacts, as well as the class of 
plain bed with the class of plain bed with artefacts. As a result, the 
classifications were simplified by two types of bedforms (with artefacts). 
Fig. 10 shows a general comparison of the overall accuracy statistics for 
all study sites and the simplified classification scheme (we used the RF 
algorithm for all calculations). Additional detailed calculations of the 
error matrices provided in Tables A27–A32 give an idea of how they 
may affect the final classification result. While the overall accuracy 
statistics slightly increased (in the range of 1–3%) for almost all study 
sites, it surprisingly increased by +7% in the case of model G1. In 

Fig. 8. Results of the RF supervised classification of model G2 for 48 km of the nearshore area of the Polish coast; A–F – subsets of the study site marked on the 
general map (subsets apply only to this particular figure). Basemap: Openstreetmap. 

Fig. 9. Comparison of the overall accuracy statistics for all tested supervised 
classifiers and all study sites. 
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general, the presented analyses confirm that the quality of the input data 
affects the classification result. A DEM with a large number of artefacts 
would likely reduce the accuracy of the result. 

A certain limitation (which does not result from our method, but 
rather limits it), is the range of the measurement method – the pene
tration range and the seabed data coverage. The depth at the study site 
ranged from 4.7 m (study site N4) to 5.5 m (study site A2). These lim
itations result from the water turbidity (suspended matter, algae, gas 
bubbles) and the capabilities of the applied measurement methods. A 
prerequisite for assessing the ability of LiDAR technology to penetrate 
the seabed forms is the depth of the Secchi disc. Experiments with LiDAR 
technology in the Baltic Sea showed that with the use of penetrating 
equipment above 1 Secchi depth, it is possible to record depths down to 
several meters. However, this also shows the problem of bottom sedi
ments that do not reflect the beam. This involves the problem of efficient 
spending of resources on measurement research. However, by showing 
the results of our research, we open the way for correct interpretation of 
results and show the possibility of using this technology in offices 
dealing with coastal protection. The measurements did not cover the 
entire strip of the sandbar zone, but only a shallower part of this zone 
and the peak parts of the bars located deeper, farther from the shore. 
Based on these data, it is possible to conclude about the distribution of 
sandbars and the variability in their location. However, limitations may 
arise when making detailed conclusions about the dynamics, variability, 
and character of the sandbar zone based on the analysis of formations 
within the sandbars and depressions between them, as well as when 
analysing the directions of water movement and sediment transport. In 
the examples presented, a seabed data coverage of 90–95% was ach
ieved for shallow parts of the sandbar zone (bar 1 and bar 2). For deeper 
parts of the seabed, the coverage was less than 70%. 

The previous use of topo-bathymetric LiDAR in tidal environments 
showed successful classification of mainly emerged geomorphological 
forms (Andersen et al., 2017). Similarly, Schmidt et al. (2013) classified 
the LiDAR point cloud in the German North Sea for the following three 
classes: mudflat, water, and mussel bed. Their study shows that auto
matic classification, incorporating multiple secondary features, can 
precisely determine land-water boundaries that may vary during tides. 
Because the scope of this study was to classify submerged bedforms in a 
non-tidal environment, we did not pay attention to landforms above the 
sea surface. However, since topo-bathymetric LiDAR also allows the 
measurements of landforms, it would be interesting to test our 
geomorphological mapping approach above the water surface. 
Furthermore, Cottin et al. (2014) analysed full backscatter waveforms of 
bathymetric LiDAR to determine up to nine benthic habitat classes 
related to the seafloor substrate, such as sand, gravels or kelps. In our 
case, the LiDAR full-waveform dataset was not available, so our 

automatic mapping was performed based on ALB and its multiple sec
ondary features. Nevertheless, it can be assumed that if a bathymetric 
lidar backscatter is available, it would be possible to delineate much 
more detailed areas, considering local differences in sediments. 

4.3. Recommendations for future research 

Although this study confirmed that the RF performance was the 
highest of all four tested supervised classifiers, there is room to explore 
other (also unsupervised) classifiers, as well as a combined approach 
(Dolan et al., 2021; Turner et al., 2018). Furthermore, it would be 
worthwhile to test the RF classifier in different environments and bodies 
of water with other physical properties. Moreover, the segmentation 
algorithms underlying the GEOBIA approach include more than just 
multiresolution segmentation. This algorithm is the most verified and 
common in the literature, but there is a need for further research to 
evaluate multiresolution segmentation with alternatives, like semantic 
segmentation (Chen et al., 2018) or the RSOBIA (Remote Sensing Object 
Based Image Analysis) approach (Prampolini et al., 2021). 

The results of the Boruta feature selection algorithm indicate that all 
predictor variables were relevant for the classification. Therefore, it 
seems reasonable to increase the number of geomorphic attributes or 
include variables from different sources. Possible paths of development 
are, for example, DEM spectral features, textural features or oceano
graphic variables (Dolan et al., 2021). Increasing the number of avail
able predictor variables could result in better differentiation of their 
suitability for classification. 

The development of a high-quality DEM is a basic requirement for 
the correct application of the methods presented in this article. How
ever, the more accurate the DEM, the greater the costs of measurements. 
Our research has shown the suitability of ALB datasets for automatic 
classification of bedforms. The versatility of the presented method 
suggests its applicability in similar coastal sections of the southern Baltic 
Sea. However, due to many factors described in this article, data 
coverage of high-quality ALB datasets may not be satisfactory. There
fore, our future research will focus on maximising the depth coverage of 
aerial measurements, maintaining high-quality and minimising the costs 
of their implementation. 

The potential assessment and design of new coastal protection 
structures require detailed research, including geotechnical studies. It is 
important to determine appropriate representative values of soil pa
rameters, correlations, and their standard deviations. Hypotheses 
formulated during the research phase may be the subject of field 
research. The importance of the presented approach can be supported by 
tests described in Ossowski et al. (2019), where the change in 
geotechnical parameters indicated a high sensitivity of the examined 
cliff. Therefore, by observing the conditions that affect changes in 
geotechnical parameters, the determination of a degradation route will 
improve the safety of the region. This is important as coastal degradation 
is progressing due to the increasing frequency of severe weather events. 

4.4. Conclusions 

The research presented in this paper covers different aspects of the 
determination and evaluation of automatic mapping methods based on 
ALB datasets. Nine geomorphological bedforms and three anthropo
genic structures occurring in the nearshore zone of the Southern Baltic 
were distinguished, proving the suitability of high-resolution ALB 
datasets for automatic mapping of such bedforms. The determination of 
the MRRTF can be successfully employed to automatic delineation of 
sandbar crests, which are of great importance for coastal protection. The 
ALB spatial coverage presented in this article shows that there is still 
room for improvement in the accuracy and penetration range of 
bathymetric LiDAR measurements. Although multiple geomorphometric 
predictor variables were evaluated for automatic mapping in this study, 
secondary features from other sources may improve classification 

Fig. 10. Comparison of the overall accuracy statistics for all study sites and 
simplified bedform classes. 
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Appendix A. Appendix  

Table A1 
Error matrix and accuracy assessment statistics for the KNN supervised classifier and study site N1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 8 9 Sum 

1 1.20 0.20 0.00 0.13 0.00 0.00 0.27 1.80 
2 0.00 2.40 1.54 0.40 0.00 0.07 1.34 5.74 
4 0.20 1.00 49.43 2.87 0.20 0.13 2.54 56.38 
5 0.13 0.53 2.20 12.42 0.00 0.07 1.07 16.43 
6 0.00 0.00 0.13 0.00 1.54 0.13 0.00 1.80 
8 0.07 0.07 0.00 0.00 0.33 1.34 0.00 1.80 
9 0.40 1.34 1.47 0.53 0.00 0.00 12.29 16.03 
Sum 2.00 5.54 54.78 16.37 2.07 1.74 17.50 100.00 
User's 0.6667 0.4186 0.8768 0.7561 0.8519 0.7407 0.7667  
Producer's 0.6000 0.4337 0.9024 0.7592 0.7419 0.7692 0.7023  
Overall 0.8063          

Table A2 
Error matrix and accuracy assessment statistics for the SVM supervised classifier and study site N1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 8 9 Sum 

1 1.07 0.07 0.07 0.00 0.00 0.00 0.20 1.40 
2 0.20 0.94 1.34 0.00 0.00 0.00 1.80 4.28 
4 0.27 2.00 42.95 4.01 0.00 0.13 4.34 53.71 
5 0.00 0.60 2.00 12.29 0.00 0.00 1.20 16.10 
6 0.00 0.33 0.20 0.00 1.74 0.20 0.00 2.47 
8 0.00 0.00 0.00 0.00 0.33 1.40 0.00 1.74 
9 0.47 1.60 8.22 0.07 0.00 0.00 9.95 20.31 
Sum 2.00 5.54 54.78 16.37 2.07 1.74 17.50 100.00 
User's 0.7619 0.2188 0.7998 0.7635 0.7027 0.8077 0.4901  
Producer's 0.5333 0.1687 0.7841 0.7510 0.8387 0.8077 0.5687  
Overall 0.7034          

Table A3 
Error matrix and accuracy assessment statistics for the CART supervised classifier and study site N1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 8 9 Sum 

1 1.54 0.60 0.94 0.00 0.00 0.00 1.60 4.68 
2 0.13 2.94 5.81 0.40 0.00 0.00 1.00 10.29 
4 0.00 0.40 42.82 0.33 0.00 0.00 1.27 44.82 
5 0.00 0.27 3.41 15.16 0.00 0.00 0.07 18.90 
6 0.00 0.53 0.33 0.00 1.60 0.33 0.00 2.81 
8 0.00 0.00 0.20 0.00 0.47 1.40 0.00 2.07 
9 0.33 0.80 1.27 0.47 0.00 0.00 13.56 16.43 

(continued on next page) 
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Table A3 (continued ) 

Pred\Ref 1 2 4 5 6 8 9 Sum 

Sum 2.00 5.54 54.78 16.37 2.07 1.74 17.50 100.00 
User's 0.3286 0.2857 0.9553 0.8021 0.5714 0.6774 0.8252  
Producer's 0.7667 0.5301 0.7817 0.9265 0.7742 0.8077 0.7748  
Overall 0.7902          

Table A4 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site N1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 8 9 Sum 

1 1.59 0.20 0.07 0.00 0.00 0.00 0.13 1.98 
2 0.07 3.04 0.33 0.00 0.00 0.07 0.40 3.90 
4 0.13 0.93 51.12 0.66 0.07 0.00 0.53 53.44 
5 0.00 0.53 2.12 15.41 0.00 0.00 0.00 18.06 
6 0.00 0.26 0.20 0.00 1.85 0.07 0.00 2.38 
8 0.00 0.07 0.00 0.00 0.20 1.59 0.00 1.85 
9 0.40 0.73 0.60 0.26 0.00 0.00 16.40 18.39 
Sum 2.18 5.75 54.43 16.34 2.12 1.72 17.46 100.00 
User's 0.8000 0.7797 0.9567 0.8535 0.7778 0.8571 0.8921  
Producer's 0.7273 0.5287 0.9392 0.9433 0.8750 0.9231 0.9394  
Overall 0.9101          

Table A5 
Error matrix and accuracy assessment statistics for the KNN supervised classifier and study site N2. Unit labels: 2 – undulating bed, 3 – undulating bed with artefacts, 4 
– plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – 
Prediction\Reference.  

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

2 5.71 0.58 1.66 0.07 0.07 0.43 0.07 1.806 10.40 
3 0.51 13.44 0.65 0.94 0.00 0.00 0.07 0 15.61 
4 2.67 0.72 31.94 1.01 0.65 0.58 0.65 2.673 40.90 
5 0.36 1.08 0.79 2.10 0.00 0.36 0.00 0.072 4.77 
6 0.00 0.07 0.29 0.00 1.16 0.00 0.07 0 1.59 
7 0.14 0.14 0.51 0.29 0.00 1.08 0.00 0.217 2.38 
8 0.07 0.00 0.87 0.00 0.07 0.00 3.40 0.867 5.27 
9 2.31 0.14 2.89 0.43 0.00 0.07 0.79 12.43 19.08 
Sum 11.78 16.18 39.60 4.84 1.95 2.53 5.06 18.06 100.00 
User's 0.5486 0.8611 0.7809 0.4394 0.7273 0.4545 0.6438 0.6515  
Producer's 0.4847 0.8304 0.8066 0.4328 0.5926 0.4286 0.6714 0.6880  
Overall 0.7124           

Table A6 
Error matrix and accuracy assessment statistics for the supervised classifier SVM and study site N2. Unit labels: 2 – undulating bed, 3 – undulating bed with artefacts, 4 
– plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – 
Prediction\Reference.  

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

2 1.66 0.07 2.02 0.36 0.00 0.29 0.07 3.757 8.24 
3 0.87 14.96 1.23 1.88 0.00 0.14 0.00 0 19.08 
4 4.70 0.36 23.84 0.94 0.00 0.29 1.81 7.298 39.23 
5 0.00 0.79 0.22 0.87 0.00 0.00 0.00 0 1.88 
6 0.00 0.00 3.54 0.00 1.95 0.00 0.07 0 5.56 
7 0.51 0.00 0.58 0.79 0.00 1.66 0.00 0.145 3.68 
8 0.00 0.00 0.22 0.00 0.00 0.00 2.75 0.289 3.25 
9 4.05 0.00 7.95 0.00 0.00 0.14 0.36 6.58 19.08 
Sum 11.78 16.18 39.60 4.84 1.95 2.53 5.06 18.06 100.00 
User's 0.2018 0.7841 0.6077 0.4615 0.3506 0.4510 0.8444 0.3447  
Producer's 0.1411 0.9241 0.6022 0.1791 1.0000 0.6571 0.5429 0.3640  
Overall 0.5426           
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Table A7 
Error matrix and accuracy assessment statistics for the CART supervised classifier and study site N2. Unit labels: 2 – undulating bed, 3 – undulating bed with artefacts, 4 
– plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – 
Prediction\Reference.  

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

2 6.00 0.43 3.47 0.36 0.00 0.07 0.00 0.578 10.91 
3 0.36 13.29 1.16 0.36 0.00 0.00 0.00 0 15.17 
4 0.79 0.36 26.81 0.22 0.00 0.00 0.43 1.012 29.62 
5 0.51 2.10 1.45 3.83 0.00 0.65 0.00 0 8.53 
6 0.00 0.00 0.51 0.00 1.95 0.00 0.07 0 2.53 
7 0.79 0.00 0.29 0.00 0.00 1.66 0.00 0.506 3.25 
8 0.07 0.00 2.10 0.00 0.00 0.00 4.55 1.662 8.38 
9 3.25 0.00 3.83 0.07 0.00 0.14 0.00 14.31 21.60 
Sum 11.78 16.18 39.60 4.84 1.95 2.53 5.06 18.06 100.00 
User's 0.5497 0.8762 0.9049 0.4492 0.7714 0.5111 0.5431 0.6622  
Producer's 0.5092 0.8214 0.6770 0.7910 1.0000 0.6571 0.9000 0.7920  
Overall 0.7240           

Table A8 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site N2. Unit labels: 2 – undulating bed, 3 – undulating bed with artefacts, 4 – 
plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – 
Prediction\Reference.  

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

2 7.85 0.07 1.40 0.14 0.00 0.14 0.00 1.05 10.65172 
3 0.56 14.79 0.35 0.91 0.00 0.07 0.00 0.00 16.67835 
4 1.47 0.07 33.57 0.35 0.00 0.07 0.49 0.91 36.93062 
5 0.21 0.98 0.63 3.29 0.00 0.28 0.00 0.00 5.395936 
6 0.00 0.00 0.42 0.00 1.89 0.00 0.07 0.00 2.382621 
7 0.42 0.07 0.42 0.14 0.00 1.75 0.00 0.14 2.943238 
8 0.00 0.00 0.98 0.00 0.00 0.00 4.48 1.05 6.517169 
9 1.89 0.00 1.33 0.07 0.00 0.14 0.14 14.93 18.50035 
Sum 12.4 15.98 39.1 4.905 1.892 2.453 5.186 18.08 100 
User's 0.7368 0.8866 0.9089 0.6104 0.7941 0.5952 0.6882 0.807  
Producer's 0.6328 0.9254 0.8584 0.6714 1.0000 0.7143 0.8649 0.826  
Overall 0.8255           

Table A9 
Error matrix and accuracy assessment statistics for the KNN supervised classifier and study site N3. Unit labels: 2 – undulating bed, 3 – undulating bed with artefacts, 4 
– plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – 
Prediction\Reference.  

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

2 8.68 0.00 1.18 1.46 0.69 0.90 0.00 1.528 14.44 
3 0.00 0.21 0.00 0.56 0.00 0.49 0.00 0 1.25 
4 0.83 0.07 18.82 2.78 0.42 0.63 0.07 0.069 23.68 
5 2.36 0.56 1.04 23.68 0.14 2.64 0.00 1.319 31.74 
6 0.63 0.00 0.14 0.00 13.19 0.00 0.14 0 14.10 
7 0.63 0.35 0.35 2.01 0.00 5.97 0.00 0.486 9.79 
8 0.00 0.00 0.00 0.00 0.14 0.00 0.21 0 0.35 
9 1.18 0.07 0.35 1.32 0.00 0.69 0.00 1.04 4.65 
Sum 14.31 1.25 21.88 31.81 14.58 11.32 0.42 4.44 100.00 
User's 0.6010 0.1667 0.7947 0.7462 0.9360 0.6099 0.6000 0.2239  
Producer's 0.6068 0.1667 0.8603 0.7445 0.9048 0.5276 0.5000 0.2344  
Overall 0.7181           

Table A10 
Error matrix and accuracy assessment statistics for the SVM supervised classifier and study site N3. Unit labels: 2 – undulating bed, 3 – undulating bed with artefacts, 4 
– plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – 
Prediction\Reference.  

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

(continued on next page) 
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Table A10 (continued ) 

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

2 7.78 0.21 1.39 2.01 0.07 0.69 0.00 1.528 13.68 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 
4 1.74 0.00 15.63 2.78 0.14 0.35 0.00 0.139 20.76 
5 3.26 0.97 4.79 26.67 0.00 6.18 0.00 2.083 43.96 
6 0.63 0.00 0.00 0.00 14.38 0.00 0.42 0 15.42 
7 0.83 0.07 0.07 0.35 0.00 4.03 0.00 0.625 5.97 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 
9 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.21 
Sum 14.31 1.25 21.88 31.81 14.58 11.32 0.42 4.44 100.00 
User's 0.5685 0.0000 0.7525 0.6066 0.9324 0.6744 0.0000 0.3333  
Producer's 0.5437 0.0000 0.7143 0.8384 0.9857 0.3558 0.0000 0.0156  
Overall 0.6854           

Table A11 
Error matrix and accuracy assessment statistics for the CART supervised classifier and study site N3. Unit labels: 2 – undulating bed, 3 – undulating bed with artefacts, 4 
– plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – 
Prediction\Reference.  

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

2 10.28 0.00 1.32 3.33 0.28 0.76 0.00 0.278 16.25 
3 0.07 0.63 0.14 2.85 0.00 1.39 0.00 0.208 5.28 
4 0.56 0.00 16.74 0.49 0.00 0.35 0.00 0.069 18.19 
5 0.35 0.07 1.67 22.36 0.00 0.69 0.00 0.139 25.28 
6 0.97 0.00 0.07 0.00 13.54 0.00 0.14 0 14.72 
7 0.49 0.21 0.42 2.01 0.00 6.81 0.00 0.417 10.35 
8 0.00 0.00 0.00 0.00 0.76 0.00 0.28 0 1.04 
9 1.60 0.35 1.53 0.76 0.00 1.32 0.00 3.33 8.89 
Sum 14.31 1.25 21.88 31.81 14.58 11.32 0.42 4.44 100.00 
User's 0.6325 0.1184 0.9198 0.8846 0.9198 0.6577 0.2667 0.3750  
Producer's 0.7184 0.5000 0.7651 0.7031 0.9286 0.6012 0.6667 0.7500  
Overall 0.7396           

Table A12 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site N3. Unit labels: 2 – undulating bed, 3 – undulating bed with artefacts, 4 – 
plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – 
Prediction\Reference.  

Pred\Ref 2 3 4 5 6 7 8 9 Sum 

2 10.52 0.00 0.34 0.27 0.13 0.20 0.00 0.20 10.65 
3 0.00 0.47 0.00 0.94 0.00 0.27 0.00 0.07 16.68 
4 1.08 0.07 19.55 0.88 0.00 0.47 0.00 0.13 36.93 
5 0.54 0.07 1.01 28.19 0.00 0.61 0.00 0.13 5.40 
6 0.20 0.00 0.07 0.00 14.03 0.00 0.40 0.00 2.38 
7 0.54 0.27 0.54 1.42 0.00 9.98 0.00 0.40 2.94 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 6.52 
9 1.21 0.47 0.20 0.13 0.00 0.34 0.00 3.51 18.50 
Sum 12.4 15.98 39.1 4.905 1.892 2.453 5.186 18.08 100.00 
User's 0.9876 0.0283 0.5295 5.2236 5.8866 3.3907 0.0207 0.1895  
Producer's 0.8481 0.0295 0.5001 5.7459 7.4128 4.0689 0.0260 0.1939  
Overall 0.8638           

Table A13 
Error matrix and accuracy assessment statistics for the KNN supervised classifier and study site N4. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 7 9 Sum 

1 2.40 0.27 0.00 2.13 0.27 0.20 0.07 5.33 
2 0.13 3.20 1.73 1.07 0.53 0.07 0.27 7.00 
4 0.07 1.93 17.80 2.93 0.73 0.13 0.40 24.00 
5 1.93 1.40 2.60 36.00 0.13 0.87 0.40 43.33 
6 0.40 0.73 1.00 0.00 12.00 0.07 0.27 14.47 
7 0.47 0.20 0.13 0.27 0.07 1.80 0.20 3.13 
9 0.07 0.13 0.73 0.47 0.13 0.33 0.87 2.73 
Sum 5.47 7.87 24.00 42.87 13.87 3.47 2.47 100.00 
User's 0.4500 0.4571 0.7417 0.8308 0.8295 0.5745 0.3171  

(continued on next page) 
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Table A13 (continued ) 

Pred\Ref 1 2 4 5 6 7 9 Sum 

Producer's 0.4390 0.4068 0.7417 0.8398 0.8654 0.5192 0.3514  
Overall 0.7407          

Table A14 
Error matrix and accuracy assessment statistics for the SVM supervised classifier and study site N4. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 7 9 Sum 

1 1.20 0.00 0.20 2.87 0.00 0.20 0.13 4.60 
2 0.00 1.40 1.13 0.07 0.27 0.07 0.27 3.20 
4 0.07 3.87 18.00 4.80 0.20 0.20 0.40 27.53 
5 3.00 1.60 3.80 34.80 0.00 0.27 0.93 44.40 
6 0.87 0.53 0.60 0.00 13.40 0.07 0.33 15.80 
7 0.27 0.00 0.27 0.27 0.00 2.60 0.33 3.73 
9 0.07 0.47 0.00 0.07 0.00 0.07 0.07 0.73 
Sum 5.47 7.87 24.00 42.87 13.87 3.47 2.47 100.00 
User's 0.2609 0.4375 0.6538 0.7838 0.8481 0.6964 0.0909  
Producer's 0.2195 0.1780 0.7500 0.8118 0.9663 0.7500 0.0270  
Overall 0.7147          

Table A15 
Error matrix and accuracy assessment statistics for the CART supervised classifier and study site N4. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 7 9 Sum 

1 4.13 0.20 0.20 8.73 1.13 0.27 0.07 14.73 
2 0.00 3.67 2.67 1.40 0.47 0.13 0.20 8.53 
4 0.00 1.07 14.67 1.00 0.13 0.00 0.00 16.87 
5 0.73 0.67 2.00 26.47 0.00 0.20 0.07 30.13 
6 0.47 0.60 0.73 0.53 12.07 0.00 0.27 14.67 
7 0.00 0.13 0.33 0.87 0.00 2.60 0.40 4.33 
9 0.13 1.53 3.40 3.87 0.07 0.27 1.47 10.73 
Sum 5.47 7.87 24.00 42.87 13.87 3.47 2.47 100.00 
User's 0.2805 0.4297 0.8696 0.8783 0.8227 0.6000 0.1366  
Producer's 0.7561 0.4661 0.6111 0.6174 0.8702 0.7500 0.5946  
Overall 0.6507          

Table A16 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site N4. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 7 9 Sum 

1 2.93 0.00 0.07 1.96 0.20 0.07 0.00 5.22 
2 0.00 4.56 0.91 0.33 0.26 0.00 0.07 6.13 
4 0.00 1.69 19.82 0.98 0.07 0.00 0.26 22.82 
5 1.89 1.24 1.24 38.85 0.00 0.59 0.07 43.87 
6 0.72 0.46 0.46 0.00 13.17 0.00 0.46 15.25 
7 0.07 0.07 0.39 0.26 0.13 2.74 0.26 3.91 
9 0.07 0.20 0.85 0.26 0.00 0.07 1.37 2.80 
Sum 5.67 8.21 23.73 42.63 13.82 3.46 2.48 100.00 
User's 0.5625 0.7447 0.8686 0.8856 0.8632 0.7000 0.4884  
Producer's 0.5172 0.5556 0.8352 0.9113 0.9528 0.7925 0.5526  
Overall 0.8344          

Table A17 
Error matrix and accuracy assessment statistics for the KNN supervised classifier and study site A1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged 
breakwaters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 7 8 9 10 11 12 Sum 

(continued on next page) 

L. Janowski et al.                                                                                                                                                                                                                               

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Engineering Geology 301 (2022) 106615

19

Table A17 (continued ) 

Pred\Ref 1 2 4 5 6 7 8 9 10 11 12 Sum 

1 0.39 0.20 0.07 0.07 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.91 
2 0.33 39.69 6.53 2.94 0.52 3.20 0.13 0.33 0.00 0.26 0.26 54.18 
4 0.07 6.98 12.14 1.57 0.13 0.78 0.00 0.26 0.07 0.07 0.20 22.26 
5 0.00 1.83 1.24 3.46 0.07 0.46 0.07 0.00 0.00 0.07 0.00 7.18 
6 0.00 0.46 0.13 0.00 0.39 0.00 0.07 0.00 0.00 0.00 0.00 1.04 
7 0.07 2.28 0.65 0.91 0.00 5.03 0.00 0.00 0.07 0.07 0.39 9.46 
8 0.00 0.13 0.00 0.00 0.00 0.00 0.72 0.13 0.00 0.00 0.00 0.98 
9 0.00 0.20 0.13 0.07 0.07 0.00 0.00 0.26 0.00 0.00 0.00 0.72 
10 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.91 
11 0.00 0.07 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.65 0.26 1.04 
12 0.13 0.07 0.07 0.20 0.00 0.39 0.00 0.00 0.00 0.13 0.33 1.31 
Sum 0.98 51.89 20.95 9.27 1.24 10.05 0.98 0.98 0.98 1.24 1.44 100.00 
User's 0.4286 0.7325 0.5455 0.4818 0.3750 0.5310 0.7333 0.3636 0.9286 0.6250 0.2500  
Producer's 0.4000 0.7648 0.5794 0.3732 0.3158 0.5000 0.7333 0.2667 0.8667 0.5263 0.2273  
Overall 0.6390              

Table A18 
Error matrix and accuracy assessment statistics for the SVM supervised classifier and study site A1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged 
breakwaters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 7 8 9 10 11 12 Sum 

1 0.33 0.07 0.07 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.52 
2 0.39 36.10 11.29 5.16 0.91 4.77 0.13 0.52 0.00 0.46 0.78 60.51 
4 0.20 13.25 8.55 2.48 0.26 1.63 0.13 0.39 0.00 0.07 0.00 26.96 
5 0.00 0.78 0.59 0.46 0.00 0.13 0.00 0.00 0.00 0.00 0.07 2.02 
6 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 
7 0.07 1.24 0.20 1.04 0.00 3.33 0.00 0.00 0.07 0.07 0.07 6.07 
8 0.00 0.07 0.13 0.00 0.00 0.00 0.72 0.07 0.00 0.00 0.00 0.98 
9 0.00 0.07 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 
10 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.07 0.07 1.04 
11 0.00 0.07 0.00 0.13 0.07 0.00 0.00 0.00 0.07 0.59 0.20 1.11 
12 0.00 0.13 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.26 0.52 
Sum 0.98 51.89 20.95 9.27 1.24 10.05 0.98 0.98 0.98 1.24 1.44 100.00 
User's 0.6250 0.5965 0.3172 0.2258 0.0000 0.5484 0.7333 0.0000 0.8125 0.5294 0.5000  
Producer's 0.3333 0.6956 0.4081 0.0493 0.0000 0.3312 0.7333 0.0000 0.8667 0.4737 0.1818  
Overall 0.5117              

Table A19 
Error matrix and accuracy assessment statistics for the CART supervised classifier and study site A1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged 
breakwaters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 7 8 9 10 11 12 Sum 

1 0.52 3.52 1.17 0.26 0.07 0.72 0.00 0.00 0.07 0.00 0.07 6.40 
2 0.13 22.98 1.70 0.91 0.00 0.65 0.00 0.00 0.00 0.00 0.00 26.37 
4 0.00 6.14 11.29 0.39 0.00 0.13 0.00 0.07 0.00 0.07 0.13 18.21 
5 0.20 5.81 1.17 5.74 0.00 0.85 0.00 0.00 0.00 0.07 0.07 13.90 
6 0.00 2.28 1.89 0.00 0.85 0.00 0.07 0.00 0.00 0.00 0.00 5.09 
7 0.07 5.03 0.78 1.37 0.00 6.66 0.00 0.00 0.00 0.07 0.00 13.97 
8 0.00 0.59 0.52 0.00 0.00 0.00 0.85 0.07 0.00 0.00 0.00 2.02 
9 0.07 2.81 1.83 0.20 0.20 0.00 0.07 0.85 0.26 0.07 0.20 6.53 
10 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.20 0.07 1.11 
11 0.00 1.76 0.59 0.13 0.13 0.20 0.00 0.00 0.00 0.78 0.07 3.66 
12 0.00 0.78 0.00 0.26 0.00 0.85 0.00 0.00 0.00 0.00 0.85 2.74 
Sum 0.98 51.89 20.95 9.27 1.24 10.05 0.98 0.98 0.98 1.24 1.44 100.00 
User's 0.0816 0.8713 0.6201 0.4131 0.1667 0.4766 0.4194 0.1300 0.5882 0.2143 0.3095  
Producer's 0.5333 0.4428 0.5389 0.6197 0.6842 0.6623 0.8667 0.8667 0.6667 0.6316 0.5909  
Overall 0.5202              
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Table A20 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site A1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 – plain bed, 5 – plain 
bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged 
breakwaters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred\Ref 1 2 4 5 6 7 8 9 10 11 12 Sum 

1 0.37 0.18 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.61 
2 0.43 40.67 4.10 1.41 0.24 0.92 0.06 0.12 0.12 0.18 0.06 48.32 
4 0.06 4.77 15.47 0.73 0.49 0.12 0.06 0.12 0.00 0.06 0.18 22.08 
5 0.06 1.28 0.55 6.67 0.00 0.37 0.00 0.00 0.00 0.06 0.06 9.05 
6 0.00 0.31 0.06 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.86 
7 0.12 3.73 0.49 0.49 0.00 8.38 0.00 0.00 0.00 0.06 0.00 13.27 
8 0.00 0.06 0.00 0.00 0.00 0.00 0.86 0.06 0.00 0.00 0.00 0.98 
9 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.80 
10 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.98 
11 0.00 0.24 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.24 1.41 
12 0.00 0.06 0.00 0.18 0.00 0.55 0.00 0.00 0.00 0.00 0.86 1.65 
Sum 1.04 51.62 20.80 9.48 1.22 10.40 0.98 0.92 0.98 1.16 1.41 100.00 
User's 0.6000 0.8418 0.7008 0.7365 0.5714 0.6313 0.8750 0.7692 0.8750 0.5652 0.5185  
Producer's 0.3529 0.7879 0.7441 0.7032 0.4000 0.8059 0.8750 0.6667 0.8750 0.6842 0.6087  
Overall 0.7602              

Table A21 
Error matrix and accuracy assessment statistics for the KNN supervised classifier and study site A2. Unit labels: 2 – undulating bed, 4 – plain bed, 5 – plain bed with 
artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged break
waters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred\Ref 2 4 5 6 7 9 10 11 12 13 Sum 

2 3.29 2.17 0.00 0.13 0.72 0.00 0.13 0.00 0.13 0.20 6.77 
4 2.50 54.60 4.99 0.26 2.17 0.26 0.20 0.13 0.46 0.13 65.70 
5 0.13 2.89 10.84 0.00 0.07 0.00 0.00 0.07 0.00 0.00 13.99 
6 0.00 0.13 0.00 0.53 0.07 0.07 0.00 0.00 0.00 0.00 0.79 
7 0.39 2.23 0.00 0.07 4.53 0.46 0.26 0.00 0.00 0.26 8.21 
9 0.13 0.07 0.00 0.00 0.20 0.20 0.00 0.00 0.00 0.00 0.59 
10 0.07 0.00 0.00 0.00 0.07 0.00 0.33 0.07 0.00 0.00 0.53 
11 0.00 0.07 0.00 0.00 0.07 0.00 0.00 1.91 0.00 0.07 2.10 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.20 0.59 0.00 0.85 
13 0.07 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.46 
Sum 6.57 62.16 15.83 0.99 8.08 0.99 0.99 2.37 1.18 0.85 100.00 
User's 0.4854 0.8310 0.7746 0.6667 0.5520 0.3333 0.6250 0.9063 0.6923 0.4286  
Producer's 0.5000 0.8784 0.6846 0.5333 0.5610 0.2000 0.3333 0.8056 0.5000 0.2308  
Overall 0.7700             

Table A22 
Error matrix and accuracy assessment statistics for the SVM supervised classifier and study site A2. Unit labels: 2 – undulating bed, 4 – plain bed, 5 – plain bed with 
artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged break
waters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred\Ref 2 4 5 6 7 9 10 11 12 13 Sum 

2 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.07 
4 5.65 55.65 1.25 0.20 3.09 0.13 0.39 0.00 0.46 0.20 67.02 
5 0.00 2.89 14.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.48 
6 0.00 0.07 0.00 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.72 
7 0.59 3.29 0.00 0.13 4.80 0.59 0.13 0.00 0.00 0.33 9.86 
9 0.20 0.13 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.59 
10 0.00 0.07 0.00 0.00 0.07 0.00 0.46 0.07 0.00 0.07 0.72 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.07 0.07 2.23 
12 0.13 0.07 0.00 0.00 0.07 0.00 0.00 0.20 0.66 0.00 1.12 
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.20 
Sum 6.57 62.16 15.83 0.99 8.08 0.99 0.99 2.37 1.18 0.85 100.00 
User's 0.0000 0.8304 0.8346 0.9091 0.4867 0.4444 0.6364 0.9412 0.5882 1.0000  
Producer's 0.0000 0.8953 0.9212 0.6667 0.5935 0.2667 0.4667 0.8889 0.5556 0.2308  
Overall 0.7937             
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Table A23 
Error matrix and accuracy assessment statistics for the CART supervised classifier and study site A2. Unit labels: 2 – undulating bed, 4 – plain bed, 5 – plain bed with 
artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged break
waters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred\Ref 2 4 5 6 7 9 10 11 12 13 Sum 

2 4.27 8.74 0.00 0.00 1.58 0.13 0.07 0.00 0.07 0.00 14.85 
4 0.39 41.98 0.85 0.00 0.33 0.13 0.00 0.00 0.00 0.00 43.69 
5 0.00 2.17 14.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.89 
6 0.07 0.13 0.00 0.92 0.33 0.00 0.00 0.00 0.00 0.26 1.71 
7 0.85 4.01 0.00 0.07 3.09 0.00 0.13 0.00 0.07 0.00 8.21 
9 0.13 0.39 0.00 0.00 0.92 0.53 0.07 0.00 0.00 0.00 2.04 
10 0.13 0.20 0.00 0.00 0.13 0.00 0.33 0.00 0.00 0.00 0.79 
11 0.20 0.53 0.00 0.00 0.00 0.00 0.00 1.58 0.00 0.00 2.30 
12 0.53 3.09 0.26 0.00 0.85 0.20 0.39 0.79 1.05 0.00 7.16 
13 0.00 0.92 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.59 2.37 
Sum 6.57 62.16 15.83 0.99 8.08 0.99 0.99 2.37 1.18 0.85 100.00 
User's 0.2876 0.9609 0.8716 0.5385 0.3760 0.2581 0.4167 0.6857 0.1468 0.2500  
Producer's 0.6500 0.6755 0.9295 0.9333 0.3821 0.5333 0.3333 0.6667 0.8889 0.6923  
Overall 0.6905             

Table A24 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site A2. Unit labels: 2 – undulating bed, 4 – plain bed, 5 – plain bed with 
artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged break
waters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred\Ref 2 4 5 6 7 9 10 11 12 13 Sum 

2 4.12 3.11 0.00 0.00 0.82 0.06 0.06 0.00 0.00 0.00 8.19 
4 1.84 54.06 0.95 0.00 0.89 0.06 0.19 0.00 0.00 0.00 57.99 
5 0.00 1.65 14.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.24 
6 0.00 0.25 0.00 0.89 0.06 0.00 0.00 0.00 0.00 0.06 1.27 
7 1.08 2.09 0.00 0.06 6.03 0.38 0.13 0.06 0.00 0.25 10.09 
9 0.00 0.06 0.00 0.00 0.25 0.38 0.00 0.00 0.00 0.00 0.70 
10 0.00 0.13 0.00 0.00 0.00 0.06 0.63 0.00 0.00 0.00 0.82 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.16 0.00 0.00 2.16 
12 0.06 0.13 0.06 0.00 0.13 0.00 0.00 0.06 1.14 0.00 1.59 
13 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.63 0.95 
Sum 7.11 61.48 15.61 0.95 8.50 0.95 1.02 2.28 1.14 0.95 100.00 
User's 0.5039 0.9322 0.8984 0.7000 0.5975 0.5455 0.7692 1.0000 0.7200 0.6667  
Producer's 0.5804 0.8793 0.9350 0.9333 0.7090 0.4000 0.6250 0.9444 1.0000 0.6667  
Overall 0.8464             

Table A25 
Error matrix and accuracy assessment statistics for the RF supervised classifier and 48 km of the nearshore area, model G1. Unit labels: 1 – artefacts, 2 – undulating bed, 
3 – undulating bed with artefacts, 4 – plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – 
straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred/Ref 1 2 3 4 5 6 7 8 9 Sum 

1 0.73 0.00 0.00 0.02 0.12 0.00 0.00 0.00 0.02 0.89 
2 0.02 9.25 0.00 0.59 0.00 0.00 0.00 0.00 0.20 10.06 
3 0.10 0.18 15.13 0.22 0.85 0.00 0.00 0.00 0.00 16.49 
4 0.00 0.22 0.00 27.03 0.00 0.00 0.00 0.04 0.28 27.58 
5 0.69 0.63 0.20 6.90 3.75 0.00 0.57 0.00 0.49 13.22 
6 0.28 0.02 0.00 2.90 0.00 1.85 0.00 0.16 0.00 5.21 
7 0.18 0.06 0.00 0.02 0.00 0.00 2.41 0.00 0.14 2.82 
8 0.06 0.00 0.00 0.22 0.00 0.00 0.00 4.77 0.14 5.19 
9 0.28 1.16 0.00 0.83 0.08 0.00 0.14 0.02 16.02 18.54 
Sum 2.35 11.52 15.33 38.73 4.81 1.85 3.12 4.99 17.30 100.00 
User's 0.8182 0.9194 0.9176 0.9801 0.2837 0.3541 0.8561 0.9180 0.8643  
Producer's 0.3103 0.8028 0.9868 0.6979 0.7806 1.0000 0.7727 0.9553 0.9261  
Overall 0.8094            
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Table A26 
Error matrix and accuracy assessment statistics for the RF supervised classifier and the 48 km of the nearshore area, model G2. Unit labels: 1 – artefacts, 2 – undulating 
bed, 3 – undulating bed with artefacts, 4 – plain bed, 5 – plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 
– straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred/Ref 1 2 3 4 5 6 7 8 9 Sum 

1 0.60 0.02 0.00 0.00 0.23 0.00 0.02 0.00 0.00 0.87 
2 0.10 11.64 0.00 0.58 0.66 0.00 0.08 0.00 0.14 13.20 
3 0.00 0.00 1.16 0.00 0.04 0.00 0.00 0.00 0.00 1.20 
4 0.00 0.25 0.00 18.14 0.91 0.00 0.06 0.00 0.23 19.60 
5 0.89 2.72 0.12 1.36 26.22 0.00 0.43 0.00 0.47 32.19 
6 0.25 0.12 0.00 0.23 0.00 13.56 0.00 0.39 0.00 14.55 
7 0.31 0.10 0.00 0.52 0.78 0.00 10.07 0.00 0.12 11.90 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.37 
9 0.19 0.10 0.00 0.10 1.96 0.00 0.27 0.00 3.49 6.11 
Sum 2.35 14.94 1.28 20.94 30.80 13.56 10.93 0.76 4.44 100.00 
User's 0.6889 0.8824 0.9677 0.9257 0.8143 0.9320 0.8467 1.0000 0.5714  
Producer's 0.2562 0.7792 0.9091 0.8665 0.8513 1.0000 0.9218 0.4872 0.7860  
Overall 0.8527            

Table A27 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site N1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 & 5 – plain bed and 
plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – Prediction 
\Reference.  

Pred/Ref 1 2 4 & 5 6 8 9 Sum 

1 1.59 0.20 0.07 0.00 0.00 0.13 1.98 
2 0.07 3.04 0.33 0.00 0.07 0.40 3.90 
4 & 5 0.13 1.46 69.31 0.07 0.00 0.53 71.49 
6 0.00 0.26 0.20 1.85 0.07 0.00 2.38 
8 0.00 0.07 0.00 0.20 1.59 0.00 1.85 
9 0.40 0.73 0.86 0.00 0.00 16.40 18.39 
Sum 2.18 5.75 70.77 2.12 1.72 17.46 100.00 
User's 0.8000 0.7797 0.9695 0.7778 0.8571 0.8921  
Producer's 0.7273 0.5287 0.9794 0.8750 0.9231 0.9394  
Overall 0.9378         

Table A28 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site N2. Unit labels: 2 & 3 – undulating bed and undulating bed with artefacts, 
4&5 – plain bed and plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred 
\Ref – Prediction\Reference.  

Pred/Ref 2 & 3 4 & 5 6 7 8 9 Sum 

2 & 3 23.27 2.80 0.00 0.21 0.00 1.05 27.33 
4 & 5 2.73 37.84 0.00 0.35 0.49 0.91 42.33 
6 0.00 0.42 1.89 0.00 0.07 0.00 2.38 
7 0.49 0.56 0.00 1.75 0.00 0.14 2.94 
8 0.00 0.98 0.00 0.00 4.48 1.05 6.52 
9 1.89 1.40 0.00 0.14 0.14 14.93 18.50 
Sum 28.38 44.01 1.89 2.45 5.19 18.08 100.00 
User's 0.8513 0.894 0.7941 0.5952 0.6882 0.8068  
Producer's 0.8198 0.8599 1.0000 0.7143 0.8649 0.8256  
Overall 0.8416         

Table A29 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site N3. Unit labels: 2 & 3 – undulating bed and undulating bed with artefacts, 
4 & 5 – plain bed and plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred 
\Ref – Prediction\Reference.  

Pred/Ref 2 & 3 4 & 5 6 7 8 9 Sum 

2 + 3 10.99 1.55 0.13 0.47 0.00 0.27 13.42 
4 + 5 1.75 49.63 0.00 1.08 0.00 0.27 52.73 
6 0.20 0.07 14.03 0.00 0.40 0.00 14.70 
7 0.81 1.96 0.00 9.98 0.00 0.40 13.15 
8 0.00 0.00 0.00 0.00 0.13 0.00 0.13 
9 1.69 0.34 0.00 0.34 0.00 3.51 5.87 
Sum 15.44 53.54 14.16 11.87 0.54 4.45 100.00 

(continued on next page) 
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Table A29 (continued ) 

Pred/Ref 2 & 3 4 & 5 6 7 8 9 Sum 

User's 0.8191 0.9412 0.9541 0.7590 1.0000 0.5977  
Producer's 0.7118 0.9270 0.9905 0.8409 0.2500 0.7879  
Overall 0.8827         

Table A30 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site N4. Unit labels: 1 – artefacts, 2 – undulating bed, 4 & 5 – plain bed and 
plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – Prediction 
\Reference.  

Pred/Ref 1 2 4 & 5 6 7 9 Sum 

1 2.93 0.00 2.02 0.20 0.07 0.00 5.22 
2 0.00 4.56 1.24 0.26 0.00 0.07 6.13 
4 + 5 1.89 2.93 60.89 0.07 0.59 0.33 66.69 
6 0.72 0.46 0.46 13.17 0.00 0.46 15.25 
7 0.07 0.07 0.65 0.13 2.74 0.26 3.91 
9 0.07 0.20 1.11 0.00 0.07 1.37 2.80 
Sum 5.67 8.21 66.36 13.82 3.46 2.48 100.00 
User's 0.5625 0.7447 0.9130 0.8632 0.7000 0.4884  
Producer's 0.5172 0.5556 0.9175 0.9528 0.7925 0.5526  
Overall 0.8566         

Table A31 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site A1. Unit labels: 1 – artefacts, 2 – undulating bed, 4 & 5 – plain bed and 
plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – 
submerged breakwaters, 12 – artificial reef modules. Pred\Ref – Prediction\Reference.  

Pred/Ref 1 2 4 & 5 6 7 8 9 10 11 12 Sum 

1 0.37 0.18 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.61 
2 0.43 40.67 5.50 0.24 0.92 0.06 0.12 0.12 0.18 0.06 48.32 
4 + 5 0.12 6.06 23.43 0.49 0.49 0.06 0.12 0.00 0.12 0.24 31.13 
6 0.00 0.31 0.06 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.86 
7 0.12 3.73 0.98 0.00 8.38 0.00 0.00 0.00 0.06 0.00 13.27 
8 0.00 0.06 0.00 0.00 0.00 0.86 0.06 0.00 0.00 0.00 0.98 
9 0.00 0.18 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.80 
10 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.98 
11 0.00 0.24 0.12 0.00 0.00 0.00 0.00 0.00 0.80 0.24 1.41 
12 0.00 0.06 0.18 0.00 0.55 0.00 0.00 0.00 0.00 0.86 1.65 
Sum 1.04 51.62 30.28 1.22 10.40 0.98 0.92 0.98 1.16 1.41 100.00 
User's 0.6000 0.8418 0.7525 0.5714 0.6313 0.8750 0.7692 0.8750 0.5652 0.5185  
Producer's 0.3529 0.7879 0.7737 0.4000 0.8059 0.8750 0.6667 0.8750 0.6842 0.6087  
Overall 0.7731             

Table A32 
Error matrix and accuracy assessment statistics for the RF supervised classifier and study site A2. Unit labels: 2 – undulating bed, 4 & 5 – plain bed and plain bed with 
artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue-shaped) ripples, 9 – straight or sinuous ripples, 10 – groynes, 11 – submerged break
waters, 12 – artificial reef modules, 13 – peat. Pred\Ref – Prediction\Reference.  

Pred/Ref 2 4 & 5 6 7 9 10 11 12 13 Sum 

2 4.12 3.11 0.00 0.82 0.06 0.06 0.00 0.00 0.00 8.19 
4 + 5 1.84 71.26 0.00 0.89 0.06 0.19 0.00 0.00 0.00 74.24 
6 0.00 0.25 0.89 0.06 0.00 0.00 0.00 0.00 0.06 1.27 
7 1.08 2.09 0.06 6.03 0.38 0.13 0.06 0.00 0.25 10.09 
9 0.00 0.06 0.00 0.25 0.38 0.00 0.00 0.00 0.00 0.70 
10 0.00 0.13 0.00 0.00 0.06 0.63 0.00 0.00 0.00 0.82 
11 0.00 0.00 0.00 0.00 0.00 0.00 2.16 0.00 0.00 2.16 
12 0.06 0.19 0.00 0.13 0.00 0.00 0.06 1.14 0.00 1.59 
13 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.63 0.95 
Sum 7.11 77.09 0.95 8.50 0.95 1.02 2.28 1.14 0.95 100.00 
User's 0.5039 0.9598 0.7000 0.5975 0.5455 0.7692 1.0000 0.7200 0.6667  
Producer's 0.5804 0.9243 0.9333 0.7090 0.4000 0.6250 0.9444 1.0000 0.6667  
Overall 0.8725            
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Table A33 
Error matrix and accuracy assessment statistics for the RF supervised classifier and the 48 km of the nearshore area, model G1. Unit labels: 1 – artefacts, 2 & 3 – 
undulating bed and undulating bed with artefacts, 4 & 5 – plain bed and plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue- 
shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred/Ref 1 2 & 3 4 & 5 6 7 8 9 Sum 

1 0.73 0.00 0.14 0.00 0.00 0.00 0.02 0.89 
2 + 3 0.12 24.56 1.66 0.00 0.00 0.00 0.20 26.55 
4 + 5 0.69 1.05 37.68 0.00 0.57 0.04 0.77 40.80 
6 0.28 0.02 2.90 1.85 0.00 0.16 0.00 5.21 
7 0.18 0.06 0.02 0.00 2.41 0.00 0.14 2.82 
8 0.06 0.00 0.22 0.00 0.00 4.77 0.14 5.19 
9 0.28 1.16 0.91 0.00 0.14 0.02 16.02 18.54 
Sum 2.35 26.85 43.54 1.85 3.12 4.99 17.30 100.00 
User's 0.8182 0.9251 0.9235 0.3541 0.8561 0.9180 0.8643  
Producer's 0.3103 0.9147 0.8654 1.0000 0.7727 0.9553 0.9261  
Overall 0.8801          

Table A34 
Error matrix and accuracy assessment statistics for the RF supervised classifier and the 48 km of the nearshore area, model G2. Unit labels: 1 – artefacts, 2 & 3 – 
undulating bed and undulating bed with artefacts, 4 & 5 – plain bed and plain bed with artefacts, 6 – other irregularities, 7 – uneven trough bed, 8 – linguoid (tongue- 
shaped) ripples, 9 – straight or sinuous ripples. Pred\Ref – Prediction\Reference.  

Pred/Ref 1 2 & 3 4 & 5 6 7 8 9 Sum 

1 0.60 0.02 0.23 0.00 0.02 0.00 0.00 0.87 
2 + 3 0.10 12.81 1.28 0.00 0.08 0.00 0.14 14.40 
4 + 5 0.89 3.09 46.63 0.00 0.49 0.00 0.70 51.80 
6 0.25 0.12 0.23 13.56 0.00 0.39 0.00 14.55 
7 0.31 0.10 1.30 0.00 10.07 0.00 0.12 11.90 
8 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.37 
9 0.19 0.10 2.06 0.00 0.27 0.00 3.49 6.11 
Sum 2.35 16.22 51.74 13.56 10.93 0.76 4.44 100.00 
User's 0.6889 0.8895 0.9003 0.9320 0.8467 1.0000 0.5714  
Producer's 0.2562 0.7895 0.9014 1.0000 0.9218 0.4872 0.7860  
Overall 0.8754         
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morskich. Zakład Wydawnictw Naukowych Instytutu Morskiego, Gdańsk.  
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Xhardé, R., Long, B.F., Forbes, D.L., 2011. Short-Term Beach and Shoreface Evolution on 
a Cuspate Foreland Observed with Airborne Topographic and Bathymetric LIDAR. 
J. Coast. Res. 62, 50–61. https://doi.org/10.2112/si_62_6. 

L. Janowski et al.                                                                                                                                                                                                                               

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1007/s11600-018-0220-4
https://doi.org/10.1007/s11600-018-0220-4
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0115
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0115
https://doi.org/10.1016/j.ecss.2006.06.026
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0125
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0125
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0125
https://doi.org/10.9753/icce.v32.sediment.26
https://doi.org/10.1080/01431160701311309
https://doi.org/10.1080/01431160701311309
https://www.mediafire.com/folder/u95l9197wjsiv/Monitoring#u95l9197wjsiv
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0145
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0145
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0145
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0145
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0145
https://doi.org/10.3390/rs11161951
https://doi.org/10.3390/rs13152913
https://doi.org/10.2112/07a-0014.1
https://doi.org/10.1126/sciadv.aar8195
https://doi.org/10.1126/sciadv.aar8195
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VQ-1560i-DW_Datasheet_2019-09-02.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VQ-1560i-DW_Datasheet_2019-09-02.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VQ-1560i-DW_Datasheet_2019-09-02.pdf
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0175
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0175
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0175
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0175
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0175
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0180
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0180
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0180
https://doi.org/10.1016/j.ecss.2018.02.028
https://doi.org/10.3390/rs12223740
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0195
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0195
https://doi.org/10.1016/S0924-2716(99)00011-8
https://doi.org/10.1016/S0924-2716(99)00011-8
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0205
http://refhub.elsevier.com/S0013-7952(22)00100-4/rf0205
https://doi.org/10.2112/si_62_6
http://mostwiedzy.pl

	Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
	1 Introduction
	2 Materials and methods
	2.1 Study sites
	2.2 Engineering geology aspects of the study area
	2.3 Data acquisition and processing
	2.4 Data analysis
	2.4.1 Manual investigation and interpretation of bedforms
	2.4.2 Feature extraction and selection
	2.4.3 Determination and use of ground-truth control points
	2.4.4 Geographic object-based image analysis
	2.4.5 Map generalisation
	2.4.6 Accuracy assessment


	3 Results
	3.1 Feature extraction and selection
	3.2 Comparison of manual and supervised classification results
	3.3 Accuracy assessment

	4 Discussion
	4.1 Relevance of the main findings of the article
	4.2 Limitations of our research
	4.3 Recommendations for future research
	4.4 Conclusions

	Author contributions
	Funding
	Data availability statement
	Declaration of Competing Interest
	Appendix A Appendix
	References


