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DESCRIPTION OF DOCTORAL DISSERTATION 

 

The Author of the PhD dissertation: mgr inż. Adam Kurowski 

Title of the PhD dissertation: Designing acoustic scattering elements using machine 

learning methods 

Title of the PhD dissertation in Polish: Projektowanie rozpraszających ustrojów 

akustycznych metodami uczenia maszynowego  

Language of the PhD dissertation: English 

Supervision: prof. dr hab. inż. Bożena Kostek 
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Auxiliary supervision*:  
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dyfuzor, uczenie maszynowe, uczenie wzmacniane, FDTD (ang. finite difference – time 

difference) 
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Summary of the PhD dissertation in Polish:  

Streszczenie: 

W procesie projektowania i korekcji akustyki wnętrz często zachodzi konieczność 

doboru odpowiedniego rodzaju ustrojów akustycznych oraz podjęcia decyzji dotyczących ich 

wielkości, geometrii oraz usytuowania w danym wnętrzu. Celem rozprawy doktorskiej jest 

opracowanie i walidacja modelu matematycznego pozwalającego przewidzieć efekty aplikacji 

ustroju rozpraszającego w wybranych punktach pomieszczenia i wykorzystanie tego modelu w 

komputerowej optymalizacji parametrów projektowanej adaptacji. Środkiem do tego celu są 

algorytmy uczenia maszynowego ze szczególnym wskazaniem na uczenie głębokie (ang. deep 

learning) i uczenie wzmacniane (ang. reinforcement learning). Podejście takie pozwala na 

uzyskiwanie projektów dyfuzorów akustycznych o szczególnie pożądanych własnościach. Jest 

to paradygmat przydatny zwłaszcza wówczas, gdy przeznaczeniem takiego dyfuzora jest 

przestrzeń o nietypowych charakterystykach, dla której nie sprawdza się standardowe 

rozwiązania projektowane z myślą o bardziej ogólnym sposobie zastosowania. Z tego właśnie 

powodu w niniejszej rozprawie zaproponowany został wątek automatycznej optymalizacji 

ustrojów akustycznych za pomocą programu komputerowego. Podejście to ma tę zaletę, że 

symulacja komputerowa pozwala na bieżąco śledzić przewidywane efekty zmian 

wprowadzanych do projektu dyfuzora. Zmiany te mogą być monitorowane dla przypadku 

ogólnego zastosowania dyfuzora – poprzez symulację warunków bezechowych, ale 

potencjalnie podejście to pozwala także na uwzględnienie w symulacji miejsca aplikacji i 

projektowanie dyfuzora akustycznego bezpośrednio do zastosowania w wybranym miejscu 

aplikacji.  
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Summary of PhD dissertation in English:  

In the process of the design and correction of room acoustic properties, it is often necessary to 

select the appropriate type of acoustic treatment devices and make decisions regarding their 

size, geometry, and location of the devices inside the room under the treatment process. The 

goal of this doctoral dissertation is to develop and validate a mathematical model that allows 

predicting the effects of the application of the scattering system in selected points of the room. 

Further, it is aimed to use this model in the process of computer optimization of the room sound 

treatment process. The means for achieving these goals are machine learning algorithms with 

a particular focus on deep learning and reinforcement learning. Deep machine learning models 

are trained by using computer simulation employing the finite difference method (FDTD), which 

is used as a source of the so-called reward signal. The simulation model is based on the modified 

difference equations derived by the author of this thesis that allows simulating the behavior of 

acoustic diffusers in anechoic conditions. In order to reproduce this type of conditions, the results 

obtained by the reinforcement learning algorithms, in particular - by the deep policy gradient 

algorithm, were compared with the results obtained with the classical methods of designing 

acoustic diffusers and those obtained using another optimization method, i.e., genetic 

algorithms, where the numerical simulation of the behavior of the acoustic diffuser serves to 

calculate the value of the fitness function, which plays a role analogous to the reward function. 

The optimized property of acoustic diffusers is the autocorrelation diffusion coefficient. 

Numerical experiments have shown that optimization algorithms can be used to maximize the 

metrics computed by numerical simulation. The best results were obtained with the 

reinforcement learning algorithms. To validate the calculation results, the measurement of 

acoustic diffuser prototypes was also performed in the anechoic chamber. As a result of the 

measurements, the thesis confirmed that the algorithms resulting from computer optimization 

are characterized by more desirable parameters - the broadband autocorrelation diffusion 

coefficient and the band diffusion coefficients calculated for the bands with central frequencies 

with the values of 250 Hz, 500 Hz, 1 kHz, 2 kHz, and 4 kHz. The proposed algorithm is a new 

approach to the intelligent design of acoustic systems to improve room acoustic properties. 

Summary of PhD dissertation in language, in which it was written**:  

Keywords of PhD dissertation in language, in which it was written**:  

 

 

*) delete where appropriate. 

**) applies to doctoral dissertations written in languages other than Polish or English. 
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Streszczenie rozszerzone  w j. polskim: 

W procesie projektowania i korekcji akustyki wnętrz często zachodzi konieczność doboru 

odpowiedniego rodzaju ustrojów akustycznych oraz podjęcia decyzji dotyczących ich wielkości, 

geometrii oraz usytuowania w danym wnętrzu. Celem rozprawy doktorskiej jest opracowanie i 

walidacja modelu matematycznego pozwalającego przewidzieć efekty aplikacji ustroju 

rozpraszającego w wybranych punktach pomieszczenia i wykorzystanie tego modelu w 

komputerowej optymalizacji parametrów projektowanej adaptacji. Środkiem do tego celu są 

algorytmy uczenia maszynowego ze szczególnym wskazaniem na uczenie głębokie (ang. deep 

learning) i uczenie wzmacniane (ang. reinforcement learning). Podejście takie pozwala na 

uzyskiwanie projektów dyfuzorów akustycznych o szczególnie pożądanych własnościach. Jest 

to paradygmat przydatny zwłaszcza wówczas, gdy przeznaczeniem takiego dyfuzora jest 

przestrzeń o nietypowych charakterystykach, dla której nie sprawdza się standardowe 

rozwiązania projektowane z myślą o bardziej ogólnym sposobie zastosowania. Z tego właśnie 

powodu w niniejszej rozprawie zaproponowany został wątek automatycznej optymalizacji 

ustrojów akustycznych za pomocą programu komputerowego. Podejście to ma tę zaletę, że 

symulacja komputerowa pozwala na bieżąco śledzić przewidywane efekty zmian 

wprowadzanych do projektu dyfuzora. Zmiany te mogą być monitorowane dla przypadku 

ogólnego zastosowania dyfuzora – poprzez symulację warunków bezechowych, ale 

potencjalnie podejście to pozwala także na uwzględnienie w symulacji miejsca aplikacji i 

projektowanie dyfuzora akustycznego bezpośrednio do zastosowania w wybranym miejscu 

aplikacji.  

Celem pracy jest zaproponowanie algorytmów, które na podstawie wyznaczonych celów dla 

optymalizowanych metryk opisujących dyfuzory akustyczne są w stanie zaproponować projekty 

dyfuzorów akustycznych Schroedera, które mają potencjał do ich wykorzystania w praktycznym 

przypadku aranżacji akustycznej wnętrza. Aby sformalizować ten cel, zdefiniowane zostały 

następujące trzy tezy, które następnie zostały udowodnione w dalszej części rozprawy: 

1. Możliwe jest zastosowanie symulacji numerycznej jako metody predykcji 
współczynnika dopasowania (ang. fitness) lub nagrody (ang. reward), 
wykorzystywanych przez algorytmy sztucznej inteligencji do optymalizacji 
konstrukcji dyfuzora Schroedera. 

2. Możliwe jest wykorzystanie metod uczenia maszynowego, takich jak algorytmy 
genetyczne lub głębokie uczenie wzmacniane (ang. deep reinforcement learning), do 
optymalizacji geometrii dyfuzora Schroedera w celu uzyskania projektu o 
pożądanych właściwościach akustycznych współczynnika autokorelacji dyfuzji, gdy 
pomiar jest wykonywany w warunkach bezechowych. 

3. Przygotowane geometrie akustycznych elementów rozpraszających uzyskane w 
wyniku optymalizacji komputerowej są możliwe do wykorzystania w praktycznej 
realizacji i mogą służyć do modyfikacji i poprawy akustyki pomieszczeń. 

W celu uproszczenia późniejszego etapu przygotowania fizycznych prototypów 

pomiarowych założono, że badane będą dyfuzory Schroedera bez przegród pomiędzy jego 

wgłębieniami. Trening modeli głębokiego uczenia maszynowego przedstawiony w rozprawie 

odbywa się poprzez wykorzystanie symulacji komputerowej metodą różnic skończonych 

(FDTD, finite-difference time-domain), która wykorzystywana jest jako źródło tzw. funkcji 

dopasowania i sygnału nagrody. Symulacje metodą FDTD są szeroko wykorzystywane w 

przypadku predykcji rozchodzenia się fal elektromagnetycznych, ale z powodzeniem są one 

także stosowane w symulacjach przewidujących propagację fal akustycznych. Źródłem metryk 

optymalizowanych przez zaproponowane w rozprawie algorytmy jest wynik symulacji 

komputerowej. Sposób wyliczania metryk na podstawie efektów symulacji może się różnić w 

zależności od tego, jaki dokładnie typ symulacji jest przeprowadzany. W badaniach 

prowadzonych na potrzeby niniejszej rozprawy miały miejsce dwa eksperymenty i 
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wykorzystywały one dwa różniące się między sobą sposoby wyliczania funkcji dopasowania i 

sygnału nagrody.  

Podstawą pierwszego eksperymentu jest symulacja w prostym pomieszczeniu o 

prostokątnej geometrii. Wymiary pomieszczenia wynoszą odpowiednio: 3 m długość i 2 m 

szerokość oraz wysokość. W praktyce może się to odnosić do pomieszczenia, które pełni 

funkcję  reżyserki w studiu nagraniowym. Podejście polegające na symulowaniu zamkniętego 

obszaru o tak prostej geometrii ma istotną zaletę, jaką jest wykorzystanie do obliczeń 

zdyskretyzowanych równań różniczkowych sformułowanych bezpośrednio w takiej postaci, w 

jakiej przedstawiane są one w szerokiej literaturze opisującej problematykę symulacji propagacji 

fal akustycznych metodą FDTD [Botts2014, Cox2017, Hamilton2017, Webb2011]. Miarą 

wykorzystaną do oceny jakości projektów dyfuzora Schroedera w tym scenariuszu 

eksperymentalnym była jednorodność charakterystyki częstotliwościowej dyfuzora w wybranym 

docelowym miejscu odsłuchu muzyki. Jako dane wzorcowe, względem których oceniane były 

efekty uzyskane przez algorytmy optymalizacji, wykorzystane zostały dyfuzory Schroedera 

zaprojektowane metodami opartymi na sekwencjach liczb pseudolosowych. Wykorzystano 

dyfuzory bazujące na residuum kwadratowym (ang. quadratic residue diffuser, QRD) i na 

pierwiastku pierwotnym (ang. primitive root diffuser, PRD). Jako algorytmy optymalizacji 

wykorzystane zostały wspomniane już wcześniej algorytmy genetyczne oraz dwa algorytmy 

uczenia wzmacnianego – głębokie, dwudzielne Q-sieci (ang. deep duelling Q-networks, 

DDQNs) i algorytm głębokiego gradientu strategii (ang. deep policy gradient). Efektem 

przeprowadzonego eksperymentu badawczego jest wniosek, że uzyskane mediany 

współczynnika równomierności odpowiedzi impulsowej badanego pomieszczenia były 

najkorzystniejsze dla dyfuzorów PRD oraz dyfuzorów optymalizowanych. Nie było istotnych 

statystycznie różnic między medianami dyfuzorów PRD i dyfuzorów będących efektem 

optymalizacji. Istotnym faktem było jednak to, że dla każdego przypadku optymalizacji można 

było wyróżnić najlepszy projekt dyfuzora, który był lepszy od dyfuzora uzyskanego algorytmem 

PRD. Wniosek pozwala na udowodnienie dwóch pierwszych tez rozprawy. Z sukcesem 

zaimplementowany został algorytm, który wykorzystuje symulację komputerową metodą 

FDTD do optymalizacji kształtu dyfuzorów Schroedera, co udowadnia tezę nr 1 

postawioną w niniejszej rozprawie doktorskiej. Dodatkowo, optymalizacja ta możliwa 

była do przeprowadzenia za pomocą algorytmów genetycznych oraz algorytmów 

wykorzystujących głębokie uczenie wzmacniane, co z kolei dowodzi prawdziwości tezy 

nr 2. 

Drugi eksperyment bazuje na symulacji propagacji fal akustycznych w warunkach 

bezechowych. Aby przygotować tego typu algorytm symulacji, konieczne było zmodyfikowanie 

równań, które były podstawą symulacji  propagacji fal akustycznych w eksperymencie 

pierwszym. Zastosowana została autorska modyfikacja równań Webba i Bilbao [Webb2011], 

które były podstawą symulacji w eksperymencie pierwszym. Umożliwiło to posłużenie się 

warstwami idealnie dopasowanymi Berengera (ang. perfectly matched layers, PML) do redukcji 

odbić od granic domeny obliczeniowej, co z kolei pozwoliło na symulację pomiaru 

autokorelacyjnego współczynnika dyfuzji projektowanych dyfuzorów. Ten właśnie współczynnik 

optymalizowany był przez algorytmy uczenia wzmacnianego, które okazały się skuteczne w 

eksperymencie 1. Na podstawie wyników tego eksperymentu wybrane zostały najlepsze 

dyfuzory zaprojektowane przez algorytm genetyczny i jeden algorytm uczenia wzmacnianego – 

algorytm głębokiego gradientu strategii. Ze względu na ograniczenia technologiczne wynikające 

z rozmiaru przestrzeni decyzyjnej w eksperymencie 2., konieczna była rezygnacja z algorytmu 

głębokich, dwudzielnych Q-sieci. Efekty działania algorytmów optymalizacji porównane zostały 

z wynikami losowania kształtu dyfuzora i wyboru najlepszego wyniku losowania. Algorytmem, 

który był w stanie osiągnąć najwyższą wartość autokorelacyjnego współczynnika dyfuzji był 

algorytm głębokiego gradientu strategii. Na podstawie najlepszych dyfuzorów 

zaprojektowanych przez algorytm genetyczny, głębokiego gradientu strategii i poprzez wybór 

najlepszego wyniku losowania przygotowane zostały fizyczne prototypy dyfuzorów. Prototypy 
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te wykonane zostały ze styroduru i następnie zmierzone w komorze bezechowej. Wyniki 

pomiarów wykazały, że prototypy dyfuzorów charakteryzowały się współczynnikiem dyfuzji o 

wartościach zaniżonych względem tych przewidywanych o wartość z przedziału ufności od 

0.0234 do 0.123. Przy przewidywanych wartościach współczynnika dyfuzji wynoszących 

około 0,95 taka dokładność pozwala na udowodnienie trzeciej tezy postawionej w 

rozprawie doktorskiej. Mówi ona o tym, że projekty dyfuzorów akustycznych 

wygenerowane przez zaproponowane algorytmy optymalizacji nadają się do praktycznej 

implementacji w procesie faktycznej adaptacji akustycznej pomieszczeń. Dodatkowo, w 

wyniku pomiarów zaobserwowano, że algorytmy będące efektem optymalizacji komputerowej 

charakteryzują się bardziej pożądanymi parametrami – szerokopasmowym autokorelacyjnym 

współczynnikiem dyfuzji oraz pasmowymi współczynnikami dyfuzji wyliczonymi dla pasm o 

częstotliwościach centralnych 250 Hz, 500 Hz, 1 kHz, 2 kHz i 4 kHz.  

Zaproponowany algorytm stanowi nowe podejście do inteligentnego projektowania ustrojów 

akustycznych służących do poprawy własności akustycznych pomieszczeń. Na podstawie 

pomiarów w komorze bezechowej udało się pokazać, że dyfuzory zaprojektowane 

zaproponowaną metodą mogą stanowić przydatną alternatywę dla dyfuzorów projektowanych 

technikami tradycyjnymi. Jest to główny efekt badań przeprowadzonych w ramach rozprawy 

doktorskiej, jednak należy także wspomnieć o innych autorskich osiągnięciach, które pozwoliły 

na udowodnienie głównych tez rozprawy. Są to następujące osiągnięcia: 

• modyfikacja równania różnicowego FDTD (finite-difference time-domain, tj. metodą 

różnic skończonych), pozwalająca na wykorzystanie warstw idealnie dopasowanych 

PML (ang. perfectly matched layers) Berengera w symulacjach FDTD, do którego 

punktem wyjściowym była praca Webba i Bilbao [Webb2011]; 

• propozycja modelu matematycznego wykorzystującego metodę FDTD, który jest w 

stanie obsłużyć warstwy PML i uwzględnić takie właściwości ośrodka propagacji, jak 

temperatura powietrza, ciśnienie atmosferyczne i wilgotność względna; 

• propozycja metod uczenia maszynowego wykorzystujących symulację FDTD jako 

źródło sygnału nagrody.  W ten sposób uzyskuje się  możliwość projektowania 

dyfuzorów akustycznych z maksymalizacją wartości współczynnika dyfuzji akustycznej 

w kontekście zadanego środowiska symulacji; 

• autorska implementacja proponowanej zmodyfikowanej wersji metody symulacji FDTD 

w języku Python; 

• autorska implementacja  symulacji opartej na FDTD jako estymatora funkcji 

przystosowania algorytmu genetycznego do maksymalizacji pożądanych właściwości 

dyfuzora akustycznego; 

• przeprowadzona została ocena prototypów dyfuzorów akustycznych tworzonych przez 

algorytmy uczenia maszynowego (tj. uczenia wzmacnianego – głębokie, dwudzielne Q-

sieci (ang. deep duelling Q-networks, DDQNs) i algorytm głębokiego gradientu strategii 

(ang. deep policy gradient) w warunkach rzeczywistych z wykorzystaniem prototypów 

fizycznych, których właściwości akustyczne mierzono w komorze bezechowej; 

• autorska metoda oceny prototypów dyfuzorów akustycznych tworzonych przez 

algorytmy uczenia maszynowego (tj. dwa algorytmy uczenia wzmacnianego – głębokie, 

dwudzielne Q-sieci (ang. deep duelling Q-networks, DDQNs) i algorytm głębokiego 

gradientu strategii (ang. deep policy gradient) w warunkach rzeczywistych z 

wykorzystaniem prototypów fizycznych, których właściwości akustyczne mierzono w 

komorze bezechowej. 

 

Wymienione osiągnięcia mogą stanowić podstawę dla dalszych badań, które w większym 

stopni obejmą przedstawienie rzeczywistego pomieszczenia w symulacji komputerowej, co 

pozwoliłoby na projektowanie dyfuzorów dopasowanych do konkretnego wnętrza. 
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Innym interesującym kierunkiem dalszych badań może być projektowanie układów 

zmiennych w czasie, jako że symulacja metodą FDTD jest w stanie również przewidywać efekty 

takich układów. Mogłoby to być bardzo istotnym przyczynkiem do badań na przykład nad 

aktywnymi dyfuzorami akustycznymi zrealizowanymi w postaci macierzy głośników, których 

impedancja akustyczna jest zmienna w czasie. Interesującym tematem przyszłych badań może 

też być  modyfikacja zaproponowanych metod w celu zastosowania ich do projektowania innych 

typów dyfuzorów. 
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single action belonging to the action space A 

A action space of the DDQN (dueling deep Q-network), and DPG 

(deep-policy gradient) algorithms 

𝐴𝑠 amplitude of an excitation Gaussian impulse signal 

ADAM adaptive movement estimation optimizer 
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API application programming interface 

BEM boundary element method 

𝐁𝐊 matrix containing pre-computed values of boundary conditions 

taking into account a Courant number, and specific admittances of 

surfaces 

c 
speed of sound in an acoustic medium (air) 

𝐶𝑇 clarity acoustic room parameter 

CAD computer-aided design 

CNN convolutional neural network 

CUDA compute unified device architecture 

𝑑ψ 
correlation diffusion coefficient of an acoustic diffuser 

𝑑ψ,𝑛 
normalized diffusion coefficient 

𝑑ψ,𝑟 reference measurement of a flat reflective plate 

DDQN dueling deep Q-network 

DL deep learning 

DPG, PG deep-policy gradient, policy gradient 

DQN deep Q-network 

E(𝑟) expected reward of a reinforcement learning agent 
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𝑓𝑐 maximum frequency of a band-limited excitation Gaussian impulse 

𝑓𝑢𝑏 
upper band limit of an acoustic diffuser 

FDTD finite-difference time-domain method 

FEM finite element method 

FFT fast Fourier transformation 

GPU graphics processing unit 

GRAM geometrical room acoustic model 

h(𝑡) impulse response of the room 

𝑲 matrix containing a definition of all boundary conditions in a 

computational domain 

L 
acoustic pressure level 

LEDE light-end, dead-end acoustic treatment principle 

𝑀𝑎 
molar mass of dry air 

𝑚𝑎 
amount of moles of air present in the propagation medium 

𝑀𝑣 molar mass of water vapor 

𝑚𝑣 amount of moles of water vapor present in the propagation medium 

MLS maximum-length sequence 

P 
atmospheric air pressure 

p 
acoustic pressure 

𝑝𝑠𝑎𝑡 saturation pressure of water vapor 

𝑝𝑎 
partial pressure of air 

𝑝𝑣 partial pressure of water vapor 

PML perfectly matched layer 

PRD primitive root diffuser 

PReLU parameterized rectified linear unit activation function 
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Q 
Q function used by the DDQN reinforcement learning algorithm 

QRD quadratic residue diffuser 

R 
molar gas constant 

R(θ,ϕ) 
acoustic reflection coefficient 

𝑅𝑎 
specific gas constant of air 

𝑟𝑡 reward achieved by the agent in the step of the interaction with the 

environment denoted by 𝑡 

𝑅𝑣 specific gas constant of water vapor 

RFZ reflection-free zone 

RH 
relative humidity 

RL reinforcement learning 

RT reverberation time 

s 
state of an environment with which the reinforcement learning agent 

is interacting 

𝑆𝑛 surface area of the n-th room boundary 

SGD stochastic gradient descent 

T 
temporal sampling period 

𝑇𝑎 
air temperature 

𝑇𝑖 integration time 

𝒖 acoustic velocity vector 

USP ultimate sound probe 

Vroom volume of the room 

w 
weights of a neural network 

𝑊𝑑(𝑛) the n-th  value from a pseudorandom sequence (i.e. PRD, QRD, etc.) 
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spatial sampling period  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

20 
 

𝑥𝑎 
mole fraction of air in the propagation medium 

𝑥𝑣 mole fraction of water vapor 

XPS extruded polystyrene 

𝑌𝑘
𝐷𝐷𝑄𝑁

 value of Q function for the k-th action undertaken by the DDQN 

algorithm, 

𝑍𝑎𝑖𝑟 specific acoustic impedance of air 

𝑍𝑤 
specific acoustic impedance of a surface 

𝛼 
acoustic compressibility-related attenuation factor 

𝛼∗ 
attenuation factor related to a so-called “mass-proportional” damping 

𝛼𝑟𝑜𝑜𝑚,𝑛 
acoustic damping factor of n-th surface in a room, used in Sabine 

equation 

𝛽 
specific acoustic admittance of the surface 

𝛿𝑐 
correlation scattering coefficient 

𝜖 
probability of taking a random choice of action in an 𝜖-greedy 

reinforcement learning algorithm 

𝜅 
adiabatic ratio of specific heats of air  

𝜆𝑚𝑖𝑛 
the shortest wavelength for which no lateral propagation modes arise 

in the diffuser well (limiting the upper frequency of usable diffuser 

bandwidth) 

𝜆0 
wavelength of a diffusers design frequency 

∇ 
nabla operator 

𝜋𝑤(𝑠, 𝑎) policy function 

𝜌 
density of the air 
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𝜎 
variance of a Gaussian impulse 

𝜎𝑓∈<𝑓𝑙𝑖;𝑓𝑢𝑖)  measured power level of the frequency band from 𝑓𝑙𝑖  to 𝑓𝑢𝑖 

𝜎𝐷 
frequency response uniformity reward coefficient 

𝛾 
discount factor of a reinforcement learning agent 

𝜅 
compressibility factor of the air 

𝜆 
Courant number 

𝜙 
vertical wave incidence angle 

𝜃 
horizontal wave incidence angle 

𝜉 
prime number used to generate a pseudo-random sequence 

𝜁 
compressibility factor of air 
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1. INTRODUCTION 

Proper sound treatment of open and enclosed spaces is a broad field of 

knowledge, which often requires employing a number of methods used to shape 

frequency responses of both the open and closed spaces used for purposes such as 

theaters, public speech places, or lecture halls [Gołaś2012].  Similar methods that 

propose an alteration of sound propagation are also applied to other areas of 

application, such as noise and vibration control or medical imaging [Adamczyk2011, 

Leniowska2012]. Often, they are also employing modern, state-of-the-art algorithms 

which are based on artificial intelligence [Grochowina2020, Kurowski2020]. The use of 

such methods can be especially effective if new emerging computational techniques 

are taken into account, such as numerical modeling of acoustic waves propagation, 

artificial intelligence-based optimization, and control algorithms. Acoustic simulations 

have a very broad use in acoustics in tasks such as auralization [Hamilton2017], noise 

prediction [Ibrahim2020], investigation of the acoustics of historic buildings 

[Berardi2020], a simulation-driven optimization of room acoustics, or optimization of 

acoustic devices [Li2016, Pilch2020, Su2020, Sun2020]. Since the rise of the 

popularity of GPU-based computations, acoustic simulations are also easier to be 

carried out, as the GPU-accelerated calculation can be employed [Cao2020, 

Webb2011]. Machine learning methods using deep structures are a rapidly growing 

field of knowledge, with multiple applications in areas of expertise such as EEG signals 

processing [Fernandez-Blanco2020, Gao2020, Hemanth2020, Kurowski2019a, 

Kurowski2019b, Luo2020] or even for obtaining results associated with “creative” tasks 

[Thoma2016]. In the field of acoustics, artificial-intelligence or machine learning 

algorithms were successfully implemented to perform tasks such as speaker and 

source localization [Bianco2019], audio rendering [Tang2020], analysis of acoustic 

signals originating from urban-related sources [Huang2020, Kurowski2019c, Naranjo-

Alcazar2020, Shen2020], or acoustic-based terrain classification [Valada2018]. 

In this thesis, techniques involving computer simulation and deep reinforcement-

learning-based optimization are applied to one of the devices commonly used to shape 

acoustics of rooms undergoing the process of acoustic treatment. This concerns the 

acoustic diffusers. Acoustic diffusers, also called acoustic scattering devices or 

devices, are a crucial type of tool used in the sound treatment of rooms. There is a 

great need to obtain designs of acoustic diffusers with a precise set of acoustical 

properties that can be used to shape the response of enclosed space under treatment. 

This applies to a theatre, concert hall, lecture room, recording, radio or television 

studios, etc.  Therefore, there are many approaches for obtaining acoustic diffuser 

geometries, which may be further used in the acoustic room treatment. Baseline (also 

called classical or traditional) acoustic diffuser design techniques have a number of 

advantages that influenced their popularity in everyday practice. These include, among 

others, simplicity of use or broad applicability with satisfactory results. Based on such 

devices, the solution generated by the optimization algorithm may allow for complete 

automation or significant reduction of human interference in the design of devices used 

to improve the acoustics of rooms. It also makes it possible to tailor the solution to 
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specific application conditions.  

The purpose of the research presented in this dissertation is to propose a solution 

that creates an acoustic diffuser architecture based on the optimization process. 

Acoustic diffusers utilize the phenomenon of acoustic wave scattering to increase 

sound diffusion at the place of their application [Cox2017]. Their design is a crucial 

stage in preparing the room entire acoustic adaptation, especially when they are the 

primary method of preserving the reflected sound in the room. This concerns especially 

the case when the room is divided into two zones – one with a significant amount of 

acoustic wave attenuation (the so-called “dead”) and one associated with a large 

amount of reflected acoustic waves (the so-called “live”). This type of methodology is 

called LEDE; an acronym derived from live-end dead-end [Davies1980, Gervals2011]. 

On the one hand, the introduction of reflected sound may be beneficial. It can 

enhance such aspects of audio perception as the feeling of being enveloped by the 

sound and is often used creatively by recording engineers [Owsinski2009, 

Senior2015]. On the other hand, the presence of reflections may lead to the occurrence 

of unwanted phenomena such as flutter echo [Everest2015, Makarewicz2004], or 

standing waves which cause variance in both the acoustic pressure level of the audio 

signal and relative levels of frequency band powers of the transmitted acoustic signal. 

This may result in the so-called “sound coloration” [McCarthy2016, Zolzer2011]. 

Acoustic diffusers are often applied to preserve reflected energy in a room in a 

scattered form, which does not introduce the aforementioned interference-related 

problems [Everest2015]. In the part of the room accountable for reflections, an acoustic 

diffuser should very often be placed to prevent, for example, harmful interference from 

the occurrence of acoustic waves, which makes the frequency characteristics of the 

room non-linear and nonuniform. Appropriate use of acoustic diffusers also allows for 

equalizing the room reverberation time over a wide frequency range. 

For this reason, the possibility of choosing an acoustic diffuser in such a way that 

its design method takes into account its placement within the room of application is 

important. It can contribute to improving the results obtained. Such precision is vital for 

spaces dedicated to audio editing and audio quality control, such as recording and 

mastering studios or theatre halls [Gołaś2009, Katz2007, Owsinski2017a, 

Owsinski2017b, Wyner2013]. In such kinds of applications, a carefully planned use of 

sound absorption is necessary [Cucharero2019, Rivet2012]. For this reason, an 

interesting perspective is using an optimization algorithm to design the diffuser 

geometry matched to the rooms where they are to be implemented. 

Another critical problem in the design of acoustic diffuser geometry matched to 

the geometry of the rooms is the modeling of acoustic phenomena occurring in the 

place of their application. This problem can be solved using numerical simulation 

techniques, which are widely adopted within acoustics and related areas such as noise 

control or vibroacoustic. Examples of such acoustic-related problems are the 

simulation of musical instruments with boundary element method (BEM) 

[Becache2005] or time-difference method [Derveaux2003], simulation and elimination 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

25 
 

of noise sources [Oberst2010, Yuksel2012], calculation of head-related transfer 

functions for binaural audio [Fiala2010, Kahana2007], modal analysis of, i.e., 

loudspeaker enclosures and vibration reduction [Hansen2018, Jee2000] or prediction 

of acoustic transmission in closed spaces [Hsiao2011a, Hsiao2011b]. Such numerical 

methods may also be utilized to simulate the influence of given acoustic diffuser 

designs on the acoustics of a room and then calculate the geometry of diffusers tailored 

to improve the acoustic properties of such a place. One of the popular simulation 

techniques employed for such purpose is the finite-difference time-difference (FDTD) 

method, which is also commonly used for simulation of electromagnetic waves 

behavior [Inan2011]. It is also widely used in research related to the propagation and 

other phenomena related to acoustic waves [Cox2017, Drake2014]. It allows the 

prediction of the performance of the diffuser at the place of its application. It also 

provides an approximate assessment of the behavior of individual diffuser geometries 

and the selection of the most promising designs. On this basis, it is possible to develop 

physical prototypes of sound scattering devices, which then may be measured in the 

anechoic chamber and in the target room where they are to be placed. Computer 

simulation allows the number of prototypes to be tested without the need for physical 

prototype construction. This, in turn, allows reducing the cost of prototype 

manufacturing because only the most promising designs are evaluated in an anechoic 

chamber or in-situ physical measurement. 

A variety of techniques are employed to design diffusers, from classical 

approaches based on pseudo-random number sequences to methods using fractal 

geometry [Everest2015]. They can also use as a principle of their operation not only 

the phenomenon of reflection, deflection, and scattering of the wave, but also 

resonance phenomena [Cox2017, Jimenez2017, Pogson2010]. This means that to 

design the acoustic diffuser, the environment in which it is to be installed should be 

taken into account. It is necessary to carefully select a methodology that will consider 

a whole range of factors that affect the behavior of the diffuser. In addition to the device 

geometry itself, such factors are of importance as, for example, the material from which 

such a diffuser is made, the place where the diffuser is to be installed, the geometry of 

the room in which it is located, or the place where the person listening to the sound in 

a given room will be. Therefore, optimization algorithms in the form of, e.g., genetic or 

reinforcement learning algorithms are an attractive way to solve the problem of finding 

the acoustic diffuser geometry that optimizes listening parameters in a given context, 

which consists of the previously mentioned factors.  

There are many examples of the application of the genetic algorithm in acoustics 

as it is a method of optimizing structures affecting the structure of the acoustic field 

both inside the rooms (acoustic diffusers) and in the open space (noise barriers) 

[Baulac2008, Patraquim2017, Redondo2019, Toledo2015]. Coupling computer 

simulation with the method of designing acoustic systems is a scheme that has already 

appeared in the literature and has been used, for example, to assess the diffusion 

coefficient of acoustic diffusers [Patraquim2017, Redondo2007]. As a simulation 

method, various methods are used; for example, the edge element method 
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[Redondo2007] or the finite difference method [Patraquim2017]. This doctoral 

dissertation shows how to design an acoustic diffuser that equalizes the frequency 

response of a cuboid shape room using a computer simulation assessing the genetic 

algorithm associated with it. 

Another optimization approach may be the use of machine learning algorithms. In 

recent years, machine learning was applied to a variety of acoustic-related problems 

such as real-time speech synthesis [Arik2017], sound synthesis [Blaauw2017, 

Engel2017], audio chord recognition [Boulanger-Lewandowski2013], music 

transcription [Sturm2016], or sound source separation [Huang2015]. Among many 

machine learning algorithms, one class is particularly useful in sequential optimization 

problems, i.e., reinforcement learning and its modification employing deep neural 

networks – deep reinforcement learning [Buduma2017, Sutton1998]. This class of 

algorithms was successfully applied to complex problems involving decision-making 

and multi-step optimization such as the design of industrial infrastructure 

[Kobayashi2004],  control of modular robots [Varshavskaya2008], lane-keeping assists 

[Sallab2016], playing card games [Yeh2018], or real-time computer strategy and 

survival games [Romac2019, Usunier2016, Vinyals2017]. Accordingly, for an acoustic 

diffuser structure optimization, which is a sequential optimization problem, deep 

reinforcement learning is to be applied.  

Therefore, the purpose of the research presented in this doctoral thesis is to 

investigate if it is possible to employ a reinforcement learning algorithm to design a 

Schroeder diffuser. A Schroeder diffuser may be described by a matrix of integer 

values. So, according to the above-given definition, the shape of a diffuser stored in 

such a matrix is referred to as a diffuser geometry in successive parts of this doctoral 

thesis. Moreover, it is relatively easy to prepare a physical prototype of such a diffuser, 

especially if the skyline type of diffusers is considered. For this reason, in further 

experiments, the skyline type of Schroeder is chosen for simulations and 

measurements. Outcomes obtained from the reinforcement learning algorithm 

designing a Schroeder diffuser can be validated by a physical measurement performed 

on a real prototype.  

Three theses proposed, which are going to be proved in this dissertation, are as 

follows: 

1. It is possible to employ a numerical simulation as a fitness or reward 

estimator used by an artificial intelligence algorithm to optimize a 

Schroeder diffuser design. 

2. It is possible to employ machine learning methods such as genetic 

algorithms or deep reinforcement learning for optimization of the 

Schroeder skyline diffuser geometry to achieve a design having desired 

acoustic properties of autocorrelation diffusion coefficient when the 

measurement is performed in an anechoic condition. 
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3. Prepared geometries of acoustic scattering elements acquired in the 

computer-based optimization are feasible for practical implementation 

and can be used as the means of acoustic room treatment. 

The experiments presented in successive parts within this thesis are performed to 

check if assumptions shown in the theses proposed above are correct. Moreover, it 

should be checked whether the reinforcement learning-based algorithm applied to 

design acoustic diffusers can outperform other state-of-the-art solutions. To that end, 

two benchmark solutions were selected for comparison. The first relies on classical 

random sequence theories, and the second one is optimization employing a genetic 

algorithm. The block diagram presenting the structure of this thesis is shown in Fig. 

1.1.  

  

Fig. 1.1 Block diagram of this doctoral dissertation. 

An introduction presents the motivation, theses, and main goals of the research 

presented in this thesis. 

Section 2 introduces the associated acoustic treatment of open and closed spaces. 

The main focus is on the acoustic treatment of closed spaces, as this is the purpose of 

using acoustic diffusers. This Section also presents problems associated with the 

simulation of acoustic wave propagation and the use of such simulation to design 
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acoustic treatment solutions. Also, it provides a rationale for why an FDTD simulation 

technique was used as a simulation technique in experiments presented in this 

doctoral dissertation. 

Next, Section 3 describes methods of designing acoustic diffusers. Its main purpose 

is to present necessary methods for the evaluation of Schroeder diffuser designs which 

are necessary for definition optimization goals. For instance, an autocorrelation 

diffusion coefficient introduced in Section 3.1 is a necessary tool for evaluating the 

quality of devices designed by algorithms in Sections 3.3 and 3.4. It also contains 

descriptions of classical methods of Schroeder diffuser design and optimization-based 

methods, namely: 

1. the genetic algorithm-based method, 

2. a dueling deep Q-network, which is the first of deep reinforcement learning 

algorithms evaluated in this dissertation, 

3. and  a deep policy gradient algorithm, which is the second of deep 

reinforcement learning algorithms evaluated in this dissertation, 

Section 4 contains the mathematical foundation of the implementation of the FDTD 

method used in this study. It describes the original method proposed by [Webb2011]. 

Moreover, it also shows the author's original contribution in the form of a modification 

of the FDTD model mentioned above, which allows to carry out simulations with GPU-

based acceleration and the use of Berenger perfectly matched layers to simulate 

anechoic acoustic wave propagation. This Section also contains a description of how 

the temperature, atmospheric pressure, and relative humidity of air could be taken into 

account while carrying out simulations. 

Section 5 contains a description of the first experiment conducted to prove theses 

of this doctoral dissertation. The investigation presented in this Section is based on 

calculations employed to design acoustic diffusers intended to be used in a shoebox-

type mock-up room. A measure optimized in this case is the uniformity of the frequency 

response of a simulated room. The outcome of this experiment allows proving theses 

no. 1 and no. 2 proposed in this dissertation. 

Section 6 contains a description of the second experiment, which involved 

simulation of acoustic diffuser behavior in anechoic conditions. A measure used to 

evaluate designs in this experiment is the autocorrelation diffusion coefficient. Designs 

obtained from this optimization process were further used to prepare physical 

prototypes, which were measured in an anechoic chamber. Outcomes from these 

experiments allow proving theses no. 1-3 proposed in this doctoral dissertation. 

Section 7 shows concluding remarks, main achievements, and directions of future 

research. This Section is followed by the literature sources. Finally, examples of code 

prepared by the author and detailed results are contained in Appendices.  
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2. PRINCIPLES OF ROOM ACOUSTICS AND SOUND 

TREATMENT 

Room acoustics is an area that contains many concepts and notions. Generally 

speaking, it describes how sound behaves in an enclosed space. In this Section, only 

selected issues related to the practical part of the dissertation are to be presented. 

Mainly, the focus is on the process of acoustic room treatment. However, acoustic 

parameters that are important when checking room acoustics before and after it is 

treated acoustically are also referred to. Besides, room designing methods in the 

context of a listening space are shortly recalled. 

Sound treatment is a process that usually splits into three stages. First, the analysis 

of the acoustic space in which acoustic properties have to be improved is performed. 

Secondly, identification of critical problems, design, and choice of tools that can be 

used to reduce the impact of those problems on the acoustic of the room is to be 

discussed. Finally, implementation of the prepared solution and verification of its 

effectiveness should take place.  

There is a group of typical defects and problems related to room acoustics that 

every designer should consider when implementing acoustic adaptation. In the case of 

the, i.e., a mixing room, sound reflections are an essential aspect. During work, the 

sound engineer hears the sound coming directly from the monitors as well as the sound 

reflected in the room. Along with the size of the interior, the time difference between 

the direct and reflected signals increases. However, in most cases, the work of 

engineers takes place in medium or relatively small interiors, so reflections are usually 

a big problem [Gervals2011]. Therefore, the task of the designer is to absorb or scatter 

these reflections to such an extent as to minimize their impact on listening from the 

speakers. For this purpose, acoustic panels (absorbers) and diffusers are used. 

Another issue is the room resonances, also called “room modes.” They are 

particularly troublesome in small interiors. They manifest themselves when the 

acoustic wave travels between two reflecting surfaces and the distance between them 

(one of the dimensions of the room) is equal to a multiple of half the length of that wave 

[Cox2017]. Such sound bounces off these surfaces and goes the same way, but in the 

opposite direction, encountering another wave on its way. In this situation, the sound 

energy is concentrated or attenuated locally, and thus the sound field is nonuniform. 

This results in an unnatural, pronounced sound of selected tones in the one place in 

the room or their complete absence elsewhere. It is particularly noticeable in cubic or 

rectangular rooms. In this case, resonance will often occur between all pairs of parallel 

reflecting surfaces. 

Reproduction of audio signals is also a complicated process that is performed by a 

chain of many elements. First, it is a sound source, an acoustic source such as a 

musical instrument or a loudspeaker that converts analog signals into acoustic signals. 

Analog signals also may be a reproduction generated from digital sources of audio 

signals. The type of data storage, therefore, also has its impact on the quality of audio 
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reproduction in the room of choice. The quality of listeners’ experience is influenced by 

the quality of the source material recorded on the medium used for playback of signals 

or on the quality of performance of musicians or other sources of musical signals. In 

the case of electroacoustic reproduction of audio signals, the quality of devices such 

as amplifiers, loudspeakers, or players also plays an important factor in the quality of 

the listener's experience. The room is the second element of this chain of factors and 

has its influence on the overall perception of audio signals and is as important as good 

performance of musicians or good quality of source material stored on the medium and 

devices used for the sound reproduction [Owsinski2017a, Owsinski2017b, 

Wyner2013]. The environment influences the sound in a number of ways in a particular 

area where the listener is located. First of all, the room is a closed space; therefore, it 

is associated with the so-called room modes. Such modes are resonant frequencies of 

a room cavity and lead to the phenomenon of standing waves and may impact the 

frequency response of the room. It may also alter transients, as resonances of the 

room may cause accumulation of energy in frequency bands associated with modes 

of the listening room. Specular reflections may cause confusion when stereo imaging 

is considered. Due to the precedence effect [Brown2015], a strong reflection may alter 

the perception of a sound direction of arrival and, therefore, change the stereo imaging 

in a particular place of the room. A reflection-free-zone (RFZ) is a concept developed 

to mitigate this unwanted phenomenon and is often used by acousticians to ensure 

that for a given place, there will be no strong reflections capable of skewing the stereo 

imaging of acoustic signals played. 

One of the popular methods of designing rooms used for purposes related to audio 

reproduction or audio editing is a live-end dead-end (LEDE) approach [Davies1980, 

Gervals2011]. As already mentioned, it is based upon a division of the room space into 

two sub-areas. The first one is treated with acoustic absorbers. This part of a room is 

called a dead end. Due to such treatment, from this end of the room, only a direct 

sound is produced. The other part of the room has reflective surfaces, which provide 

reflections necessary to give a listener sense of being enveloped by a sound. This is 

called a live end. However, the sound at the live end should be scattered in addition to 

being simply reflected. This difference in scattering and the so-called specular 

reflection may define if the room provides a satisfactory frequency response. Specular 

reflections may cause constructive and destructive interferences. They may alter the 

frequency response of the room due to the occurrence of standing waves. They may 

modify both the frequency content of acoustic waves arriving at the given point of the 

room. Still, they can also alter phase, which additionally to degrading the timbre of 

perceived sound may also change a stereo image of a played recording.  

Even if all precautions and methodology were applied to the design of the room, it 

should be validated by measurement of metrics. Such metrics permit assessment of 

its quality with respect to factors such as subjective evaluation of sound clarity, its 

warmth, or separability of stereo images of musical instruments. The basic and one of 

the most important signals measured in a room is its impulse response [Cox2017, 

Zolzer2011]. It is a signal measured in a given place of a room, being the response to 
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the excitation, an impulse approximating a Dirac delta. In practice, the excitation is 

often achieved by firing a starting pistol or by measurement with a signal with special 

autocorrelation properties such as the maximum length sequence (MLS) or a sine 

wave sweep [Guidorzi2015, Müller2008, Rothbucher2013]. The derivative 

characteristic of the room, which is calculated from the gathered impulse response, is 

the frequency response of the room. It is a measurement of linear subtractive or 

additive changes introduced to a given excitation signal by the room. It is usually 

calculated from an impulse response. But sometimes, it may be measured directly, for 

instance, with the use of white or pink noise and a related linear or octave-band filter 

bank. Impulse response may also be used for the calculation of other parameters. They 

are often used to assess the quality of the room acoustics in an objective manner. 

Examples of such parameters derived from the impulse response [Beranek1996, 

Everest2015] are provided in Tab. 2.1. 

Tab. 2.1 Examples of parameters used for the description of the room acoustics that can be 

derived from the impulse response. 

Parameter 

name 

Parameter definition 

Clarity It is a measure allowing for assessment of the influence of early 

(useful) and late (useless) reflections on the intelligibility of speech 

and music signals. The metric is calculated with the following 

formula: 

𝐶𝑇 = 10log
∫ ℎ2(𝑡)𝑑𝑡
𝑇𝑖
0

∫ ℎ2(𝑡)𝑑𝑡
∞

𝑇𝑖

, 

Where 𝑇𝑖 means integration time and is set to 50 ms to obtain 

clarity C(50) and 80 ms to obtain C(80), ℎ(𝑡) denotes impulse 

response of the room. 

Reverb time 

RT(x) 

The RT(x) coefficient is a duration of time needed for an acoustic 

pressure level in a given room to decrease by x dB. Typical values 

of x are 20, 30, and 60 dB. The value of RT(60) is often 

approximated by measurement of RT(30) and calculation of 

RT(60) by multiplying  

the value of RT(30) by 2. 

Early Decay 

Time (EDT)  

Reverb time for the decay of reverb curve from 0 dB to -10 dB, 

therefore it formally can also be denoted as RT(10). It often can 

be employed as a good measure of speech clarity. 
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Another approach for validations of results is an assessment of the subjective 

opinion of experts, who assess the quality of the acoustics of a particular room. In such 

a case, it is also useful to define a set of parameters, making it easier to standardize 

answers from the experts taking part in a subjective listening test. Such parameters 

are subjective in their nature and have a descriptive definition. However, it should be 

noted that many literature sources correlate subjective evaluation with measurable 

parameters [Astolfi2008, Beranek1996, Carvalho1996, Fastl2007, Giménez2014, 

Zera1997 ], even though conclusions may be drawn as to the quality of room acoustics 

only after a thorough statistical analysis of responses given by the experts. Examples 

of parameters assessed in a subjective manner with the use of subjective tests are 

provided in Tab. 2.2 [Everest2015]. 

Tab. 2.2 Examples of parameters used for the subjective description of the room acoustics. 

Parameter 

name 

Parameter definition 

Clarity A measure of the ability to perceive details of an auditory 

stimulus and distinguish details such as musical notes or speech 

articulation. 

a feeling of 

being enveloped 

by the sound 

A measure of the subjective sensation of being immersed by the 

sound. 

brightness A subjective parameter correlated to the content of high acoustic 

wave frequencies. 

warmth A subjective parameter correlated to the content of low acoustic 

wave frequencies. 

quality of spatial 

localization 

A subjective measure of how easy it is to distinguish from which 

direction one perceives sounds in a given room. It may degrade 

if too many specular reflections are present. 

 

As already mentioned, in the case of the subjective assessment of a room, it is 

necessary to take into account the fact that a very rigorous statistical analysis of the 

results of the experiment has to be taken to obtain reliable conclusions. Otherwise,  a 

variance in responses, which may result from, i.e., individual differences in perception 

of acoustic sensations, may influence findings drawn from the collected answers. 

Another important factor is a choice of the right question asked to the participants of 

the experiment. It has to be formulated in such a way that will not influence the answers 

of participants taking part in the survey and should be connected to only one aspect of 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

33 
 

the room acoustics, which is being assessed. The experiment also has to be designed 

so that listeners will not be forced to concentrate over a very long period. If this 

condition is not met, it may influence results obtained for parts of an experiment 

conducted near the end of the listening session because the participants will not focus 

on a task. It should be noted that subjective tests are standardized, so all the relevant 

assumptions should be considered to the minute when designing them [ITURBS1116, 

ITURBS1284, ITURBS1534, ITURBS2132]. 

2.1. Analysis methods used in the acoustic CAD and the acoustic 

optimization software 

Computer modeling of the sound field finds its application in the design of rooms, 

their construction, or modernization. In designed models, it is possible to estimate the 

room acoustic properties with high accuracy when measurements are not possible or 

the room is still at the design stage. This significantly reduces the cost and time of 

construction and allows skipping the additional step of designing acoustic adaptation. 

At the same time, simulation of acoustic wave propagation can also be successfully 

employed for the estimation of properties of objects such as Schroeder diffusers. 

The main goal of experiments shown in this dissertation is the use of acoustic 

simulation for automated optimization. Although it can be tempting to try to use an 

acoustic CAD for the evaluation of diffuser designs generated by optimization 

algorithms, there are some practical difficulties, which are the reason why it may not 

be the best way of evaluating Schroeder diffusers generated in such a way. 

Additionally, most CAD software does not provide an application programming 

interface (API) that would be suitable for fast testing of automatically generated 

measurement scenarios, which would be compatible with typical software solutions 

from the realm of machine learning such as TensorFlow and Keras libraries 

[Abadi2015, Chollet2015]. The aforementioned machine learning libraries are 

important components of authors software implementing the deep reinforcement-

learning-based approach, which is described in this thesis.  

On the one hand, the workflow which is typical for acoustic CAD is similar to the 

automated pipeline of operation needed in automated optimization tasks. Both 

processes can be divided into the stage of preparation, a geometry of the room and 

scattering obstacles, and then – a stage of simulation of acoustic wave propagation. 

The latter task also can be achieved in many ways in acoustic CADs. On the other 

hand, acoustic CADs are used mainly to simulate large spaces and rooms, which is 

not always the most desired scenario if automatic optimization of passive acoustic 

scattering devices such as Schroeder diffusers is considered. One of the main 

purposes of acoustic CADs is auralization, which is most frequently achieved through 

the means of geometrical methods [Everest2015]. This leads to the fact that specific 

methods are used to perform auralization of 3D modeled spaces. Namely – the 

geometrical room acoustic models (GRAMs) [Cox2017]. Examples of methods 

employed in GRAMs are as follows: 

• A ray-tracing method, which is based upon an assumption that propagation 
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of acoustic waves can be approximated in a similar manner as in geometrical 

optics. Limitations of this method are also similar to ones associated with 

electromagnetic waves. Results obtained with this method are valid for high-

frequency signals, which in the case of acoustic signals are sound waves 

with frequencies over 125 Hz. For signals fulfilling this condition, the ray-

tracing method can be used to obtain impulse responses useful for 

auralization of designed spaces. 

• A virtual source method, operating by calculating mirror images of primary 

sources, leads to creating the second, third, and higher-order sources. The 

signal obtained in the point for which the echogram is calculated as an effect 

of simultaneous propagation of an acoustic wave from both the real and 

virtual acoustic wave sources. As this method also assumes geometrical 

rules of acoustic wave propagation, it is also not suitable for the simulation 

of phenomena occurring for the lowest acoustic frequencies. 

As seen from the above description, methods employed in many acoustic CADs 

are often based on the assumption that all of the acoustic wave propagation in modeled 

3D spaces follows rules of geometric, ray-like propagation [Everest2015]. There are 

other types of acoustic wave propagation modeling that do not make this assumption 

− for instance, models based on solving the acoustic wave equation and methods 

based on statistical methods. To choose the correct modeling method, the sound field 

structure must be determined. Tab. 2.3 shows the dependence of the modeling method 

selection on the sound field structure. 

Tab. 2.3 Dependence of modeling method selection on the sound field structure 

Acoustic field structure Numerical modeling method 

Room with small dimensions in 

comparison to the wavelength 
Wave-based method 

Room with large dimensions in 

comparison to the wavelength  

The ordered structure of wave fronts 

Geometric method 

Room with large dimensions in 

comparison to the wavelength  

Unordered structure of wave fronts 

Statistical method 

 

Wave-based methods are based on solving the wave equation and are not limited 

by the assumption of geometric propagation of acoustic wave rays. Therefore such 

models are capable of simulation phenomena occurring in the immediate vicinity of a 

scattering object or propagation of acoustic waves in a situation of a temperature 

gradient, which is affecting, i.e. the density of the air and thus curving the propagation 

waves of acoustic waves, which is an example of the situation directly violating 
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assumptions made by geometrical models.  

An alternative to both the wave-based methods and geometrical ones is the 

statistical method which assumes, that the sound field in the given space is a diffuser. 

Therefore a statistical equation can be employed to estimate parameters such as 

reverberation time. An example of such a formula is Sabine’s equation for the 

calculation of the 𝑇60 parameter [Long2014]. 

RT(60) = 0.161
Vroom
At

, 
(2.1) 

where  

Vroom denotes the volume of the room in meters, 

and At is a total area of absorption in a room calculated  according to the formula given 

below: 

At = ∑𝑆𝑛 ⋅ α𝑟𝑜𝑜𝑚,𝑛

𝑁

𝑛=1

, 
(2.2) 

where: 

𝑁 is a number of boundaries (i.e. walls) in a room, 

α𝑟𝑜𝑜𝑚,𝑛 is a mean attenuation coefficient characterizing n-th boundary in a room, 

𝑆𝑛 is a surface area (in meters) of n-th boundary in a room. 

The acoustic CAD software is a compelling and effective method for the simulation 

of room acoustics. Especially in situations that permit usage of geometrical and 

statistical methods, however, some models implemented in acoustic CADs also 

performed some kind of the wave-based method to improve the accuracy of predictions 

[Everest2015]. Often, they also allow the automatization of simulation. The main tasks 

of simulation programs include the detection of possible anomalies in strategic 

locations of the room, such as areas under balconies, alcoves, or corners of the rooms 

at the design stage of the room. However, for the purpose of simulations needed for 

automated optimization of acoustic diffusers presented in this thesis it still is more 

compelling to utilize a simulation library employing a method that is based upon a direct 

solving of an acoustic wave equation. This permits a more accurate simulation of 

phenomena associated with the lowest acoustic frequencies and physical phenomena 

taking place near objects interacting with incident acoustic waves. They are especially 

taking into the fact that if very precise outcomes are needed, then ray-based 

geometrical methods tend to require the application of additional correction factors, 

which improve the accuracy of their predictions [Bergman2018]. Such method choice 

also ensures that all such wave phenomena are taken into account for higher 

frequencies which is important if the space simulated is small.  

An example of such simulation is a modeling of a measurement made in an 
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anechoic chamber, where the largest distance between objects is 2 m. Selected 

examples of such methods are: 

• boundary element method (BEM), 

• finite element method (FEM), 

• finite-difference time-domain method (FDTD). 

Algorithms such as BEM and FEM are capable of obtaining very accurate estimates 

of acoustic wave field distribution [Bergman2018]. Both of those methods are based 

on frequency-domain calculations, and due to this fact, their output does not allow to 

obtain impulse responses of a room in a direct way. An alternative to those two 

methods is the FDTD method. The use of a method based on acoustic wave equation 

solving also has other advantages. As FDTD is relatively easy-to-implement in terms 

of the length of code needed to obtain meaningful results, it easily integrates this 

simulation algorithm with the program performing optimization of an acoustic 

Schroeder diffuser. This, for instance, would allow the implementation of direct 

communication between simulation and design algorithms through the RAM memory 

of the computer. Also, it is desired to employ a method that directly permits the 

estimation of impulse responses in both room-related and anechoic conditions. This 

means that the best-suited methods are finite-element methods which tend to be slow. 

One variant of the finite element method, which is relatively simple to implement and 

can be sped up by using GPU-based computing, is an FDTD simulation, and this kind 

of simulation will be used for the optimization of acoustic diffuser designs in the 

dissertation [Cox2017, Webb2011].   
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3. SCHROEDER DIFFUSER – PROPERTIES, METHODS OF 

DESIGN, AND MEASUREMENT 

This Section provides a theoretical background of acoustic diffuser properties, 

methods of design as well as principles of measuring such devices under anechoic 

conditions. This is crucial knowledge as it allows measurement-based verification of 

acoustic diffuser prototypes obtained by both the classical and optimization-based 

methods.  

First, in Subsection 3.1, a definition of a Schroeder diffuser will be introduced 

together with a description of the basic methods for designing them with approaches 

based on QRD and PRD pseudo-random sequences. Next, methods for 

measurement-based verification of acoustic diffuser properties will be introduced in 

Subsection 3.2. An important measure will be introduced in the aforementioned 

subsection, namely the autocorrelation scattering coefficient. It is a measure that can 

be used both as a measure of prototype quality but can also be implemented as a 

parameter for optimization in a numerical simulation. This makes an autocorrelation 

scattering coefficient a well-suited candidate for a metric to be used for optimization in 

an anechoic simulation scenario. In Subsection 3.3, a method for designing acoustic 

diffusers with the use of genetic algorithms is proposed, and in Subsection 3.4, 

analogous methods employing deep reinforcement learning are presented. 

3.1. Schroeder diffuser properties 

Acoustic diffusion may be obtained by employing a number of operating principles 

– for instance - they can be passive devices relying on the phenomenon of reflection 

and diffraction (passive diffusers) [Arvidsson 2020], but also they can provide diffusion 

by using digital signal processing techniques and impedance modulation (active 

diffusers) [Avis2005, Collet2009, Cox2006, Lissek2013, Xiao2005]. The latter ones are 

also able to perform both as an active diffuser and an active absorber, thus becoming 

a hybrid device. This hybrid nature of active acoustic sound treatment devices may be 

a desirable feature if the room in which it is intended to be implemented is not large, 

and there are only a few places where an acoustic panel or a diffuser may be placed 

[Avis2004]. This advantage of active acoustic sound treatment devices makes them 

useful for complicated tasks such as active noise reduction and sound waves 

attenuation [Matten2017, Moreau2009, Rivet2017], or decreasing influence of 

unwanted acoustic modes in a room under the sound treatment process [Lissek2009, 

Karkar2014]. Unfortunately, active acoustic devices usually are expensive, 

complicated, and challenging to design. Passive acoustic devices can also have a very 

complex structure, especially if they employ metamaterials [Bongard2011, 

Schwan2017]. However, there are groups of passive acoustic treatment devices that, 

in some particular cases, may especially be easy to design and manufacture. An 

example of such a device is a Schroeder passive acoustic diffuser.  

A Schroeder diffuser is an acoustic treatment device that can be defined by a matrix 

of integers greater than or equal to zero and a set of several scalar parameters with 
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real values. Such a system consists of a one-dimensional series or a two-dimensional 

well grid. In the first case, such a diffuser affects the sound field only in one plane. In 

the second - in two planes perpendicular to each other. The diffuser wells have different 

depths and are separated from each other by thin walls [Cox2017, Everest2015]. The 

proportions of the depth of the wells can therefore be presented either as a series of 

values if the diffuser interacts with the sound field only in one plane or a matrix of values 

if it interacts with it in two planes. The wells are a system of resonators that affect the 

wave front falling on the diffuser in such a way as to reduce its ability to interfere after 

reflection from such a diffuser. Examples of one-dimensional and two-dimensional 

geometry of the acoustic diffuser are shown in Fig. 3.1. The scalar parameters, which 

also belong to the description of the acoustic diffuser, include a factor for converting 

the ratio of the depth of the wells to their target depths and the physical dimensions of 

the wells, which at the same time define the dimensions of the entire acoustic diffuser. 

The acoustic diffuser can influence the sound field due to the phenomenon of 

acoustic wave scattering, which can be used to design room acoustics so that they 

allow the existence of reflected waves, but at the same time, these reflections do not 

cause undesirable changes of an acoustic signal. An example of such changes may 

be, for example, the formation of standing waves and the resulting irregularity of the 

impulse response of the room. Acoustic diffusers in this context are employed for the 

controlled introduction of diffuse reflections of acoustic waves, which have a reduced 

ability to interfere, and thus to create standing waves. Sound scattering caused by 

placing acoustic diffusers in a given place also allows eliminating the phenomenon of 

so-called flutter echo, which is also an undesirable phenomenon, degrading the quality 

of listening in a given location [Everest2015]. 

 
 

Fig. 3.1. Schroeder diffusers designed for one plane (left side) and two planes (right side). 

The method of determining the geometry of Schroeder diffusers based on the 

proportions of the cavity depth and the external physical dimensions of such devices 

makes it possible to formulate design methods that are intuitive and allow for quick 

results in the form of diffuser designs that behave well in real application conditions. 
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These methods are based on the application of pseudo-random number generation 

techniques to create sequences of numbers determining the relative proportions of the 

diffuser cavity depths. This sequence of depth-defining numbers, together with the 

overall dimensions of the diffuser and the value used to convert pseudo-random 

numbers into real-world depths of the wells, define Schroeder diffuser geometry. 

The properties of the scattering system vary depending on what type of pseudo-

random sequence is used to design its geometry. Examples of frequently proposed 

sequences used for this purpose are MLS (maximum-length sequence), PRD (primitive 

root diffuser), and QRD (quadratic residue diffuser) sequences [Everest2015]. They 

come from the theory of generating pseudo-random numbers that are widely used in 

areas such as cryptography and telecommunications. The pseudo-random sequence 

is used to generate a random set of proportions for the depth of the diffuser wells. 

Thus, various diffuser design methods differ from each other, with a mathematical 

formula used to generate numbers defining the relative depths of the diffuser cavities. 

In diffuser geometry designed by the process based on QRD sequences, the ratio of 

the proportional depth of the n-th well marked by 𝑊𝑑,𝑄𝑅𝐷 is given by the formula 

[Everest2015]: 

𝑊𝑑,𝑄𝑅𝐷(𝑛) = 𝑛2mod 𝜉, 
(3.1) 

where n is consecutive integers greater than or equal to zero, and 𝜉 is the selected 

prime number. 

For PRD diffusers, the ratio of the proportional depth of the n-th well is given by the 

formula: 

𝑊𝑑,𝑃𝑅𝐷(𝑛) = 𝑔
𝑛mod 𝜉, 

(3.2) 

where g is the smallest primary root of the prime number 𝜉. 

In the case of diffusers operating in two planes, it is assumed that n is the sum of 

the indexes for the row and column, i.e.: 

𝑛 = 𝑛𝑥 + 𝑛𝑦 
(3.3) 

 

Finally, the relative well depth factor is converted to the physical depth using the 

formula: 

𝑑𝑛 =
𝑊𝑑(𝑛)𝜆0
2 𝜉

, 
   (3.4) 

where 𝑑𝑛 is the physical depth of the diffuser well and 𝜆0 is the length of the acoustic 

wave corresponding to the design frequency 𝑓0 of the diffuser. In addition, the acoustic 

diffuser is characterized by parameters determining the frequency range in which they 
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are active and effectively scatter acoustic waves. The upper band limit is given by the 

formula [Cox2017] 

𝑓𝑢𝑏 = λmin/2, 
(3.5) 

where 𝑤 is the wavelength corresponding to the highest frequency band for which the 

diffuser is effective, and 𝜆𝑚𝑖𝑛 is the shortest wavelength for which no lateral 

propagation modes arise in the diffuser well, but propagation takes place according to 

the plane wave model. The second important parameter is the design frequency 𝑓0 and 

the associated design wavelength 𝜆0, which are related to the acoustic diffuser. The 

acoustic diffuser is effective for integer multiples of the associated design frequency. 

The type of pseudo-random number sequence used in addition to the algorithm for 

obtaining subsequent relative depths of individual wells also affects the properties of 

the diffusers themselves. The use of PRD sequences usually allows the reduction of 

energy reflected in the direction consistent with the law of reflection from a perfectly 

reflecting surface, provided the pattern of wells is repeated sufficiently many times 

[Cox2017]. However, it should be stressed that this situation occurs only for multiples 

of the design frequency and its integer multiples. If this condition is met, it is possible 

to reduce the reflection amplitude by 20 log10(𝑝). 

It is important to note that Schroeder diffusers can be realized in two manners – 

with or without physical barriers (walls) between wells. Depiction of two such 

paradigms is provided in Figs. 3.2 and 3.3. Fig. 3.2 depicts a 1D case of such designs, 

and Fig. 3.3 depicts a 2D case. 

 

Fig. 3.2 Examples of 1D Schroeder diffusers designed with (left side) or without (right side) 
walls between the wells.  
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Fig. 3.3 Examples of 2D Schroeder diffusers designed with (left side) or without (right side) 
walls between the  wells. 

The best (in the sense of optimization) Schroeder diffusers generated by algorithms 

presented in this thesis are used to create prototypes, which then are tested in an 

anechoic chamber. Therefore, it was decided to design 2D diffusers without physical 

walls between wells (the right side of Fig. 3.3). This decision makes it easier to prepare 

prototypes for purposes of performing measurement in an anechoic chamber. Designs 

with walls were also tested,  but only by means of computer simulation. 

This decision makes it possible to prepare a formal description of a diffuser layout. 

The following parameters can fully define any 2D diffuser: 

• a matrix of integer numbers denoting the height of each Schroeder diffuser 

well, 

• physical dimensions of a single segment making a well (width, length, and 

height), 

• maximum number of segments per well, 

• dimensions of diffuser (in elements/wells, i.e. 10 elements by 10 elements), 

• the thickness of the back part of the diffuser on which wells are positioned. 

 

Visualization of such description method applied to an example 2D Schroeder 

borderless diffuser is shown in Fig. 3.4. 
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Fig. 3.4 Depiction of all dimensions and other data crucial for an unambiguous definition of a 
Schroeder-type diffuser simulated in experiments. 

Such a description of the diffuser was employed in the course of all numerical and 

physical experiments. It can be applied to designs with borders and borderless ones. 

In the case of designs with walls, additional information about the thickness of walls 

has to be included in the description. The definition of diffuser structure presented in 

this Section is especially useful for algorithms optimizing diffuser designs, especially if 

the goal is the maximization of diffusion and scattering coefficients. Due to such choice 

of design quality metric effects of computational optimization of diffusers shape has a 

direct influence on matrices obtained from measuring the diffuser prototypes in an 

anechoic chamber. A detailed method for measuring the aforementioned parameters 

of acoustic diffusers is presented in the next subsection. 
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3.2. Methods for measurement of an acoustic field in the 
proximity of scattering devices 

 

Apart from having parameters that are descriptive of the room acoustics itself, it is 

also necessary to have a set of parameters that can describe an acoustic diffuser 

performance in a standardized way. Such measures are calculated for the behavior of 

the diffuser in anechoic space. This can be calculated on the basis of an outcome of a 

measurement or a simulation that predicts the result of the measurement. Effectively, 

this allows for developing simulation models and measurement methods, which 

interact with each other and allow multiple levels of results correctness control. It is 

also possible to adopt an iterative approach to simulation and measurement-based 

testing of solutions developed in such a way – the final result is obtained by iterative 

stages of simulation-based design of the given acoustic device and the testing of the 

device by a measurement [Kurowski2016, Kurowski2017, Kurowski2018]. 

Visualization of such iterative design methodology is presented in Fig. 3.5. 

 

Fig. 3.5. The iterative design methodology employing both the repeated simulation and 
measurement to track the design goal in the process of preparation of a device. It can be 
applied to the design of acoustic diffusers, but is not limited to only such cases. 
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 The aforementioned standard parameters, which are possible to both be measured 

(i.e., in an anechoic chamber) but also can be predicted by a computer simulation, are 

also useful because they may be employed as metrics optimized by a computer 

algorithm. Under anechoic conditions, it is possible to define the amount of energy 

reflected by the particular design in a specular manner. It is also feasible to determine 

to what extend the scattering pattern provided by the diffuser is uniform or calculate 

the acoustic pressure in front of the diffuser, which is the result of exciting the design 

with one single acoustic impulse. The type of metric imposes the way of measuring the 

sound field, especially the spatial structure of the measurement points. For some 

metrics such as uniformity of the acoustic pressure distribution, simple grid-like 

placement of points is more useful as it is desired to have a uniformly sampled map of 

the scalar value of pressure. In other cases, it is preferable to have a set of equidistant 

points placed on a semicircle, which makes it easier to calculate metrics related to 

polar characteristics of the measured diffuser geometry [Cox2017]. An example of such 

a semicircular pattern is presented in Fig. 3.6. 

 

Fig. 3.6. A common pattern of 37 measurement points used for the evaluation of the 

scattering and reflection coefficient of a given acoustic diffuser device. The resolution 

of such measurement is equal to 5 degrees. 

A typical resolution of such measurement is 5 degrees, and thus in practice, it is 

necessary to perform 37 measurements to obtain all required information on the 

diffuser design and calculate derivative coefficients related to the device measured. 

Data obtained from measurement are impulse responses captured in points positioned 

in a manner similar to one presented in Fig. 3.6. This allows the calculation of crucial 

parameters describing the behavior of particular diffuser geometry in the acoustic field.  

There are two important measures that are used to describe the properties of 

acoustic diffusers – diffusion and scattering coefficients. Often, estimates of those 

parameters derived from the polar response are calculated, namely, the correlation 

diffusion coefficient and correlation scattering coefficient. They are a practical 

alternative for the canonical version of parameters as they can be obtained from a 

polar response, which can be measured only once.  
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The correlation diffusion coefficient 𝑑ψ is calculated by the use of the following 

formula [Cox2017]: 

𝑑𝜓 =
(∑ 10𝐿𝑛/10𝑁

𝑛=1 )
2
− ∑ (10𝐿𝑛/10)

2𝑁
𝑛=1

(𝑁 − 1)∑ (10𝐿𝑛/10)2𝑁
𝑛=1

, 
(3.6) 

where: 

𝐿𝑛 is a sound pressure level in an n-th measurement point, 

𝑁 is the number of measurement points, 

𝜓 is the angle of the excitation acoustic wave incidence. 

An important assumption is that for this formula to be valid, measurement points 

must be placed on the semicircle. The diffusion coefficient is a measure of the 

uniformity of the reflected sound. This coefficient is usually used as an evaluation 

measure in acoustical diffuser design and for comparison of the performance of various 

diffuser geometries. Unfortunately, even a flat surface has some diffusive properties 

according to the given formula. To reduce this effect, often, a reference measurement 

of a flat reflective plate is taken in addition to the measurement of the diffuser under 

test. Next, a normalized diffusion coefficient is obtained with the following formula: 

𝑑𝜓,𝑛 =
𝑑𝜓 − 𝑑𝜓,𝑟

1 − 𝑑𝜓,𝑟
, 

(3.7) 

where: 

𝑑𝜓 is the correlation diffusion coefficient of the diffuser in question, 

𝑑𝜓,𝑟 is the correlation diffusion coefficient of a flat reflective plane. 

Another important parameter derived from such a set of points is a correlation 

scattering coefficient. It is calculated with the following formula:  

δc = 1 −
|∑ 𝑝1(θi) ⋅ 𝑝0

∗(θi)
𝑛
𝑖=1 |2

∑ |𝑝1(θi)|2
𝑛
𝑖=1 ∑ |𝑝0(θi)|2

𝑛
𝑖=1

, 
(3.8) 

where: 

𝑝1 denotes the pressure scattered from the test surface, 

𝑝0 is the pressure scattered from the flat reference surface, 

θi indicates the receiver angle of the i-th measurement position, 

∗ is a complex conjugate operation, 

The scattering coefficient is a measure of the portion of energy that is reflected in 

a non-specular way from a given surface compared to the whole energy of the acoustic 
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wave reflected from a surface. It is usually employed for geometrical room simulations.  

The use of polar response for the calculation of parameters of acoustic diffuser 

designs makes it possible to optimize the process of measurement. For instance, there 

is a possibility of automating the measurement with the use of a Cartesian robot. The 

anechoic robot is an example of an automatized mechanical framework capable of fast 

measurement of an acoustic field in a given area. Measured value may vary because 

an arm of such a robot can handle various sensors [Szczodrak2016, Kotus2015]. For 

instance, a sensor may be a measurement-grade microphone that captures only an 

acoustic pressure-related signal. Still, it also can be an acoustic intensity probe, which 

measures not only scalar characteristics of an acoustic field but also an acoustic 

velocity vector, which leads to the measurement of acoustic energy flow in a given 

measurement point [Fahy1995, Weyna2001]. The basic idea of measurement is similar 

– the probe is positioned in discrete points in the space measured.  

The process of such automated measurement is depicted in Figs. 3.7 and 3.8. It 

may happen that the measurement is taken while the probe is moving. However, such 

an approach causes a number of additional difficulties. Firstly, a noise of stepper 

motors or other equipment necessary to move the arm of the robot may be captured 

by the probe. Another problem is the resolution of the measurement. Also, the influence 

of vibrations of the robot structure may be eliminated by delaying the measurement 

until the whole structure of the robot stabilizes. 

 

Fig. 3.7. A p-u sound probe during a measurement process. The device is used to 

measure sound field distribution in the proximity of the head and torso simulator. 

Positioning the probe for each measurement point is done by a Cartesian robot 

controlled by a PC computer. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

47 
 

 

Fig. 3.8. A p-u sound probe during a measurement process of an acoustic diffuser 

prototype. For calculation of scattering and reflection coefficients, it is often sufficient 

to measure the level of acoustic pressure for points placed on the semi-circle 

surrounding the diffuser. 

Moving probe captures the averaged data from a distance traveled by the probe. 

Therefore, it is necessary to perform accurate measurements during a single 

movement of the probe to ensure that a satisfactory resolution of the final 

measurement is obtained. On the other hand, this method may be faster than based 

on performing the measurement in a set of discrete points.  

 

3.3. Design of acoustic diffusers with the use of the 
evolutionary algorithm 

In addition to design methods based on pseudo-random sequences, there are also 

more advanced methods for designing acoustic diffusers. For some problems, an 

optimization process may be the most viable way of obtaining satisfactory results in 

fields of knowledge such as acoustics and fluid mechanics. An example of such a task 

may be a design of an acoustic horn with specific properties [Schmidt2016], a structure 

of rotating turbines [Nguyen2017], or even a biomedical problem of designing an aortic 

valve [Spuhler2018]. Most of those approaches employ some form of computer 

simulation; many of them are based upon the finite element method, which is used to 

calculate the optimized solution quality metric. This approach may also be applied to 

the problem of automatic designing an acoustic diffuser. 

The metric is only one part of the optimization-based approach to automated 

acoustic diffuser design. The second element is an optimization algorithm. An example 

of a popular optimization algorithm employed for automated design tasks may be a 

genetic algorithm [Thede2004, Patraquim2017]. When designing acoustic diffusers 
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using a genetic algorithm, it is necessary to define the so-called genome. For diffusers, 

it is a matrix containing proportional cavity depth coefficients and a range of values 

that can be a number representing the acceptable cavity depth coefficient. First, a 

population of 𝑁𝑖 random individuals consistent with the given genome is generated. 

Individuals may be subjected to crossing-over and mutation operations.  

In the algorithm examined in the experiment conducted in the latter parts of the 

thesis, crossing-over involves randomly swapping columns or rows of two diffuser 

designs. Whenever the swap involves columns or rows is random, the probability of 

choice is 0.5. Then the algorithm iterates through rows or columns and converts them 

between projects with a probability of 0.52. The mutation operation also involves 

iterating the algorithm randomly through design rows or columns and changing the 

cavity depth coefficient value by a random, non-zero integer from -2 to 2 with the 

exclusion of zero. The value of 𝑁𝑖 used in the successive parts of this work is assumed 

to be equal to 30. 

This action causes half of the cavities after mutation is changed by one or two 

quantized differences in height. For high N values, this allows for the smooth evolution 

of designs, which is mitigated by the fact that the probability of mutation is high. A 

schematic representation of the operations for obtaining new diffuser designs in the 

initial diffuser population is shown in Fig. 3.9. 

The genetic algorithm is an iterative process. Within each iteration, a so-called 

generation of solutions is then tested. The result of the test is the value of the fitness 

function, which is a parameter optimized by the genetic algorithm. It is assumed that 

the value of this parameter is maximized; however, in the case of the minimization task, 

it is enough to multiply the given fitness function by -1, which causes that the task of 

minimizing the value of the function will change into the task of maximizing its value. 

The exact definition of the fitness function depends on the definition of the problem to 

be solved by the genetic algorithm.  

After each iteration, new diffuser designs are evaluated by calculating a fitness 

function that determines how much they improve the acoustics of the room in which 

they are applied. Schematically, the algorithm used in this Ph.D. thesis work is 

presented in Fig. 3.10. 
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Fig. 3.9. Diagram illustrating the process of crossing-over and mutation used in the 

genetic algorithm. In the crossing-over operation, randomly exchanged columns or 

rows of diffuser designs. In the mutation process, the height of the elements is changed 

by ±1 or ± 2. 

 

Fig. 3.10. Diagram illustrating the process of selecting the best-fit diffuser designs after 

mutation and crossing-over. 

In the case of acoustic diffusers, the task may relate to maximizing the diffusion 

coefficient, diffusion coefficient, or minimizing the standard deviation of the frequency 
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response at a given point of the tested room. After selecting new diffuser designs 

according to the mechanism in Fig. 3.10, the list of best diffusers is updated based on 

the final ranking list, and the process of crossing-over, mutation, and calculation of the 

ranking is performed again. Interruption of this process can occur either automatically, 

e.g., after reaching the desired value of the optimized coefficient characterizing the 

diffuser design (e.g., uneven frequency characteristics), or, for example, after a 

predetermined number of algorithm epochs was carried out. 

3.4. Design of acoustic diffusers with the use of reinforcement 
learning algorithm 

Many real-world problems are difficult or even impossible to solve using simple 

algorithms that may be performed by a computer. Often in such cases, we have to 

employ heuristic methods to obtain an approximate solution to our problems. One of 

the recent and very promising fields of knowledge that delivers tools for such heuristic 

dealing with demanding, real-world problems is machine learning and deep learning.  

They are successfully addressing such problems as automatic mixing and automatic 

generation of musical pieces [Jaques2016, Martinez2017], audiovisual emotion 

recognition [Kim2013], speech recognition and voice conversion [Desai2009, 

Hinton2012,  Mobin2016], sound synthesis [Donahue2018, Oord2016], or data mining 

tasks such as performing feature engineering to design best feature vectors for a given 

classification task [Le2012]. 

Deep learning is currently mostly associated with techniques employing neural 

networks. However, some methods which can also arguably be classified as connected 

to deep learning utilize other algorithms such as deep Boltzmann machines 

[Salakhutdinov2009]. Unfortunately, in the case of a majority of algorithms used in deep 

learning, especially ones employing neural networks, there is difficulty in analyzing how 

they exactly operate and how they exactly carry out the reasoning process and come 

to their decisions. This leads to problems in analyzing their behavior, difficulties in, i.e., 

formulating theoretical requirements for the structure of neural networks or other, more 

practical and implementation-related problems. These may refer to, i.e., the possibility 

of tampering with their performance using specially manipulated input data (so-called 

adversary attacks) [Kereliuk2015]. 

Reinforcement learning algorithms are a group of machine learning methods for 

tackling problems involving interaction with the environment and managing the process 

of getting knowledge from such an interaction. A reinforcement learning algorithm often 

takes the form of a so-called agent that interacts with a given, often unknown 

environment by taking actions. The number of actions possible for being taken can be 

limited but can also be infinite. Sometimes the action space can even be continuous. 

The outcomes of actions undertaken by the agent are evaluated, and feedback 

information about the quality of such action is returned to the agent in the form of a so-

called reward. A simple example of the implementation of such a process is an 

autonomous agent in the form of a robot that learns to navigate a maze, but there are 

also examples of more complex implementations. For instance, the approach based 
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on reinforcement learning may be employed for an unsupervised design of neural 

network structures [Baker2016] or playing computer games [Choi2017, Kempka2016, 

Mnih2015, Usunier2016]. 

A reward is the main signal used for training the algorithm to choose the best 

actions. It is often a numeric value and is maximized by the agent in the process of 

learning and interacting with the environment. The definition of such a reinforcement 

learning process is depicted in Fig. 3.11 [Sutton1998]. 

 

Fig. 3.11. A definition of reinforcement learning problem – the agent interacts with the 

environment by taking actions. In return, it obtains feedback in the form of the reward 

signal and observation about the next state after the action. 

In reinforcement learning, a common problem is taking into account the value of 

future states, which are not certain to happen but may yield a future reward. A common 

practice is introducing a so-called discount factor to estimate future rewards that may 

be obtained after taking a certain action. The expected reward in such a case is equal 

to: 

𝐸(𝑟) = 𝑟𝑡 + ∑ 𝛾𝑖
𝑁

𝑖=1
⋅ 𝑟𝑡+1 

(3.9) 

where: 

𝐸(𝑟) is respected reward to be obtained by the agent, 

𝑟𝑡 is a reward achieved by the agent in the current step of the interaction with the 

environment 

𝛾 is a discount factor, 𝛾 ∈ 〈0,1〉, 

𝑟𝑡+1 is a reward obtained by the agent in future steps of interaction. 

Discount factor allows modifying the behavior of the agent with respect to valuing 

future rewards. For high values of 𝛾 the algorithm values future rewards. For low values 

of 𝛾, the algorithm values the instant rewards and is less influenced by rewards 

possible to be obtained in the future. The discount factor is one of the important 

hyperparameters of reinforcement learning algorithms.  
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Another hyperparameter of reinforcement learning algorithms, especially ones 

based on a deterministic way of determining future actions, is the concept of ϵ-greedy 

policies. In the case of value-based reinforcement learning, the action is chosen by 

finding an action for which a value of Q is maximum, and thus the expected reward is 

maximal. The ϵ-greedy policy introduces a chance of taking random action instead of 

one being an inference with the values of Q functions [Buduma2017]. Thus it enhances 

the ability of the algorithm to explore the state space instead of exploiting known 

trajectories. The ϵ parameter determines the probability of taking a random choice of 

an action. Exploration versus exploitation trade-off is one of the common problems 

found in the design of reinforcement learning algorithms. There is also another method 

of introducing exploration to reinforcement algorithms, which is the use of probability 

distribution generation to define a distribution of actions undertaken by the algorithm 

and then use of this distribution to determine the action randomly. This kind of solution 

guarantees a chance of making less probable decisions, which introduces additional 

trajectories to be explored by the algorithm. 

The decision process in reinforcement learning is assumed to have the Markov 

property. Thus, the state and the value of the reward signal are affected only by the 

current action, and past actions do not affect outcomes gathered from the environment. 

Interaction between the agent and the environment has a particular structure. Every 

single interaction consisting of performing a single action is called a step. A sequence 

of steps is called a trajectory. The environment may have states which are not possible 

to be left after entering them. Such states are called terminal states and are often 

ending states of trajectories taken by the reinforcement learning agent. Each sequence 

of states ending with the terminal state is often called episodes. The distinction 

between states and episodes is important because some reinforcement training 

algorithms introduce changes to the policy every step. Some other of them present 

them already at the end of the episode. This fact may affect the features of the 

algorithm, such as the speed of learning. The reinforcement learning agent may be 

designed in many ways. In the simplest case, it can consist of a matrix of values 

indicating which action should be taken in the case of a given observation retrieved 

from the environment. A more and more popular approach to this problem is the use of 

artificial neural networks, especially deep neural networks, as parts of a reinforcement 

learning agent. They can both be used for a direct choice of action to be undertaken 

by the agent or to estimate the future reward expected after taking a particular action. 

Each of them is the element defining a so-called policy, which is often denoted as 

𝜋(𝑠, 𝑎), where 𝑠 represents a state in which currently is an agent and 𝑎 denotes action. 

The goal of training the reinforcement learning agent is to find such a policy that 

maximizes the expected reward obtained by the agent.  

One of the means of obtaining an agent capable of interacting with complex 

environments is the use of a Q network. This is an example of the so-called value 

reinforcement learning algorithm. The Q network, or more often, a deep Q network, 

estimates a quality metric for each action possible to be taken by the algorithm in each 

step of interaction with the environment. The Q metric denotes a so-called quality of 
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the action. It is equal to the expected reward obtained by choosing the given action 

and further following the given agent policy. In real-world scenarios, the Q function is 

approximated and has to be learned through interaction with the environment. If there 

are many possible actions, and the state description is complex, the function estimation 

Q values can be very complicated. Hence, deep neural networks are a common choice 

as predictors of Q values. A general structure of such a neural network is depicted in 

Fig 3.12. 

 

Fig 3.12. The overall architecture of dueling deep Q network. 

In practice, the agent often contains two copies of the DDQN network. The first 

copy is used for the calculation of actions taken in the current state of the environment 

in which is the agent. A gradient descent algorithm optimizes weights defining this 

network after every step of interaction with the environment. The second one is 

identical to the first one and is used for the calculation of Q estimates for a future state 

after performing the action suggested by the first network. This is necessary to 

calculate the error for the first network. Weights of target networks are updated after a 

chosen number of updates are performed on the first neural network. This introduces 

additional numerical stability as estimates of future Q do not change rapidly due to the 

constant optimization process, which is applied to the first network. A target value of Q 

in the case of DDQN neural network has the following form [François-Lavet2018]: 

𝑌𝑘
𝐷𝐷𝑄𝑁 = 𝑟 +  𝛾𝑄 (𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎∈
𝑄(𝑠′, 𝑎, 𝑤𝑘);𝑤𝑘

−), 
(3.10) 

where: 

𝑌𝑘
𝐷𝐷𝑄𝑁

 is the value of Q function for the k-th action undertaken by the algorithm, 

𝑎 represents actions from the action space 𝐴, 

𝑤𝑘 is a set of weights defining a neural network used to calculate actions of the agent 

𝑤 is a set of weights defining a neural network used for the evaluation of the best Q 

value of the future state. 

The first network is trained by pairs of the environment state and corresponding 

values of 𝑌𝑘
𝐷𝐷𝑄𝑁

. The network has one additional feature which allows it a more precise 

estimation of values of the Q function. The architecture depicted in Fig 3.12 is a so-

called deep dueling Q network. Such a type of Q network performs estimation of state 
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value and action value separately. The action value is also often called an advantage. 

The Q value is a sum of state value and advantage value. This operation is performed 

by the aggregation network. Also, the state value predictor and action advantage 

predictor are often fed parameters from the common part of the neural network used 

to extract parameters from the state description provided to the deep Q network. One 

of the advantages of the DDQN algorithm is the fact that changes to the neural network 

are applied after each step. Therefore they often converge to the desired solution faster 

than other algorithms such as the policy-gradient method. 

One of the prominent problems, when constant on-line interaction with the 

environment is considered is the fact that consecutive decisions and their 

consequences may be correlated. This is especially visible in the case of agents 

utilizing screen images as input states. An example of such a situation is a neural 

network playing the Atari computer game. In such a case, consecutive frames of the 

video signal captured and fed on the input of the network are correlated. This can have 

a detrimental effect on the quality of the neural network training process and may even 

lead to a lack of convergence of the training process. A better scenario would be if a 

set of experiences from interaction with the environment could be gathered and then 

shuffled as in a standard supervised learning approach. This can be achieved by 

introducing a so-called replay memory [Foerster2017]. It is a structure that contains 

descriptions of all transitions between environment states together with information 

about reward obtained and action chosen. When a DDQN network is trained, a replay 

memory is sampled in a random manner, and a batch of training examples is created 

from the selected examples of transitions. Such an algorithm prevents the occurrence 

of strong correlation, which would be present if consecutive actions were taken directly 

from the memory of past actions as states and actions placed close in the time axis 

tend to be strongly correlated.  

Another approach to reinforcement learning is a deep policy-gradient (DPG) 

algorithm, which also employs a deep neural network as a part of the agent. In this 

case, the output of the network is a probability distribution of actions to be taken by the 

agent. An example of such a neural network architecture is presented in Fig. 3.13. 

 

 

Fig. 3.13 A general architecture of a neural network used for a policy-gradient 

reinforcement learning algorithm. 

In the case of a policy-gradient neural network, the network itself approximates 

learned policy. The policy-gradient ascent algorithm, which objective is to maximize the 

reward gained by the policy gradient algorithm, is employed in such a case. Weights 

of the network (denoted by 𝑤) are updated by a gradient ascent algorithm. The gradient 
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is calculated with the use of the following formula: 

∇𝑤π𝑤(𝑠, 𝑎) = π𝑤(𝑠, 𝑎)∇𝑤𝑙𝑜𝑔(π2(𝑠, 𝑎)), 
(3.11) 

 

This can be implemented with standard libraries allowing the implementation of 

gradient-descent training libraries. A special loss function, taking into account Eq. 3.11, 

can be constructed, thus allowing the implementation of a policy-gradient algorithm. A 

drawback of the policy gradient algorithm is the fact, that update for policy neural 

network may only be applied after a full episode of interactions with environments. 

Therefore they often converge with lower speed. On the other hand, policy-gradient 

methods make it easier to design solutions that rely on a probability distribution of 

actions to be taken and thus do not require explicit complication such as ϵ-greedy 

strategies to encourage off-policy exploration of the environment. They also consist of 

less complex neural networks and do not require additional data structures such as 

replay memory, which further simplifies their practical implementation. 

Both DDQN and DPG algorithms may be applied to the problem of acoustic diffuser 

design. Also, there are techniques that make use of the hybrid approach based on a 

mixture of DDQN and DPG approaches. Such a family of methods is called an actor-

critic approach [Grondman2012]. In each case, the environment is a numerical 

simulation of the acoustic diffuser behavior. This can be achieved by using, for 

instance, a finite-difference algorithm (FDTD). The reward is a change of optimized 

metric – positive if the change of the metric value is in the desired direction and 

negative in another case. Actions are used to introduce changes to the design of the 

acoustic diffuser, which is reevaluated after each change of its design. In such a 

setting, the machine learning algorithm learns to optimally choose the sequence of 

actions to optimize the value of the chosen property of an acoustic diffuser.   

All measurement and design methods presented in this chapter are especially used 

if they are coupled with an optimization algorithm. Thanks to such a design, it is 

possible to create an algorithm, which proposes a set of designs, which scattering 

properties are evaluated by computer simulations. Next, improvements are made to 

the best design, and the whole process is repeated until the results are satisfactory. 

This approach requires the use of simulation, which is capable of predicting input data 

for Eq. 3.6, namely – the impulse responses. In a measurement setup, they are 

obtained with the use of a microphone or an acoustic probe. In the realm of the 

simulation, equivalents of those impulse responses have to be obtained from a 

computer simulation. Techniques that can be used for such simulations are shown in 

the next Section. 
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4. SIMULATION OF ACOUSTIC WAVE PROPAGATION 

The purpose of this chapter is to present methods used for acoustic simulations, 

which are employed in further Sections associated with the automatic, optimization-

based design of acoustic diffusers. The simulation is an element of an optimization 

algorithm responsible for generating feedback for optimization algorithms (such as 

genetic algorithms or deep policy-gradient networks). This feedback is utilized to select 

best-fitted designs (in the case of genetic algorithms) or generate a reward signal used 

by a gradient optimizer in the process of neural network training (in the case of deep 

policy-gradient network or deep Q network). Methods described in this chapter enable 

simulation of both enclosed spaces and anechoic conditions. The latter is achieved by 

the use of Berenger’s boundary condition. For the purpose of this thesis, a special 

version of discretized acoustic wave equation was derived on the basis of the work of 

Webb and Bilbao [Webb2011]. They proposed a form of the discretized acoustic 

equation, which is easy to implement on GPU. The modified equation is also easy to 

be implemented on GPU, but at the same time allows for the simulation of lossy 

propagation medium and thus, at the same time, allows using Berenger’s perfectly 

matched layers to simulate anechoic conditions. Finally, a method for calculating 

necessary wave parameters of propagation medium such as acoustic wave 

propagation speed and the acoustic impedance of propagation method is provided. 

The input values to the proposed method are atmospheric pressure, temperature, and 

relative humidity. 

In this Section, first, the FDTD method is shown, employed to simulate wave 

propagation in a given geometry of a diffuser designed. Then, a perfectly matched layer 

equation is derived to achieve anechoic propagation in a numerical simulation is 

applied. Following this, a simulation of a mock-up room and methodology for assessing 

the quality of diffuser designs is presented. 

4.1. Simulation of acoustic wave propagation by the FDTD 
method 

In the process of selecting the diffuser geometry, each of the proposed designs 

must be assessed in terms of its impact on the acoustics of the simulated room. There 

are many ways to simulate the propagation of acoustic waves that can be used for this 

purpose. The main problem with the simulation of wave phenomena related to acoustic 

wave propagation is obtaining a wave equation solution, which is a differential 

equation. The popular choice to evaluate the shape of an acoustic field in given 

conditions is obtaining the approximate solution to the given equation, for instance, 

employing a finite difference approach [Farlow1993, Hamming1986]. However, this 

approach can be further divided into a few subcategories. In acoustics we can find for 

instance boundary element method [Brick2008, Citarella2011], finite element method 

[Logg2010, Phunpeng2015], or the finite-difference time-difference (FDTD) method 

[Kirkup1998]. Finite-difference methods are applicable to a wide range of problems 

associated with wave propagation. Therefore it should be noted that they can also be 

commonly found to be used for simulation of phenomena associated with the 
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propagation of electromagnetic waves [Chaber2017, Niedermayer2015]. It is worth 

remembering that in some cases, it may be viable to employ other simulation methods 

such as acoustic transfer vectors [Gerard2012, Tournour2000] or acoustic ray-tracing 

[Pompei2009]. 

Python is one of the most popular programming languages that is used for 

numerical calculations. There are examples of calculations employing finite-difference 

methods [Brennan2013, Langtangen2016, Logg2010, Phunpeng2015]. Libraries for 

the C++ programming language such as BEM++ are also available [Śmigaj2015]. 

However, the main advantage of the algorithm implementation in Python is the 

simplicity of using both the finite-difference numerical libraries and other already 

implemented algorithms such as ones found in deep learning libraries available for the 

Python programming language. Another advantage of using the Python programming 

language is an easy interface for implementing acoustic simulation software employing 

many-core computation architecture using the GPU acceleration, which significantly 

affects the performance of finite-difference algorithms [Markall2012]. 

From the point of view of simulating acoustic diffuser behavior, one of the most 

beneficial simulation methods is the FDTD technique. Its advantage lies in the 

simplicity of implementation and ease of acceleration of calculations using graphics 

cards. This is possible because the numerical simulation using the FDTD method is 

based on calculations performed independently for each point of the computational 

domain divided into nodes. Thus, it is possible to accelerate the calculations in the 

graphics card computing unit by parallelizing them for each computing node. These 

features make the FDTD method popular not only in the case of simulation of acoustic 

wave propagation but also in the simulation of phenomena associated with 

electromagnetic waves [Inan2011]. 

The equation used in a computer simulation is derived directly from the acoustic 

wave equation, which has the form [Kim2010, Kutruff2009]: 

𝜕2𝑝

𝜕𝑡2
= 𝑐2∇𝑝, 

(4.1) 

where 𝑝 is the sound pressure function over time and c is the velocity of the sound 

wave propagation in the air. In the case of simulations in three-dimensional space, it is 

possible to present the value of ∇𝑝 as the sum of three partial derivatives of the 

pressure signal after successive spatial components: 

∇𝑝 =
𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
+
𝜕2𝑝

𝜕𝑧2
, 

(4.2) 

 

Then, to derive the differential equation that is the basis for implementing the 

algorithm simulating the propagation of acoustic waves in the spaces studied, it is 

necessary to approximate partial derivatives over time and after spatial components 
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using finite differences. The type of substitution carried out to fulfill this requirement 

plays a crucial role in terms of the stability of the FDTD method. In equations used in 

experiments and presented in this thesis, a leapfrog method is employed, as this 

calculation method is unconditionally stable [Bergman2018, Inan2011]. This means 

that for all temporal derivatives, the following discrete approximations have to be used: 

∂ p

∂ 𝑡
  ≈

𝑝𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑖,𝑗,𝑘

𝑛−1

2𝑇
  

(4.3) 

∂2 p

∂ 𝑡2
  ≈

𝑝𝑖,𝑗,𝑘
𝑛+1 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗,𝑘
𝑛−1

𝑇2
  

(4.4) 

 

For spatial derivatives, the following substitutions should be used: 

∂p

∂ 𝑥
  ≈

𝑝𝑖+1,𝑗,𝑘
𝑛 − 𝑝𝑖−1,𝑗,𝑘

𝑛

2𝑋
  

(4.5) 

∂2 p

∂ 𝑥2
  ≈

𝑝𝑖+1,𝑗,𝑘
𝑛 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖−1,𝑗,𝑘
𝑛

𝑋2
  

(4.6) 

Equations for y and z spatial components are analogous. The only difference is a 

change of discrete spatial index on the right-hand side of equation. For the y 

component, equation is calculated for the j index and the z component for the j 

component. 

Equation 4.2 after such substitution of presented discrete approximation takes the 

following form: 

𝑝𝑖,𝑗,𝑘
𝑛+1 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗,𝑘
𝑛−1

𝑇2
= 𝑐2 [

𝑝𝑖+1,𝑗,𝑘
𝑛 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖−1,𝑗,𝑘
𝑛

𝑋2

+
𝑝𝑖,𝑗+1,𝑘
𝑛 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗−1,𝑘
𝑛

𝑋2

+
𝑝𝑖,𝑗,𝑘+1
𝑛 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗,𝑘−1
𝑛

𝑋2
] , 

(4.7) 

where n denotes the discrete index on the time axis, 𝑖, 𝑗, 𝑘 denote the indices on the 

successive spatial components x, y, and z, 𝑇 means the distance between consecutive 

discrete simulation points on the time axis, and 𝑋 means the analogous distance 

between the points on the digitized spatial components.  

To obtain a formula useful for implementation in a computer program, it is necessary 

to further transform this equation according to the variable 𝑝𝑖,𝑗,𝑘
𝑛+1. The result of such 

transformation takes the form: 
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𝑝𝑖,𝑗,𝑘
𝑛+1 = 𝜆2[𝑝𝑖+1,𝑗,𝑘

𝑛 + 𝑝𝑖−1,𝑗,𝑘
𝑛 + 𝑝𝑖,𝑗+1,𝑘

𝑛 + 𝑝𝑖,𝑗−1,𝑘
𝑛 + 𝑝𝑖,𝑗,𝑘+1

𝑛 + 𝑝𝑖,𝑗,𝑘−1
𝑛 − 6𝑝𝑖,𝑗,𝑘

𝑛 ]

+ 2𝑝𝑖,𝑗,𝑘
𝑛 − 𝑝𝑖,𝑗,𝑘

𝑛−1, 

(4.8) 

where 𝜆 = 𝑐𝑇/𝑋 and it is called the Courant number. Its value affects the stability of the 

numerical method, which is FDTD. In the case of all calculations shown in this thesis, 

the optimal value of the Courant number is chosen to be used. The aforementioned 

value of Courant number is equal to  √1/3 and this is the maximum possible value that 

still guarantees the stability of the method [Bergman2018, Kowalczyk2009]. 

Eq. 4.8 can be used together with a Dirichlet boundary condition applied to selected 

regions of the computational domain. It is also necessary to derive equations 

implementing the behavior of points on the edges of the computational domain, which 

also can be achieved by both implementing the Dirichlet or Neumann boundary 

condition [Kowalczyk2009].  

To employ Dirichlet boundary conditions, one can simply force selected nodes of 

the computational domain to an arbitrary value (for instance, zero pressure for nodes 

associated with a rigid object). This, however, limits the simulation to only perfectly rigid 

objects.  

It would be useful to introduce boundary conditions associated with objects whose 

acoustic properties are described by certain values of acoustic impedance (or 

admittance). This can be achieved by applying Neumann boundary conditions. The 

exact value of the acoustic impedance (or admittance) may be calculated from the 

desired reflection coefficient, as it can be calculated by taking into account the following 

relationship [Kim2010]: 

𝑅(𝜃, 𝜙) =
𝑍𝑤 ⋅ cos(𝜃) ⋅ cos(𝜙) − 1

𝑍𝑤 ⋅ cos(𝜃) ⋅ cos(𝜙) + 1
 

(4.9) 

which defines the value of the reflection coefficient 𝑅(𝜃, 𝜙) for the incidence angles 

with the values 𝜃 and 𝜙. It is, therefore, possible to define in the simulation the values 

for the perpendicular reflection coefficient 𝑅(0,0), which can be converted into material 

impedance by the relationship [Blauert2009]: 

𝑍𝑤 =
1 + 𝑅(0,0)

1 − 𝑅(0,0)
. 

(4.10) 

 

The Neumann boundary condition has the following form [Botts2014]: 

∂𝑝

∂𝑡
+
𝑐

β
∇𝑛𝑝 = 0, 

(4.11) 

where: 
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β is the specific acoustic admittance of the surface, 

∇𝑛 denotes a derivative along with a given vector n, which is normal to the surface to 

which the boundary condition is being applied. 

The boundary condition has to be applied to the discretized form of the acoustic 

wave equation. Therefore, the boundary condition equation also has to be discretized. 

A specific type of discretization of spatial derivatives has to be employed in this step. 

Discretization has to be centered on velocity nodes. In the calculations presented, no 

values of acoustic velocity are calculated, but still, values of pressures obtained 

through the equations proposed are centered on hypothetical velocity nodes if the grid 

containing both the pressure and velocity nodes is considered. The velocity-centered 

approximation of spatial derivative has the following form: 

∂𝑝

∂𝑥
=
𝑝𝑖+1,𝑗,𝑘
𝑛 − 𝑝𝑖,𝑗,𝑘

𝑛

𝑋
. 

(4.12) 

 

Substitutions for the y and z dimensions have analogous form, and the only change 

is the application of the formula to the discrete index j in the case of the y dimension 

and discrete index k in the case of the z dimension. After substitution, we obtain the 

following discretized form of a boundary condition: 

𝑝𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑖,𝑗,𝑘

𝑛−1

2𝑇
+
𝑐

β

𝑝𝑖+1,𝑗,𝑘
𝑛 − 𝑝𝑖,𝑗,𝑘

𝑛

𝑋
 =  0. 

(4.13) 

 

After rearrangement, the discretized Neumann boundary condition takes the 

following form: 

𝑝𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑖,𝑗,𝑘

𝑛−1 +
2λ

β
(𝑝𝑖+1,𝑗,𝑘

𝑛 − 𝑝𝑖,𝑗,𝑘
𝑛 )  =  0. 

(4.14) 

 

It was shown by Webb and Bilbao [Webb2011] that the boundary condition given 

by Eq. 4.14 could be applied to the discretized acoustic wave equation in such a 

manner that the discrete update equation for the pressure matrix can be uniform across 

all computation domain. This is an important feature if GPU-accelerated computing is 

considered. It allows employing an identical calculation procedure for each 

computational unit in the GPU. The first step in this kind of application of the boundary 

condition is the assumption that for all borders to which the Neumann boundary 

condition is applied, at least one of the statements below is true: 

𝑝𝑖+1,𝑗,𝑘
𝑛 = 0, 𝑝𝑖,𝑗+1,𝑘

𝑛  = 0, 𝑝𝑖,𝑗,𝑘+1
𝑛 =  0. (4.15) 
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In practice, this means that nodes on the border of the computational domain, as 

well as nodes that are inside objects submerged in the computational domain, have to 

be forced to always contain the value of 0. This makes it possible to modify Eq. 4.14 

to the following form: 

𝑝𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑖,𝑗,𝑘

𝑛−1 −
2λ

β
𝑝𝑖,𝑗,𝑘
𝑛  =  0. 

(4.16) 

which can be rearranged to: 

𝑝𝑖,𝑗,𝑘
𝑛 =

β

2λ
(𝑝𝑖,𝑗,𝑘

𝑛+1 − 𝑝𝑖,𝑗,𝑘
𝑛−1) 

(4.17) 

 

It is important to remember that Eq. 4.17 is true only if the assumption about forcing 

zero values on the border of the computational domain and the inside of scattering 

objects embedded into this domain is true. On the contrary case, the model will be 

unstable.  

Eq. 4.17 can be used to obtain discretized acoustic wave equation with an identical 

form for all GPU calculation nodes. It can be substituted into Eq. 4.8 to get the following 

equation: 

𝑝𝑖,𝑗,𝑘
𝑛+1 = λ2 [𝑝𝑖+1,𝑗,𝑘

𝑛 + 𝑝𝑖−1,𝑗,𝑘
𝑛 + 𝑝𝑖,𝑗+1,𝑘

𝑛 + 𝑝𝑖,𝑗−1,𝑘
𝑛 + 𝑝𝑖,𝑗,𝑘+1

𝑛 + 𝑝𝑖,𝑗,𝑘−1
𝑛

− (6 − 𝐼𝑖,𝑗,𝑘)𝑝𝑖,𝑗,𝑘
𝑛 − 𝐼𝑖,𝑗,𝑘

β

2λ
(𝑝𝑖,𝑗,𝑘

𝑛+1 − 𝑝𝑖,𝑗,𝑘
𝑛−1)] + 2𝑝𝑖,𝑗,𝑘

𝑛 − 𝑝𝑖,𝑗,𝑘
𝑛−1 

(4.18) 

 

Eq. 4.17 can be substituted into Eq. 4.18 multiple (from 1 to 3) times depending on 

how many planes in the vicinity of a computational node are forcing the boundary 

conditions. The number of substitutions is denoted by 𝐼. If there is only one plane, i.e. 

in case if the node is a neighbor of a flat plate, only one substitution is performed if the 

node is positioned on the edge of two walls (or in the corner of a 2D computational 

domain), then two substitutions are made as there are two planes affecting the 

propagation of acoustic waves. Finally, if the node is positioned in the 3D corner of the 

computation domain (i.e., a room corner), then 𝐼 = 3, and three substitutions are 

performed. Eq. 4.18 can be simplified by introducing the following terms: 

𝐾𝑖𝑗𝑘 = 6 − 𝐼𝑖𝑗𝑘 

BK 𝑖,𝑗,𝑘 = (6 − 𝐾𝑖𝑗𝑘)λβ/2 

(4.19) 
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After such substitutions, Eq. 4.18 takes the following form: 

𝑝𝑖,𝑗,𝑘
𝑛+1(1 + BK 𝑖,𝑗,𝑘)

= (2 − 𝐾𝑖𝑗𝑘λ
2)𝑝𝑖,𝑗,𝑘

𝑛 + (BK 𝑖,𝑗,𝑘 − 1)𝑝𝑖,𝑗,𝑘
𝑛−1 + λ2(𝑝𝑖+1,𝑗,𝑘

𝑛 + 𝑝𝑖−1,𝑗,𝑘
𝑛

+ 𝑝𝑖,𝑗+1,𝑘
𝑛 + 𝑝𝑖,𝑗−1,𝑘

𝑛 + 𝑝𝑖,𝑗,𝑘+1
𝑛 + 𝑝𝑖,𝑗,𝑘−1

𝑛 ), 

(4.20) 

which is a version of the acoustic wave equation proposed by Webb and Bilbao in their 

work on acoustic wave equation tailored to computations on the GPU [Webb2011]. 

One important fact in the case of using Eq. 4.20 is a necessity to enforce zero 

pressure on the boundary of the computational domain and inside of scattering objects 

placed inside the domain. Another requirement is a specification of 𝐾 matrix which 

contains information about all boundary conditions inside the domain. It always has to 

be generated at the beginning of calculations based on the computational domain 

shape and geometry of scattering obstacles. An example of such K matrix for the 2D 

domain is depicted in Fig. 4.1. 

 

Fig. 4.1. Example values contained in the 𝐊 matrix. The computational domain has 
special 0 values informing the computational algorithm that nodes with that value of 𝐾 
are subject to enforcing the zero value of acoustic pressure. Inside the domain, a 
scattering obstacle is placed. 

The last important aspect which has to be taken into account while preparing an 

FDTD-based numerical simulation is the injection of excitation signal into the domain. 

If one would simply set a value of pressure in an arbitrarily chosen point of 

computational grid, such as in the formula below: 

𝑝𝑖,𝑗,𝑘
𝑛+1 = 𝑝ext.

𝑛+1, (4.21) 

then it would also automatically mean enforcement of Dirichlet boundary condition in 

this point. This would happen due to the fact that a value resulting from the propagation 

of acoustic waves into a node, which is a source for the excitation signal, is 
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systematically overwritten by consecutive values of the excitation signal. It forces this 

component of pressure in the source node to zero, which effectively means the 

application of the Dirichlet boundary condition. Such a situation leads to the formation 

of unwanted reflections of the wave from the source node. This kind of wave source is 

called a “hard source” [Cox2017]. 

To mitigate this problem, instead of overwriting the value of pressure in the source 

node, one can add consecutive values of excitation signal to the current value of 

pressure in the source node according to the following formula: 

𝑝𝑖,𝑗,𝑘
𝑛+1 = 𝑝𝑖,𝑗,𝑘

𝑛  +  𝑝ext.
𝑛+1. (4.22) 

 

This kind of wave source formulation does not impose an additional Dirichlet 

boundary condition on the node applied and mitigates the problem of reflections 

generated by the acoustic wave source. It is called a “soft source.” It should be 

mentioned that despite the advantage of not generating reflections, this kind of source 

is associated with a roll-off in lower frequencies as a result of interaction between such 

source equation and wave equation [Sheaffer2014]. 

Another important phenomenon related to the excitation signal is numerical 

dispersion. In simulations employing finite-element approximations, excitation of 

different frequencies does not travel with the same frequency. The higher the 

frequency, the more prominent this phenomenon is [Cox2017]. Due to this fact, it is 

important to use a sufficiently high sampling rate compared to traditional sampling rates 

used in audio processing, such as frequencies of 72 or 90 kHz, which permit accurate 

simulation of acoustic bandwidth up to 8 kHz. This is a reason why impulses used as 

excitations in the case of simulations employing FDTD should be bandlimited. An 

example of such impulse may be a Gaussian impulse given by a formula: 

𝑓𝑛 = 𝐴𝑠 ⋅ exp (
𝑇2[𝑛 − 𝑛0]

2

2σ2
), 

(4.23) 

where: 

𝑓𝑛 is a current sample of the excitation signal, 

𝐴𝑠 is the amplitude of the excitation signal, 

𝑛0 is the number of samples by which the impulse is delayed, 

σ is variance if the impulse, which is related to its bandwidth and can be used to impose 

a frequency limit. 

A cutoff frequency for such band-limited excitation impulse is given by the formula 

below: 
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𝑓𝑐 =
√2𝑙𝑛2

2πσ
 

(4.24) 

 

Additionally, the excitation signals should be processed by a DC blocking filter, 

which prevents exciting the computation grid in the near-DC frequencies, which can 

also cause unwanted artifacts. 

An example of acoustic wave propagation simulation in a close room performed 

using Eq. 4.20 is depicted in Fig. 4.2. As the equation used in this simulation requires 

that boundaries of the computation domain have Dirichlet or Neumann condition 

applied to it, reflections from boundaries of the computational domain are unavoidable 

and are visible in the simulation outcome.  

 

Fig. 4.2. Simulation of acoustic pressure wave propagation in a closed room in which 
a Schroeder 2D diffuser was placed. As Eq. 4.20 requires the application of Dirichlet 
or Neumann condition to boundaries of the computation domain, acoustic waves reflect 
from these boundaries and can be seen in the final simulation result. A script used for 
the calculation of this simulation was programmed in Python programming language. 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

65 
 

4.2. Simulation of anechoic conditions and perfectly matched 
layers 

A special kind of task in numerical simulation is the application of the Sommerfeld 

condition to achieve anechoic propagation in a numerical simulation. Such a goal may 

be obtained, for instance, by the use of perfectly matched layers (PML) [Alles2011, 

Berenger1994, Collino1998,  Kim2019]. Utilizing such layers in the simulation of 

anechoic conditions in a numerical simulation is necessary to avoid unwanted 

reflections from the boundaries of the computational domain. There are several ways 

to implement anechoic conditions in a numerical simulation, and each of them is 

associated with the introduction of a different set of equations used for calculations 

within the computer simulation [Alles2011, Bermudez2007, Chern2019, Liu1997, 

Nataf2013, Zampolli2008]. The particular choice often is influenced by the problem to 

be solved with the use of numerical simulation utilizing PMLs.  

One of the simple methods of implementation of PMLs is the modification of 

equations for the propagation of the acoustic waves by introducing a damping factor. 

Such change is applied to the area of the computational domain close to the border of 

the computational area, i.e., walls of the virtual representation of the simulated room 

or the border of the 2D representation of such a space. A graphic depiction of this 

principle is presented in Fig. 4.3. The use of PML is necessary for numerical estimation 

of all parameters of scattering devices requiring assessment of polar response such 

as reflection or diffusion coefficients of Schroeder diffusers.  

 

Fig. 4.3. Diagram of the numerical domain employing PMLs to reduce reflections from 

the boundaries of the computational domain. 

The introduction of PMLs into a numerical domain requires modification of 

equations guiding acoustic wave propagation in the area of PMLs. The first step of the 

derivation of such layer equations is using a variant of the wave equation, taking into 

account losses in a propagation medium [Blackstock2000, Vandekerckhove2016]. A 

PML

area of s imulation

scattering

object

acoustic wave

source

residual reflected 

wave from PML

direction of acoustic wave propagation according 

to the wave equation without damping factor

attenuation with damping factor of    
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starting point for such a problem are acoustic wave equations for the homogenous 

lossy medium [Yuan1997]: 

{
 

 ∇𝑝 + ρ
∂𝒖

∂𝑡
+ α∗𝒖 = 0

∇𝐮 +
1

ρc2
∂p

∂t
+ αp = 0

 
(4.25) 

where: 

𝒖 is an acoustic velocity vector, 

α is an acoustic compressibility-related attenuation factor, which is typically referred to 
as an attenuation factor if the propagation of acoustic waves in the air is considered, 

α∗ is an attenuation factor related to a so-called “mass-proportional” damping, which is 

typical for sound propagation in solids and is usually zero for propagation in the air. 

Such kind of a PML is called the Berenger PML [Berenger1994]. From the 

numerical point of view, it is useful to employ both α and α∗As the PML relies on high 

damping factors and is intended to mitigate reflected waves fully. Therefore the use of 

a non-physical coefficient such as α∗ is possible if it makes it easier to attenuate further 

residual waves reflected from the PML. 

It would be desirable to transform Eq. 4.26 to the form of the second-order equation. 

It would allow optimizing memory usage on a computer performing simulation as only 

data associated with acoustic pressure should be kept and updated in the course of 

the simulation. Therefore, a set of transformations can be carried out: 

{
 

 ∇2𝑝 + ρ
∂∇ 𝒖

∂𝑡
+ α∗∇𝒖 = 0

∂∇ 𝒖

∂𝑡
+

1

ρc2
∂2p

∂t2
+ α

∂p

∂t
= 0

 
(4.27) 

 

Next, two substitutions can be performed to obtain: 

∇2𝑝 − ρ(
1

ρc2
∂2p

∂t2
+ α

∂p

∂t
) − α∗ (

1

ρc2
∂p

∂t
+ αp) = 0 

(4.28) 

 

After rearranging, one obtains the following relationship: 

𝑐2∇2𝑝 =
∂2𝑝

∂𝑡2
+ (ρ𝑐2α +

1

ρ
α∗)

∂𝑝

∂t
+ 𝑐2αα∗𝑝 

(4.29) 

 

To further simplify the equation, it is possible to introduce the following substitutions: 
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α𝐴 = ρ𝑐2α +
1

ρ
α∗ 

(4.30) 

𝛼𝐵 = 𝑐2αα∗ (4.31) 

This allows the derivation of a final form of Eq. 4.29: 

𝑐2∇2𝑝 =
∂2𝑝

∂𝑡2
+ 𝛼𝐴

∂𝑝

∂t
+ 𝛼𝐵𝑝 

(4.32) 

 

Next, the resulting partial differential equation has to be discretized in a similar 

manner as (4.2). After necessary substitutions, Eq. 4.29 takes the following form: 

𝑐2 (
𝑝𝑖+1,𝑗,𝑘
𝑛 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖−1,𝑗,𝑘
𝑛

𝑋2
+
𝑝𝑖,𝑗+1,𝑘
𝑛 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗−1,𝑘
𝑛

𝑋2

+
𝑝𝑖,𝑗,𝑘+1
𝑛 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗,𝑘−1
𝑛

𝑋2
)  

=  
𝑝𝑖,𝑗,𝑘
𝑛+1 − 2𝑝𝑖,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗,𝑘
𝑛−1

𝑇2
 +  𝛼𝐴

𝑝𝑖,𝑗,𝑘
𝑛+1  −  𝑝𝑖,𝑗,𝑘

𝑛−1

2𝑇
+ 𝛼𝐵𝑝𝑖,𝑗,𝑘

𝑛+1. 

(4.33) 

 

After simple transformations and rearranging, one can obtain the following 

equation: 

𝑝𝑖,𝑗,𝑘
𝑛+1 = (1 +

𝛼𝐴
2
𝑇 + 𝛼𝐵𝑇

2)
−1

(λ2[𝑝𝑖+1,𝑗,𝑘
𝑛 + 𝑝𝑖−1,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗+1,𝑘
𝑛 + 𝑝𝑖,𝑗−1,𝑘

𝑛 + 𝑝𝑖,𝑗,𝑘+1
𝑛

+ 𝑝𝑖,𝑗,𝑘−1
𝑛 − 6𝑝𝑖,𝑗,𝑘

𝑛 ] + 2𝑝𝑖,𝑗,𝑘
𝑛 − [1 +

𝛼𝐴
2
𝑇] 𝑝𝑖,𝑗,𝑘

𝑛−1), 

(4.34) 

which is an equivalent of Eq. 4.8 for the lossy propagation medium. This form of 

acoustic wave equation can be a basis for obtaining a version of Eq. 4.20 for the lossy 

propagation medium. The original formula does not permit to introduce losses, which 

makes it impossible to use PMLs while also employing a homogenous acoustic wave 

equation for calculation on GPU. For calculations performed in this work, a more 

general version of Eq. 4.20, which is capable of both employing the Berenger MPLs 

and performing calculations on GPU with a homogenous calculation procedure. To 

achieve this goal, the Neumann boundary condition has to be introduced into Eq. 4.34 

in the same manner as it is introduced into an Eq. 4.8. After this substation, one obtains 

the following equation: 
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𝑝𝑖,𝑗,𝑘
𝑛+1 = (1 +

𝛼𝐴
2
𝑇 + 𝛼𝐵𝑇

2)
−1

(λ2 [𝑝𝑖+1,𝑗,𝑘
𝑛 + 𝑝𝑖−1,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗+1,𝑘
𝑛 + 𝑝𝑖,𝑗−1,𝑘

𝑛

+ 𝑝𝑖,𝑗,𝑘+1
𝑛 + 𝑝𝑖,𝑗,𝑘−1

𝑛 − (6 − 𝐼)𝑝𝑖,𝑗,𝑘
𝑛 − 𝐼

β′

2λ
(𝑝𝑖,𝑗,𝑘

𝑛+1 − 𝑝𝑖,𝑗,𝑘
𝑛−1)] + 2𝑝𝑖,𝑗,𝑘

𝑛

− [1 +
𝛼𝐴
2
𝑇] 𝑝𝑖,𝑗,𝑘

𝑛−1). 

(4.35) 

 

This can be further simplified by employing substitutions from Eq. 4.19: 

𝑝𝑖,𝑗,𝑘
𝑛+1 = (1 + 𝐵𝐾 +

𝛼𝐴
2
𝑇 + 𝛼𝐵𝑇

2)
−1

(λ2[𝑝𝑖+1,𝑗,𝑘
𝑛 + 𝑝𝑖−1,𝑗,𝑘

𝑛 + 𝑝𝑖,𝑗+1,𝑘
𝑛 + 𝑝𝑖,𝑗−1,𝑘

𝑛

+ 𝑝𝑖,𝑗,𝑘+1
𝑛 + 𝑝𝑖,𝑗,𝑘−1

𝑛 ] + [2 − 𝐾λ2]𝑝𝑖,𝑗,𝑘
𝑛 + [𝐵𝐾 − 1 −

𝛼𝐴
2
] 𝑝𝑖,𝑗,𝑘

𝑛−1), 

(4.36) 

which is a form of the discretized wave equation for lossy propagation medium, which 

can be employed for computations employed on GPU and the use of the Berenger 

PMLs. To further simplify the computation procedure, it is possible to assume that 𝛼 =

𝛼∗. This means that α𝐴 = α(ρ𝑐2 + 1/ρ), and 𝛼𝐵 = 𝑐2α2. This allows passing to the GPU 

processor only one set of damping factor values, which are related to α. This reduces 

the amount of data needed to be sent during the program initialization phase. This form 

of the equation is employed in simulations for obtaining results presented in 

consecutive Sections of this doctoral dissertation. It is worth mentioning that all 

restrictions regarding the construction of 𝐊 matrix and computational domain geometry 

necessary for Eq. 4.20 are also required for Eq. 4.36  to be stable. 

In practice, the introduction of a lossy term into a wave equation means the need 

for an additional matrix used in the computation process. The 𝛼 parameter 

characterizes a local loss factor, and if it is subject to rapid change, for instance, from 

0 in areas that are not lossy to the value of 0.15 in the area of PML, it will cause a 

reflection. Due to this fact, it is necessary to introduce a matrix of 𝛼 coefficient values, 

which gradually increase starting from the beginning of the PML layer up to a maximum 

level at the boundary of the domain. An example profile used for this purpose can have 

the following form [Cox2017]: 

α =  α𝑚𝑎𝑥 |
𝑥 − 𝑥0

𝑥𝑚𝑎𝑥 − 𝑥0
|
𝑛

, 
(4.37) 
 

where: 

𝑥0 is an initial point in the PML, 

𝑥𝑚𝑎𝑥 is the last point in the PML, 

α𝑚𝑎𝑥 is a maximum value of damping eventually reached in point 𝑥𝑚𝑎𝑥, 
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𝑛 is a number between 2 and 3. 

An example of simulation analogous to one depicted in Fig. 4.2 but employing the 

Berenger PML to eliminate reflections from boundaries of the computational domain is 

shown in Fig. 4.4. This type of simulation is useful for evaluating such properties of 

acoustic diffusers as reflection and diffusion coefficient. 

 

Fig. 4.4. Simulation of acoustic pressure wave propagation in a closed room in which 
PML is used to attenuate reflections from boundaries of the computational domain. A 
script used for the calculation of this simulation was prepared in the Python 
programming language 

4.3. Calculation of basic propagation medium parameters 

The behavior of acoustic waves governed by Eqs. 4.20 and 4.36 requires 

knowledge of constants describing the state of the propagation medium. Examples of 

such constants are specific acoustic impedance of air 𝑍𝑎𝑖𝑟, or speed of acoustic wave 

propagation in air 𝑐. For most cases an averaged values of those parameters can be 

assumed, but in some applications, it may be useful to introduce exact values of 

parameters that are associated with properties of air such as air pressure, temperature, 

and relative humidity. This enables to relate given propagation conditions more 

intuitively to real-life conditions but also makes it easier to, e.g., design a simulation of 

sound propagation on a cold winter day. This may be even more visible in temperature 

gradient occurrence, which is an especially interesting phenomenon, as it can affect 

paths of sound wave propagation prominently. 
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The absolute value of specific acoustic air impedance is given by the following 

formula: 

𝑍𝑎𝑖𝑟 =  ρ𝑐, (4.38) 

where ρ is the density of air, and 𝑐 is the speed of sound wave propagation in the 

medium. To calculate the air density, it is necessary to know the current atmospheric 

pressure, temperature, and relative humidity. The density of air is given by a formula 

below [Picard2008]: 

ρ =
𝑃𝑀𝑎

𝜁𝑅𝑇𝑎
(1 − 𝑥𝑣 (1 −

𝑀𝑣

𝑀𝑎
)), 

(4.39) 

where: 

𝑃 is atmospheric air pressure,  

𝑀𝑎 is the molar mass of dry air, 

𝑀𝑣 is molar mass of water vapor,  

𝑥𝑣 is the mole fraction of water vapor, 

𝜁 is the compressibility factor of air,  

𝑅 is the molar gas constant, 

𝑇𝑎 is the air temperature (in Kelvins). 

Value of 𝑥𝑣 can also be expressed by the following fraction: 

𝑥𝑣 =
𝑚𝑣

𝑚𝑣 +𝑚𝑎
, (4.40) 

where: 

𝑚𝑎 is the amount of moles of air present in the propagation medium, 

and 𝑚𝑣 is the amount of moles of water vapor present in the propagation medium,  

As in atmospheric conditions 𝜁 ≈ 1, taking this into account Eq. 4.40 the following 

approximation of can be derived: 

𝜌 =
𝑃𝑀𝑎

𝑅𝑇𝑎
(1 −

𝑚𝑣

𝑚𝑣 +𝑚𝑎
(1 −

𝑀𝑣

𝑀𝑎
)) =

𝑃𝑀𝑎

𝑅𝑇𝑎
(1 − (

𝑀𝑎𝑚𝑣 −𝑀𝑣𝑚𝑣

𝑀𝑎𝑚𝑣 +𝑀𝑎𝑚𝑎
)) 

(4.41) 

 

This expression can be further simplified to obtain the following result: 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

71 
 

 

𝜌 =
𝑃

𝑅𝑇𝑎

𝑀𝑎𝑚𝑎 +𝑀𝑣𝑚𝑣

𝑚𝑣 +𝑚𝑎
 =  

𝑃(𝑥𝑎𝑀𝑎 + 𝑥𝑣𝑀𝑣)

𝑅𝑇𝑎
= 

𝑝𝑎
𝑅𝑎𝑇𝑎

+
𝑝𝑣
𝑅𝑣𝑇𝑎

, 
(4.42) 

where: 

𝑥𝑎 is the mole fraction of air in the propagation medium, 

𝑝𝑎 denotes partial pressure of air, 

𝑝𝑣 denotes partial pressure of water vapor, 

𝑅𝑎 is the specific gas constant of air, which is equal to 287.058 
𝐽

𝑘𝑔⋅𝐾
, 

𝑅𝑣 is the specific gas constant of water vapor, which is equal to 461.495 
𝐽

𝑘𝑔⋅𝐾
, 

The partial pressure of water vapor can be calculated from the following relation: 

𝑝𝑣 = RH ⋅ 𝑝𝑠𝑎𝑡, (4.43) 

where 𝑝𝑠𝑎𝑡 is saturation pressure of water vapor, which can be obtained from air 

temperature by employing the approximate Teten formula [Xu2012]: 

𝑃𝑠𝑎𝑡 = 610.78 × 10
7.5𝑇𝑎

𝑇𝑎+237.3, 
(4.44) 

 

After the value of air density is obtained, the value of  sound wave propagation 

speed can be derived by employing the following formula [Feynman1965]: 

𝑐 = √κ ⋅
𝑃

ρ
, 

(4.45) 

where κ is the adiabatic ratio of specific heats of air equals 1.402. 

An illustration of the influence of selected temperatures, pressures, and relative 

humidity values on acoustic properties of acoustic propagation medium is depicted in 

Tab. 2.1. It can be seen that if an extraordinary level of precision is needed, factors 

such as temperature, pressure, or humidity of air have to be taken into account, as 

their changes can significantly influence values of both the speed of acoustic waves 

propagation and specific impedance of air. The latter one can, e.g., have an influence 

on the reflection coefficient of objects placed in a computational domain in which FDTD 

simulation is carried out. 
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Tab. 4.1 Selected values of acoustic waves propagation speed and specific acoustic 
impedance for selected values of air temperature, atmospheric pressure, and relative air 
humidity. 

𝑻𝒂 [°C] 𝑷 [hPa] RH [-] c [m/s] 𝒁𝒂𝒊𝒓 [rayls] 

-20  

990 

0.3 319.21 434.82 

0.5 319.22 434.80 

0.7 319.24 434.78 

1020 

0.3 319.21 448.00 

0.5 319.22 447.98 

0.7 319.24 447.96 

0 

990 

0.3 331.67 418.48 

0.5 331.75 418.39 

0.7 331.82 418.29 

1020 

0.3 331.67 431.17 

0.5 331.74 431.07 

0.7 331.82 430.97 

20 

990 

0.3 343.94 403.56 

0.5 344.25 403.19 

0.7 344.56 402.83 

1020 

0.3 343.92 415.80 

0.5 344.22 415.44 

0.7 344.52 415.08 

 

Results shown in this Section show that simulation can be capable of predicting the 

scattering properties of an acoustic treatment device. Equations presented in this 

Section were used to implement simulation procedures. The code of the 

aforementioned numerical procedures is shown in Appendices A and B. This can be 

achieved by a time-domain-based simulation of a sound field evolution in a given 

space. This space can be limited by computational domain boundaries – this would be 

a case of a room simulation, but thanks to the use of a modified version of equations 

proposed by the author of this thesis, it can also be possible to simulate the 

propagation of acoustic waves in anechoic conditions. Those two types of simulations 

were carried out in experiments used to prove theses of this dissertation, and they are 

described in Sections 5 and 6. 
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5. SIMULATION OF A MOCK-UP ROOM  
In this Section, an example of optimization of an acoustic diffuser for use in 

enclosed spaces is shown. Calculations presented in the chapter were performed with 

the simpler version of an acoustic simulation model employing only equations from 

Section 4.1, and thus – without employing Berenger PML layers to mitigate reflections 

of excitation Gaussian impulse from the wall. Therefore, it will allow using a numerical 

model validated in the literature to evaluate how baseline Schroeder diffuser designs 

compare to designs obtained by means of optimization processes. This is also a 

reason why Berenger PML layers are not used, as the literature mainly covers the non-

anechoic type of equations such as ones presented in Section 4.1, or ones modified 

to employ methods of computing FDTD other than a leapfrog one [Botts2014, 

Cox2017, Hamilton2017, Webb2011]. First, the definition of the problem is presented. 

It involves the dimension of a shoe-box type room, which is a real-live equivalent of a 

cuboid computational domain used in the simulation and optimized metric calculated 

for implementation of a diffuser in a room, which is the uniformity of a frequency 

response in a selected spot in the room. In the case of the experiment presented in 

this Section, the optimization metric also has to be other than the correlation diffusion 

coefficient proposed in Section 3.2. This is because the measurement of it requires 

anechoic conditions. Next, results obtained with the use of a classical, baseline 

approach based upon random sequences are shown. They are followed by the 

presentation of the results obtained by genetic algorithms and the ones derived from 

the reinforcement learning methods. 

5.1. Definition of a mock-up acoustic room optimization 
problem and a baseline sound-treatment approach 

 

In an experiment involving baseline techniques and optimization algorithms for 

diffuser design, a room mock-up has the following dimensions: 3 m in length, 2 m in 

width, and 2 m in height. It simulates the case of designing acoustic adaptation for an 

enclosed space to be used as a small control room or a listening room. A schematic 

representation of the room and the location of the essential simulation points are shown 

in Fig. 5.1. To provide a possible baseline solution for treating the proposed space, an 

acoustic diffuser design is to be proposed. To obtain the pattern of segments making 

a diffuser, the best design chosen from  PRD, QRD, and MLS approaches are selected. 
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Fig. 5.1. Dimensions of a mock-up room and the presentation of the experiment 

simulation. The height of the room is equal to 2m. 

It is assumed that the reflection coefficients 𝑅(0,0) of the materials the walls are 

made of are 0.25. This corresponds to the situation indicating that a considerable 

amount of sound waves are mostly absorbed. Such amount of reflections does not 

allow simulation of anechoic conditions but allows considering the simulated space as 

a room that was acoustically treated to be used, i.e. as a control room or a place to 

watch multimedia. Absorbing properties of walls permit controlling the level of 

reflections propagating inside the simulated space as most of them originate from a 

diffuser whose material has a reflection coefficient of 0.95. Therefore, the simulated 

situation corresponds to a room adapted acoustically under the principle of room 

design so that reflection can be formed at one end and the other end is attenuated or 

suppressed (live-end, dead-end, LEDE). This approach makes it easier to control the 

amount and type of acoustic wave reflections in a room since most of them come from 

the “live” edge of the room where the reflecting surfaces are located. To avoid the risk 

of undesirable distortions in the frequency response, an acoustic diffuser is placed at 

the reflective end of the room that scatters the acoustic waves, thereby reducing the 

risk of standing waves that could distort the frequency room characteristics.  

Other assumptions concern the maximum depth of the diffuser wells, which is 60 

cm. The diffuser width varies depending on the generated well system. Moreover, the 

depth of the well patterns generated by the QRD and PRD design techniques are 

looped by the maximum possible number of times, so the diffuser occupies the largest 

possible area of the front wall of the analyzed room. The listening point is placed 130 

cm from the diffuser and is located equidistant from the side walls of the room. The 

room is excited by a Gaussian pulse with a band-limited to 8 kHz. The sampling rate 

of signals obtained from the simulation is 48 kSa/s. Therefore, with the Courant number 
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equals √1/3, the spatial resolution of the simulation is 1.23 cm. The effect of the 

simulation is the impulse response of the room at the listening position. To assess the 

quality of diffusers, it is also possible to simulate a room response without an acoustic 

diffuser, which makes it possible to determine the impact of the diffuser on the 

acoustics of the simulated room. 

The optimization of the acoustic adaptation consists in the appropriate selection of 

the depth system of the diffuser cavities located on the front wall of the room so that 

the frequency response of the room at the listening point is as flat as possible. 

Therefore, in the design of QRD, PRD diffusers, and diffusers optimized by an 

optimization algorithm, it is necessary to formulate a criterion function that will allow 

mathematically assessing how flat the frequency response of a room is for each of the 

tested patterns. The quality assessment of individual diffuser designs is carried out by 

the measure based on the calculation of the standard deviation in successive sub-

bands of the frequency characteristics of the tested room at the listening point. This 

measure is calculated using Eq. 5.1: 

𝜎𝑓∈<𝑓𝑙𝑖;𝑓𝑢𝑖) =  
std𝑓∈<𝑓𝑙𝑖;𝑓𝑢𝑖)FFT(𝑝(𝑛))

std𝑓∈<𝑓𝑙𝑖;𝑓𝑢𝑖){FFT(𝑝𝑟(𝑛))}
, 

(5.1) 

where: 

𝜎𝑓∈<𝑓𝑙𝑖;𝑓𝑢𝑖) is the measured power level of the frequency band from 𝑓𝑙𝑖  to 𝑓𝑢𝑖,  

std𝑓∈<𝑓𝑙𝑖;𝑓𝑢𝑖) means the operation of calculating the standard deviation for the values 

associated with this band,  

𝑝[𝑛] denotes the impulse response of a room with a diffuser, 

𝑝𝑟[𝑛] means the impulse response of a room without a diffuser.  

The second impulse response is a reference for the values obtained with the 

diffuser located in the simulated room. The smaller the value of the measure, the better 

the diffuser design is tested. The simulation is carried out in eight frequency bands: 

100Hz-250Hz, 250Hz-500Hz, 500Hz-1kHz, 1kHz-2kHz, 2kHz-3kHz, 3kHz-4kHz, 

4kHz-5kHz, 5kHz-6kHz. The overall rating of each prototype, taking into account each 

of the analyzed sub-bands, is in turn calculated according to Eq. 5.2 and is denoted by 

the symbol 𝜎𝐷: 

𝜎𝐷 = −∑𝜎𝑓∈<𝑓𝑙𝑖;𝑓𝑢𝑖) 
𝑖

 (5.2) 

 

Calculations were made using a program prepared in the Python programming 

language described in Section 4.1. Calculations were accelerated using a graphics 

card using CUDA architecture. The room geometry was mapped using a point matrix 

in three-dimensional space. An example of a cross-section through a computational 
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domain that maps a room with the diffuser inside is shown in Fig. 5.2. 

 

Fig. 5.2. Illustration of the grids of computational nodes (defined by the 𝑲 matrix) employed in 

the simulation, nodes forming the simulated shape of the acoustic diffuser are marked in red. 

The blue shape is a cross-section through the area of nodes representing the shape of the 

simulated room. For clarity of presentation, the nodes of the propagation medium were not 

highlighted in color. They are located inside the area enclosed by the nodes of the room walls. 

The proposed room geometry is subject to an acoustic treatment process 

employing the use of acoustic diffusers designed by genetic and reinforcement 

learning-based optimization methods. To be able to compare those methods to 

standard approaches used to modify acoustic of such spaces as one presented in this 

Section, a  baseline approach has to be introduced. This baseline method involves the 

use of PRD and QRD design methodologies to obtain diffuser designs. In the 

experiment, the FDTD simulation was used to assess the quality of each of the diffuser 

types tested. In the case of QRD diffusers, 42 geometries were examined, from among 

which the ten best designs with the lowest value of the parameter 𝜎𝐷  were selected. 

Similarly, the ten best PRD diffuser designs were chosen. This selection was made 

from 118 pseudo-random sequences. The differences in the number of groups from 

which the best acoustic diffuser designs were selected result from the fact that the 

maximum value of the prime number for which the pseudo-random sequences were 

calculated was limited. It has been assumed that QRD sequences based on prime 

numbers in the range from 5 to 199 will be used. This allows reducing the part of the 

generated sequences that has a structure growing following the progress of the 

square, which appears because these values have already reached higher values than 

the assumed first value. Therefore the operation of finding the remainder from division 

present in Eq. 3.1 does not affect them. Similarly, for the PRD sequence, generation 
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to the range of prime numbers from 5 to 47 was limited. Sequences were generated 

for each primary element associated with the used prime number. 

5.2. Evaluation of acoustic diffuser designs generated by the 
baseline techniques and genetic algorithm 

The third group of diffusers refers to the geometries calculated by the genetic 

algorithm. It operated for 8 hours, and during this time, 30 generations of projects were 

produced. The ten best projects appeared between generations. The same number of 

projects signalized the end result of the genetic algorithm. Each diffuser consisted of 

25 columns and rows. Its dimensions were selected each time so that it filled in the 

wall on which it was placed to the maximum. An example of a visualization of the 

simulation carried out for the diffuser generated by the genetic algorithm is presented 

in Fig. 5.3. It depicts a 2D cross-section of the computational domain during the 

evaluation of an acoustic diffuser in a shoebox-type room. 

 

Fig. 5.3. An example of a simulation frame showing a cross-section (from above) 

through a simulated room. The position of the source of the acoustic wave is marked 

with a white dot, the position of the listener is marked with a black dot. The image 

depicts a horizontal cross-section of the 3-dimensional computational domain used in 

the simulation. 

This Section presents an evaluation of acoustic diffuser designs generated by using 

baseline (QRD and PRD) methods and the genetic algorithm. The second one refers 

to the assessment of acoustic diffuser designs generated by the reinforcement learning 

algorithms. All the results are presented in terms of their statistical properties, i.e., the 

Kruskal-Wallis and Dunn’s post-hoc tests are applied for that purpose.  
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The easiest way to assess the quality of diffusers is to analyze the value of the 𝜎𝐷 

fitness function, which is also a measure of the frequency response homogeneity at 

the listening position. These values are collected in Tab. 5.1. They were calculated for 

the top 10 diffusers in each of the three diffuser types tested and sorted by increasing 

values of the evaluation function. The values of the 𝜎𝐷 function indicate that the best 

properties in terms of flatness of the frequency characteristic are diffusers designed by 

the genetic algorithm. The second in terms of the result obtained is the best diffuser 

design obtained by the QRD design method, and one obtained employing the PRD 

algorithm was the worst.  

The frequency characteristics associated with the best-performing diffusers from 

each group, along with the simulation of the reference measurement in a room without 

a diffuser, are shown in Fig. 5.4. The diffusers have a similar effect on the frequency 

range below 1.5 kHz. Significant differences begin to appear in the frequency range 

from 1.5 kHz to 5 kHz. Within this range, two narrow frequency attenuation ranges can 

be identified for the QRD diffuser. The results of the PRD diffusers and those designed 

by the genetic algorithm are similar. They require in-depth analysis using statistical 

methods to draw meaningful conclusions about which diffuser has better properties. 

For this purpose, the Kruskal-Wallis statistical test was used. 

 

Tab. 5.1 Values of the fitness function obtained for the best projects of QRD, PRD 
diffusers and generated by the genetic algorithm. The values are multiplied by -1 with 
respect to Eq. 5.2. A smaller value means a more even frequency response (the 
smaller the metric, the better result). 

No. QRD PRD genetic 

1 5.36 4.78 3.75 

2 5.69 4.98 3.83 

3 5.77 5.07 3.93 

4 6.04 5.25 3.94 

5 6.20 5.25 3.95 

6 6.22 5.26 4.00 

7 6.40 5.36 4.03 

8 6.44 5.36 4.05 

9 6.52 5.37 4.09 

10 6.70 5.58 4.20 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

79 
 

 

Fig. 5.4. Frequency responses of diffusers designed by three tested methods. 

The input for the statistical test was a series of differences between the values of 

the 𝜎𝐷 fitness function for a diffuser designed by the QRD or PRD method and the 

result of the genetic algorithm. The test analyzed both partial values from which the 𝜎𝐷 

measure was calculated, as well as its value, including all analyzed frequency bands. 

The test input data were the values of the 𝜎𝐷 function and its components obtained for 

the top 10 diffusers from each of the subgroups. For the analysis of the resultant 𝜎𝐷 

values, the test input values correspond to those in Tab. 5.1.  

Besides, a series of 10 zeros, which is the reference series, has been included in 

the test. If the average difference in the value of the function 𝜎𝐷 is statistically 

significantly smaller than the value of the sequence of 10 zeros, it can be concluded 

that the diffuser generated by the genetic algorithm showed better properties. In the 

opposite case - the diffuser designed by classical methods has better properties. If 

there are no statistically significant differences, the sequence of differences has an 

average value of zero - the solutions are the same in terms of how even the room 

frequency response is. In the case of comparisons with both QRD and PRD diffusers, 

the value of the Kruskal-Wallis test statistic was less than 10−3, so it can be concluded 

that at least part of the series of differences between diffuser groups has an average 

value significantly different from zero. Dunn’s post-hoc test was conducted to check 

which of these differences were statistically significant. Its results are visualized in Figs. 

5.5 and 5.6. Differences that were not statistically significant were represented by gray 

bars. Each bar also has a p-value returned by Dunn’s test. A negative difference value 

is in favor of the diffuser generated by the genetic algorithm. 
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Fig. 5.5. Results of the statistical test comparing solutions obtained using a genetic 

algorithm with a diffuser based on the QRD sequence. 

 

Fig. 5.6. The difference in diffuser ratings along with the result of a statistical test 

comparing solutions obtained using a genetic algorithm with a diffuser based on the 

PRD sequence. 

The values obtained using Dunn’s test show that statistically significant differences 

in the impact of diffusers on the uniformity of the room frequency characteristics appear 

for frequency bands higher than 1 kHz. The most noticeable differences are visible in 

the 2−3 kHz and 3−4 kHz bands. The values of differences in this range are also 

characterized by low variance compared to higher frequencies. This is especially 

evident in the results obtained for comparison with PRD diffusers. The differences in 
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the 𝜎𝐷 measure, marked in the drawings as a global assessment, also proved 

statistically significant. 

The baseline approach using QRD and PRD sequences has the advantage that 

their use is very fast compared to the genetic algorithm solution. Their disadvantage 

is, in turn, that the solution designed using pseudo-random sequences may not be 

optimal in the context of the given listening room in which the designed diffuser is to 

be installed. This hypothesis was confirmed by conducting an experiment based on a 

room simulation following the LEDE principle.  The genetic algorithm generated such 

a depth system of cavities in an acoustic diffuser located on the front wall of the room, 

which provided the smallest standard deviation of frequency characteristics in 8 

frequency bands in the range from 100 Hz to 6 kHz. The optimization algorithm 

presented in Section 3.3 generated a diffuser geometry design, which, in the context 

of the proposed measure of success related to room response linearization at the 

listening point, behaved better than reference geometries prepared using QRD and 

PRD techniques. However, it should be remembered that the genetic algorithm is a 

time-consuming solution comparing to the very fast process of generating pseudo-

random sequences. Additionally, computer simulation, even using FDTD techniques 

accelerated with graphics cards, requires at least several hours of calculations for the 

algorithm to test and match the appropriate solution. For this reason, the genetic 

algorithm is best suited to difficult or atypical cases when designing acoustic adaptation 

using classical methods is impossible or significantly hindered. 

The results obtained in this experiment confirm thesis no. 1, which states that 

it is possible to employ numerical simulation as a means of calculating fitness, 

reward function, or similar optimization metric and achieve satisfying results.  

Also, thesis no. 2 was proven, as both optimization methods were able to 

provide solutions that were associated with higher scores assigned to them by 

a simulation than the baseline approach based on pseudo-random sequences. 

Another advantage of the genetic algorithm is the ability to focus on achieving the 

best effect at a specific point in the room being tested and conducting the optimization 

process with a measure of success corresponding to the selected criterion. This 

criterion can be defined in a way tailored to a given situation and the implementation 

of the diffuser. This means that it can be better suited to the needs existing in a specific 

room area. Not without significance is the fact that the criterion function can be used 

to optimize the value resulting from many different criteria. This may correspond, for 

example, to the situation when the selected room parameter is optimized in more than 

one point or when the algorithm simultaneously optimizes the values of two or more 

parameters characterizing the room acoustics.  

Compared to the aforementioned work by Patraquim [Patraquim2017], the 

algorithm proposed in this Section showed measurable performance in a similar range 

of frequencies analyzed by the simulation algorithm. When calculating the metric 

determining the unevenness of the frequency response, the algorithm proposed 

achieved this effect after 30 iterations. This coincides with the observations made in 
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the publication of Patraquim [Patraquim2017]. However, an exact comparison of the 

results is not entirely possible because, in the cited publication, the diffusivity factor of 

the adopted measurement frequencies is the optimized metric. In the approach 

proposed in this doctoral dissertation, the frequency response is analyzed, which 

facilitates, e.g., a precise definition of the frequency band in which the algorithm 

introduces the best improvement measured by increasing the uniformity of the 

frequency response in this band. 

It is also worth noting that computer simulation is a good way to pre-check the 

behavior of many different types of diffusers without performing many measurement 

trials. For this reason, it can work as a method of pre-selection of the most promising 

geometries of acoustic wave obstacles, which can then be tested in real conditions in 

an anechoic chamber and at the site of application. This procedure reduces the amount 

of time and financial costs associated with the preparation and testing prototypes of 

devices for testing. 

5.3. Evaluation of acoustic diffuser designs generated by the 
reinforcement learning algorithms 

In this Section, QRD and PRD baseline techniques are to be employed for the 

performance comparison with reinforcement learning algorithms. Architectures of 

convolutional  neural networks employed for this purpose, i.e., a deep dueling Q neural 

network (DDQN)  and a (DPG) neural network, are depicted in Figs. 5.7 and 5.8. 

 

Fig. 5.7. The architecture of a deep dueling Q neural network (DDQN) used in the experiment. D
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Fig. 5.8. The architecture of a convolutional neural network used as a policy approximator in a 

deep policy-gradient algorithm. 

The DDQN neural network returns a matrix of action values, DPG returns a matrix 

of probabilities of choosing each action. In the case of DDQN, an action with the 

highest Q value is selected. Contrary, in the case of DPG, the action is chosen 

randomly with respect to the probability distribution obtained from the policy neural 

network. The final action is encoded and executed in a form visible in Fig. 5.9.  

 

Fig. 5.9 Encoding decision derived from the Q-matrix generated by DDQN and retrieved from 

the output of the DPG neural network. Gray indices contain values equal to 0; the red one has 

a value of 1 and indicates the action to be taken by the algorithm. 

For each of the reinforcement learning algorithms, training lasted for 10 hours, 

which let to perform 64 training episodes. Each episode contained 100 steps involving 

choosing a particular decision regarding changes in the design of the diffuser. The 

fitness function of the best design found in each episode was stored for the purpose of 

algorithm performance tracking. The best 10 values of a fitness function for each of the 

baseline and reinforcement learning algorithms are provided in Tab. 5.2. Calculations 

were performed with the use of the Nvidia GeForce RTX2080 Ti graphics card. It was 

used for both calculations related to machine learning and FDTD-based simulation of 
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the diffuser behavior in the room.  

Tab. 5.2 Values of the fitness function obtained for the best projects of QRD, PRD diffusers, 

and those generated by deep dueling Q-network (DDQN) and deep policy-gradient (DPG) 

reinforcement learning algorithms. The values are multiplied by -1 with respect to Eq. 5.2. A 

smaller value means a more even frequency response. 

No. QRD PRD DDQN DPG 

1 5.36 4.78 3.65 4.57 

2 5.69 4.98 4.00 4.58 

3 5.77 5.07 4.33 4.86 

4 6.04 5.25 4.77 5.15 

5 6.20 5.25 4.90 5.24 

6 6.22 5.26 5.3 5.25 

7 6.40 5.36 5.43 5.29 

8 6.44 5.36 5.44 5.50 

9 6.52 5.37 5.63 5.55 

10 6.70 5.58 5.74 5.59 
 

Results from Tab. 5.2 are presented in the form of a box plot in Fig. 5.10. Visually, 

the performance of the proposed reinforcement learning algorithms is similar to one of 

the PRD sequence-based diffusers. However, an inter-quartile interval is larger than a 

PRD-related one in both the case of DDQN and DPG algorithms.  
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Fig. 5.10. Boxplot representing the fitness of diffusers generated by reinforcement 

learning algorithms employed in the experiment. 

To analyze the statistical significance of differences observed in Tab. 5.2 and Fig. 

5.10, a series of statistical tests was conducted. The significance coefficient was 

assumed to have a typical value of 0.05. First, the normality of distributions of fitness 

functions of best designs was tested. To achieve this, a Shapiro-Wilk test for normality 

of statistical data distribution was conducted. Next, the Holm-Bonferroni correction was 

applied to mitigate the effects of multiple testing problems; therefore corrected p-values 

of the Shapiro-Wilk test are given in Tab. 5.3. 

Tab. 5.3 Corrected p-values of the Shapiro-Wilk test for normality of distributions of fitness 

function values produced by each tested algorithm. 

 QRD PRD DDQN DPG 

p-value 0.801 0.801 0.686 0.536 

 

Each p-value was greater than the threshold of 0.05, a null hypothesis was not 

rejected in any of the analyzed cases. As a result, all algorithms are assumed to 

produce values of fitness having Gaussian distribution. 

The next step is the test for equality of variance. This is checked with the use of the 

Levene test for equality of variance of multiple data sets. In the case of diffuser-related 

data, the value of the Levene test statistic is equal to 4.041, and hence, the p-value of 

the test is equal to 0.014. The p-value is lesser than a significance threshold of 0.05; 

therefore, the null hypothesis of the Levene test stating that all variances that are equal 

to each other have to be rejected. Due to the fact that variances are not equal, the 

ANOVA test for equality of mean values of fitness function values cannot be performed, 
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and the Kruskal-Wallis statistical test has to be conducted instead.  

The value of the Kruskal-Wallis test statistic is equal to 18.972, which gives a p-

value of 0.00027. Therefore, the medians of data sets are not equal. To find which 

differences are significant, the Dunn post-hoc test was conducted. The resulting p-

values are presented in 5.4 

Tab. 5.4 Values of Dunn’s post-hoc test comparing medians of best fitness function values 

generated by the algorithms investigated. 

 QRD PRD DDQN DPG 

QRD  < 10−3 < 10−3 < 10−3 

PRD < 10−3  0.744 0.833 

DDQN < 10−3 0.744  0.908 

DPG < 10−3 0.833 0.908  

 

In the boxplot presented in Fig. 5.10, it is visible that the variance of results is 

visually greater in both the DDQN and the DPG algorithms than in PRD one. To test 

this hypothesis, two additional Levene tests were conducted to compare the variances 

of PRD-DDQN and PRD-DPG algorithms. P-values of that comparison were corrected 

with the Holm-Bonferroni correction and were both lesser than 10−3. Therefore, it can 

be concluded that both algorithms had a greater variance of results than the PRD 

algorithm. 

Results of statistical tests allow conclusions that in terms of the median of 

performance, the PRD, DDQ, and DPG algorithms performed similarly. However, 

DDQN and DPG algorithms had a greater variance of fitness function values. It can be 

seen that both of them achieved some designs which had the fitness of significantly 

lower value when compared to any of the designs created by the PRD algorithms. 

Therefore, while the average performance is similar, both the DDQN and DPG 

algorithms have the chance to find a solution that is significantly better than any design 

generated by the PRD algorithm. On the other hand, the consistency of the design 

quality is greater for the PRD algorithm.  

This way, thesis no. 1 of this doctoral dissertation was proved, as the 

proposed optimization algorithms employed a numerical simulation to perform 

the optimization process. 
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Moreover, thesis no. 2 was also proven, as both the genetic and 

reinforcement learning algorithms were capable of finding designs having better 

properties (in terms of the best-obtained uniformity of a frequency response of 

a sound-treated room) as designs obtained from baseline methods (such as 

QRD, and PRD methods).  
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6. EVALUATION OF ACOUSTIC DIFFUSERS GENERATED BY 
OPTIMIZATION ALGORITHMS IN ANECHOIC CONDITION 
 

Algorithms proposed in the thesis were found to improve simulated uniformity of 

frequency response of a given room. A standard method of evaluating the performance 

of a diffuser is a measurement of a diffusion coefficient. Also, the autocorrelation 

diffusion coefficient can be calculated based on a polar response of a given acoustic 

diffuser. This is also a common way of characterizing the scattering properties of 

diffusers for the purpose of selecting appropriate diffusers for the given application. 

Therefore it is crucial to determine if genetic and reinforcement learning algorithms can 

optimize the diffusion coefficient and design diffusers better than the ones obtained by 

simple randomization of lengths of Schroeder diffuser segments. A simulation 

employing PML (perfectly matched layers) layers should be used to achieve this goal, 

as anechoic conditions are necessary for both simulation-based prediction and 

measurement of diffusion coefficient. The experiment meant to investigate the 

performance of the aforementioned design principles is schematically depicted in Fig. 

6.1. 

 

Fig. 6.1 Diagram of the experiment conducted for testing the simulation-based optimization 
and comparing outcomes of this method with a process of acoustic diffuser design based on 
a random selection of the diffuser segment height. 
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There are four methods of acoustic diffusers design investigated: 

• random selection of the length of diffuser pattern segments, 

• optimization of the length of diffuser pattern segments employing genetic 
algorithms, 

• optimization of the length of diffuser pattern segments employing deep policy 
gradient algorithm, which optimizes patterns generated randomly, 

• optimization of the length of diffuser pattern segments employing a deep policy 
gradient algorithm, which optimizes patterns sampled from 10 best designs 
generated by the algorithm at the moment of creation of the initial pattern. 

As can be seen in Fig. 6.1, the DDQN algorithm was not included in this experiment. 
The reason for this is a specific modification of action space which allows faster 
modification of generated designs. As was shown in the experiment with optimization 
of the frequency response of a mock-up shoebox-type room, one of the fundamental 
assumptions on all reinforcement learning algorithms optimizing diffuser patterns is a 
type of action space in which each reinforcement learning agent is operating. For the 
aforementioned experiment, an action space that involves a change in only one 
segment of the diffuser pattern was investigated. This allows the use of both the DDQN 
and DPG algorithms to optimize the acoustic diffuser patterns. Still, a major drawback 
of this approach is the optimization process requiring simulation after the change of 
every single segment of a diffuser. As the simulation is the most time-consuming step 
of the optimization process, such a necessity of frequent simulations significantly slows 
down the process of diffuser design. To speed up computations, the action space was 
modified to make it possible for the agent to change multiple elements at once. 
Visualization of an example action after such a modification is depicted in Fig. 6.2. The 
structure of the modified DDQN neural network is shown in Fig. 6.3. 

 

 

Fig. 6.2 Modified structure of action being an effect of inference carried out by the DPG neural 
network 
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Fig. 6.3. Structure of a DPG neural network that learns and performs a strategy of a 
reinforcement learning agent optimizing designs in the experiment. The activation function of 
all layers but the last, softmax one, is a parameterized rectified linear unit (PReLU). 
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Designs in the experiment have equal width and height patterns, being 10 

segments, and for each segment, three decisions can be made. The decisions are: 

• decreasing the element height by 1, 

• leaving the element unchanged, 

• increasing the element height by 1. 
 

As only heights from 0 up to 10 are accepted, the values are trimmed after 

modifications introduced to the pattern by the neural network to avoid negative 

segment heights and heights greater than 10. This means that there are 310⋅10 = 3100 

possible actions in the action space. Such a large number of actions makes it 

impossible to employ the DDQN algorithm for the optimization task, as the output 

vector length would also be equal to 3100. Therefore in the final experiment, only 

random, genetic algorithm and DPG-based approaches are compared. 

As denoted in Fig. 6.3, the input to the DPG neural network was also modified, 

additional channels were added. Instead of providing only the information about the 

diffuser pattern, the neural network also takes: 

• 2-dimensional FFT of the pattern,  

• 2-dimensional cepstrum of the pattern, 

• the autocorrelation of the pattern interpolated from the shape of (19,19) to the 
shape of (10,10). 

In the case of autocorrelation, a spline-based interpolation is implemented in the 

RectBivariateSpline class from the Python scipy.interpolate package was used. The 

version number of SciPy library employed for this experiment was 1.5.4. The cepstrum 

of the Schroeder diffuser pattern was calculated according to the formula below: 

𝐗𝐜𝐞𝐩𝐬𝐭𝐫𝐮𝐦 = FFT2D(|FFT2D(𝐗)|) 
(6.1) 

where: 

𝐗 is a matrix containing the pattern of the Schroeder diffuser, 

FFT2D is a 2-dimensional fast Fourier transformation, 

𝐗𝐜𝐞𝐩𝐬𝐭𝐫𝐮𝐦 is a spatial cepstrum of 𝐗. 

The order of spline used for interpolation in both the x and y axes is 5. Such an 

approach allows the neural network to estimate the properties of diffusers by analyzing 

their shape in terms of spatial frequencies and autocorrelation. The use of cepstrum 

allows for easier sensitization of the neural network to take into account the harmonicity 

of spatial frequencies present in the design. An example of the parameterization result, 

together with the initial matrix containing the pattern definition of a diffuser, is shown in 

Fig. 6.4. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6.4 Example of input fed into the neural network of the structure shown in Fig. 6.3. The 
original pattern matrix is presented in a), in b) one can see the spatial spectrum of the input 
pattern, c) depicts spatial cepstrum, and d) shows interpolated autocorrelation of the pattern. 

Two approaches to DPG-based optimization were investigated: 

1. the approach in which a neural network tries to improve wideband 
autocorrelation diffusion coefficient of randomly generated diffuser patterns, 

2. the approach in which, through the whole process of training, the best 10 
historical designs are retained and updated. A neural network tries to improve 
a design randomly chosen from the aforementioned set of best diffuser designs. 

 

Neural networks are trained in a loop of interaction between the network and the 

environment. The algorithm of training is presented in Fig. 6.5. The environment, in this 

case, is an FDTD simulation of the diffuser interaction with a band-limited impulse. Due 
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to the necessity of limiting the numerical dispersion, the bandwidth of simulation was 

limited to 4 kHz – this is the maximum frequency of exciting impulse employed in the 

simulation. 

 

Fig. 6.5 Training procedures for reinforcement learning agents using the neural network 
architecture described in this Section. 
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Each training step was performed for 10 epochs. Adam algorithm was employed 

for learning rate optimization; the initial learning rate of the Adam algorithm was set to 

0.001. The momentum parameter of batch normalization layers was set to 0.95. The 

discount factor was set to 0.99.  

A reward signal calculated for each step of interaction between a particular 

realization of neural network architecture from Fig. 6.3 was calculated as follows: 

reward[𝐧] =
𝟏

𝟐
(𝑑𝜓,𝑛,𝑥𝑦[𝐧] − 𝑑𝜓,𝑛,𝑥𝑦[𝐧 − 𝟏]) +

𝟏

𝟐
(𝑑𝜓,𝑛,𝑦𝑧[𝐧] − 𝑑𝜓,𝑛,𝑦𝑧[𝐧 − 𝟏]) 

(6.2)  

where: 

reward[𝐧] is a reward signal value for step n 

𝑑𝜓,𝑛,𝑥𝑦[n], 𝑑𝜓,𝑛,𝑦𝑧[n] are normal incidence autocorrelation diffusion coefficients 

obtained in the current step of optimization calculated after application of changes 
obtained from a neural network for xy, and yz planes of the diffuser, respectively, 

𝑑𝜓,𝑛,𝑥𝑦[n − 1], 𝑑𝜓,𝑛,𝑦𝑧[n − 1] are normal incidence autocorrelation diffusion coefficients 

obtained for a diffuser design before applying changes obtained from a neural network 
for xy, and yz planes of the diffuser, respectively. 

Designed and simulated diffusers consisted of 100 segments and had a shape of 

10 x 10 segments. Each segment could have a length within the range from 0 to 10. 

The maximum length of a diffuser was set to 30 cm; therefore, the height of a single 

element is 3 cm. To speed up computations and limit the numerical dispersion, the 

bandwidth of simulation was limited to 4 kHz by using a band-limited Gaussian pulse. 

The sampling rate of the simulation was 50.2 kHz. This is a minimum sampling rate 

providing sufficient spatial resolution for simulation of lengths as small as 3 cm. Spatial 

resolution is equal to 1.1 cm and was calculated with an assumption that the Courant 

number is equal to √1/3. The temporal duration of the simulation, and thus – the 

duration of obtained impulse responses used to calculate diffusion coefficient, is 15 

ms.  

In terms of propagation medium properties, the temperature of the air was assumed 

to be equal to 25 °C, atmospheric pressure was considered to be equal to 1000 hPa, 

and relative humidity of the air was assumed to be equal to 50%. Therefore, the speed 

of sound in the propagation medium was 347.43 m/s, and the characteristic impedance 

of air was equal to 403.52 rayls. As simulations were intended to replicate outcomes 

obtained in anechoic conditions, Berenger PML was applied to borders of a 

computational domain. The PML had a thickness of 30 elements, and the maximum 

damping factor was 25000. Admittance of rigid materials present in the computational 

domain was assumed to be equal to 10−10. A semicircular pattern of pressure 

measurement points used for calculating the diffusion coefficient had a radius of 0.95 

m. The source was positioned at a 2 m distance from a diffuser. The incidence angle 

of the acoustic wave on an acoustic diffuser was 90° (perpendicular incidence). 
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Dimensions of the domain (with PML and object margins) were 2.9m x 3.4 m x 2.9 m. 

Graphical depictions of reward signals and achieved diffusion coefficients obtained 

from the policy gradient optimization process are shown in Figs. 6.6 and 6.7. The 

detailed results obtained by all machine learning agents are contained in Appendix C, 

and Appendix D. As each of the graphs is related to a different realization of a neural 

network (for instance, they are initialized with different sets of random weights). 

Therefore, each realization of the neural network is referred to as “agents” to 

emphasize this fact. For the algorithm using the random pattern as input for 

optimization, there were active 20 agents; for the algorithm performing optimization of 

1 of 10 best patterns, there were 23 agents. The training lasted for approximately 15 

hours. The number of episodes of training for each agent varied and was in the range 

between 60 up to 110. This variability was a consequence of parallel training of agents 

on multiple workstations equipped with different GPU cards characterized by different 

performance. For this experiment, 2 RTX Titan, 3 RTX 2080 Ti, and 2 RTX 2060 

graphic cards were used. The aforementioned graphic cards were used to carry out 

both the training of neural networks and the simulation-based prediction of the diffusion 

coefficient of diffusers generated by algorithms. 

 

Fig. 6.6 Results obtained from agent no. 10, which was fed with random input diffuser designs 
to be improved over  each episodes. 
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Fig. 6.7 Results obtained from agent no. 18, for which a diffuser chosen from 10 best designed 
encountered by a group of agents in the optimization process was selected as a starting 
design. 

As can be seen, the best result was obtained for the approach employing 

improvements of 10 historical best designs. With increasing the episode number, the 

value of the obtained diffusion coefficient increased. Reward signal values also 

increased, which denotes that the neural network was learning during the training and 

succeeded in finding modifications that potentially can improve the design. On the 

other hand, it is not likely to significantly decrease the already obtained high diffusion 

coefficient. The random starting design did not converge, which can be seen in Fig. 

6.6. With increasing the episode number, no or little improvement in terms of the 

obtained diffusion coefficient and reward signal can be found. Visualizations of the 

behavior of all reinforcement learning agents are shown in Appendices C and D. 

To compare the neural network performance in terms of optimization capabilities 

with other heuristic optimization methods, a genetic algorithm was also employed to 

design diffusers with the same design specification as ones generated by the deep 

policy gradient algorithm. The algorithm had the same structure as in the first 

experiment associated with optimization of diffuser properties in a mock-up, shoebox-

type room (see Section 5.3). However, a chance for swapping rows or columns was 

decreased to 0.2, probability of single-segment mutation was also set to 0.2. To make 

changes similar to ones undertaken by a neural network, a mutation change of each 

segment value can only be -1 or 1. This algorithm was used to carry out 3 instances of 

genetic algorithm design processes. Each of them employed a population of 30 

diffusers. For each of those groups, 18 generations of diffusers were generated.  

Histograms of diffusion associated with all designs generated by two optimization 

processes based on policy gradient and one process based on the genetic algorithm 

are presented in Fig. 6.8. To investigate if outcomes of optimization are better than a 

random selection of the diffuser segment length, a histogram of diffusions provided by 
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randomly generated diffusers also is shown. These random designs are obtained from 

the DPG algorithm with a random initial design. These initial, purely random designs 

from the beginning of all episodes can be utilized as a baseline for all designs optimized 

by DPG and genetic algorithm. 

 

Fig. 6.8 Histograms depicting probability distributions of creating the design associated with a 
specified diffusion coefficient. Four algorithms are shown: DPG with randomly generated input 
diffusers designs, DPG with input designs picked from 10 best historic designs, genetic 
algorithm, and random selection of diffuser segments length.  

In Fig. 6.8, it can be seen that the best designs in terms of diffusion coefficients 

calculated based on the FDTD simulation were ones generated by the DPG algorithm 

with input patterns selected from 10 best historical designs. The second best algorithm 

was the genetic algorithm. If the DPG method was fed with inputs obtained in a random 

manner, a histogram of obtained diffusion coefficients was barely different from a purely 

random choice of diffuser segments length. 

To find out if the median differences visible in Fig. 6.8 are statistically significant, 

statistical tests were performed. For all tests, a significance level of 0.05 was assumed. 

First, a Levene test for equality of variance of all algorithm-related distributions was 

carried out. A test statistic was equal to 41.9, thus the p-value is lesser than 10−3. 

Therefore, one must conclude that variances of estimated probability distributions 

visible in Fig. 6.8 are not equal. Therefore, the ANOVA test for equality of means of 

distributions cannot be carried out. Instead, a nonparametric alternative for ANOVA has 

to be used. In this case, the Kruskal-Wallis test for equality of medians can be 

employed. The statistic of this test for the data investigated is equal to 4370.24, and 

therefore p-value, in this case, is also lesser than  10−3. This means that at least one 

pair of medians of distributions visible in Fig. 6.8 is not equal. To find out which one 

this concerns, a post-hoc test has to be carried out. In the case of the Kruskal-Wallis 

test, a Dunn’s test can be employed. In the case of data under question, all p-values 

of Dunn’s test are also lesser than  10−3. Therefore, the p-value matrix is not shown 
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here, and one can conclude that all differences visible in Fig. 6.8 are statistically 

significant. Medians calculated for data from Fig. 6.8 are contained in Tab. 6.1. 

Tab. 6.1 Medians of diffusion coefficients averaged over xy, and yz planes for designs 

generated by four algorithms investigated in the second experiment. 

algorithm  median of the averaged diffusion 
coefficient 

deep policy gradient (best of 10 input) 0.896 

genetic algorithm 0.875 

deep policy gradient (random input) 0.803 

random pattern selection 0.786 

 

The DPG algorithm with the best of 10 input designs was found out to be the best 

in terms of optimizing diffuser designs on the basis of FDTD simulation. This confirms 

thesis no. 2 which states, that reinforcement learning can be used to design acoustic 

diffusers through the means of simulation-based optimization. The DPG algorithm 

provided designs with a diffusion coefficient median significantly higher than any other 

design methods. The best designs generated by each of the algorithms are shown in 

Tab. 6.2. 

In the course of numerical experiments, the following numbers of repetitions for 

each calculation scenario were carried out: 

• the best design from a pool of random designs – 1692 patterns were generated; 

therefore, a number of designs generated by a DPG with the random initial 

design are also 1692,  

• genetic algorithm generated a pool of 1620 diffusers designs 

• deep policy gradient with input design selected from the best 10 historic designs 

resulted in the creation of 1816 designs. 
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Tab. 6.2 Patterns and diffusion coefficients of the best designs obtained from all four 
optimization algorithms. The diffusion coefficient was averaged for xy, and yz planes 

algorithm best-generated diffuser pattern averaged diffusion 

coefficient  

DPG (best of 

10 input 

designs) 

5 6 0 5 3 9 0 0 0 0
0 8 4 0 6 10 10 3 0 2
1 6 6 5 5 9 8 4 5 3
0 1 2 7 7 10 4 7 5 0
1 1 3 0 3 10 6 2 4 4
8 3 2 2 3 8 9 3 0 0
0 2 7 5 2 5 8 2 1 4
0 3 9 3 5 6 0 2 0 0
1 2 2 1 0 10 7 4 5 0
7 1 1 0 1 10 10 1 0 4

 0.947 

genetic 

algorithm 

5 9 1 1 2 1 0 4 1 6
3 4 2 2 3 2 6 2 3 7
0 1 4 9 8 2 7 4 4 4
0 1 10 1 6 7 5 6 5 2
7 6 2 3 8 10 1 7 7 8
0 0 4 3 10 9 7 7 1 5
9 10 6 8 9 1 0 1 9 0
7 9 2 7 4 4 6 8 4 0
7 0 1 2 8 8 5 8 9 1
3 0 0 4 2 1 8 4 5 2

 0.916 

DPG (random 

input designs) 

3 7 6 7 6 0 3 0 1 5
1 2 3 7 7 0 7 9 2 5
6 3 5 6 5 1 0 9 1 4
0 9 3 8 6 1 7 2 7 3
1 4 8 1 7 5 9 8 0 9
4 2 7 6 7 2 0 7 9 0
0 1 3 7 8 6 2 9 6 3
0 7 8 1 1 4 7 2 8 4
2 4 3 5 5 0 4 5 9 1
5 1 6 6 8 8 0 5 2 0

 0.896 

random 

generation 

algorithm 

0 1 1 3 0 0 5 8 3 3
1 9 6 4 3 5 7 9 5 8
4 8 4 8 3 1 8 9 6 6
1 2 4 8 9 6 7 2 4 6
2 5 6 1 7 9 5 5 9 5
2 2 9 8 5 6 8 3 9 8
4 2 6 9 0 0 6 6 1 0
5 5 3 9 4 0 1 4 2 6
5 0 5 5 4 9 4 1 3 1
3 4 3 3 8 4 1 1 0 1

 0.877 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

100 
 

Machine learning algorithms were able to optimize the estimated performance of 

diffusers. However, the practical applicability of such diffuser designs, being an 

outcome of numerical calculations, is limited by the error of simulation used to predict 

the diffusion coefficient. To find out if designs proposed in previous Sections are viable 

for practical purposes, three prototypes were prepared. The following designs were 

chosen for measurement-based evaluation: 

1. design generated by the DPG algorithm (best of 10 input designs) 

2. design generated by the genetic algorithm, 

3. best diffuser chosen from randomly generated designs. 

The outcome of the DPG algorithm with random input was omitted because the 

result achieved by this method was just slightly better than the ones obtained by the 

random generation method. 

Each diffuser consisted of 100 segments arranged as a matrix of 10 x 10 elements. 

Each segment of the diffuser can have a length varying from 0 cm up to 30 cm. The 

cross-section of the element has dimensions of 5cm x 5 cm, which means that the 

dimensions of the whole diffusers are 50 cm by 50 cm. This size of a prototype means 

that a method of their manufacturing should be carefully considered. On the one hand, 

there are very precise methods such as 3D printing; on the other hand – such very 

precise methods tend to generate very small samples or require large diffusers to be 

printed in many parts, which then have to be assembled manually anyway, which 

reintroduces a chance for human-related errors [Reinhardt2016]. Therefore, in the 

case of prototypes that have dimensions of 50 cm x 50 cm x 30 cm, it was decided to 

prepare measurement prototypes out of extruded polystyrene (XPS). As the cross-

section of a single segment of a diffuser is 5 cm x 5 cm, panels of 5 cm thick XPS were 

used to prepare prototypes. The material was cut with the hot wire method. As patterns 

allow segment lengths of 0, a back plate of 50 cm x 50 cm dimensions was also used 

to assemble prototype diffusers. Elements cut from the XPS were glued together with 

the back plate. Final prototypes obtained with this method are depicted in Fig. 6.9. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6.9 Presentation of the reference plate and diffuser configurations obtained by 
various optimization methods: a) – a flat reference plate, b) – random selection, c) – 
genetic algorithm, d) – deep policy gradient 

After manufacturing, prototypes were transported to the anechoic chamber. The 

measurement procedure was based upon one described in Section 3.2, which is also 
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corresponding to the way, the simulation was carried out in the FDTD simulation. The 

diffuser was positioned at the height of 1 m above the floor of the chamber and at a 

distance of 2 meters from the source.  

 

Fig. 6.10 Arrangement of objects in the anechoic chamber to measure the diffusion coefficient 
of the flat plate. An APS Coax studio monitor used as a sound wave source and Microflown 
Acoustic Probe used for the measurement are also visible in the picture. Also, parts of the 
Cartesian robot structure are visible on the sides of the measurement area. 

 

Fig. 6.11 Front side of the acoustic diffuser (designed by the genetic algorithm) positioned in 
in the anechoic chamber to measure the diffusion coefficient. A fragment of a Cartesian robot 
structure is visible on the left part of the image. 
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Measurement was performed to obtain both the diffusion coefficient in the xy and 

yz planes of scattering. Therefore for each prototype, there were two measurements 

performed. In total, 8 measurements were taken: 

1. measurement of the room without any object positioned on the stand, 
2. measurement of diffusion coefficient introduced by a flat plane, 
3. measurement of design generated by selection of best randomly generated 

diffuser (xy plane), 
4. measurement of design generated by selection of best randomly generated 

diffuser (yz plane), 
5. measurement of design generated by genetic algorithm (xy plane), 
6. measurement of design generated by genetic algorithm (yz plane), 
7. measurement of design generated by DPG algorithm (xy plane), 
8. measurement of design generated by DPG algorithm (yz plane). 

The result of each measurement was a set of 37 impulse responses, as similarly to 

the simulation, a 5° spatial resolution was assumed. Although the acoustic Microflown 

Ultimate Sensor Probe (USP) vector probe was employed for the measurement, only 

the pressure channel was used for further analyses [Comesaña2015]. 

 The measurement in an anechoic chamber has to be processed differently from 

the one employed for post-processing associated with the FDTD simulation. In the 

simulation, one can simply subtract the impulse response of the numerical computation 

domain from the impulse response obtained from the simulation carried out with the 

3D representation of an acoustic diffuser.  

In a practical setting, there is a problem associated with residual reflections present 

in signals obtained from measurement. Even if impulse responses are synchronized 

by aligning the initial excitation impulse, still there are residua reflections primarily 

occurring during the period after the impulse is reflected from the diffuser. Due to this 

fact, extraction of the impulse reflected from the diffuser was performed by trimming 

the signal gathered during the measurement. An example of a signal from which the 

room signal was subtracted is depicted in Fig. 6.12. Due to this fact, it was decided not 

to subtract room-related reference measurements from measurements conducted for 

investigated diffusers. Instead, a time window was applied to isolate only the fragment 

of impulse responses containing reflections originating from acoustic diffusers 

positioned on the stand. The most probable origin of residual reflections is the 

presence of a Cartesian robot used to automate the measurement of polar responses 

of the diffuser. On the one hand, the robot significantly speeds up measurement, as 

the whole process is automated, but on the other hand – one has to take into account 

the fact that the construction of the robot is made out of acoustically reflective 

materials. In some cases, reflections from the parts of the robot have to be taken into 

account in the process of data post-processing. 
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Fig. 6.12 Example of 37 overlapped impulse response fragments for the measurement of a flat 
plate. It can be seen that despite subtraction of a room reference measurement, still some 
reflections that are not originating from the plate itself can be found at the beginning (around 
0 ms) and the ending (around 12 ms) of the shown signal fragment. 

Polar responses of the flat reference plate and acoustic diffusers diffusion 

coefficients were used to calculate autocorrelation diffusion coefficients for three 

investigated diffuser designs in both the xy and yz planes. As the simulation was 

performed for a maximum frequency of 4 kHz, signals from measurement were filtered 

in a band-pass manner to constrict the bandwidth of signals to the range from 176.78 

Hz to 5656.85 Hz. Those particular frequencies were chosen to provide a half octave 

margin for a 5th order Butterworth band-pass filter. The lower frequency is positioned 

half an octave below 250 Hz, and the upper one – half an octave above 4000 Hz. 

Coefficients obtained in both the simulation and measurement are shown in Tab. 6.3. 

Errors of autocorrelation diffusion coefficient estimation are provided in Tab. 6.4. 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

105 
 

Tab. 6.3 Autocorrelation diffusion coefficients predicted by the FDTD simulation, and the 
corresponding values of this number measured in an anechoic chamber. 

design 
algorithm  
name 

diffusion coefficients obtained 
in the simulation 

diffusion coefficients obtained 
in the measurement 

xy plane yz plane averaged xy plane yz plane averaged 

DPG (best 
of 10 input) 

0.960 0.889 0.924 0.824 0.797 0.810 

genetic 
algorithm 

0.896 0.935 0.915 0.851 0.846 0.849 

best of 
randomly 
generated 

0.847 0.845 0.846 0.768 0.848 0.808 

 

Tab. 6.4 Errors in autocorrelation diffusion coefficient estimation made by the FDTD simulation. 

design algorithm  
name 

difference of diffusion coefficients obtained in the 
simulation (simulation – measurement) 

xy plane yz plane averaged 

DPG (best of 10 input) 0.136 0.092 0.114 

genetic algorithm 0.045 0.089 0.066 

best of randomly 
generated 

0.079 -0.003 0.038 

 

A confidence interval for data from Tab. 6.4 with the assumption of confidence 

interval equal to 0.05 is (0.0234, 0.123). Therefore, one can conclude that the 

simulation has a statistically significant tendency to overestimate the diffusion 

coefficient, and this overestimation is likely not greater than 0.12. It is an important 

observation in the context of diffusion coefficient values obtained for the DPG and 

genetic algorithms, which turned out to be swapped in terms of the value of diffusion 

coefficient provided by them. It should also be noted that the worst measured 

coefficient was observed for one of the planes of randomly generated designs.  

Still, all observed values of diffusion coefficient, which come from the measurement 

process, have values that allow their use in a practical setup. Moreover, the confidence 

interval error of the diffusion coefficient estimation allows the selection of designs that 
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will probably have desired diffusing properties in a real context.  

This observation proves thesis no. 3, which states that designs obtained 

through numerical optimization are viable for use in practice and retain their 

sound scattering properties if designs are implemented as physical devices. 

An interesting observation can also be made if the diffusion coefficient is visualized 

separately in octave bands. Such a type of visualization can be seen in Fig. 6.13. 

 

Fig. 6.13. Band-pass autocorrelation diffusion coefficient of 3 investigated acoustic diffuser 
designs. Diffusion coefficients are calculated for the following set of frequencies: 250 Hz, 500 
Hz, 1 kHz, 2 kHz, and 4 kHz. 

An interesting fact is that designs optimized by a computer are characterized by a 

wider usable bandwidth in which they provide diffusion. This can be a consequence of 

maximizing a mean broadband diffusion coefficient. Such optimization promotes 

maximization of diffusion in every possible frequency band. Therefore, for instance, the 

DPG algorithm provides uniform diffusion coefficients, which are non-negligible already 

from the frequency of 500 Hz. 

Results presented in this Section once more refer to theses no. 1 and 2 and 

prove them as the metric used for the optimization of acoustic scattering 

coefficient of diffusers was calculated on the basis of the numerical simulation 

(thesis no. 1).  

Outcomes of the simulation were used as a fitness function for a genetic 

algorithm or a reward signal for a reinforcement learning-based method, which 

supports claims given in thesis no 2. 
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Moreover, analysis of prototypes obtained from the simulation found that, in 

fact, all geometries designed by using an optimized computer simulation were 

characterized by an autocorrelation scattering coefficient which was close to the 

one predicted by the simulation (the error of estimation belongs to range 

between 0.0234, and 0.123). This means that designs obtained with methods 

presented in this thesis are feasible to be used in a practical context if the 

prediction error between (0.0234 and 0.123) is tolerable for the desired 

implementation. 
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7. CONCLUSIONS AND FUTURE DIRECTIONS 
This chapter summarizes the study performed in this Ph.D. dissertation. The main 

findings are also contained. Moreover, possible directions of future research are 

proposed and discussed. The introductory Sections of this dissertation are excluded 

from the discussion. 

The scope of this work was largely focused on employing a numerical acoustic 

wave propagation model and machine learning algorithms to create an autonomous 

program capable of designing acoustic diffusers with optimized values of given metrics. 

For optimization, an autocorrelation diffusion coefficient was chosen. However, any 

other metric which can be predicted by a numerical simulation can be selected for such 

kind of optimization.  

The author derived a novel, modified version of the FDTD equation, which allows 

fast computation of fitness and reward signals using GPU. Also, a Python-based 

implementation of the numerical model for such a purpose was proposed. Next, the 

model was employed to evaluate the performance of three selected optimization 

algorithms, namely the genetic algorithm and two reinforcement learning algorithms – 

the deep Q network and the policy gradient neural network. The experiment carried 

out to investigate the performance of the aforementioned algorithms made it possible 

to support theses no.1 and no. 2 of this doctoral dissertation, which are recalled below: 

1. It is possible to employ a numerical simulation as a fitness or reward 

estimator used by an artificial intelligence algorithm to optimize a 

Schroeder diffuser design. 

2. It is possible to employ machine learning methods such as genetic 

algorithms or deep reinforcement learning for optimization of the 

Schroeder skyline diffuser geometry to achieve a design having desired 

acoustic properties of autocorrelation diffusion coefficient when the 

measurement is performed in an anechoic condition. 

These theses were proven by the outcome of experiments with optimization of the 

frequency response of a simple shoebox-type room carried out using the FDTD-based 

fitness and reward estimators. The investigation involving both the genetic algorithms 

and reinforcement learning algorithms show that they were capable of optimizing 

acoustic properties of designed diffusers (in terms of an autocorrelation diffusion 

coefficient) based on feedback generated by the simulation. Also, all optimization 

methods achieved results that are statistically significantly better than ones employing 

classical approaches based on pseudo-random sequences. 

The final experiment was designed with the intention of verifying if acoustic diffuser 

designs created with the use of numerical FDTD simulations can be used to 

manufacture physical prototypes and if those prototypes also will have desired features 

that correspond to outcomes of simulation employed by optimization processes. In this 

stage of the experiment, only a deep policy gradient algorithm was employed, as 

optimization of the design speed, which was a major issue in the first experiment, led 
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to a combinatorial explosion of possible action choices. This made it impossible to use 

the deep Q network algorithm in the second experiment. It was found out that the deep 

policy gradient algorithm can achieve statistically significantly better performance if 

optimizing the design of acoustic diffuser even if the action space is as large as 3100 

possible actions. Results of optimizations translated to the quality of physical 

prototypes were assessed by measurement in an anechoic chamber. It occurred that 

for selected bands, a randomly-generated acoustic diffuser performed better than 

designs generated by optimization algorithms. Moreover, it was found that especially 

the design obtained from the deep policy gradient method provided a more stable 

diffusion coefficient across the bandwidth in which the diffuser has a measurable effect 

on the acoustic field. Also, all three evaluated acoustic diffuser prototypes had 

autocorrelation diffusion coefficient, which is reasonably closer to the one predicted by 

the simulation, which proves thesis no. 3, namely: 

3. Prepared geometries of acoustic scattering elements acquired in the 

computer-based optimization are feasible for practical implementation 

and can be used as the means of acoustic room treatment. 

The following major original contributions were introduced in this dissertation: 

• derivation of the modified homogenous FDTD difference equation based 
on works by Webb and Bilbao [Webb2011], which allows the use of 
Berenger PML in such kind of simulations, 

• derivation of an FDTD model which is capable of handling PML layers and 
take into account such properties of the propagation medium as air 
temperature, atmospheric pressure, and relative humidity, 

• derivation of machine learning models employing FDTD simulation as an 
environment for a reinforcement learning agent which are capable of 
designing acoustic diffusers with maximized values of the acoustic diffusion 
coefficient 

• a Python-based implementation of the proposed FDTD simulation method, 

• the use of the FDTD-based simulation as a fitness function estimator of a 
genetic algorithm that performs maximization of desired properties of an 
acoustic diffuser 

• evaluation of acoustic diffusers prototypes created by machine learning 
algorithms (namely – deep duelling Q-networks, DDQNs, and deep policy 
gradient, DPG) in real-life conditions with the use of physical prototypes in 
which acoustic properties were measured in an anechoic chamber. 

 

The presented achievements may provide new insight into the artificial intelligence-

driven design of passive acoustic treatment devices. The use of numerical simulations 

allows optimizing especially desired properties of designed elements such as acoustic 

diffusers. In experiments presented in this dissertation, the main focus was on the 

maximization of the autocorrelation diffusion coefficient. However, the optimization 

process does not have to be limited just to one single parameter. An interesting future 

direction of research may be the optimization of multiple parameters and optimization 

of the behavior of a diffuser or other acoustic treatment device which is tailored to the 
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geometry of a room.  This would require to additionally take into account the model of 

the space in which the acoustic treatment device would be implemented, but potentially 

such an approach can help to exploit some properties of treated spaces and use them 

as an advantage in the process of improving the acoustics of a given space under 

treatment. 

Finally, an interesting topic for future research is to modify the proposed methods 

to apply them in the design of other types of diffusers.  
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APPENDIX A: PYTHON PROCEDURES FOR GENERATION 
OF K MATRIX 

This appendix contains the source code used for the generation of K matrix and all 

derivative matrices used for FDTD simulation. As this task can very often be tedious 

and complicated, a set of tools was prepared. They allow for the fast, automated 

creation of K matrices that are compatible with assumptions of the homogenous 

equation of the FDTD method and automatically ensure that all K values correspond 

to valid values of boundary conditions. Additionally, procedures for the visualization of 

generated shapes are also provided in this fragment of source code. The code is 

assumed to be stored in a file named Kgen.py. This is important, as the code in 

Appendix B, which is responsible for carrying out FDTD simulation, imports code from 

this appendix from the file of such name. 

# ---------------------------------------------------- # 

# A library of functions used for creation of geometries 

# of objects simulated with the FDTD method 

# ---------------------------------------------------- # 

 

from mpl_toolkits.mplot3d import Axes3D 

import numpy as np 

import matplotlib.pyplot as plt 

import copy as cp 

import mayavi.mlab 

import numba as nb 

import time 

 

# ------------------------------------------------ 

# Helper functions used for shapes generation 

# ------------------------------------------------ 

 

# A function for creation of an object “mold” which takes a form 

# of a matrix, where 1 is a voxel occupied by an object, and 0 is a voxel 

# which is not occupied by an object to a form of K matrix required 

# by a FDTD method  

# (5 – a surface, 4 – an edge, 3 – a vortex) 

#  

# Voxels of the mold HAVE TO be assigned value of 1! 

#  

# Moreover, any shapes in the computational domain CAN NOT 

# have thickness of 1 voxel, as this will cause the bake() function 

# to behave in an unspecified manner 

# (thickness of any object has to be at least 2) 

 

def bake(shape_mold): 

    # Bidirectional differentiating – permits detection of corners and 

edges 

    def bidirect_differencing(mtx, axis, padding='prepend'): 

        output  = np.zeros_like(mtx) 

         

        if padding == 'prepend': 

            kwargs = {'prepend':0} 

        elif padding == 'append': 

            kwargs = {'append':0} 

        else: 

            raise RuntimeError(f'bad value specified for padding keyword 

argument: {padding}') 
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        mtx_rev = np.flip(mtx,axis=axis) 

        output += np.diff(mtx,axis=axis, **kwargs) 

        output += np.flip(np.diff(mtx_rev,axis=axis, **kwargs),axis=axis) 

         

        return output 

 

    # Application of bidirectional differentiation on the whole 3D space –  

    # the result of this operation allows detection of surfaces, edges, and 

vertices 

    def unidirectional_differencing(shape_mold): 

        output  = np.zeros_like(shape_mold) 

        output += bidirect_differencing(shape_mold, 0) 

        output += bidirect_differencing(shape_mold, 1) 

        output += bidirect_differencing(shape_mold, 2) 

        return output 

 

    # Application of non-directional differentiating and limitation 

    # of results only to the volume taken by the mold 

    # geometrii 

    diff_stencil = unidirectional_differencing(shape_mold) 

    diff_stencil[np.where(shape_mold==0)] = 0 

     

    # Matching of the generated geometry to their 

    # corresponding boundary conditions (5 - surface,  

    # 4 - edge, 3 - vertex, 0 – interior of an object,  

    # 6 – propagation medium) 

    baked_object = np.zeros_like(diff_stencil) 

    baked_object[diff_stencil==1] = 5 

    baked_object[diff_stencil==2] = 4 

    baked_object[diff_stencil==3] = 3 

    baked_object[shape_mold  ==0] = 6 

     

    return baked_object 

 

# Many operations are based on embedding a “form” 

# made of many cuboids – hence a base function for  

# easy embedding of forms, and setting voxels of the form 

# to desired values (value), usually 1 (required by the bake function) 

 

def embed_cuboid(K, x_pos, y_pos, z_pos, width, length, height, value=1): 

    K[x_pos:x_pos+width, y_pos:y_pos+length, z_pos:z_pos+height] = value 

    return K 

 

# ------------------------------------------------ 

# Shape generation 

# ------------------------------------------------ 

 

# Axes of the simulation: 

#   z - height of the computational domain in a FDTD simulation 

#   y – depth of the diffuser in the domain 

#   x – width of the diffuser 

# Object of the computational domain which fulfills assumptions of 

# the FDTD equation with K matrix 

def make_computational_domain(x_dim,y_dim,z_dim): 

    # Allocation of space for the computational domain 

    plate_obj = np.zeros((x_dim, y_dim, z_dim)) 

     

    # Border of the domain is a surface-type boundary condition 

    plate_obj = embed_cuboid(plate_obj, 1, 1, 1, x_dim-2, y_dim-2, z_dim-2, 

value=1) 
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    # Conversion of the form to the target format. 

    plate_obj = bake(plate_obj) 

     

    # Zeros have to be set on the outside of computational domain, in other 

    # case, the equation will not be stable. 

    plate_obj[plate_obj==6] = 0 

     

    # Inside of the domain is marked as a propagation medium 

    plate_obj = embed_cuboid(plate_obj, 2, 2, 2, x_dim-4, y_dim-4, z_dim-4, 

value=6) 

     

    return plate_obj 

 

# Embeding f the shape(diffuser) into a computational domain in the given 

position in the 3D space. 

def embed_shape_into_domain(computational_domain, beta, shape_obj, 

admittance, x_pos=0, y_pos=0, z_pos=0): 

     

    computational_domain[ 

        x_pos:(x_pos+shape_obj.shape[0]), 

        y_pos:(y_pos+shape_obj.shape[1]), 

        z_pos:(z_pos+shape_obj.shape[2])] = shape_obj[:,:,:] 

     

    for vox_type in [5,4,3,0]: 

        mask_args = list(np.where(shape_obj==vox_type)) 

        mask_args[0]    += x_pos 

        mask_args[1]    += y_pos 

        mask_args[2]    += z_pos 

        mask_args        = tuple(mask_args) 

        beta[mask_args]  = admittance 

     

    return computational_domain, beta 

# Generator of skyline-type diffuser with a 1D pattern 

def 

get_1D_Skyline_diffuser(pattern=[0,1,0,0,1,2,1,1,2,1,0,0,1,0,0,1,0,0,1,2,1,

1,2,1,0,0,1,0],segment_height=15,segment_width=6,diffuser_height = 120): 

    # Input always should have numpy.ndarray type 

    if type(pattern) == list: 

        pattern = np.array(pattern) 

     

    # calculation of information about diffuser segments dimmensions 

    num_segments    = len(pattern) 

    segment_heights = (pattern+1)*segment_height 

    segment_heights = segment_heights.tolist() 

    diffuser_width = num_segments*segment_width 

    diffuser_elem_height = num_segments*segment_width 

     

    # Preparation of the diffuser form, and cuboids which will become 

    # segments of the diffuser 

    shape_mold = 

np.zeros((diffuser_width,diffuser_elem_height,diffuser_height)) 

    for i, height in enumerate(segment_heights): 

        shape_mold = embed_cuboid(shape_mold,i*segment_width,0,0, 

segment_width, height, diffuser_height) 

     

    # Conversion of a form to the final definition of a diffuser. 

    baked_object = bake(shape_mold) 

     

    # Removal of vertices, and edges detected by the bidirectional  

    # differentiating (they are not needed in K matrix specifications) 
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    baked_object[baked_object==3] = 6 

    baked_object[baked_object==4] = 6 

     

    return baked_object 

 

# Generation of classical 2D Schroeder diffuser 

def generate_2D_Skyline_diffuser(pattern = 

[[1,0,2,1],[0,0,3,0],[2,3,0,1]],element_size=10,element_seg_depth=10): 

    # Input always should have numpy.ndarray type 

 

    if type(pattern) == list: 

        pattern = np.array(pattern) 

     

    # Dimensions of the diffuser 

    diffuser_height = pattern.shape[0]*element_size 

    diffuser_width  = pattern.shape[1]*element_size 

     

    # Adaptation of the pattern of cavities to the generator loop of the 

    # diffuser shape(it is necessary, because we assume that 0,0 point is  

    # positioned in the lower left corner of a diffuser 

    flipped_pattern = np.flip(pattern, axis=0) 

    flipped_pattern = np.flip(flipped_pattern, axis=1) 

    flipped_pattern = flipped_pattern + 1 

     

    # Preparation of a matrix in which the geometry of the diffuser  

    # will be embedded 

    diffuser_depth = np.max(flipped_pattern)*element_seg_depth 

    diffuser_obj   = 

np.zeros((diffuser_width,diffuser_depth,diffuser_height)) 

     

    # The loop generating wells of the diffuser 

    for col_idx in range(flipped_pattern.shape[0]): 

        for row_idx in range(flipped_pattern.shape[1]): 

             

            # Coordinates of wells in the 3D space 

            element_pos_x = element_size*row_idx 

            element_pos_z = element_size*col_idx 

            element_pos_y = 0 

             

            # Dimensions of the well  

            element_size_x = element_size 

            element_size_z = element_size 

            element_size_y = 

flipped_pattern[col_idx,row_idx]*element_seg_depth 

             

            # Cutting of the well in the diffusor object 

            diffuser_obj = embed_cuboid(diffuser_obj, 

                element_pos_x,element_pos_y,element_pos_z, 

                element_size_x,element_size_y,element_size_z, 

                value=1) 

     

    # Conversion of the shape to the target format. 

    diffuser_obj = bake(diffuser_obj) 

     

    # Removal of vertices, and edges detected by the bidirectional  

    # differentiating (they are not needed in K matrix specifications) 

    diffuser_obj[diffuser_obj==3] = 6 

    diffuser_obj[diffuser_obj==4] = 6 

     

    return diffuser_obj 
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# A flat plate object – needed for measurement of scattering, and diffusion 

# coefficients. 

def generate_plate(x_dim=50,y_dim=50,z_dim=100): 

    # Wygenerowanie formy płyty 

    plate_obj = np.zeros((x_dim, y_dim, z_dim)) 

    plate_obj = embed_cuboid(plate_obj, 0, 0, 0, x_dim, y_dim, z_dim, 

value=1) 

     

    # Conversion of matrix to format in which edges, and vertices  

    # can be differentiated 

    plate_obj = bake(plate_obj) 

     

    # Removal of vertices, and edges detected by the bidirectional  

    # differentiating (they are not needed in K matrix specifications) 

    plate_obj[plate_obj==3] = 6 

    plate_obj[plate_obj==4] = 6 

     

    return plate_obj 

# Object of classic 2D Schroeder diffuser 

def generate_2D_Schroedder_diffuser(pattern = 

[[1,0,2,1],[0,0,3,0],[2,3,0,1]],well_size=10,well_seg_depth=10,diffuser_dep

th=40): 

     

    # Input always should have numpy.ndarray type 

    if type(pattern) == list: 

        pattern = np.array(pattern) 

     

    # Thickness of the diffuser wells – for the bake procedure 

    # to work properly it cannot be less than 3. On the other hand 

    # it should not be too small, so the best value of thickness is 3 

    WELL_WALL_WIDTH = 3 

     

    # A distance between corresponding points of each well 

    well_increment  = (WELL_WALL_WIDTH+well_size) 

     

    # Shape of the diffuser 

    diffuser_height = pattern.shape[0]*well_increment + WELL_WALL_WIDTH 

    diffuser_width  = pattern.shape[1]*well_increment + WELL_WALL_WIDTH 

     

    # Adaptation of the pattern of cavities to the generator loop of the 

    # diffuser shape(it is necessary, because we assume that 0,0 point is  

    # positioned in the lower left corner of a diffuser 

    flipped_pattern = np.flip(pattern, axis=0) 

    flipped_pattern = np.flip(flipped_pattern, axis=1) 

     

    # Preparation of a matrix in which the geometry of the diffuser  

    # will be embedded 

    diffuser_obj = np.ones((diffuser_width,diffuser_depth,diffuser_height)) 

     

    # The loop generating wells of the diffuser 

    for col_idx in range(flipped_pattern.shape[0]): 

        for row_idx in range(flipped_pattern.shape[1]): 

             

            # Coordinates of wells in the 3D space 

            well_pos_x = WELL_WALL_WIDTH+well_increment*row_idx 

            well_pos_z = WELL_WALL_WIDTH+well_increment*col_idx 

 

            # The y direction has to be modulated to modulate  

            # depth of wells 

            well_pos_y = WELL_WALL_WIDTH + 

flipped_pattern[col_idx,row_idx]*well_seg_depth 
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            # Size of well  

            well_size_x = well_size 

            well_size_z = well_size 

 

            # The y direction has to be modulated to modulate  

            # depth of wells 

            well_size_y = diffuser_depth-WELL_WALL_WIDTH-

flipped_pattern[col_idx,row_idx]*well_seg_depth 

             

           # Cutting of the well in the diffusor object 

            diffuser_obj = embed_cuboid(diffuser_obj, 

                well_pos_x,well_pos_y,well_pos_z, 

                well_size_x,well_size_y,well_size_z, 

                value=0) 

     

    # Conversion of the shape to the target format. 

    diffuser_obj = bake(diffuser_obj) 

     

 

    # Removal of vertices, and edges detected by the bidirectional  

    # differentiating (they are not needed in K matrix specifications) 

    diffuser_obj[diffuser_obj==3] = 6 

    diffuser_obj[diffuser_obj==4] = 6 

     

    return diffuser_obj 

 

# ------------------------------------------------ 

# Generation of the beta matrix 

# ------------------------------------------------ 

 

# Assignment of admittance value (beta) to the boundary conditions 

# of the computational domain 

# It is important to call this function on NEWLY CREATED MATRIX. 

# if it is necessary to assign admittance values to walls of the domain. 

# (there cannot be any objects embedded into the K matrix) 

def make_beta(K, volume_init_val=0, all_walls_init=None, 

    beta_wall_left=None,   beta_wall_right=None, 

    beta_wall_bottom=None, beta_wall_top=None,  

    beta_wall_down=None,   beta_wall_up=None): 

     

    # Inicjalizacja macierzy impedancji 

    beta          = np.ones_like(K)*volume_init_val 

     

    if all_walls_init is None: 

        walls_init_values = np.zeros(6) 

    else: 

        walls_init_values = np.ones(6)*all_walls_init 

     

    for idx, value in 

enumerate([beta_wall_top,beta_wall_bottom,beta_wall_left, 

    beta_wall_right,beta_wall_up,beta_wall_down]): 

        if value is not None: 

            walls_init_values[idx] = value 

     

    beta[0:2,:,:]   = walls_init_values[0] 

    beta[:,0:2,:]   = walls_init_values[2] 

    beta[:,:,0:2]   = walls_init_values[4] 

    beta[-2:beta.shape[0],:,:] = walls_init_values[1] 

    beta[:,-2:beta.shape[1],:] = walls_init_values[3] 

    beta[:,:,-2:beta.shape[2]] = walls_init_values[5] 
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    return beta 

 

def make_BK(K,lam,beta): 

    BK     = (6-K)*lam*beta/2 

    return BK 

 

# ------------------------------------------------ 

# Geometry visualization 

# ------------------------------------------------ 

 

# Three-dimensional preview of generated diffuser geometries. 

# (Based on Matplotlib library) 

def plot_with_color(K,ax, node_type_number, color): 

    colors = np.empty(K.shape, dtype='object') 

    voxels = np.zeros_like(K) 

    colors[K==node_type_number] = color 

    voxels[K==node_type_number] = 1 

    ax.voxels(voxels, facecolors=colors, edgecolor='k', alpha = 0.5) 

 

# Three-dimensional preview of generated diffuser geometries. 

# (Based on Mayavi library) 

def show_shape(K, opacity = 1, mode='voxel', show_result=True): 

     

    if mode == 'voxel': 

        objects = [] 

        objects.append({'K_number':5,'color':(0.4, 0.4, 1)}) # powierzchnie 

        objects.append({'K_number':4,'color':(0.4, 1, 0.4)}) # krawędzie 

        objects.append({'K_number':3,'color':(1, 0.4, 0.4)}) # wierzchołki 

         

        # Voxels of the propagation medium (6) 

        # are not visualized 

         

        for obj_def in objects: 

            xx, yy, zz = np.where(K == obj_def['K_number']) # surfaces 

            mayavi.mlab.points3d(xx, yy, zz, mode="cube", 

color=obj_def['color'], scale_factor=1, opacity=opacity, line_width=5) 

     

    elif mode=='scalar_field': 

        scalar_field = mayavi.mlab.pipeline.scalar_field(K,opacity=opacity) 

        env_plot     = mayavi.mlab.pipeline.volume(scalar_field) 

        mayavi.mlab.colorbar(orientation='vertical') 

     

    elif mode=='scalar_cut_plane': 

        scalar_field = mayavi.mlab.pipeline.scalar_field(K,opacity=opacity) 

        mayavi.tools.modules.scalar_cut_plane(scalar_field, 

plane_orientation='x_axes') 

        mayavi.tools.modules.scalar_cut_plane(scalar_field, 

plane_orientation='y_axes') 

        mayavi.tools.modules.scalar_cut_plane(scalar_field, 

plane_orientation='z_axes') 

        mayavi.mlab.colorbar(orientation='vertical') 

     

    else: 

        raise RuntimeError('Wybrano niewłaściwą opcję wizualizacji.') 

     

    if show_result: 

        # Show the result 

        mayavi.mlab.show() 
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 APPENDIX B: IMPLEMENTATION OF A FDTD ACOUSTIC 
SIMULATION METHOD 
The Appendix contains a set of procedures for carrying out FDTD simulations. The 

source code provided in this appendix provides 3 interfaces to the GPU-accelerated 

implementation of the FDTD method. It is also assumed that K matrix was generated 

with the use of code presented in Appendix A. Some procedures from this appendix 

are also necessary for the code presented in this appendix, and therefore, the code is 

imported from a file that is assumed to be named Kgen.py.  

# ------------------------------------------------------ 

# Computational engine for the GPU-accelerated FDTD method 

# ------------------------------------------------------ 

 

import numpy as np 

import matplotlib.pyplot as plt 

import numba as nb 

from   numba import prange, cuda, float32 

from   scipy.interpolate import RectBivariateSpline 

from   mayavi import mlab 

import copy as cp 

import os 

import cv2 

from numba import cuda 

from   _imports.sim_core.Kgen import * 

 

# ------------------------------------------------------ 

# Helper functions 

# A function for checking actual index for which calculations should be 

# carried out - it prevents from performing computations if the index 
# is outside the computational domain 

 

@cuda.jit('boolean(int32,int32,int32,int32,int32,int32)', device=True) 

def pressure_outside_domain(ll,mm,ii,sh_ll,sh_mm,sh_ii): 

    if ll < 1 or ll >= sh_ll-1: 

        return True 

    if mm < 1 or mm >= sh_mm-1: 

        return True 

    if ii < 1 or ii >= sh_ii-1:  

        return True 

    return False 

 

# A CUDA computation step 

@cuda.jit 

def FDTD_step_CUDA(K,courant_number,X,T,sigma_arr,c,rho,p_all_steps,BK, 

p_current): 

 

    cuda.syncthreads() 

    ll,mm,ii = cuda.grid(3) 

    if pressure_outside_domain(ll,mm,ii,*(p_current.shape)): return 

    cuda.syncthreads() 

     

    damping_A = rho[0]*c[0]*c[0]*sigma_arr[ll, mm, ii]*T[0] + sigma_arr[ll, 

mm, ii]*T[0]/rho[0] 

    damping_B = c[0]*c[0]*sigma_arr[ll, mm, ii]*sigma_arr[ll, mm, 

ii]*T[0]*T[0] 

     

    # Application of the discretized wave equation with taking into  

    # account boundary conditions, and dumping factor of PML layers. 
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    p_current[ll,mm,ii] = ( 

    (2-K[ll, mm, 

ii]*courant_number[0]*courant_number[0])*p_all_steps[ll,mm,ii,1]  

    + (BK[ll, mm, ii] + damping_A/2 -1)*p_all_steps[ll,mm,ii,2]  

    + courant_number[0]*courant_number[0]*(p_all_steps[ll+1,mm,ii,1] + 

p_all_steps[ll-1,mm,ii,1] + p_all_steps[ll,mm+1,ii,1] + p_all_steps[ll,mm-

1,ii,1] + p_all_steps[ll,mm,ii+1,1] + p_all_steps[ll,mm,ii-1,1]) 

    ) / (1+BK[ll, mm, ii] + damping_A/2 + damping_B) 

 

# Update of matrix containing pressure distribution data from consecutive  

# simulation steps 

@cuda.jit 

def shift_pressure_matrices_CUDA(p_all_steps): 

    ll,mm,ii = cuda.grid(3) 

    if pressure_outside_domain(ll,mm,ii,*(p_all_steps.shape[0:3])): return 

    p_all_steps[ll,mm,ii,2] = p_all_steps[ll,mm,ii,1] 

    p_all_steps[ll,mm,ii,1] = p_all_steps[ll,mm,ii,0] 

 

# A procedure for obtaining actual pressure distribution 

@cuda.jit 

def update_pressure_CUDA(p_all_steps,p_current): 

    ll,mm,ii = cuda.grid(3) 

    if pressure_outside_domain(ll,mm,ii,*(p_current.shape)): return 

    p_all_steps[ll,mm,ii,0] = p_current[ll,mm,ii] 

 

# Injection of next excitation signal sample (soft source) 

@cuda.jit 

def inject_source_CUDA(p_all_steps,source_pos_disc,excitation_sample): 

    ll,mm,ii = cuda.grid(3) 

    if pressure_outside_domain(ll,mm,ii,*(p_all_steps.shape[0:3])): return 

    p_all_steps[source_pos_disc[0],source_pos_disc[1],source_pos_disc[2],1] 

= p_all_steps[source_pos_disc[0],source_pos_disc[1],source_pos_disc[2],1] + 

excitation_sample[0]; 

 

# Enforcement of zero pressure values inside scattering objects  

# in matrix K_glMem 

@cuda.jit 

def dead_spaces_CUDA(p_all_steps,zero_K): 

    i = cuda.grid(1) 

     

    # Disable the function if index is outside computation domain. 

    if i < 0 or i >= zero_K.shape[1]: 

        return 

     

    # Enforcement of zero pressure values inside objects. 

    p_all_steps[zero_K[0,i],zero_K[1,i],zero_K[2,i],0] = 0 

    p_all_steps[zero_K[0,i],zero_K[1,i],zero_K[2,i],1] = 0 

    p_all_steps[zero_K[0,i],zero_K[1,i],zero_K[2,i],2] = 0 

 

@cuda.jit 

def read_result_CUDA(p_all_steps,p_plane_xy,p_plane_yz,source_pos_disc): 

    ll,mm,ii = cuda.grid(3) 

    if pressure_outside_domain(ll,mm,ii,*(p_all_steps.shape[0:3])): return 

    p_plane_xy[ll,mm] = p_all_steps[ll,mm,source_pos_disc[2],0] 

    p_plane_yz[mm,ii] = p_all_steps[source_pos_disc[0],mm,ii,0] 

 

# ------------------------------------------------------ 

# An object interface for GPU-accelerated FDTD solver 

class FDTDSimulation: 

    def __init__(self, K, beta, source_pos_disc, excitation_signal, 

courant_number, X, T, c=340, rho = 1.225, PML_damping = 0.15,  
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    PML_width = 50, TPB=8): 

         

        # Update of the object fields: 

        #   computational domain geometry and medium properties 

        self.K                 = K 

        self.c                 = c 

        self.rho               = rho 

        self.BK                = make_BK(K,courant_number,beta) 

        self.zero_K            = np.array(np.where(K==0)) 

        #   excitation signal: 

        self.source_pos_disc   = source_pos_disc 

        self.excitation_signal = excitation_signal 

        #   simulation resolution: 

        self.courant_number    = courant_number 

        self.X                 = X 

        self.T                 = T 

        #   PML layers: 

        self.PML_damping       = PML_damping 

        self.PML_width         = PML_width 

        #   jobs distribution on  GPU: 

        self.TPB               = TPB 

        #   simulation frame number 

        self.sim_frame_number  = 0 

         

        # Allocation of pressure matrix 

        # The main variable contains 3 consecutive pressure  

        # distributions in the computational domain 

        self.p_all_steps  = np.zeros(list(self.K.shape)+[3]) 

        #   3D pressure distribution (1st step) 

        self.p_current = np.zeros(self.K.shape) 

        #   2D pressure distribution 

        self.p_plane_xy = np.zeros((self.K.shape[0],self.K.shape[1])) 

        self.p_plane_yz = np.zeros((self.K.shape[1],self.K.shape[2])) 

         

        # A variable for passing current value of the excitation signal 

        self.excitation_sample = self.excitation_signal[0] 

         

        # Allocation of FDTD calculation threads on the GPU 

        self.num_threads = [self.TPB,self.TPB,self.TPB] 

        self.num_blocks  = [] 

        for i,n_thr in enumerate(self.num_threads): 

            

self.num_blocks.append(int(np.ceil(self.p_current.shape[i]/n_thr))) 

         

        # PML layers 

        self.PML_sigma       = np.zeros_like(K) 

        # Damping profile (the damping is greater if the point  

        # is deeper into the PML) 

        self.damping_profile = 

np.power(np.linspace(1,0,self.PML_width),1.4)*self.PML_damping 

        # Application of PML profile to all borders of computational 

domain. 

        for i in range(self.PML_width): 

            local_damping_fctr = self.damping_profile[i] 

            self.PML_sigma[i,:,:]                           = 

local_damping_fctr 

            self.PML_sigma[self.PML_sigma.shape[0]-i-1,:,:] = 

local_damping_fctr 

            self.PML_sigma[:,i,:]                           = 

local_damping_fctr 
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            self.PML_sigma[:,self.PML_sigma.shape[1]-i-1,:] = 

local_damping_fctr 

            self.PML_sigma[:,:,i]                           = 

local_damping_fctr 

            self.PML_sigma[:,:,self.PML_sigma.shape[2]-i-1] = 

local_damping_fctr 

         

        # Variables allocated in the GPU memory 

        self.K_glMem                 = cuda.to_device(self.K) 

        self.c_glMem                 = cuda.to_device(np.array([self.c])) 

        self.rho_glMem               = cuda.to_device(np.array([self.rho])) 

        self.BK_glMem                = cuda.to_device(self.BK) 

        self.zero_K_glMem            = cuda.to_device(self.zero_K) 

        self.source_pos_disc_glMem   = cuda.to_device(self.source_pos_disc) 

        self.excitation_sample_glMem = 

cuda.to_device(np.array([self.excitation_sample])) 

        self.courant_number_glMem               = 

cuda.to_device(np.array([self.courant_number])) 

        self.X_glMem                 = cuda.to_device(np.array([self.X])) 

        self.T_glMem                 = cuda.to_device(np.array([self.T])) 

        self.sigma_glMem             = 

cuda.to_device(np.array(self.PML_sigma)) 

        self.p_all_steps_glMem       = cuda.to_device(self.p_all_steps) 

        self.p_current_glMem         = cuda.to_device(self.p_current) 

        self.p_plane_xy_glMem        = cuda.to_device(self.p_plane_xy) 

        self.p_plane_yz_glMem        = cuda.to_device(self.p_plane_yz) 

         

    def step(self): 

        # Execution of single FDTD step 

        

FDTD_step_CUDA[self.num_blocks,self.num_threads](self.K_glMem,self.courant_

number_glMem,self.X_glMem,self.T_glMem,self.sigma_glMem,self.c_glMem,self.r

ho_glMem,self.p_all_steps_glMem,self.BK_glMem, self.p_current_glMem) 

         

        # Assignment of the current step result to the matrix containing 

“current state” 

        

update_pressure_CUDA[self.num_blocks,self.num_threads](self.p_all_steps_glM

em,self.p_current_glMem) 

         

        # Enforcement of zero pressure inside objects 

        # It is necessary to define 1D thread specifications 

        # specific to this task 

        enforcer_num_threads = 32 

        enforcer_num_blocks  = int(np.ceil(self.zero_K.shape[1]/32)) 

        

dead_spaces_CUDA[enforcer_num_blocks,enforcer_num_threads](self.p_all_steps

_glMem,self.zero_K_glMem) 

         

        # Reading of the 2D pressure distributions (for later readout from 

th ep_plane variable) 

        

read_result_CUDA[self.num_blocks,self.num_threads](self.p_all_steps_glMem,s

elf.p_plane_xy_glMem,self.p_plane_yz_glMem,self.source_pos_disc_glMem) 

         

        # Injection of the next excitation value: 

        #   sending excitation value 

        

self.excitation_sample_glMem.copy_to_device(np.array([self.excitation_signa

l[self.sim_frame_number]]))  

        self.sim_frame_number += 1 
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        #   source update 

        

inject_source_CUDA[self.num_blocks,self.num_threads](self.p_all_steps_glMem

,self.source_pos_disc_glMem,self.excitation_sample_glMem)  

         

        # Shifting of simulation time steps 

        

shift_pressure_matrices_CUDA[self.num_blocks,self.num_threads](self.p_all_s

teps_glMem) 

     

    def get_pressure_plane(self, plane_name = 'xy'): 

        # The data about selected 2D plane 

        # (height is the same as source height) 

        if plane_name == 'xy': 

            self.p_plane_xy_glMem.copy_to_host(self.p_plane_xy) 

            return self.p_plane_xy 

        elif plane_name == 'xz': 

            self.p_plane_yz_glMem.copy_to_host(self.p_plane_yz) 

            return self.p_plane_yz 

        elif plane_name == 'both': 

            self.p_plane_xy_glMem.copy_to_host(self.p_plane_xy) 

            self.p_plane_yz_glMem.copy_to_host(self.p_plane_yz) 

            return self.p_plane_xy, p_plane_yz 

        else: 

            raise RuntimeError(f'A bad plane name for readout was 

specified: ({plane_name})') 

     

    def get_pressure_3D(self): 

        # Pressure data from the selected 2D plane: 

        self.p_current_glMem.copy_to_host(self.p_current) 

        return self.p_current 

 

def draw_pressure_2D_cv(K, p_plane, objects_mask, source_pos_disc, 

observerPosD, measurement_points, img_scale=None, axe_names=['A','B'], 

transpose=False): 

     

    # Automatic gain regulation - to make shure, that details are visible 
    # if excitation has especially high values 

    ref = np.max(np.abs(p_plane)) 

    if ref < 1: ref = 1 

     

    # Calculation of black-and-white visualizations  

    # of given simulation plane. 

    bw_image = (127+(p_plane/ref)*127).astype(np.uint8) 

    bw_image[objects_mask] = 255 

     

    # Marking of the source position (white dot) 

    bw_image[source_pos_disc[0]-1:source_pos_disc[0]+1,source_pos_disc[1]-

1:source_pos_disc[1]+1] = 255 

     

    # Marking of the impulse response measurement point(black dots) 

    for coords in measurement_points: 

         

        # Coordinates are floating point numbers,  

        # so the antialiasing will be necessary for proper display of 

points. 

        cv2.circle(bw_image, (np.float32(coords[1]), 

np.float32(coords[0])),1,0,-1) 

     

    # Upscaling of the result image (if specified) 

    if img_scale is not None: 
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        height, width   = bw_image.shape 

        newX,newY       = bw_image.shape[1]*img_scale, 

bw_image.shape[0]*img_scale 

        bw_image        = cv2.resize(bw_image,(int(newX),int(newY))) 

     

    if transpose: 

        bw_image = cv2.transpose(bw_image) 

     

    lower_left_corner   = np.array([0, bw_image.shape[0]]) 

    first_label_coords  = tuple(lower_left_corner+np.array([5,-50])) 

    second_label_coords = tuple(lower_left_corner+np.array([50,-10])) 

     

    cv2.putText(bw_image, axe_names[0], first_label_coords, 

cv2.FONT_HERSHEY_COMPLEX_SMALL ,1,0,2) 

    cv2.putText(bw_image, axe_names[1], second_label_coords, 

cv2.FONT_HERSHEY_COMPLEX_SMALL ,1,0,2) 

     

    return bw_image 

 

def display_pressure_2D_cv(images_list, time_str, margin=5, 

wnd_title="Podglad symulacji FDTD"): 

    if type(images_list) != list: 

        images_list = [images_list] 

     

    x_sizes = [] 

    y_sizes = [] 

    for image_arr in images_list: 

        x_sizes.append(image_arr.shape[0]) 

        y_sizes.append(image_arr.shape[1]) 

         

    max_x = np.max(x_sizes) 

    max_y = np.max(y_sizes) 

     

    for i, image_arr in enumerate(images_list): 

        eff_margin = margin 

        if i == len(images_list)-1: margin = 0 

        new_img = 

np.zeros((max_x,images_list[i].shape[1]+margin)).astype(np.uint8) 

        new_img[0:images_list[i].shape[0],0:images_list[i].shape[1]] = 

images_list[i] 

        images_list[i] = new_img 

     

    compound_image = np.concatenate(images_list,axis=1) 

     

    cv2.putText(compound_image, f'czas: {time_str}', (20,30), 

cv2.FONT_HERSHEY_COMPLEX_SMALL   ,1,0,2) 

     

    cv2.imshow(wnd_title,compound_image) 

 

def sample_with_interpolation(measurement_points, p_plane): 

    pressure_interpolator = 

RectBivariateSpline(np.arange(p_plane.shape[0]),np.arange(p_plane.shape[1])

,p_plane,kx=5,ky=5) 

    set_of_impres = [] 

    for coords in measurement_points: 

        p_interpolated = pressure_interpolator(coords[0],coords[1])[0,0] 

        set_of_impres.append(p_interpolated) 

    return set_of_impres 
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# ------------------------------------------------------ 

# Simplified simulation interface with 2D preview 

def run_fdtd(K, beta, source_pos_disc, excitation_signal, sim_length, 

courant_number, X, T, measurement_points_xy=[], measurement_points_yz=[], 

show_preview = True, write_video = False, img_scale=4, 

ofname='last_simulation.mp4', PML_damping=0.15, PML_width=50, 

GPU_device_id=0): 

     

    # For the multi-GPU systems - we choose desired device for 
    # calculations to be performed 

    num_gpus = len(nb.cuda.gpus) 

     

    if (GPU_device_id >= num_gpus) or (GPU_device_id < 0): 

        raise RuntimeError(f'Bad GPU id was specified GPU ({GPU_device_id}, 

number of available GPUs: {num_gpus})') 

    cuda.select_device(GPU_device_id) 

     

    # Swapping axis in the xz plane 

    measurement_points_yz_tmp = [] 

    for coord in measurement_points_yz: 

        measurement_points_yz_tmp.append([coord[1],coord[0]]) 

    measurement_points_yz = measurement_points_yz_tmp 

     

    # Creation of the simulation object 

    sim_obj = FDTDSimulation(K, beta, source_pos_disc, excitation_signal, 

courant_number, X, T, PML_damping=PML_damping, PML_width=PML_width) 

     

    # Handling of the visualization saving on the hard drive 

    if show_preview and write_video: 

        video_frames   = [] 

        fourcc = cv2.VideoWriter_fourcc(*'mp4v') 

        out    = cv2.VideoWriter(ofname,fourcc, 30.0, 

(K.shape[0]*img_scale,K.shape[1]*img_scale),isColor=False) 

     

    # A variable to which a value of measured  

    # impulse response will be saved 

    imp_res_set_xy = [] 

    imp_res_set_yz = [] 

     

    # The main FDTD simulation loop: 

    for nn in range(1,sim_length): 

        print('%3i/%3i\r'%(nn+1,sim_length), end='') 

         

        # Calculation of simulation step, and obtaining  

        # of the data from the GPU 

        sim_obj.step() 

        p_plane_xy = sim_obj.get_pressure_plane('xy') 

        p_plane_yz = sim_obj.get_pressure_plane('xz') 

         

        # Measurement and saving of the impulse responses 

         

        

imp_res_set_xy.append(sample_with_interpolation(measurement_points_xy, 

p_plane_xy)) 

        

imp_res_set_yz.append(sample_with_interpolation(measurement_points_yz, 

p_plane_yz)) 

         

        if show_preview: 

            bw_images = [] 
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            bw_images.append(draw_pressure_2D_cv(K, p_plane_xy, 

K[:,:,source_pos_disc[2]]==0, source_pos_disc[[0,1]], 

source_pos_disc[[0,1]], measurement_points_xy, img_scale=img_scale, 

axe_names=['x','y'], transpose=False)) 

             

            bw_images.append(draw_pressure_2D_cv(K, p_plane_yz, 

K[source_pos_disc[0],:,:]==0, source_pos_disc[[1,2]], 

source_pos_disc[[0,2]], measurement_points_yz, img_scale=img_scale, 

axe_names=['z','y'], transpose=True)) 

            display_pressure_2D_cv(bw_images, '%2.2f ms'%((nn*1000)*T)) 

             

            # Saving video visualization and display of the image 

            if write_video: 

                out.write(bw_image) 

         

            # If visualization is turned on, the simulation  

            # can be terminated by pressing ESC. 

            key = cv2.waitKey(1) 

            if key == 27: 

                break 

     

    # Closing file with the simulation data dump 

    if show_preview:         

        # Closing the preview window 

        cv2.destroyAllWindows() 

        if write_video: 

            out.release() 

     

    imp_res_set_xy = np.array(imp_res_set_xy).T 

    imp_res_set_yz = np.array(imp_res_set_yz).T 

     

    return [imp_res_set_xy,imp_res_set_yz] 

 

# ------------------------------------------------------ 

# Simplified simulation interface with 3D preview 

def run_fdtd_render3D(K, beta, source_pos_disc, excitation_signal, 

sim_length, courant_number, X, T, vis_halfspread=20, display_time = True, 

frame_skip=None, ofname='render_3d.avi', 

encode_video=False,PML_damping=25000): 

     

    if ofname is not None: 

        # reation of the visualizatio window 

        output_folder = '_output_renders' 

        if not os.path.isdir(output_folder): 

            os.mkdir(output_folder) 

     

    # Creation of the new K matrix, which will allow 

    # display of scattering objects placed in the computational domain 

    new_K = np.ones_like(K) 

    new_K[2:-2,2:-2,2:-2] = K[2:-2,2:-2,2:-2] 

    new_K[new_K==0] = 8 

    new_K[new_K==6] = 0 

    new_K[new_K==5] = 0 

     

    # Creation of the simulation object 

    sim_obj = FDTDSimulation(K, beta, source_pos_disc, excitation_signal, 

courant_number, X, T, PML_damping=PML_damping) 

     

    if ofname is not None: 

        # Creation of the visualizatio window 

        fig = mlab.figure(size=(1000,1000)) 
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    # The main FDTD simulation loop: 

    for frame_number in range(1,sim_length): 

        try: 

            print('%3i/%3i\r'%(frame_number+1,sim_length), end='') 

             

            # Calculation of simulation step, and obtaining  

            # of the data from the GPU 

            sim_obj.step() 

             

            if frame_skip is not None: 

                if (not (frame_number%frame_skip==0)) and (frame_number != 

0): 

                    continue 

             

            p_distribution  = sim_obj.get_pressure_3D() 

             

            if ofname is None: 

                fig = mlab.figure(size=(1000,1000)) 

             

            # Display of the scalar field representing the “environment”, 

            # which are mainly the scaterring objects 

            environ_field   = mlab.pipeline.scalar_field(new_K) 

            env_plot        = mlab.pipeline.volume(environ_field) 

             

            # Display of the pressure wave visualization 

            pressure_wave   = mlab.pipeline.scalar_field(p_distribution, 

colormap='blue-red') 

            vol_plot        = mlab.pipeline.volume(pressure_wave, 

vmin=0.01, vmax=np.max(p_distribution)) 

             

            # Value bar 

            lo_bound   = np.min([np.min(p_distribution),-vis_halfspread]) 

            hi_bound   = np.max([np.max(p_distribution),vis_halfspread]) 

            mlab.colorbar(orientation='vertical').data_range = (lo_bound, 

hi_bound) 

             

            if display_time: 

                mlab.title(f"time: {'%.2f'%(1000*frame_number*T)} 

[ms]",height=0.01,size=0.3) 

             

            if ofname is not None: 

                # Saving of the output visualization frame 

                if frame_skip is not None: 

                    effective_frame_number = frame_number//frame_skip 

                else: 

                    effective_frame_number = frame_number 

             

                save_path = 

os.path.join(output_folder,f'{str(effective_frame_number).zfill(4)}.png') 

                mlab.savefig(filename=save_path) 

                # Clearing the frame 

                mlab.clf() 

            else: 

                mlab.show() 

             

        except KeyboardInterrupt as e: 

            print('Rendering loop was terminated manually.\n') 

            break 

     

    print() 
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    if ofname is not None: 

        input('\n-------------------------\nIn a moment, frames of 

animation will be encoded into a film\nCheck the animation frames in a 

folder, and press ENTER to continue \n') 

     

        # Conversion of generated frames to a film 

        if frame_skip is not None: 

            fps = int(60/frame_skip) 

        else: 

            fps = 60 

     

        # Encoding of the animation to a film in an .avi format 

        cmd = f"ffmpeg  -r {fps} -i _output_renders/%04d.png  -c:v libx264 

-vf \"crop=trunc(iw/2)*2:trunc(ih/2)*2,fps={fps},format=yuv420p\" {ofname}" 

        if encode_video: 

            print(cmd) 

            os.system(cmd) 

        else: 

            print(f'If you want to encode video to a final form, use the 

following command: \n\n{cmd}') 
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 APPENDIX C: PROGRESS OF DPG AGENTS WITH RANDOM 
INPUT 

This Appendix contains visualizations of the obtained autocorrelation diffusion 

coefficient and rewards of agents with a random starting diffuser design was fed into. 

In such circumstances, an agent has a harder task to perform, as it has to be prepared 

to tackle very varied diffuser designs, which also are characterized by varying diffusion 

coefficient. This fact is visible in the form of low scores gained by agents and lack of or 

poor improvement of generated diffuser designs over time. 

 

Fig. C.1 Results obtained from agent no. 1, which was fed with random input diffuser designs 
to be improved over  each episode. 

 

Fig. C.2 Results obtained from agent no. 2, which was fed asrandom input diffuser 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

143 
 

designs to be improved over  each episode. 

 

Fig. C.3 Results obtained from agent no. 3, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.4 Results obtained from agent no. 4, which was fed with random input diffuser 
designs to be improved over  each episode. D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


 

144 
 

 

Fig. C.5 Results obtained from agent no. 5, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.6 Results obtained from agent no. 6, which was fed with random input diffuser 
designs to be improved over  each episode. 
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Fig. C.7 Results obtained from agent no. 7, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.8 Results obtained from agent no. 8, which was fed with random input diffuser 
designs to be improved over  each episode. 
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Fig. C.9 Results obtained from agent no. 9, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.10 Results obtained from agent no. 10, which was fed with random input diffuser 
designs to be improved over  each episode. 
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Fig. C.11 Results obtained from agent no. 11, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.12 Results obtained from agent no. 12, which was fed with random input diffuser 
designs to be improved over  each episode. 
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Fig. C.13 Results obtained from agent no. 13, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.14 Results obtained from agent no. 14, which was fed with random input diffuser 
designs to be improved over  each episode. 
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Fig. C.15 Results obtained from agent no. 15, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.16 Results obtained from agent no. 16, which was fed with random input diffuser 
designs to be improved over  each episode. 
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Fig. C.17 Results obtained from agent no. 17, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.18 Results obtained from agent no.18, which was fed with random input diffuser 
designs to be improved over  each episode. 
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Fig. C.19 Results obtained from agent no. 19, which was fed with random input diffuser 
designs to be improved over  each episode. 

 

Fig. C.20 Results obtained from agent no. 20, which was fed with random input diffuser 
designs to be improved over  each episode. 
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 APPENDIX D: PROGRESS OF THE DPG AGENTS WITH  
INPUT SELECTED FROM BEST DESIGNS 

This Appendix contains visualizations of the obtained autocorrelation diffusion 

coefficient and rewards of agents to whom the best design chosen from 10 best 

designs encountered by a group of agents over the course of training was selected as 

a starting design to be improved. It can be seen that for some agents, it was possible 

to get better over the course of training; however, it was not true for all agents. This 

suggests that successful training of the agent is dependent on the starting weights of 

an agent. 

 

Fig. D.1. Results obtained from agent no. 1, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.2. Results obtained from agent no. 2, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.3. Results obtained from agent no. 3, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.4. Results obtained from agent no. 4, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.5. Results obtained from agent no. 5, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.6. Results obtained from agent no. 6, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.7. Results obtained from agent no. 7, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.8. Results obtained from agent no. 8, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.9. Results obtained from agent no. 9, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.10. Results obtained from agent no. 10, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.11. Results obtained from agent no. 11, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.12. Results obtained from agent no. 12, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.13. Results obtained from agent no. 13, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.14. Results obtained from agent no. 14, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.15. Results obtained from agent no. 15, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.16. Results obtained from agent no. 16, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.17. Results obtained from agent no. 17, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.18. Results obtained from agent no. 18, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.19. Results obtained from agent no. 19, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.20. Results obtained from agent no. 20, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 

 

Fig. D.21. Results obtained from agent no. 21, for which a diffuser chosen from 10 best 
designed encountered by a group of agents in  the optimization process was selected 
as a starting design. 
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Fig. D.22. Results obtained from agent no. 22, which was fed a diffuser chosen from 
10 best designed encountered by a group of agents in  the optimization process. 

 

Fig. D.23. Results obtained from agent no. 23, which was fed a diffuser chosen from 
10 best designed encountered by a group of agents in  the optimization process. 
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