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1. Introduction

Augmented reality (AR) technology enables superimposing computer-generated content, such as
interactive 2D and 3D multimedia objects, in real time, on a view of real-world objects [23]. Widespread
use of AR technology has been enabled in the recent years by remarkable progress in consumer-level
hardware performance, in particular, in the computational and graphical performance of computing
hardware and quickly growing bandwidth of cellular networks. The progress is particularly visible
in the domain of mobile devices, such as smartphones, tablets, and wearables. These devices are
nowadays equipped with multi-core processors, large amounts of memory, high-quality displays and
multi-modal interaction devices, such as accelerometers, gyroscopes, cameras, microphones, and GPS
sensors. Mobile devices became general-purpose computing platforms well suited for the deployment of
various kinds of multimedia applications. Moreover, rapid growth in the available bandwidth of wireless
networks, which is now sufficient to deliver large amounts of data required by interactive 3D multimedia
applications, makes the use of mobile devices for this kind of applications even more appealing. Last
but not least, the progress is evident in the domain of AR and VR startups that develop augmented and
virtual reality technologies. According to [40], AR/VR startups raised a record over $3.6 billion funding
from venture capital corporates within 12 months to the end of Q1 2018.

Augmented reality, with its potential to blend real and virtual objects, creates new opportunities
for building interactive and engaging applications. Education [29, 158, 161], entertainment [75, 79, 99],
medicine [78, 97, 134], and cultural heritage [62, 88, 157] are examples of application domains in which
AR-based systems are increasingly being used.

Currently, there is a large variety of AR applications developed by both researchers and commercial
companies, and new applications appear frequently. As a rule, such applications are built independently
for specific purposes. This situation forces end-users to continuously install, update, and uninstall
multiple – in most cases relatively short-life AR applications – instead of having one long-life universal
application that would act as a kind of "AR browser". Nowadays, AR content, interfaces, functionality
are fragmented between independent AR programs, in such a way, that end users have to install each of
them individually – taking into account their compatibility with the operating system and an end-user’s
device. Also, the current AR applications do not enable to experience AR presentations in a continuous
and contextual manner, i.e., regardless where the user is located (indoor or outdoor), current time and
date, what kind of platform and device type are used, and – what is very important – taking into account
user preferences and needs. To facilitate the use of AR in various application domains and for information
visualization in general – independently of a specific application, platform or device being used, and also
to be widely used and accepted by end users, new models and methods of building AR content and
applications are required.

The currently available AR tools range from general purpose computer vision and graphics libraries
and frameworks [5, 17, 44, 52, 53, 58, 63, 70, 82, 92, 110, 125, 130], requiring advanced programming
skills to develop applications, to easy-to-use point-and-click packages for computer and mobile devices
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[4, 8, 11, 61, 82, 118, 122, 128, 168], enabling creation of simple AR presentations. These tools provide
functionality for manual authoring of AR presentations – either through programming or visual design.

The real challenge lies in building ubiquitous contextual AR environments, in which AR
presentations are not dependent on a specific application, platform or device, but elements forming AR
experiences are independently provided in real time by the available external sources. In such system,
a key mechanism responsible for automatic selection and composition of AR resources should be based
on the user’s context. The current context can reflect what kind of content a user wants to experience,
taking also into account time, date, indoor or outdoor location, the user’s device type and its capabilities.
To enable widespread adoption of AR in various application domains, not only end users must have
simple ways of accessing AR content on-site, but also the presentation designers must have intuitive
and easy-to-use methods of creating AR presentations. Such a universal AR system that dynamically
generates personalized AR presentations, based on context and various multimedia content and data
providers, requires solving the problem of describing, searching, interpreting, combining and presenting
independent resources that jointly form interactive AR presentations. Semantic web techniques have the
potential to provide a suitable solution, however, as of yet, their application in the context of AR has not
yet been sufficiently explored.

The research on semantic internet has been initiated by T. Berners-Lee and the W3C consortium [24]
and led to the development of standards such as RDF [147], RDFS [147], and OWL [151]. The
standards were designed to enable evolution of the web towards a distributed semantic database linking
structured documents. This type of semantic description, by precisely defining the meaning of individual
data elements and relationships between them – in a manner that is understandable for both people
and computers – allows achieving an entirely new quality in building augmented reality applications.
Semantic web techniques allow efficient description, search, retrieval and presentation of multimedia
content and data. Moreover, it is also possible to apply reasoning methods in order to derive new
knowledge that is not explicitly stated. At the core of semantic web is decoupling applications from data
through the use of an abstract model for knowledge representation. This abstract model allows releasing
bilateral constraints on applications and data, letting both to evolve independently. As a consequence of
using such model, any application that understands the model can consume any data source using this
model [24].

The idea of connecting semantic web with AR dates in literature back to 2005 [113] and research on
this subject is still underway. In most cases, researches have focused on developing location-based AR
interfaces capable to overlay 2D annotations onto a view of real-world object additionally enriched with
data coming from specific semantic linked data servers [12, 26, 64, 91, 100, 124, 145, 167]. Such systems
do not permit a user to fully experience augmented reality presentations based on rich, multimedia 3D
content which could be reused in many different use cases. Moreover, the above-mentioned systems
use specific semantic web ontologies to specific applications. Thus, to create another AR application
enhanced with semantic web techniques, there would be a need to develop yet another specific semantic
data model. Last, but not least significant drawback of previous works in this field is lack of any
quantitative evaluation of the developed solutions that would prove their applicability and efficiency
in case of large-scale contextual distributed environments.

In this dissertation a new approach to the problem of modeling augmented reality applications
is presented. This approach, called Contextual Augmented Reality Environment (CARE), goes
beyond the current state of the art in modeling augmented reality environments by providing uniform
cross-application contextual access to distributed semantically-described AR content and services. The
novelty of CARE lies in avoiding fragmentation of AR functionality between multiple independent
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applications and simplifying integration of various information sources into a unified, contextual,
and personalized AR interface. CARE supports operations such as describing, designing, searching,
interpreting, combining and presenting content and data that jointly form personalized AR presentations.
In CARE, augmented reality presentations are built on the basis of the user’s context, which includes
such elements as user preferences, time, date, outdoor or indoor location, the user’s device type, and its
capabilities.

The CARE approach consists of four key elements:

1. An architecture of distributed AR services that supports semantic modeling and building of
contextual AR presentations for a large number of users. The presented architecture consists of
two client applications and multiple server modules that combined enable designers and end users to
model and explore a contextual AR environment with the use of semantics.

2. The Semantic Augmented Reality Ontology (SARO), which encompasses a set of concepts and
properties describing various aspects of the user’s context and distributed resources forming AR
presentations. SARO is based on semantic web standards (RDF, RDFS, and OWL 2). Moreover,
certain elements of context are built on top of well-known standards, such as Geography Markup
Language Encoding Standard (GML) and W3C OWL-time ontology. The model is used to build
ubiquitous dynamic augmented reality environments based on semantically described resources that
are contextually provided by AR Service providers.

3. The Semantic Discovery and Matching Method (SDMM). The method is responsible for composing
contextual augmented reality presentations based on multiple distributed AR resources taking into
account user’s context. SDMM searches AR resources and service providers through semantic
knowledge base structured with the SARO ontology. SDMM allows knowledge discovery in the
process of building contextual AR presentations. SDMM can be used in two modes. In the first
mode the SDMM returns only the first available AR resource within the user’s context. In this case,
the goal is to return as quickly as possible usable results, which may not be optimal. In the second
mode the SDMM is set to return optimal results. This configuration returns all results related to the
geographical location of a user, but it is more time-consuming.

4. A new high-level declarative language, called Contextual Augmented Reality Language (CARL),
which is used as an application protocol. It enables modeling AR presentations whose elements come
from diverse and distributed content- and data service providers. The CARL language is designed to
support dynamic composition of complex interactive AR presentations.

The thesis of this dissertation is formulated as follows:

The CARE approach enables efficient modeling of large-scale contextual distributed
augmented reality environments.

The dissertation is composed of seven chapters and is organized as follows.
Chapter 2 provides an overview of the state of the art of AR including first AR display presented in

1968, two well-known AR definitions cited in the literature, and a review of noteworthy AR programs
applied in multiple application domains is presented.

Chapter 3 discusses AR development tools that can be used to create various kinds of augmented
reality applications – from low-level software libraries and frameworks requiring programming skills
to use them, to simple and easy-to-use visual authoring tools for non-technical users. In addition, AR
declarative languages used for designing AR applications, are discussed. Also, this chapter explores the
role of semantic web and how it was applied to AR. The chapter introduces semantic web standards and
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popular serialization formats with examples. After that, applications of the semantic web technology in
augmented reality systems is presented. In the end, the limitations of existing methods of modeling AR
environments are discussed.

Chapter 4 presents the concept of the Contextual Augmented Reality Environment approach including
a formal model that is based on set theory and functions. Also, the main elements of CARE are presented:
the architecture of distributed AR services, including two client applications and multiple server modules;
the Semantic Augmented Reality Ontology that enables to model independent AR service providers,
resources, and contexts, and links all these elements to form a ubiquitous dynamic AR environment;
the Semantic Discovery and Matching Method that is responsible for selecting semantically described
data meeting criteria of a user’s context; and a novel high-level language, called Contextual Augmented
Reality Language, which constitutes the application protocol between the client and the server sides by
allowing description of dynamic AR presentations.

Chapter 5 provides an overview of the implementation of the CARE system. First, the client-server
architecture of CARE is presented, including data flow diagrams between the main system elements.
Then, the client-side as well as the server-side components are characterized. Next, description of
two client-side applications is provided – CARE Modeler implemented as an extension to the popular
Unity3D IDE and used for modeling of CARE environments; BrowsAR – an Android-based AR browser
used for experiencing contextual AR presentations. Further, server-side components are presented:
Java EE-based application server Semantic Augmented Reality Middleware – responsible for providing
semantic search and multiple RESTful web services offering AR resources that can be dynamically
composed to build diverse-contextualized AR presentations. Finally, real-world use-cases of AR
environments modeled with CARE are presented.

Chapter 6 describes qualitative and quantitative evaluation of the CARE approach and the obtained
results. A qualitative user study has been performed to evaluate usefulness and easiness of use of the
CARE Modeler and the BrowsAR applications, while modeling and exploring contextual augmented
reality environment. The design of the study, characteristics of participants that took part in the study,
and the collected results are presented followed by a discussion. Further, quantitative evaluation of the
Semantic Augmented Reality Middleware performance is described. Load testing was performed under
various conditions to verify how the Semantic Augmented Reality Middleware – in particular the Search
Service – behaves in case when using different size knowledge bases. Moreover, the completion time of
the SDMM method was measured to compare the method’s performance versus Search Service response
time. The description of quantitative evaluation covers design of the study, characteristics of the designed
test plan, procedures and environmental setup, followed by the presentation of the performance results.
Finally, discussion of the obtained results is provided.

Chapter 7 concludes the dissertation. The main contribution and achievements are discussed, and the
possible directions of future research and development activities are indicated.
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2. Augmented Reality Environments

In this chapter, a summary of the state of the art in the domain of augmented reality is provided.
To begin with, the concept of augmented reality and the first known AR display, are presented. Next,
definitions of augmented reality, which are often cited in literature, are discussed. The chapter then
presents prominent application domains in which AR technology is used, including education, remote
collaboration, gaming, medicine, cultural heritage, automotive, designing domains, and visualization of
geo-localized data.

2.1. The concept of augmented reality

Augmented reality (AR) is a field of computer science that concerns computer vision-based
technologies enabling superimposing rich computer-generated content – such as 2D and 3D multimedia
objects – in real time, on a view of real objects.

The first AR display described in the literature dates back to 1968 [137]. That year, Ivan Sutherland
introduced a head-mounted three-dimensional display (HMD) that was capable of blending transparent
wire frame line drawings onto a user’s view, in real time (Fig. 2.1). Sutherland’s solution projected a
simple wire frame cube with additional lines drawn on each wall representing compass directions (Fig.
2.1c) with the use of the HMD device. This work was a first step towards implementation of "The
ultimate display" idea [136], in which the author described his vision of the future human-computer
interface technology: “The ultimate display would, of course, be a room within which the computer
can control the existence of matter. A chair displayed in such a room would be good enough to sit in.
Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would
be fatal. With appropriate programming such a display could literally be the Wonderland into which
Alice walked.” Sutherland’s works gave innumerable inspirations to the next generations, on how user’s
surrounding can be augmented and computer vision technology integrated into the physical world.

Although Sutherland invented the first AR display, the term "Augmented Reality" became popular
in the scientific community only after the publication of a special issue of the ACM Communications
journal in 1993 devoted to the subject [30]. Below, definitions of augmented reality, that are often cited
in literature, are given.

Milgram et al. introduced the concept of Reality-Virtuality (RV) continuum, which distinguishes
augmented reality (AR) and virtual reality (VR) environments [94]. As shown in Figure 2.2, on the left
side of the continuum is a physical environment consisting solely of real objects with no synthetic objects
at all. On the right side of the continuum is a fully synthetic virtual environment, consisting purely of
virtual objects with no information from the physical world being presented. Mixed Reality was defined
as a class of systems that is located somewhere in between, since it is a combination of the two. In
the continuum, to the right of the real environment – AR is situated, in which the real environment is
enhanced with computer-generated content. Moving further to the right in the continuum, the augmented
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(a) The head-mounted display headset. (b) The head position sensor in use. (c) The projection of a room as seen
outside.

Figure 2.1: The first published augmented reality system enabling overlaying wire frame on a view of
the user [137].

virtuality (AV) is located, where presentation of elements of the physical environment is added to a fully
immersive virtual environment.

Mixed Reality (MR)

Real
Environment

Augmented
Reality (AR)

Augmented 
Virtuality (AV)

Virtual 
Environment (VR)

Figure 2.2: The Reality-Virtuality continuum concept [94].

In 1997, Ronald Azuma defined augmented reality as any system that meets the following three
criteria [23]:

1) it combines real and virtual;
2) is interactive in real time;
3) is registered in 3D.

The first and the third criteria require integration of virtual objects into a real 3D environment. The
definition does not specify which specific presentation technology should be used to meet the requirement
– besides head mounted displays (HMDs) it is also applicable to use monitors, projectors, smartphones,
wearable glasses, etc. The second requirement, which extends Milgram’s et al. definition, means that
a user can interact with virtual objects in real time. For instance, non-interactive media such as cinema
movies (e.g., "Jurassic Park") are not interactive, e.g., a user cannot experience a synthetic model of a
Tyrannosaurus Rex from different perspectives in real time. To meet the third requirement, the system
needs to have information of the scene and observer’s positions to appropriately overlay virtual objects.
This property has to be dynamically updated when a scene or an observer move.
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2.2. Application domains of AR

Augmented reality, with its potential to blend real and virtual objects, creates new opportunities for
visualization of various kinds of contextual information. E-commerce, education, remote collaboration,
entertainment, medicine, cultural heritage, automotive, designing, visualization of content and data, are
prominent examples of application domains in which AR-based systems are increasingly being used.
Below selected application domains of AR are discussed.

2.2.1. E-commerce

The Magic Mirror concept is an augmented reality system, consisting of a camera and a display
device, that act as a mirror, in which a user sees a reflection of oneself enriched with virtual objects [28].
The paradigm has been already used to overlay virtual shirts [31, 42, 105], shoes [43], glasses [32], and
knight’s armors [46] onto the user’s view. An example of the AR application implementing the Magic
Mirror concept is presented in Figure 2.3, in which the user tries on the virtual glasses before buying the
real ones. Such solutions enable end users to do shopping in a convenient way from home.

2.2.2. Education

Researchers have recognized a great value of AR in learning systems. For instance, one of the
important advantages of using AR in education is freedom of experimentation, i.e., students can repeat
experiments as many times as they want with no cost and no risk to loose health or laboratory materials
[161]. In [39], Dede argued that AR is one of "next generation" pedagogical media promoting learning
quality. The following research studies have been conducted regarding the usage of AR-based learning
systems.

Wojciechowski and Cellary evaluated learners’ attitude toward using the AR-based ARIES system in
the context of chemistry learning [161]. With ARIES, students are able to conduct chemical experiments
in person, using virtual counterparts of real laboratory equipment and chemicals. Figure 2.4 depicts
students conducting AR chemical experiment.

Authors empirically examined the effects on using an AR interface while conducting chemical
experiments. The results showed that perceived enjoyment and perceived usefulness had an effect on
students’ attitude toward using image-based AR environment. However, collected data demonstrated
that perceived enjoyment was a much more significant factor than perceived usefulness, which essentially

Figure 2.3: The Magic Mirror concept in use.
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Figure 2.4: AR chemistry experiment using ARIES [161].

influenced on the students’ motivation to use the ARIES in the learning process. Furthermore, the authors
suggest that the use of AR environments during lessons could provide additional motivation for students
in order to improve their learning of chemistry. Moreover, authors argued that replacement of the real
laboratory resources with their virtual counterparts makes it possible to achieve significant financial
savings for educational institutions. The chemical AR installation takes up much less space than typical
physical workbench for conducting chemical experiments. Moreover, it does not require any special
costly chemistry laboratory infrastructure.

Mirracle is an AR system for teaching human anatomy which takes advantage of the Magic Mirror
concept [28]. The system uses a depth camera to track the pose of a user standing in front of a large
display – as presented in Figure 2.6. The system overlays computerized tomography (CT) scans onto
a user’s view, creating an illusion that the user looks into his/her body. Furthermore, Mirracle can
overlay 3D models of organs, textual information, and pictures of human anatomy. A user interacts with
anatomical objects using hand gestures to control human body visualization.

Authors presented the Mirracle system during the open day of a hospital and in a school. Primary
findings show that AR in-situ visualization of human body organ was very attractive to use – especially
for children.

Figure 2.5: Visualization of CT data on the user (Mirracle) [28].

11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2.2.3. Remote collaboration

Nowadays, with the increasingly widespread availability of collaboration tools, including telephones,
email, video conferencing system, shared repositories, and community platforms, remote collaboration
became a part of everyday life for many people. Researchers investigated also the possibilities of bringing
AR technology to remote collaboration systems. One of the notable AR systems, that gave impact and
inspiration to the researchers on the next decade, was presented by Kato and Billinghurst in [71]. Authors
developed an augmented reality video conferencing system in which images of remote collaborators are
overlaid on virtual monitors and can be freely placed in user’s surrounding. With the use of this system,
end users are able to collaboratively view and interact with synthetic content using a shared virtual
whiteboard. Additionally, the authors also evaluated accuracy of marker detection and HMD calibration
methods. It is worth to mention that these methods are extensively used in ARToolKit – a well-known
framework used for building AR applications [70].

Regenbrecht et al. presented a video conferencing system (cAR/PE!), where users are able to
communicate over a network in an environment simulating a traditional face-to-face meeting [111].
Authors presented a prototype which visualizes live video streams of the participants arranged around a
virtual table with spatial sound support. Spatial sound driven by headphones audio hardware was used
to indicate different user positions. The participants’ task was to decide on the most aesthetic out of five
car models placed on one side of the virtual meeting room. After completing the task, participants were
asked to fill-in a questionnaire. The cAR/PE! system was rated as easy to use and overall user satisfaction
was good. Moreover, a method of exchanging information verbally was also rated as satisfactory.

Another solution that enables users to collaborate remotely using hands-free video calling, image
sharing, and drawing virtual annotations was presented by Microsoft [93]. With the use of remote
assistance, first-line workers can share their view with an expert, whilst staying hands-on to solve
problems and complete tasks together.

Figure 2.6: Sharing a view and solving a problem remotely with an expert [93].

Research works on collaboration in AR are widely presented in [85]. Authors also discuss the work in
the domain of augmentation of face-to-face collaborative experiences and virtual co-location of people.

2.2.4. Entertainment

AR has been also applied to the entertainment domain by academics as well as commercial
companies. AR technology provides a new type of games, which can attract players used to engaging in
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virtual reality games. Bruce H. Thomas presented an AR gaming taxonomy, which classifies the different
AR form factors taking into account display technologies (HMD, handheld, and spatially immersive
displays) and whether the AR game is played indoor or outdoor [143]. This subsection provides examples
of experiments that have been conducted based on AR games.

Zhou et al. built an experimental AR game to investigate the impact of 3D sound on task completion
time and subjective feeling in the AR environment [169]. In this game, two users collaborate at the same
time to rescue a virtual character. The game consists of three stages in which users perform searching
tasks using aural cues. In the first task, players familiarize themselves with the AR interface, which
enables to explore a virtual land augmented on the physical ground. In the second task, players fight
together against a virtual enemy. Users need to transfer virtual bullets between each other to shoot the
enemy. After defeating the enemy, users move to the third level. The goal of this stage is to find hidden
princess using 3D sound cues. Experimental results of this study suggest that the use of 3D sound
significantly improves task performance and accuracy of depth judgement. The results also indicate that
3D sound contributes to the feeling of human presence and collaboration and helps to identify spatial
objects.

Avery et al. developed the Sky Invaders 3D game which was used to conduct a user study measuring
enjoyment and intuitiveness of AR gaming compared to traditional PC-based game [21]. Authors
implemented two versions of the game – an outdoor AR-based version and an indoor PC-based version
– for the purpose of comparison. The goal of Sky Invaders 3D is to rescue the Earth from invasion of
aliens by shooting down enemies. A player controls the AR-based version using an HMD. Conversely,
in PC-based version of the game, the player uses a mouse and a keyboard to steer the game. Each
participant taking part in the experiment played only one version of Sky Invaders 3D. Both versions
recorded the scores and the time to complete the game. After playing the game, participants got a survey
form consisting of 19 questions. Findings show that outdoor AR can improve the enjoyment of users.
Furthermore, outdoor AR gaming was intuitive and easy to learn for beginner players. The survey results
confirmed that significant differences exist in rating the enjoyment provided by the game between the
outdoor AR version and PC-based version. Authors state that the outdoor AR factor was responsible for
the improved enjoyment.

Figure 2.7: Playing the It’s a Pirate’s Life game [95].

Molyneaux and Benhimane developed an augmented reality game that uses real environment and
reconstructs it into a dynamic game world [95]. The application runs on a prototype tablet in which
the Intel RealSense camera system is embedded to provide RGB image-based camera pose and depth
data (Fig. 2.7). The It’s a Pirate’s Life game has been designed to enhance the interactivity between a
player and the real-world environment. The main goal of the game is to find treasures hidden within a
computer-generated scene. The player acts as a pirate captain navigating a ship between a virtual sea
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and real-world objects which become a part of the play scene. The player is responsible for controlling
the wind by moving the tablet around the computer-generated scene to direct the virtual boat to hidden
treasures.

2.2.5. Medicine

AR is a very promising technology for medical applications. For instance, AR can improve the
accuracy of surgical procedures, decrease the variability of surgical outcomes, lower trauma to the critical
anatomical structures, and reduce radiation exposure [96]. Medical AR has been successfully applied to
various domains of surgery such as neurosurgery, orthopedic surgery, and maxillofacial surgery. This
subsection highlights examples of AR innovations employed in medicine.

Navab et el. [97] developed CamC – Camera Augmented Mobile C-arm that offers the AR technology
for surgeons. A mobile C-arm is an X-ray device used in trauma and orthopedics surgery. CamC extends
the C-arm device with a camera and a double mirror system allowing real time overlaying X-ray images
onto optical images. The video camera is mounted in such a way that its optical center coincides with the
C-arm’s X-ray source. After a one-time calibration procedure, X-ray and optical images are co-recorded.
The image overlay provides an intuitive interface for surgical guidance. Authors performed a series
of experiments including assessment of technical accuracy of fusion of X-ray and optical images and
measures of the X-ray radiation dose. Findings show that the presented technology is an intuitive and
robust guidance solution for selected clinical routines. Moreover, the authors state that the use of the
co-registered optical images can reduce the overall number of X-ray acquisitions and therefore the overall
radiation dose to both patient and clinical staff is expected to be considerably decreased. Surgeons at
the Leiden University Medical Center in Munich have performed more than 40 trauma and orthopedic
procedures with the CamC system.

Blum et al. presented an extension of the CamC system with a brain computer interface (BCI) and a
gaze-tracker device which are used to control X-ray AR visualization without using hands [27]. Authors
conducted a pilot study to asses the potential of the technology. For the majority of the participants the
use of BCI was intuitive. The additional use of gaze-tracking in a medical procedure was valuable with
a potential to use in real surgical procedures.

Another medical AR system that guides surgeons during the needle insertion in radiofrequency
ablation of the liver tumor was presented by De Paolis and Aloisio [38]. This system allows occlusion of
virtual organs onto the patient’s body. The solution gives a realistic impression that the synthetic organs
are inside the patient’s body. The system uses an optical tracker to track the position and orientation
of the surgical instrument, which is then projected on a monitor. The position and orientation data are
used to project the virtual surgical instrument. Moreover, the system visualizes the distance information

(a) C-arm X-ray image. (b) Optical video image. (c) CamC image.

Figure 2.8: Composing X-ray and optical images (a and b) into a CamC image (c).
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Figure 2.9: Visualisation of the needle insertion.

between the needle and the liver. When the distance between the surgical instrument and the organ is
under a safety threshold, a video and audio feedback is provided to the medical staff. Authors reported
that the system has been tested in the laboratory on a specific testbed.

2.2.6. Cultural heritage

AR is also an attractive technology for the cultural heritage domain. Many museums face the
problem of limited museum’s space and resources required to exhibit their whole cultural collections.
Furthermore, some objects can be too fragile and in the end museum curators decide not to make
them available to the public. Moreover, interactions between museums’ visitors and artefacts are very
restricted. It is not possible for a visitor to look at the cultural objects from all angles or to compare them
and study in different contexts [162]. AR can offer a great help to solve the above-mentioned difficulties.
AR provides solutions enabling visualization of 3D models representing cultural heritage collections.
Also, visitors can interact and experience exhibitions in a new way.

Figure 2.10: Virtual exhibitions displayed in ARCO AR interface [156].

Walczak et al. proposed the ARCO – Augmented Representation of Cultural Objects – system that
enables museums to build and manage virtual and augmented reality exhibitions based on 3D models of
artefacts [156]. The system consists of three architectural components which help to produce, manage,
and visualize virtual exhibitions. An administrator of virtual exhibitions can decide which objects, how
and where should be published. For instance, a virtual exhibition can be visualized in three ways – using
Web, VR, and AR interfaces. Moreover, ARCO allows to build interactive learning scenarios, in which
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a user is not a passive visitor, but an active actor and player. Using a tabletop device, an end-user can
examine and learn about the cultural objects by manipulating digital artefacts in a context of real objects.
Figure 2.10 presents examples of two virtual exhibitions created with the ARCO system.

Authors reported that after initial demonstrations of the ARCO system, museum visitors provided
positive feedback, proving that AR interface is a very good supplement to much more mature presentation
methods, such as Web and VR.

Rumiński and Walczak developed MARAT – Mobile Augmented Reality Authoring Tool which is
an easy-to-use mobile authoring application for AR presentations. The application extends the ARCO
system [119]. One of the key requirements for the application was implementation of an authoring
method that is easy to use for a museum creator and does not require programming skills. The application
is intended also for use by end-users, e.g., exhibition visitors, to access the AR content. Typically, users
do not have the rights to create or modify AR presentations. These users run MARAT in the read-only
mode without access to the functionality that enables modification of the AR content.

Figure 2.11: Assignment of objects to an image marker using mobile device [119].

A content designer, who is responsible for creating and managing virtual exhibitions, uses the mobile
AR application to assign virtual objects to real locations (image markers) and to set their presentation
and interaction properties. MARAT enables setting object presentation and interaction properties in
a user-friendly interactive WYSIWYG mode. Both the assignments and the properties of objects are
stored on the ARCO server and therefore are visible for every user of the MARAT application.

Visitors, equipped with mobile devices with the MARAT application installed, can browse a virtual
exhibition. They can view the virtual exhibition through mobile devices equipped with cameras and can
interact with virtual objects.

2.2.7. Automotive

AR brings many advantages to the car industry – in particular – in improving drivers’ safety and
navigation [35, 74]. A head-up display (HUD), that does not distract the driver while driving, was
employed in Mercedes-Benz cars [35] (Fig. 2.12). The AR system overlays a digital read-out of
navigation instruction, driving speed, and cruise-control settings on the windscreen.

While the AR solutions implemented in the premium car segment are expensive, small companies
work on cheaper AR alternatives. One of the notable projects is Hudway Glass [74] funded by
the Kickstarter crowdfunding platform [73]. Hudway delivers simple, versatile, and affordable HUD
software and glass-based accessory that helps a user to safely and comfortably drive a car. The idea of
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Figure 2.12: A head-up display for Mercedes-Bentz cars [35].

Hudway is to project navigation information onto a special glass that mirrors the view of the smartphone’s
display. This combination eliminates many issues associated with projecting images onto the windshield,
e.g., doubling of the image or lack of reflection during daytime.

Figure 2.13: Hudway Glass in use [74].

AR can be used not only for improving drivers’ safety and navigation, but also in maintaining
procedures for auto mechanics [133]. Stanimirovic et al. initiated the project called MARTA – Mobile
Augmented Reality Technical Assistance in order to deliver technical assistance instructions, which
guide a technician step-by-step through maintenance tasks. The MARTA application provides robust
image-based tracking of specular vehicle surfaces and overlaying of interactive instructions in the camera
view.

2.2.8. 3D content design

Researchers demonstrated that AR technology can be used for 3D design and production of 3D
synthetic content. Krichenbauer et al. built an AR user interface in the form of a plug-in for Autodesk
Maya [76]. The system was designed on the basis of results of the conducted survey aimed at 3D media
professionals responsible for 3D computer graphics content creation [77]. Based on the findings, authors
identified requirements that are needed for professionals while designing 3D models with AR UIs. The
following list presents professionals’ needs:

• ergonomic design;
• collaboration support;
• high amount of features;
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Figure 2.14: Guiding an auto mechanic with the MARTA application [133].

Figure 2.15: Editing a 3D object with an Augmented Reality User Interface [76].

• fast and intuitive navigation;
• support for 2D and alphanumeric operations;
• increase in productivity.

Authors implemented the gathered requirements in an AR system consisting of a head-mounted
display and thin cotton gloves with conductive materials sewed on them, as presented in Fig. 2.15,
allowing to interact with virtual 3D models in the work area. To work with the system, a user needs
to wear the HMD device and tracked gloves which turn an empty work area into an augmented reality
workspace. Next, primitive virtual content appears on the desk and can be edited directly with hands.
While editing 3D content, additional observers are able to see a video stream on a projector, and thus,
share the user’s view.

Steptoe developed a stereo camera rig to provide immersive video see-trough augmented reality for
the Oculus Rift, calling it AR-Rift [135]. The author mounted two web cameras on the Oculus Rift
device to capture world from the perspective of the user’s eyes (as presented in Fig. 2.16). Additionally,
to track head and hands in 3D, the author connected a motion capture system to the Oculus Rift. Such
combination of devices can deliver a highly immersive user experience – not only in VR, but also in AR.

To enable interaction with synthetic content, the author implemented a novel 3D user interface which
features a panel attached to one hand marker and a manipulator in the position of the fingertips on the
other hand.
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Figure 2.16: AR-Rift developed by Steptoe [135].

With the solution proposed by Steptoe, a user is able to create primitive 3D models, dock virtual
objects at a specific position, place virtual displays on the walls of the real room, delete virtual objects,
while wearing a virtual Oculus Rift to enable transition between AR and VR.

Figure 2.17: Creating virtual objects using AR-Rift [135].

Piumsomboon et al. demonstrated a novel AR system – Gesture-Speech Interface for Augmented
Reality (G-SIAR) – where a user is able to interact with synthetic content through a combination of
direct and indirect natural interaction techniques in an AR environment [107]. Hand tracking and speech
recognition technologies were used to design high precision free-hand gesture and speech interface
input. G-SIAR provides both direct manipulation technique using free-hand gesture called Grasp-Shell
(G-Shell) and indirect multimodal technique called Gesture-Speech (G-Speech). A comparison of these
techniques is extensively described in [106]. G-SIAR consists of two wide-angle stereo cameras mounted
on the Oculus Rift display providing an immersive user experience across the mixed reality spectrum.
For instance, users can transit between AR and AV environments using hand gesture, where their real
hands are visible within a virtual environment.

On the basis of G-SIAR, authors implemented a 3D design sandbox application which assists in
dynamic creation of virtual objects allowing users to design their own content. To create virtual objects
users need to use G-Shell and G-Speech techniques. For instance, a user can draw the outline of an
object by using his/her finger, to bring into virtual existence a solid model. Figure 2.18 presents a user
who creates virtual objects using his hand with one of the G-Shell gestures. The AR system supports
importing of external models in various formats. Moreover, an export of created objects is also possible
while developing 3D content.
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Figure 2.18: Interacting with just created object using G-SIAR [107].

2.2.9. Architecture and real estate

Researchers and commercial companies applied augmented reality to visualize content and data. For
instance, Lee et. al presented the CityViewAR application to provide geographical information about
destroyed buildings and historical sites of the city of Christchurch, which were damaged by several
major earthquakes in 2010 and 2011 [83]. Furthermore, CityViewAR allows to visualize virtual 3D
models of buildings on the real site where – before earthquakes – they were situated. Figure 2.19 depicts
visualization of a virtual building on a view of real-world building affected by the earthquake. On the
basis of the CityViewAR application, authors conducted an experiment showing that the AR interface
enhanced the user experience while exploring the city of Christchurch using the application.

Figure 2.19: Presenting virtual building on a view of destroyed place after the earthquake [83].

The real estate sector is another example where Augmented Reality technology is increasingly being
used providing benefits for property sellers, agents, and buyers. Commercial companies developed
numerous AR applications (e.g., Lux AR and Zoopla) responsible for projecting information about the
properties that are available for sale over the view of the houses [13,84]. The overlaid data such us price,
direction, and distance from the user’s location are visible to the user when he or she points a mobile
device’s camera toward houses. On the one hand, this kind of AR applications provide a great tool for
property sellers. On the other hand, users reduce time that must be spent dealing with the real estate
agent. Moreover, these applications give an innovative experience to potential buyers, while they are
searching for new homes.

Apart from searching information about homes, in some cases, buyers are able to see how the interior
of not-yet-finished houses will look after completing the construction process, just by viewing virtual
model of the place using a mobile device [109]. Prospective buyers can check out how their homes will
look when decorated in different ways, making the house more appealing to the buyers.
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2.2.10. Visualization of data

Rumiński et al. presented a novel mixed reality system for supporting stock market trading [117].
The system is designed to enhance traders’ working environment by displaying an array of virtual
screens visualizing financial stock data and related news feeds within the user’s surroundings (Fig. 2.20).
The authors combined the nVisor ST50 headset with InteriaCube4 and Leap Motion devices to enable
tracking of head orientation and controlling the VR/AR environment with hands. With the use of this AR
system, end users can create and control the virtual screens displaying stocks data directly using their
hands in 3D space.

(a) (b) (c)

(d) (e)

Figure 2.20: Creating, configuring, and visualizing virtual stock charts [117].

2.3. Summary

This chapter has introduced a relatively new field of computer science – augmented reality. The
first AR display device and the application developed by Ivan Sutherland has been described. Next, two
definitions of AR, provided by Milgram et al. and Azuma, were presented. Afterwards, the diversity of
AR domains and examples of various AR applications have been discussed. The introduced AR systems
share common features – AR functionality is fragmented between independent programs and each one
has to be individually installed and experienced by end users. Moreover, content and data are "closed"
within a single application and cannot be reused in others scenarios/applications.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3. Methods of Modeling of Augmented Reality

In this chapter, AR development tools for creating augmented reality applications are discussed –
from low-level software libraries and frameworks requiring programming skills to use them, through
simple easy-to-use authoring tools for non-technical users, to AR declarative languages used for
designing AR applications. Also, this chapter explores the role of semantic web and how it was applied
to AR. The chapter introduces semantic web standards and popular serialization formats with examples.
After that, applications of the semantic web technology in augmented reality systems is presented. Next,
the limitations of existing methods of modeling AR environments are discussed. Finally, a summary of
the chapter is provided.

3.1. AR software libraries and frameworks

3.1.1. Overview of low-level AR development tools

Augmented reality development tools have diverse target application platforms. Some tools can be
used for developing desktop AR applications, while others are designed for mobile AR programs. Due
to remarkable progress in mobile hardware performance, widespread use of mobile AR technology is
now possible. This section is focused on presentation of the state of the art of AR development tools for
mobile AR applications.

Typically, software libraries and frameworks for developing AR applications provide functionality
responsible for tracking real objects and displaing virtual ones. One of the well-known AR software
libraries, primarily developed by Kato and Billinghurst, is ARToolKit [18, 70, 71]. ARToolKit was
first demonstrated publicity at the ACM SIGGRAPH conference in 1999 [25]. Since then, numerous
desktop-based AR applications have been created with the use of ARToolKit. The library has been
ported to mobile platforms and is still further developed by a commercial company – DAQRI [36].

ARToolKit calculates the real camera position and orientation relative to a fiducial marker,
characterized by a black outlined square with a pattern inside, allowing to overlay virtual objects.
Currently, it supports classical black square markers (Fig 3.1a), multimarkers (Fig 3.1b), and natural
feature tracking (Fig 3.1c). The library is multi-platform, running on Windows, Linux, Mac OS X,
iOS and Android operating systems. Developers can also integrate the library with the Unity3D game
engine [139] using the ARToolKit plug-in. ARToolKit supports both video and optical see-through
devices. ARToolKit provides an open source license for marker-based applications and a commercial
version of the software based on natural feature tracking of arbitrary images.

Before DAQRI invested in development of application programming interfaces (APIs) covering
modern mobile platforms, developers could use NyARToolkit [9] designed for Java/C#/Android, AndAR
available only for Android [41], and CoreAR [5] for Objective C built by developers connected with the
open source community. However, these forks are not further developed and it is recommended to use
the newest ARToolKit’s code.
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(a) Fiducial marker. (b) Multimarker. (c) Image-based marker.

Figure 3.1: ARToolkit’s types of tracking markers [18].

The next open source framework for building augmented reality applications is DroidAR [63].
This framework uses location and vision-based marker tracking methods. DroidAR supports only
the Android platform. The software is based on the OpenCV computer vision library [68] and uses
square black markers for tracking – similarly to ARToolKit. DroidAR is available under commercial
license and can be freely downloaded and used for non-commercial use under the GNU GPL v3
license [49]. Additionally, DroidAR provides a testing tool for desktop computers, allowing very fast
development cycles. Unfortunately, the framework is not well documented and a developer can only rely
on screencasts posted on YouTube and some comments included within the code.

BeyondAR is an open source framework that provides location-based tracking for AR applications
[125]. The framework supports only the Android platform. Authors have provided the source code of an
AR game based on the framework. To recognize a location of a virtual object, the BeyondAR framework
uses device’s sensors such as GPS, accelerometer, and compass. BeyondAR is well documented in
comparison with the DroidAR framework. The AR applications built on the basis of BeyondAR can be
freely distributed under the Apache license.

To develop AR location-based applications for the Android platform, developers can also use the
HIT Lab NZ OutdoorAR framework [82]. The framework consists of a software library, a web-based
server, and a web-based authoring tool. OutdoorAR is designed with a component-based approach
allowing developers to reuse software components responsible for data storage, tracking sensors, network
communication, 3D graphics and sound rendering, as well as tools for managing UI elements in order
to build outdoor AR applications. The framework allows developers to focus on high-level design and
development of the domain content, logic, and user interface. It also provides direct access to low-level
functionality.

For the iOS platform, developers can use a commercial framework called PanicAR that enables
development of location-based AR applications [52]. PanicAR renders points of interest (POIs) on a
view of the real world. The framework provides a radar tool drawing POIs on a map that can be easily
integrated with an application. The framework requires an API-key to unlock all functionality. As long
as no valid API key is used during initialization, the application displays watermarks in the AR view and
on POI labels. The authors published also a beta version of the framework for Android, but without any
documentation and tutorials.

Another interesting framework designed for the iOS platform is 3DAR. 3DAR is an AR toolkit
developed by Spot Metrix, Inc. [92]. It is based on GPS and IMU sensors. Authors stated that in most
cases, the best approach is to first make 2D map annotations. After that a developer needs to implement
an extension in 3D view of the map. The 3DAR SDK is freely available for use in any iOS application
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(a) An image-based multimarker composed into a box. (b) Tracking an image wrapped onto a can.

(c) A frame marker. (d) Real-world object as a marker.

Figure 3.2: Vuforia’s types of tracking markers [110].

provided that the logo of the Spot Metrix company is visible on at least one AR view. A developer can
also use commercial license to develop location-based applications without any limitations.

Mixare is an open source augmented reality engine for geolocation applications covering both iOS
and Android platforms [53]. The framework is published under the GNU GPL v3 license. It works
both as an autonomous application and as a library for development of other applications. The authors
published a WordPress plugin to easily create points of interest using a map on any WordPress-powered
website. With it, a user can add POIs with a few simple steps and choose whether POIs should be publicly
visible or available only for the user. Every set of POIs is displayed on a website with a QRCode that
can be scanned. Scanning the barcode will automatically launch the Mixare browser on the device (if it
is installed).

To cover both iOS and Android platforms, while developing an AR application, developers can use
the Kudan AR engine. The framework provides marker-based and markerless tracking, as well as various
forms of 3D rendering [44]. The solution uses a gyroscope as a sensor to control markerless tracking
techniques. The framework supports FBX [20], OBJ [140], and COLLADA [60] 3D content formats. In
order to develop an AR application, a developer can use free license keys for Kudan’s components. To
use the engine in commercial applications, a paid license per application is required.

With Aurasma Technology, provided by the HP company, developers are also able to implement
AR applications on both iOS and Android platforms [3]. The SDK was created for digital agencies
responsible for launching and managing AR campaigns. The Aurasma SDK consists of a static library
(AurasmaKit), a sample application which embeds the Aurasma SDK (AKTest), and a set of images
used for tracking by the AKTest application. Aurasma became very popular due to the simplicity of
tools through which users can create their own AR experiences – so called Auras – and share them to the
Aurasma’s community.
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ARLab company is another provider of mobile AR tools [130]. ARLab’s SDK consists of five
products through which developers can create AR applications on iOS and Android platforms. The
SDK allows developers to build applications based on GPS, IMU sensors as well as a natural feature
tracking method. Although the SDK is well documented, the community of developers is relatively small.
Developers are forced to collect virtual points to get tutorials, watch videos, and get code examples. To
get these points a developer has to buy a concrete product.

One of the most popular augmented reality software development kits, which enables building
mobile AR applications, is Vuforia [110]. Originally, Vuforia was developed by Qualcomm Inc.,
but on November 3rd 2015 it was sold to PTC Inc. Vuforia provides computer vision based image
recognition methods that are able to recognize and track arbitrary images, objects, text, fiducial markers,
and reconstruct environments. It allows to write native applications for Android and iOS platforms.
With Vuforia it is not only possible to create augmented reality applications for mobile devices, e.g.,
smartphones/tablets, but it is also possible to build VR and AR applications for video and optical
see-through devices. Vuforia recognition and tracking capabilities can be used on a variety of images and
real objects, such as: flat images (as presented in Fig. 3.1c); multiple flat images that can be arranged
into regular geometric shapes, e.g. boxes (Fig. 3.2a); images wrapped onto cylindrical objects, e.g., cans,
bottles (Fig. 3.2b); 512 numerically encoded small markers that can be used with any image – so-called
frame markers (Fig. 3.2c); real-world objects, e.g. toys (Fig. 3.2c). Moreover, Vuforia SDK is capable
to recognize text from a dictionary of 1̃00,000 English words.

The Vuforia SDK is one of the three components constituting the full Vuforia platform. The second
component consists of three tools, which help to create databases of recognizable objects, scan 3D objects
into a format that is compatible with the Vuforia client-side library, and assist with the calibration for
optical see-through eyewear devices. The third component is so-called Cloud Recognition Service and
helps to recognize a large set of images on-line. This component can be used to automate systems
workflows by direct integration into a content management systems.

The next notable SDK for AR development is Wikitude SDK provided by Austrian-based Wikitude
GmbH company [10]. The company is mostly known from the location-based AR application with the
same name ("Wikitude"). The Wikitude SDK supports location-based and image-based recognition and
tracking methods. To build AR applications, a developer may use web technologies (HTML, JavaScript,
and CSS), which enable developing cross-platform augmented reality experiences. With Wikitude SDK
it is also possible to write native code for Android and iOS platforms. The Wikitude SDK consists
of computer vision engine library, the JavaScript library allowing to program AR experiences nested
within HTML code, native application programming interfaces (APIs). The Wikitude platform provides
cloud-based tools, such as: Wikitude Cloud Recognition allowing to visually search image targets;
Wikitude Targets API for developing own CMSs allowing to create and manage large target image
collections; and the authoring application Wikitude Studio. Wikitude supports not only smartphones and
tablets, but also smart glasses devices, such as: Google Glass, Epson Moverio, Vuzix, and Optinvent.

Another well known augmented reality technology is Layar founded by a Dutch company, which is
a part of the Blippar Group. Layar gained international attention as one of the first mobile augmented
reality browsers. Layar, which is a competitor for Wikitude, equips developers with a set of tools enabling
them to build augmented reality applications that can run on Android and iOS platforms. The Layar
SDK is a static library providing location-based and vision-based methods that help to create various AR
presentations – so called “layers”. Similarly to the Wikitude platform, Layar consists of REST-based
services integrating external CMS applications and an easy to use authoring application, called Layar
Creator. Layar does not support smart glasses devices.
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It is also worth to mention a German-based company – Metaio – which provided AR technology for
mobile devices. Metaio SDK is a static library that supports location-based and vision-based (including
fiducial markers and natural feature tracking) AR applications. Similarly to Vuforia, Metaio SDK
provided recognition and tracking capabilities for rigid real-world objects. Currently, Metaio products
are no longer available for purchase after the Apple company had acquired Metaio.

Finally, in addition to the presented augmented reality software libraries and frameworks, there are
other SDKs that can be used for developing desktop AR applications on Windows, Linux and MacOS
systems. The Institute for Computer Graphics and Vision at the Technical University of Graz provides a
list of all published software [112]. It is also worth to mention that many listed libraries have not stood
the test of time and the provided links lead currently to websites that do not exist anymore.

3.1.2. Comparison of AR software libraries and frameworks

Table 3.1 presents a comparison of augmented reality software libraries and frameworks that can be
used for developing mobile AR applications. Each library/framework is assessed against five general
evaluation criteria. Solutions that are not available to use (e.g., Metaio) or forks based on ARToolkit
such as NyARToolkit [9], AndAR [41], and CoreAR [5] are not considered.

The first criterion are the platforms supported by the development environment. The vast majority
of presented toolkits support Android platform (92%) – except the 3DAR. The majority allow also to
develop AR applications on the iOS platform (77%). Only ARToolKit supports alternative operating
systems including mobile Windows Phone and desktop-based platforms, such as Windows, Mac OS, and
Linux.

The second criterion concerns the license under which the AR software is available, i.e., free or
commercial. The majority (85%) of evaluated AR software is available under the commercial license.
Only BeyondAR is available under the Apache License version 2.0 (ASF) [48] and Mixare under the
GNU GPL, version 3 – which means that any software built on BeyondAR or Mixare can be freely used,
distributed, modified, under the terms of the license, without concern for royalties. The slight majority
(54%) provides solutions under proprietary licenses that are free of charge (except Aurasma and Layar),
but, in most cases offering more advanced paid options.

The third criterion represents availability of the documentation and support for the presented
developments tools – namely, whether the documentation is up-to-date, provides a ’Getting started’
section, tutorials, and a community forum. Helpful ’Getting started’ documentation and rich tutorials
with code examples are provided for all the compared software. However, for most of open source
projects (except ARToolKit) the documentation is out of date. Furthermore, PanicAR provides only
documentation for the iOS version of the framework. Only 46% of evaluated solutions made the
community forum available for the developers. ARToolKit, Vuforia, and Wikitude have passed all
’Documentation and support’ criteria.

The next criterion indicates what kind of tracking is used by the software. Four tracking methods have
been examined – based on detection and tracking of: markers, images (NFT), sensors, and real-world
objects. The results are the following: 38% use marker-based method; 54% provide image-based
techniques; 85% use sensors, such us: GPS, accelerometer, gyroscope, and magnetometer; and only
Vuforia is capable of tracking real-world objects.

Finally, the support for wearable devices is reported. Only five solutions provide tools for developing
AR applications for wearable devices. BeyondAR and Layar support Google Glass. ARToolKit, Vuforia,
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and Wikitude allow developers to build AR applications that are able to render stereoscopically with an
optical see-through display, providing a different perspective for each eye.

To summarize, regardless of the license, ARToolKit, Vuforia, Wikitude provide the richest set of
tools covering most of modern mobile platforms and devices. These solutions can be considered to use
for building contextual augmented reality environments.

3.2. Integrated AR design environments

3.2.1. Visual designing of AR

The technologies described in Section 3.1.1 require considerable programming skills from
developers. Also, developing AR applications with low-level SDKs is typically a time-consuming
process. In some cases it can be convenient and helpful to rapidly prototype an AR application to
present an idea to the end-users or clients before undertaking a major development process. Within
this subsection, an overview of various easy-to-use AR tools, used for visual and rapid prototyping of
mobile AR applications, is presented.

Figure 3.3: A web-based drag and drop interface of Layar Creator [8].

The Layar Creator is an easy-to-use web application providing high-level functions based on the
Layar library presented in previous section. The application helps to design AR presentations by allowing
to place images, videos, texts, and buttons onto markers [8]. A user only needs to upload to a server an
image or a PDF file that will serve as a marker for AR content. A user can drag and drop these elements
on a marker image and adjust the position and orientation of the displayed AR content. After the AR
presentation is finalized it can be published by pressing the publish button. Then, the AR content can be
accessed by aiming the Layar AR browser application on a marker image. Figure 3.3 depicts an example
view of the Layar Creator’s interface.

The next web-based augmented reality tool enabling users to create, manage, and publish AR
presentations is Wikitude Studio [11]. The application is appropriate for non-technical users, which
are not required to have programming skills. A simple easy-to-use drag-and-drop interface (Fig. 3.4)
gives capabilities to augment a view of real world objects with text, images, HTML widgets, video,
and 3D objects. After positioning a content element on a view of real world object, a developer can
preview the created AR presentation. After that, the AR presentation can be described with using tags
and description and then published to Wikitude Cloud to make it available in the Wikitude browser. A
developer can also export the AR presentation to his/her own application.
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Table 3.1: A comparison of low-level AR software libraries and frameworks for building mobile AR
applications.
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Figure 3.4: A web-based drag and drop interface of Wikitude Studio [11].

Figure 3.5: A web-based drag and drop interface of Aurasma Studio [4].

Another example of web-based AR authoring tools for mobile devices is Aurasma Studio. This
application, similarly to Wikitude Studio, provides a possibility to augment images when using a
smartphone or a tablet [4]. Creation of an AR presentation is very simple and a user is not required
to have programming skills. First, the user needs to upload a so-called Trigger Image to the server. This
image should be described by the user. This image will be used to access digital content. Next, the user
selects a digital content object from a library, e.g., an image or a video. Further, the user needs to position
the digital content by adjusting and rotating the content object until it has the most appropriate position.
Finally, after saving the work, a so-called ’Aura’ is available for use. The user can make his/hers ’Aura’
public. Thus, every user can access it using the mobile version of Aurasma application.

Figure 3.6: A web-based drag and drop interface of the OutdooAR web application [82].
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Creation of location-based mobile AR applications is also possible with the use of web-based
interfaces. For instance, one of the crucial parts of the OutdoorAR framework is an authoring web-based
application where a user can browse, modify, and manage geo-located scenes’ information [82]. With
this tool a user is also able to create new AR scenes by describing the details of a new scene in a web form,
uploading related media assets, and placing them on a map. Finally, these media data can be retrieved
by a mobile application that implements the OutdoorAR framework. Another interesting geo-tagging
web-based authoring tool is Hoppala Augmentation. The user interface of this application is based on a
map view component, in which a user provides geo-tagged content. These data created by the user can
be accessed on a number of mobile AR browsers such as Wikitude, Layar, and Junaio. Finally, Aurasma
Studio provides optional functionality to describe an image with GPS coordinates – simply by dropping
a point on a map.

There is a number of desktop-based AR authoring tools available, which are capable to publish virtual
objects onto mobile platforms. For instance, the ComposAR-Mobile application is a cross-platform
content authoring tool for PCs and mobile phones [159]. The application provides a GUI-based interface
that simulates a mobile phone allowing quick prototyping of AR applications on a desktop computer.
The application enables a designer to select markers and 3D models stored on the local system and to
link virtual objects with markers. Once a marker and corresponding 3D models are linked, a user is able
to change the position, rotation and scale of the assigned 3D models in the AR scene. Keypad based
interaction within the AR scene can be simulated using a virtual keypad in the visual keypad component.
One of the advantages of this solution is the integration with Python code scripts that are interpreted, so
that immediate feedback "on the fly" can be seen from the AR scene simulator. In the end, the application
produces an XML description of the AR scene that is further processed by a mobile application.

Another example, which has similar functionality to ComposAR-Mobile, is the D’Fusion Studio
application [138]. This tool also provides a mechanism for prototyping virtual objects on a
desktop computer and publishing AR presentations onto mobile platforms. However, in contrast to
ComposAR-Mobile, D’Fusion Studio covers majority of modern operating systems, such as: Windows,
Mac OS, Linux, iOS, and Android. Moreover, D’Fusion Studio allows the designer to develop more
sophisticated interactive scenarios with the LUA scripting language. In addition, D’Fusion Studio
provides face tracking capabilities. Figure 3.7 presents an example view of the user interface of this
application.

Figure 3.7: A desktop-based interface of D’Fusion Studio [138].

Finally, a user can quickly prototype AR ideas with the use of AR browser applications such as
Layar, Aurasma or Wikitude. These are free to use mobile applications available on digital distribution
platforms, such as Google Play [6] and Apple App Store [1], that connect back to servers for providing
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virtual objects. Creation of an AR presentation is very simple and the user is not required to have
programming skills when using these tools. Each of these application is base on a similar use case.
For instance, with the Aurasma application the user needs to capture an image representing a view of a
real world object with the mobile device. Next, digital content from a library, e.g., an image or a video
sequence should be selected and associated with the captured image. This image will be used to access
the digital content. The last step is to position the content object by adjusting and rotating until it has the
most appropriate fit. After saving a work, the so-called ’Aura’ is available for use. The user can make the
created ’Aura’ public – similarly as in the case of Aurasma Studio when developing AR presentations.

3.2.2. AR programming languages

To simplify the process of building augmented reality applications, content designers can use
high-level declarative programming languages. These languages require content designers to specify
what and where should be augmented, what should be displayed on a view of real-world objects, and
what can be the interactions between users and content. In most cases, users do not have to have specific
technical knowledge to use non-procedural languages to model AR presentations. One of the biggest
advantages of using declarative languages is simplified development process, which does not require
code compilation. Moreover, the process of modeling is relatively easy to do in comparison to starting
up a project from scratch using specific low-level software libraries.

Several research works have been performed in the domain of declarative languages for building
AR environments. For instance, Ledermann and Schmalstieg developed an XML-based language for
authoring AR presentations [81]. The Augmented Presentation and Interaction Language (APRIL) uses
UML state charts to design the flow of AR presentations. A content designer creates state charts, which
are next exported as files in the XML Metadata Interchange (XMI) format [104] – the standard format
for serializing UML diagrams. The XMI files are translated into the APRIL format and included in the
overall presentation description. This approach allows to use any UML editing tool capable of exporting
to XMI format. Finally, each AR application encoded in the APRIL format is transformed into the
representation of the Studierstube format [126].

The APRIL language allows the programmers and content designers to specify four top-level
elements – setup, cast, story, and behaviors – which enable customization of AR presentations.
The setup element describes hardware setup on which the application will run. Furthermore, this element
separates the description of content and behavior of the presentations from all aspects that depend on the
hardware. APRIL allows to store descriptions of various hardware definitions in separate files, and
run a single application on different hardware setups. This approach allows also to share and reuse a
single description of hardware setup among multiple AR presentations without the need of changing
content. The next element of APRIL language – story – is an explicit definition of a temporal
structure of AR presentations. This element is composed of individual scenes, in which a predefined
sequence of behaviors is executed by actors grouped in a cast element. An actor element
may contain a virtual object, a video clip or a sound. Actors can be nested in other actors, so a single
actor can represent a group of other actors. An actor may have behavior, which denotes the change of
the fields of the actor over time. A transition that changes the story from one scene to the next one is
triggered by the user interaction. APRIL provides built-in high-level user interaction commands, such as
displaying a button in a particular stage of user interaction that can trigger a transition when the button is
clicked. APRIL allows also to describe detection of the intersection of a pointer with the geometry of an
actor. The language provides additional so-called "pseudo-interactions", such as timeout responsible for
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automatically triggering or disabling certain transitions. Listing 3.1 presents an example of the APRIL
code.

Listing 3.1: A snippet of the APRIL code.

1 <april xmlns="http://www.studierstube.org/april"

2 xmlns:ot="http://www.studierstube.org/opentracker">

3 <setup>

4 <host name="showcase" ip="10.0.0.77">

5 <screen resolution="1280 1024"/>

6 <display screen="1" screenSize="fullscreen" stereo="true"

7 worldSize="-0.4 0.3" worldPosition="0.098 0.162 0"

8 worldOrientation="-0.1856 0.9649 0.1857 1.6057" mode="AR">

9 <pointer mode="2D-RAY"/>

10 </display>

11 ...

12 </setup>

13 <cast>

14 <actor id="ball" src="ball.apc">

15 <input id="src" value="ball.iv"/>

16 <input id="orientation" value="0 1 0 -1.57"/>

17 </actor>

18 ...

19 </cast>

20 <story>

21 <sene name="empty" initial="true"/>

22 <scene name="play"/>

23 <transition event="enter" source="empty" target="play"/>

24 ...

25 </story>

26 <behaviour scene="play">

27 <entry>

28 <set actor="ball" input="visible" to="TRUE"/>

29 ...

30 </entry>

31 ...

32 </behaviour>

33 </april>

Another noteworthy declarative language that was developed to model augmented reality
environments was presented by Wojciechowski [160]. MRSML (Mixed Reality Scenario Modeling
Language) is an XML-based language that allows content designers to specify both visual and behavioral
characteristics of synthetic content. The MRSML language enables description of MR-Classes and
MR-Objects. MR-Object is responsible for description of virtual objects, real objects, and mixed reality
scenes. Similarly, MR-Classes embrace classes of virtual objects, real objects, and mixed reality scenes.
MRSML takes advantage of basic elements of the object-oriented paradigm (OOP), such as: fields,
operations, and inheritance. The MRSML language adopts elements corresponding to concepts of OOP,
i.e., class, object, method, and attribute. These characteristics were extended with 3D geometry, images,
video and audio clips, constraints on the attributes, interactive behavior, and aggregation of relationships
of other MR-classes. Listing 3.2 shows a template for a class declaration in MRSML.

MR-Class defines a group of MR-Objects that have similar geometry, properties, media objects,
behavior, relationships to other MR-Objects, and semantics. Various MR-Object instances of particular
MR-Class may be initialized with different values of attributes. Thus, a presentation of different

32

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


MR-Objects may differ in visual, auditory, and behavioral aspects. The author used MR-Classes in
education to model augmented reality learning scenarios.

Listing 3.2: The template of the MRSML class declaration.

1 <Class name="..." desc="..." super="..." virtual="..." category="...">

2 <Attributes>

3 <Design>

4 ... // attributes for design interface

5 </Design>

6 <Creation>

7 ... // attributes for creation interface

8 </Creation>

9 <Setup>

10 ... // attributes for setup interface

11 </Setup>

12 </Attributes>

13 <Constraints>

14 <Constr cond="..."/>

15 ... // constraints

16 </Constraints>

17 <Methods>

18 <Method name="...">

19 ...

20 </Method>

21 ... // methods

22 </Methods>

23 <Activities>

24 <Activity name="...">

25 ...

26 </Activity>

27 ... // activities

28 </Activities>

29 <Geometry>

30 ... // geometry

31 </Geometry>

32 </Class>

MacIntyre et al. presented an extension to spatial markup language for Google Earth and Maps
(KML) [87]. The proposed KARML language supports the functionality required in mobile AR systems
with the use of standard web technologies such as HTML5, CSS, and JavaScript. KARML allows to bind
the presentation content and locations with the physical world. Standard KML already supports attaching
COLLADA 3D presentation content to HTML code, however, the KARML extension overcomes some
limitations. First of all, KARML adds a new element – Balloon to add control for the location,
orientation, and scaling of balloon content. Furthermore, the language uses orientationMode and
scaleMode elements letting the user to toggle billboarding and relative scaling modes respectively.
Moreover, KARML adds a locationMode element, which enumerates “fixed” and “relative” modes.
This element overcomes the KML limitation that latitudes and longitudes are only absolute references to
degree coordinates. Using locationMode it possible to declare that some synthetic content is placed
at the height of, e.g., 6 centimeters or meters depending on the units. Finally, KARML specifies the
Tracker element allowing the user to use other sources of position information than sensors, including
marker-based and markerless tracking. The KARML language is used by Argon AR Web Browser and
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Listing 3.3: A snippet of the KARML code.

1 <Placemark>
2 <name>MyPlacemark</name>
3 <description>
4 <![CDATA[<img style="width:300;height:200"
5 src="http://myexample.com/content.png"/>]]>
6 </description>
7 <karml:Balloon>
8 <locationMode units”=”meters targetHRef”=#”user>relative</locationMode>
9 <location>

10 <latitude>2.0</latitude>
11 <longitude>0.0</longitude>
12 <altitude>0.0</altitude>
13 </location>
14 <orientationMode>billboard</orientationMode>
15 </karml:Balloon>
16 ...
17 <karml:Tracker>
18 <karml:TrackerDevice>stbTracker</karml:TrackerDevice>
19 <karml:TrackerDescription>
20 <stbTracker:type>simpleId</stbTracker:type>
21 <stbTracker:id>11</stbTracker:id>
22 </karml:TrackerDescription>
23 </karml:Tracker>
24 </Placemark>

was applied to numerous location-based projects [87, 132]. Listing 3.3 depicts a snippet of an example
mark place described with the KARML language.

KARML is not the only attempt to extend KML for augmented reality applications. The Augmented
Reality Markup Language (ARML) also extends KML with AR-specific structures. ARML is a
descriptive, XML-based language focused on mapping geo-referenced Points of Interests (POIs) and
their metadata. The language also permits to describe POI content providers. It adds markup
extensions to support Wikitude browser features, such as ar:provider and wikitude:info.
The ar:provider element is responsible for identifying a unique content provider, while
wikitude:info describes additional information including thumbnail, phone, URL, email, and
address [80]. An example of the KML placemark extended with additional information is presented
in Listing 3.4.

Listing 3.4: A snippet of the ARML 1.0 code.

1 <kml xmlns="http://www.opengis.net/kml/2.2"

2 xmlns:ar="http://www.openarml.org/arml/1.0"

3 xmlns:wikitude="http://www.openarml.org/wikitude/1.0">

4
5 <Document>

6 <ar:provider id="mountain-example.com">

7 <ar:name>Mountain Tours</ar:name>

8 <ar:description>preferred mountain tours in the alps.</ar:description>

9 <wikitude:providerUrl>http://mountain-example.com</wikitude:providerUrl>

10 <wikitude:logo>http://mountain-example.com/logo.png </wikitude:logo>

11 </ar:provider>

12 <Placemark id="m">

13 <ar:provider>mountain-example.com</ar:provider>

14 <name>Gaisberg</name>

15 <description>Description of Gaisberg</description>
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16 <wikitude:info>

17 <wikitude:thumbnail>

18 http://mountain-example.com/l.png

19 </wikitude:thumbnail>

20 <wikitude:phone>555-99432</wikitude:phone>

21 <wikitude:url>http://en.wikipedia.org/wiki/Gaisberg</wikitude:url>

22 <wikitude:email>info@mountain-example.com</wikitude:email>

23 <wikitude:address>...</wikitude:address>

24 </wikitude:info>

25 <Point>

26 <coordinates>13.11,47.81,1100</coordinates>

27 </Point>

28 </Placemark>

29 </Document>

30 </kml>

The next language – Augmented Reality Experience Language (AREL) – is a JavaScript binding of
the metaio SDK’s API in combination with static XML descriptions. AREL allows to script interactive
AR applications based on common web technologies – HTML5, XML, and JavaScript [2]. Typically, an
AR program based on AREL consists of two parts: a static XML description and a dynamic JavaScript
code. The static part consists of a description of an AR scene and virtual objects. A SceneOptions

element describes initial parameters of the AR scene, such as camera parameters, the environmental
map of images, the material shader used for rendering, and information about how much annotations for
location-based POIs should be moved up in pixels. A single object element contains the following
data: a title, a thumbnail, an icon, a geo-location for this object, assets describing a 3D model, and
parameters specifying optional visibility restrictions. AREL also allows to include additional parameters
that should be passed to the dynamic part – the JavaScript code. Within JavaScript part, a programmer
can implement interactions and behaviors of virtual objects, e.g., scaling the object.

Listing 3.5: A snippet of AREL code.

1 <results>

2 <arel>simpleAREL.html</arel>

3 <object id“=“Tiger>

4 <assets3d>

5 <model>Assets/tiger.md2</model>

6 <texture>Assets/tiger.png</texture>

7 <transform>

8 <translation>

9 <x> 10.0</x><y> 0.0</y><z> 0.0</z>

10 </translation>

11 <rotation type="eulerdeg">

12 <x> 90.0</x><y> 0.0</y><z> 0.0</z>

13 </rotation>

14 </transform>

15 <properties>

16 <coordinatesystemid> 1</coordinatesystemid>

17 </properties>

18 </assets3d>

19 </object>

20 </results>

Last but not least, a redesigned version of the ARML – ARML 2.0 – language was proposed by
the Open Geospatial Consortium (OGC) [86, 103]. ARML 2.0 does not extend ARML 1.0. The goal

35

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


of ARML 2.0 is to provide an interchange format in which a designer can describe virtual objects in
AR scenes with their appearances and their so-called anchors related to the real world. Furthermore,
ARML 2.0 allows to bind ECMAScripts [66] for dynamic modification of an AR scene, as well as
interaction with a user. The ECMAScript bindings are described in the JavaScript Object Notation
(JSON) format [34] allowing to specify event handling and animations. Moreover, the language uses
concepts from Geography Markup Language (GML) [101] to describe geographical features. The current
version of ARML 2.0 does not specify non-visual objects, such as sound and haptic feedback.

The language uses three top-level elements: Feature, Anchor, and VisualAsset. A Feature

represents a real world object that should be overlaid with some computer-generated content. This
element consists of metadata of the real world object, as well as at least one Anchor. An Anchor

element defines a link between the virtual and the physical object. It can be a spatial location tracked by
motion sensors of the device, or a visual pattern, such as a marker, a QR code, or an image.

ARML specifies two different types of Anchors. The first is an abstract class (ARAnchor), which
can represent three classes of objects. The first one is Geometry representing a point, a line, or a
polygon described with spatial coordinate tuples. The second one is a Trackable object – a visual
pattern that is detected and tracked in 3D space. The third subclass of ARAnchor is the RelativeTo
class describing a relation to other Anchor instances. The second type of Anchor is ScreenAnchor
which describes a fixed location on the screen.

The VisualAsset element describes how a particular Anchor should be represented in an AR
scene. The representation can be described as a 2-dimensional (such as a label specified through HTML
elements, a colored area, a plain text, an image) or 3-dimensional object.

Listing 3.6: A snippet of AREL code.

1 <arml>

2 <ARElements>

3 <Image id="placemarkMarker">

4 <ScalingMode type="custom">

5 <minScalingDistance>10</minScalingDistance>

6 <maxScalingDistance>1000</maxScalingDistance>

7 <scalingFactor>0.4</scalingFactor>

8 </ScalingMode>

9 <width>20</width>

10 <href xlink:href="http://www.myserver.com/myImage.jpg" />

11 </Image>

12
13 <ScreenAnchor id="infoWindow">

14 <style>left: 0; width: 100%; bottom: 0; height: 25%</style>

15 <assets>

16 <Label>

17 <conditions>

18 <SelectedCondition>

19 <listener>feature</listener>

20 <selected>true</selected>

21 </SelectedCondition>

22 </conditions>

23 <src><b>$[name]</b><br />$[description]</src>

24 </Label>

25 </assets>

26 </ScreenAnchor>

27
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28 <Feature id="goldenGateBridge">

29 <name>Golden Gate Bridge</name>

30 <description>Description...</description>

31 <anchors>

32 <anchorRef xlink:href="#infoWindow" />

33 <Geometry>

34 <assets><assetRef xlink:href="#placemarkMarker" /></assets>

35 <gml:Point gml:id="myPoint">

36 <gml:pos>37.818599 -122.478511</gml:pos>

37 </gml:Point>

38 </Geometry>

39 </anchors>

40 </Feature>

41 </ARElements>

42 </arml>

3.3. Semantic web technologies in AR

This section presents the role of semantic web and how it was applied to AR. The section introduces
semantic web standards and popular serialization formats with examples. After that, applications of the
semantic web technology in augmented reality systems is discussed.

3.3.1. Overview of semantic web technologies

Semantic web – a term proposed by Tim Berners-Lee – provides a universal framework that allows
data to be shared and reused across application, enterprise, and community boundaries [24]. According to
the World Wide Web Consortium (W3C) [146], the semantic web is a web of structured data, decoupling
applications from data through the use of a simple, abstract model for knowledge representation.
This abstract model releases the bilateral constraints on applications and data, letting both to evolve
independently. As a consequence of using such model, any application that understands the model can
consume any data source using this model [166].

Nowadays, the vast majority of information available on internet is unstructured, encoded in diverse
text format such as HTML, plain text, PDF, RTF, doc, and docx. This is suitable for humans who can
read, understand the important information, and use it to guide further knowledge discovery. However,
the heterogeneity of information is indecipherable to machines and makes automated processing difficult.
If the diversity of information can be encoded by content providers into structured collections of
information and sets of inference rules that can be used to conduct automated reasoning, any application
could access and use the rich array of data. Semantic web is intended to make machine-processable
knowledge on the basis of provided data sets [24].

Resource Description Framework

A number of standards have been developed to enable semantic representation of web resources. The
World Wide Web Consortium (W3C) devised the Resource Description Framework (RDF) [147], which
is a primary standard for representing information about resources on the web. RDF provides a simple
way to make statements about web resources. Each statement asserts a fact about a resource. A statement
consists of three elements:

• a subject is a resource described by the statement,
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• a predicate is a property of the subject,
• an object is a resource or literal value of the property.

A statement – which is the fundamental building block of semantic representation – is called a triple,
because of the three parts. The subject in a triple corresponds to some "thing" – an entity for which a
conceptual class is created. The predicate is a property of the entity. The object can be presented in two
different ways: as an entity that can be a subject in other triples, and as the literal value such as a Boolean,
number, string, and other types of values about a subject. In RDF, a literal value can have a language –
for instance English, Polish, or Japanese. RDF conceptualizes anything and everything in the universe
as a resource to avoid type ambiguities. A resource is simply anything that can be identified with unique
International Resource Identifier (IRI) [141] including Universal Resource Identifiers (URI) [142].

In RDF, it is common to shorten IRIs by assigning a namespace to the base of IRI and using only
characteristic part of the identifier. For example, it is widespread practice to use rdf as a moniker for the
base IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#, allowing predicates such as
http://www.w3.org/1999/02/22-rdf-syntax-ns#type to be abbreviated as rdf:type.
Listing 3.7 depicts two exemplary statements about Barack Obama encoded in RDF/XML format.

Listing 3.7: A snippet of RDF code.

1 <?xml version="1.0" encoding="utf-8" ?>

2 <rdf:RDF

3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

5 xmlns:dbo="http://dbpedia.org/ontology/"

6 xmlns:dbp="http://dbpedia.org/property/" ...>

7
8 <rdf:Description rdf:about="http://dbpedia.org/resource/United_States">

9 <dbo:leader rdf:resource="http://dbpedia.org/resource/Barack_Obama" />

10 </rdf:Description>

11
12 <rdf:Description rdf:about="http://dbpedia.org/resource/Barack_Obama">

13 <dbo:birthPlace rdf:resource="http://dbpedia.org/resource/United_States" />

14 ...

15 </rdf:Description>

The code can be read as the following sentences:

1. United States has the leader Barack Obama.
2. Barack Obama’s birthplace is the United States.

In the first statement, United States is the subject (http://dbpedia.org/resource/United_States). The word
leader is the predicate. Barack Obama is the object (http://dbpedia.org/resource/Barack_Obama). In
the second statement, the subject is Barack Obama, the predicate is birthPlace, and the object is United
States. Figure 3.8 depicts visualization of the RDF code presented in Listing 3.7.

An RDF model is represented as a set of statements (triples) in which the same subjects and objects
can be used in different triples. The RDF model forms a directed graph. Using the semantic web’s
terminology, subjects and objects correspond to vertices connected with directed edges (predicates). One
of powerful properties of using graphs to model information is that having two or more separate graphs
with a consistent system of identifiers for subjects and objects, it is relatively easy to merge the graphs.
If a triple is written in both independent graphs, the two triples can be integrated together transparently.
Figure 3.8 presents a visualization of exemplary RDF model composed of independent graphs of data.
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Figure 3.8: Visualization of two example RDF statements.

Figure 3.9: Visualization of independent graphs merged into one graph.

RDF serialization formats

Within this subsection five RDF serialization formats: N-Triples, Notation3 (N3), RDF/XML,
RDF/JSON, and Turtle are shortly presented.

N-Triples

N-Triples [165] is a line-based, plain-text notation for encoding RDF graphs. Its original intent was
for writing test-case data models while developing the RDF specification. However, it turned out that
this format has proven to be popular as an exchange format for RDF data.

Each line of the triple encoded in N-Triples is a sequence of RDF terms representing the subject, the
predicate, and the object followed by a dot. The principal components of an RDF triple are separated by
white spaces. Objects literals are double-quoted strings that use the backslash to escape tabs, newlines,
double-quotes, and the backslash character. Optionally, string literals can specify their language when
followed by @lang. Also, the datatype IRI of the literal value has to be followed by ^^type.

Listing 3.8 depicts an example of an RDF triple encoded in the N-triples notation.

Listing 3.8: An example of RDF triples written in N-triples format.

1 <http://dbpedia.org/resource/United_States> <http://dbpedia.org/ontology/leader>
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2 <http://dbpedia.org/resource/Barack_Obama> .

3
4 <http://dbpedia.org/resource/Barack_Obama> <http://dbpedia.org/ontology/birth_place>

5 <http://dbpedia.org/resource/United_States> .

Notation3 (N3)

While the N-Triples format is conceptually easy, the main disadvantage is the repetition of redundant
information, which as a consequence takes additional time to transmit and parse. While it is not a
problem when working with small sets of data, the redundant data becomes problematic when working
with large amounts of data. Notation3 (N3) [164] significantly reduces number of characters used in
N-Triple by providing short symbols representing repeated nodes. N3 defines an IRI prefix (@prefix)
– similarly to the XML namespace mechanism for generating short names for nodes, so-called qualified
names (qnames) – and identify entity IRIs relative to a set of prefixes declared at the beginning of the
document.

The statement presented in Listing 3.9 allows to shorten the absolute IRI for United_States from
http://dbpedia.org/resource/United_States to dbr:United_States.

Listing 3.9: Shortening an absolute IRI with N3 format.

1 @prefix dbr: <http://dbpedia.org/resource/> .

2 dbr:United_States ...

Continuing the example with Barack Obama, two sample statements encoded in N3 are presented in
Listing 3.10. The presented description significantly reduces the size of the document when comparing
N-Triples example from Listing 3.8.

Listing 3.10: Using @prefix to shorten repetitive IRIs in the RDF triple.

1 @prefix dbr: <http://dbpedia.org/resource/> .

2 @prefix dbo: <http://dbpedia.org/ontology/> .

3
4 dbr:United_States dbo:leader dbr:Barack_Obama

5 dbr:Barack_Obama dbo:birth_place dbr:United_States

6 ...

RDF/XML

Another format used for representation of the RDF model is RDF/XML [148]. The RDF/XML
notation allows to encode RDF graphs in XML terms – element names, attribute names, element contents,
and attributes values.

The top-level element of the RDF graph written in RDF/XML is used to define XML namespaces
used throughout the document. The RDF IRI reference is determined by appending the local name part
of the XML qualified name after the namespace name (IRI reference). This approach allows to shorten
the RDF IRI references of all predicates and some nodes.

An RDF graph can be considered as a collection of paths of the form node - predicate - node -
predicate - node - predicate, etc. In RDF/XML these turn into sequences of elements inside elements
which alternate between elements for nodes and predicates. This is called a series of node/predicate
stripes.

The rdf:Description element always starts a path. The IRI reference of the subject is
specified as a value of the rdf:about attribute. Each predicate is specified as a child element of
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the rdf:Description node. The rdf:resource attribute value contains the IRI of the object.
Listing 3.7 depicts two example statements about Barack Obama encoded in the RDF/XML format.

RDF/JSON

The RDF/JSON format allows an RDF graph to be written in a form compatible with the JavaScript
Object Notation (JSON) [34]. RDF/JSON serializes RDF triples as a series of nested data structures. An
RDF/JSON document consists of a single JSON object called the root object. Each unique subject in
the set of triples is represented as a key in the root object. No key may appear more than once in the
root object. Each root object key’s value is a JSON object whose keys are the URIs of the predicates
occurring in triples with the given subject – known as predicate keys. No predicate key may appear more
than once within a single object. An array of JSON objects, representing the object of each serialized
triple, is the value of each predicate key.

In general, a triple written in the RDF/JSON format (subject S, predicate P, object O) is serialized as
an instance of the template structure presented in Listing 3.11.

Listing 3.11: A template for the RDF/JSON notation.

1 { "S" : { "P" : [ O ] } }

The object of the triple O is described as a further JSON object with four keys: type, value, lang,
and datatype. The value of type key can be written as ’uri’, ’literal’ or ’bnode’. Next, the value
of the value key is the URI of the object. The value of the lang is the language of a literal value.
Finally, the value of the datatype is the datatype URI of the literal value. The ’lang’ and ’datatype’
keys should only be used if the value of the ’type’ key is "literal". All keywords defined in RDF/JSON
format are case sensitive, and must be written lowercase. Listing 3.12 presents an example of an RDF
triple encoded in the RDF/JSON format.

Listing 3.12: An example of the RDF triple written in the RDF/JSON format.

1 {

2 "http://dbpedia.org/resource/United_States" : {

3 "http://dbpedia.org/ontology/leader" : [ {

4 "value" : "http://dbpedia.org/resource/Barack_Obama",

5 "type" : "uri" } ]

6 }

7 }

JSON-LD

JSON-LD is an alternative to the JSON-LD format described in the previous subsection [163].
JSON-LD is intended to use RDF data in web-based programming environments, to create interoperable
web services, and to persist Linked Data in JSON-based storage mechanisms. This format is
recommended by W3C.

JSON-LD serializes RDF data as JSON objects via the use of IRIs (as opposed to URIs used in
RDF/JSON). It provides a universal mechanism to disambiguate keys shared among different JSON
documents by mapping them to IRIs via a context. The format allows to refer to a JSON object located
on a different site on the web as a value in another JSON object. A single JSON-LD document can
be used to express one or more RDF graphs, such as social networks, in a single document. It is also
possible to annotate values of properties with their native language meanings (Listing 3.13).

Listing 3.13: An example of the language map expressing a property in two languages encoded in JSON-LD.
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1 {

2 ...

3 "occupation":

4 {

5 "pl": "Prezydent",

6 "en": "President"

7 }

8 ...

9 }

RDF Schema

RDF Schema (RDFS) provides a data-modeling vocabulary for describing classes and properties
of RDF resources [153]. RDFS is a semantic extension of RDF providing mechanisms for describing
groups of related triples and relationships between resources. RDF Schema is written in RDF and is built
on the RDF resources that can be used to describe other RDF resources in application-specific domains.

Although useful in many applications, RDFS lacks a number of important features, such as: local
scope properties (it is not possible to declare range restrictions that apply to some classes only;
possibility to declare disjointness of classes; Boolean combinations of classes (union, intersection,
and complement); cardinality restrictions; special characteristics of properties (transitive, unique, and
inverse). These limitations are solved in the OWL language described below.

The Web Ontology Language 2 (OWL 2)

The Web Ontology Language 2, informally OWL 2 [150], is an RDF language used for the
formalization of the meaning in semantic web. The language is an extension and revision of previous
specification [154] and RDFS [153], and it enables more powerful reasoning and inference mechanisms
over relationships between classes and individuals. OWL 2 has a richer vocabulary description language
for describing classes and properties than RDFS. The language uses the RDF/XML format and is the
current W3C standard for defining semantic web schemes.

OWL 2 enables developing a contract for meaning – an ontology that is a formalized vocabulary of
terms, often covering specific business logic and shared by a community of users. An ontology enables
to specify which entities will be represented, how they can be grouped, and what relationships exist
between them. The knowledge expressed in OWL can be reasoned with by computer applications either
to verify the consistency of that knowledge or to make implicit knowledge explicit. The more precise
the ontology, the greater the potential of understanding of how the data can be used. However, if the
ontology is overly complex, then it can become confusing, intricate, and problematic to use, maintain,
and extend by humans.

In OWL 2, objects are denoted as individuals, categories as classes, and relations as properties.
Properties in OWL 2 are subdivided into Object properties, Datatype properties, and Annotation
properties. Object properties relate objects to objects (like markers to virtual objects), while datatype
properties assign data values to objects (like a camera resolution to a camera). Annotation properties are
used to describe information about (parts of) the ontology itself (like the author and creation date).

In order to model the information that two individuals are interconnected by a certain property,
domain and range properties are used. These two properties allow to draw conclusions about
the individuals themselves. For instance, the statement "Epson Moverio BT-200 has cameraXYZ"
implies that the ’Epson Moverio BT-200’ individual (domain) is related via "hasCamera" property the
’cameraXYZ’ individual (range). The statement that two individuals are related via a certain property
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carries implicit additional information about these individuals. The above-presented example also
implies that ’Epson Moverio BT-200’ is a type of the Wearable Glasses class and ’cameraXYZ’ is a
type of the Camera class.

Figure 3.10 depicts an example of the domain and range of the ex:hasCamera property, which
indicates classes of objects that have a camera.

ex:hasCamera

The range of
ex:hasCamera

Camera

The domain of
ex:hasCamera

Tablet

Smartphone

Wearable 
Glasses

Figure 3.10: The domain and range of the property expressing hasCamera.

SPARQL

SPARQL – SPARQL Protocol and RDF Query Language – provides a standardized query language
for RDF graphs (similarly to SQL which defines a query language across relational database systems)
[152]. SPARQL gives the ability to formulate queries ranging from simple graph pattern matching to
complex queries. There are other RDF query languages, such as RDQL (RDF Data Query Language)
[149] and SeRQL (Sesame RDF Query Language, pronounced "circle") [131]. Due to the W3C
standardization and the wide community support, SPARQL can be considered as the main query language
that helps to process RDF graphs.

It is noteworthy that SPARQL is both a query language and a protocol. The protocol is used to
specify how SPARQL client (e.g., accessible via a web browser) communicates with so called endpoint
(processor) both in an abstract sense and using a concrete implementation, e.g., based on WSDL.

SPARQL provides four forms of queries SELECT, CONSTRUCT, ASK, and DESCRIBE. These
clauses attempt to find solutions to a graph pattern, and all share similar constructs. A SELECT query
identifies a subset of the variables used in the graph pattern whose bindings are returned in a table format.
It is comparable to SQL’s SELECT statement. The SELECT keyword binds RDF terms, such as blank
nodes, IRIs, or literals) to variables based on the given graph pattern. Bindings are returned as result
sets in a form of an array. Next, a CONSTRUCT query extracts information as a valid RDF graph. Next
clause – ASK – allows to test whether a pattern can be found in a graph. It corresponds to the SQL WHERE

keyword and returns a simple Boolean as a result indicating whether the graph provides a solution for
a query. Each of these are followed by a WHERE clause that specifies the graph pattern to match as a
collection of triples. Variables in the triple pattern start with a question mark (?) or a dollar sign ($).
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The version 1.1 of the SPARQL specification enables the following operations on RDF graphs: insert
(INSERT), update (DELETE INSERT), and remove (DELETE) triples from RDF graphs.

Listing 3.14 presents a snippet of the SPARQL query for finding all landlocked countries with a
population less than ten thousand and written in English. Table 3.2 depicts the result of the query run on
a DBpedia SPARQL endpoint [19, 37].

Listing 3.14: A snippet of simple SPARQL query processed by a DBpedia service.

1 PREFIX type: <http://dbpedia.org/class/yago/>

2 PREFIX type: <http://dbpedia.org/class/yago/>

3 PREFIX prop: <http://dbpedia.org/property/>

4 SELECT ?country_name ?population

5 WHERE {

6 ?country a type:LandlockedCountries ;

7 rdfs:label ?country_name ;

8 prop:populationEstimate ?population .

9 FILTER (?population < 100000 && langMatches(lang(?country_name), "EN")) .

10 } ORDER BY DESC(?population)

Table 3.2: The result of the SPARQL query presented in Listing 3.14

country_name population

"Andorra"@en 85458
"Liechtenstein"@en 37340
"San Marino"@en 32576
"Vatican City"@en 842

3.3.2. Applications of semantic web in augmented reality

Schmalstieg and Reitmayr argued that ubiquitous augmented reality systems require independence
of the data model from specific applications, and that to deal with it a semantic model of geo-referenced
data can be used [127]. The authors derived a data model which allows a suitable degree of semantic
reasoning for mobile AR and described how it can be used in urban navigation. For instance, the authors
explained general classes, such as IsInteresing, SubstituteFor, and neighboursWith, which can be used
for the presentation of objects that are “semantically” related to the target objects, even if targets are not
directly visible in a user interface.

In [114], Reynolds et al. discussed future directions for mobile augmented reality applications –
in particular – how linked data [26] can be used in mobile AR browsers for enhancing the reality with
information about local points of interest, such as historical sights, nearby bus stops, and cafés. The
authors argue that techniques of the semantic web can be used for dynamic selection and integration of
data from different sources. Furthermore, the use of a cloud of linked open data, such as GeoNames,
LinkedGeoData or DBpedia, can provide a wide range of contextual information for mobile AR
browsers. The authors also state that the browsing experience with linked data is similar to that we
know when we surf the Internet using standard web browsers.

Hervás et al. presented [64] an augmented reality information system for elderly or dependent users
by describing context information with the semantic web and QR codes. The authors developed a model
called Mobile Augmented Reality Model (MARM) that represents the information to be superimposed
onto a view of physical objects surrounding a user. MARM requires data provided by an accelerometer
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and a digital compass to adapt information presentation in the user interface. QR codes are used to
provide RDF data corresponding to the user’s location. The model and the implemented application is
suitable for users that need to be guided in their daily activities as it occurs in typical Ambient Assisted
Living (AAL) scenarios, e.g., how to prepare a meal, which medicament the user has to take or when is
the next appointment with the doctor (Fig. 3.11).

Figure 3.11: Hervás et al. solution in AAL scenarios use [64].

A new approach for indoor navigation using semantic web augmented reality technologies was
presented by Matuszka et al. [89]. Similarly to the solution presented by Hervás et al., QR codes were
used for recognizing coordinates of indoor locations that are further processed by the server responsible
for providing semantically described data (passages, corridors, exit, etc.) associated with the QR code.
Additionally, the server computes the possible paths between two different locations using SPARQL
queries. Moreover, QR codes are also used for visualization of 3D arrows indicating the proper direction
to the chosen location.

Another Matuszka’s work [91] presents a location-based augmented reality application for exploring
well-known Hungarian Kerepesi cemetery with the use of semantic information about deceased people.
The application calculates distance between the GPS coordinates of graves and the user’s position and
navigates the user to the correct location. When the selected grave is in the field of view of the camera,
the application runs SPARQL queries to retrieve information about the deceased person and shows a
2D graphical information overlay on the view of the grave. In [90] Matuszka and Kiss explain an
architecture of the semantically enriched location-based augmented reality browser. On the basis of
the user’s geographical location, a client application retrieves RDF data from DBpedia database. The
AR interface visualizes 2D annotations representing selected RDF data.

Nixon et al. [100] demonstrated the SmartReality platform that combines augmented reality and
semantic web technologies in the entertainment domain. The goal of the presented AR system is to use
linked data to provide information about clubs, artists, and music concerts that take place around the
user’s location. SmartReality mediates between the Android-based client, which is capable to overlay
2D annotations onto concert posters, and web-based data and services, providing the most appropriate
content and services for display to the user, based on available metadata.

Applications of semantic web in augmented reality systems for cultural heritage have been presented
in [12] and [157]. Van Aart et al. developed a location-based outdoor application that combines Linked
Data with domain-specific cultural heritage content [12]. The mobile application explores and visualizes
RDF data provided by a back-end server on the basis of the user’s GPS location. The back-end server
aggregates, harvests and merges sets of triples that describe the location of the user and sends them

45

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 3.12: Annotating additional information on a view of a grave in the application presented by
Matuszka [91].

back to the client application. Although the authors presented the augmented reality user interface that
visualizes data, it is not clear how the visualization is registered in the view of the real world objects.

Walczak et al. [157] developed an indoor AR system for enhancing museum paintings on the basis of
domain-specific ontologies developed and maintained by domain experts. The system permits museum
visitors to acquire additional information about paintings presented in exhibitions. The client application
recognizes and tracks paintings annotated by museum curators and highlights specific areas of the
paintings (e.g., painted people or objects) on which more information is available. Museum paintings are
described with the semantic AR representations consisting of RDF statements and SWRL rules stated on
objects, which are instances of semantic concepts specified in the ontologies.

Figure 3.13: Semantically described paintings of Polish monarchs presented on two different classes of
devices [157].

The domain knowledge base is used to generate final AR scene descriptions that is used by a mobile
application. Figure 3.13 depicts a painting containing portraits of three Polish monarchs, who are
indicated by color circles – depending on their dynasties. Each circle represents an augmentation area,
on which more information can be provided. By tapping any of the augmentation areas, a user can
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retrieve the associated information, which is presented as a textual object above the painting. Figure 3.13
presents semantically described painting enhanced with AR information about Polish monarchs.

Zander et al. presented a mathematical model that exploits locally gathered sensor data in
combination with geographical information provided by three Linked Data sources in order to visualize
the topologicaly highest elevation or ridge atop a mountain in AR interface [167]. The authors conducted
several experiments in order to evaluate the performance of the solution. The results obtained by the
authors demonstrated that the implemented AR system is effective and the proposed mathematical model
can be used in real-world cases to visualize LOD data in location-based AR interfaces.

Vert and Vasiu demonstrated an augmented reality web application for tourists that integrates Linked
Open Data and Romanian government data [145]. The application renders 2D pinpoint icons overlaid on
a view of tourist places located around a user and displays complete information about the selected POI.
In that work, the authors also point out the challenges that have to be overcome when developing such
applications, which fuse diverse data sources. Figure 3.14 depicts three screenshots taken from the Vert
and Vasiu’s application.

Figure 3.14: Augmenting POIs around the user with the LOD data [145].

Ruta et al. presented an augmented reality mobile framework for semantically-enhanced tourist
places discovery [124]. The solution allows users to see a 2D overlay of markers representing points of
interests on a view displayed in a mobile device. The authors implemented a location-based AR browser,
which exploits semantically enhanced OpenStreetMap cartography and executes semantic queries on the
basis of the user’s preferences and relevant POIs in the user’s surroundings. Figure 3.15 depicts the AR
interface developed by Ruta et al.

Aydin et al. presented an architecture for location-based augmented reality applications enhanced
with semantically described historical buildings [22]. The authors developed a data model that takes into
account thematic, temporal, and architectural information about historical buildings. With this approach,
a user is able to get additional information about religious, residential, and commercial buildings and see
in an AR interface how geometry of these places have evolved over time. Although presented solution
seems very promising to facilitate the user’s surroundings discovery, it is not clear how 3D models of
historical buildings can be properly aligned with the view of real buildings using only location-based
tracking techniques in AR applications.
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Figure 3.15: Semantically enhanced AR browser for tourists presented in [124].

3.4. Limitations of existing methods of modeling AR environments

Although existing AR tools provide relatively quick and convenient methods for developing AR
applications, they have significant limitations. Existing AR platforms support mainly two forms of
augmentation: directional augmentation – based on relative geographical position and orientation of
the user’s device and fixed coordinates of specific points of interest, and image-based augmentation –
based on image matching and tracking. The advantage of image-based augmentation results from the fact
that synthetic content is directly aligned with a view of real-world objects. However, due to limitations
of the available image matching algorithms, image-based AR applications are built independently
for specific purposes. The current AR applications are developed independently based on different
approaches, different data models, and specific algorithms. Most studies in the AR field have focused
on developing software responsible for image recognition and implementation of applications offering
specific content and functionality – in most cases, run in a specific hardware configuration. Vast majority
of currently available applications and tools do not allow to share AR content between users and do not
enable combining AR content coming from different sources. Neither it is possible to build borderless
ubiquitous AR applications, which allow a user to cross boundaries of service availability.

Currently, software packages do not provide support for a rich user’s context, such as outside or inside
location, preferences, time and date, and device capabilities. Despite the increasing prevalence of AR
tools, there is still a lack of methods that allow to search, combine, and present rich multimedia content
coming from distributed sources, including the user’s context. For instance, it would be useful and
beneficial to use the same application to discover interesting places in the town by using services offered
by the city, while after entering a shopping centre – with the use of the same application – it would
be also possible to obtain information such as prices, opinions, video movies and sounds, presenting
goods offered by stores, which are of interest to a user. Currently, each of these functions is feasible, but
requires a different, independent application.

In most existing AR applications, content, data, and interactions are tied with a specific set of
multimedia objects and cannot be reused in a runtime with other multimedia objects retrieved from
external sources. As a result, users have to install many different AR applications to experience different
AR presentations. Per analogy, in the today’s World-Wide Web it is unimaginable to have to install a
specific web browser to be able to visit a specific website. Current web browsers are based on a common
set of standards, which allows them to present different kinds of content from various sources. The
situation is different in case of AR applications, which in most cases are not compatible at the software
and content level.

48

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


In case of using easy-to-use AR development software, AR presentations become dependent on
the proprietary mobile AR browser – in most cases – only providing the function of displaying virtual
objects. Moreover, the user interface functionality is limited, not allowing sophisticated interaction with
the presented content. Most of visual tools are appropriate for non-technical users without programming
skills who can quickly prototype AR applications, e.g., to present an idea of an AR experience. But when
there is a need to model some specific interactions between a user and virtual objects, a designer is limited
to only some basic functions of the software. Thus, to build an AR application with a specific interface
allowing refined interactions and to use the capabilities of modern mobile devices, it is necessary to use
low-level AR software libraries/frameworks.

The overview of augmented reality systems supported by semantic web technology presented in
previous section shows that researches in most cases concentrated on creation of AR interfaces that
are capable to overlay 2D annotations enriched with data coming from specific data servers, such
as DBpedia. Retrieved LOD data, based on the user’s context (taking into account a GPS location
or associated with a QR code) are presented using static 2D textual components. These systems do
not permit users to experience rich contextual augmented reality presentations based on a 2D and 3D
multimedia content. Moreover, presented systems use specific semantic web ontologies to specific
applications. Thus, to create another AR application enhanced with semantic web techniques, there
is a need to develop yet another specific semantic data model. Last, but not least significant drawback of
the presented works is lack of any quantitative evaluation of developed solutions in order to prove their
applicability to large-scale contextual distributed environments.

3.5. Summary

In this chapter, selected augmented reality development tools have been reviewed. The presented
solutions, by means of which it is possible to build AR applications, have been divided into two groups.
The first group consists of low-level software libraries and frameworks providing the highest level
of flexibility, but requiring advanced technical skills from developers. The second group comprises
high-level integrated AR design tools and AR programming languages enabling non-technical users
to create AR content in an easy way, but the created content in most cases is simplistic. Although
developers and content designers can use a variety of existing tools to implement AR experiences, created
AR content is closely bound up with the platform-depended application – not allowing its use in other
situations where the user’s context dynamically changes.

This chapter also explored the role of semantic web technology and its application within AR
systems. To create an open environment of AR resources that can be combined into contextual AR
presentations, there is a need of changing strategy of implementing AR systems. This dissertation
addresses the problem of describing, designing, searching, interpreting, combining, and presenting
independent resources that jointly form interactive AR presentations, taking into account context – the
location (both indoor and outdoor), time, type of device and its capabilities, and users’ preferences.
This dissertation tries to answer the still open question how to enable efficient modeling of large-scale
contextual distributed AR environments that will overcome the discussed drawbacks.
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4. CARE – Contextual Augmented Reality Environment

Within this chapter, the Contextual Augmented Reality Environment (CARE) approach is presented.
First, the general concept of dynamic composition of augmented reality experiences, based on resources
offered by distributed independent providers of AR content and data, is described. Second, the formal
model of the CARE environment is discussed. Third, the CARE architecture for distributed AR
services is presented. Fourth, the Semantic Augmented Reality Ontology, which is used to model
CARE environments, and its six sub-ontologies are described. Fifth, an algorithm of the Semantic
Discovery and Matching Method that is responsible for discovering and matching contextual elements
forming AR presentations in CARE is presented. Next, a new high-level programming language, called
Contextual Augmented Reality Language, is presented which enables modeling contextual augmented
reality environments. Finally, a summary of the chapter is provided.

4.1. The CARE approach

To deal with limitations discussed in Section 3.4, a new approach to building AR systems is required.
The CARE approach – which stands for Contextual Augmented Reality Environment – is the main
contribution of this dissertation. CARE goes beyond the current state of the art in modeling augmented
reality experiences by providing uniform cross-application contextual access to AR content and services.
The main novelty of CARE lies in avoiding fragmentation of augmented reality functionality between
multiple independent applications and dynamic integration of various information services into unified,
contextual and personalized AR interfaces. In CARE, augmented reality presentations are built based
on the user’s context, which may include such elements as outdoor and indoor location, date, time,
device type and capabilities, as well as user’s preferences. Figure 4.1 presents the general concept of
the CARE approach, in which AR presentations are dynamically composed of elements available in the
user’s context and coming from independent content- and data providers.

A contextual approach to AR application development is a necessity to enable access to a variety
of independent data sources, guarantee scalability and provide for seamless operation when the context
changes. In CARE, the same AR application can be used to display elements coming from different
content and data providers. Thus, a user does not need to install a new application to experience
another AR presentation. Moreover, CARE handles updating of content and data in the run-time, without
requiring changes of the AR browser application. Hence, there is no need to update the AR application’s
code in the case when the available augmentations or a user’s context change. Similarly as in web
browser applications, such as Chrome or Firefox, there is no need to switch between applications when
a user goes from one website to another.

To permit building dynamic AR presentations, the CARE Architecture of distributed augmented
reality (AR) services is proposed [123]. The architecture is based on the Service Oriented Architecture
(SOA) paradigm, which enables building distributed systems that provide application functionality as
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Figure 4.1: Dynamic composition of AR presentations in a CARE environment based on the user’s
context.

services to either end-user applications or other services. The CARE Architecture enables dividing
responsibility between loosely coupled semantic AR services distributed on the internet.

The dynamism of composing AR presentations using data coming from multiple independent sources
relies on the Semantic Discovery and Matching Method (SDMM). The proposed method is responsible
for selecting content and data, which best meet given criteria, and which together form an AR experience.
SDMM searches through semantic knowledge base designed with the use of the CARE model ontology,
called Semantic Augmented Reality Ontology (SARO) [122]. SDMM and SARO are based on the
semantic web standards (RDF, RDFS, and OWL 2), which permit creation of statements (facts and
rules) that describe ubiquitous contextual augmented reality environments. These elements of the CARE
approach are presented in detail in following chapters.

As an application protocol, a new high-level declarative language, called Contextual Augmented
Reality Language (CARL), is proposed. The language enables modeling AR presentations whose
elements come from diverse and distributed content- and data providers [115, 120, 121]. The CARL
language – Contextual Augmented Reality Language – is designed to support dynamic composition
of complex interactive AR presentations. In CARL, AR presentations consist of four independent
semantically described elements:

• Content objects – a set of virtual content objects including visual and auditory data provided by the
available information/content sources (e.g., 3D models, audio, and video);
• Data objects – a set of data objects indicating numerical or textual values;
• Trackables – a set of visual markers, indicating the elements (views) of reality that can be augmented;
• Scenarios – a description of actions and events occurring in particular AR presentation. It also

characterizes various forms of possible interactions between a user and content objects in a particular
AR presentation.

These four elements are independent and may be offered by different content- and data providers in a
distributed architecture. For instance, trackable markers may come from municipal services, content
and data objects from AR service providers, while scenarios from application developers. Only in such
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heterogeneous environment, practical ubiquitous AR environments may be realized. A comprehensive
description of the CARL language with examples is provided in Section 4.6.

To summarize, the CARE approach consists of the following elements:

1. CARE Architecture of Semantic AR services,
2. Semantic Augmented Reality Ontology,
3. Semantic Discovery and Matching Method,
4. Contextual Augmented Reality Language.

4.2. Formal model of CARE

This section presents a formal model of the Contextual Augmented Reality Environment and its
elements associated with the CARE approach. A precise description is based on set theory and functions.

Definition 1 - Augmented Reality Resource Class

An Augmented Reality Resource Class (ARRC) – is an abstract class of content and data elements
forming contextual augmented reality presentations.

Further, within this dissertation, instances of classes subclassing ARRC are referred to as AR
resources. In general, AR resources come from diverse and distributed AR service providers. AR
resources are identified by unique International Resource Identifiers (IRIs).

Definition 2 - Content Object Class

A Content Object Class (COC) – is an abstract class representing multimedia components that have their
manifestations in the form of: 3D models, images, videos, and sounds.

COC is a subclass of ARRC. Instances of COC are referred to as content objects, or co in short.
Let M = {m1,m2, . . . ,mi} be a finite set of 3D models, G = {g1,g1, . . . ,g j} be a finite set of images,

V = {v1,v2, . . . ,vk} be a finite set of videos sequences, and S = {s1,s2, . . . ,sl} be a finite set of sounds.
A content object is a 4-tuple consisting of subsets of the M,G,V,S sets:

co = (M,G,V,S), (4.1)

where:

• M is the set of 3D models assigned to co,
• G is the set of images assigned to co,
• V is the set of videos assigned to co,
• S is the set of sounds assigned to co.

The set of content objects that can be arranged in a 3D space to augment real-world views is denoted
as follows:

CO = {co1,co2, ...,con}, (4.2)

where n is the total number of content objects in a CARE environment.
The content objects may be simple or complex – consisting of a single or multiple multimedia

components m, g, v, s.
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Content objects are generic, i.e., they do not depend on the client application. The AR browser
application uses the available AR resources (including content objects) provided by various external
AR service providers. Moreover, COs are independent of operating systems, end-user device’s type,
software, and hardware. COs are dynamically selected and composed into contextual AR presentations
on the basis of the user’s context. Content objects are loaded and rendered in the AR browser at runtime
without a need of changing the source code of the application.

A content object can be reused in multiple AR presentations. For instance, three-dimensional
interactive commercials added to each AR presentation in a particular context, can be reused multiple
times.

Examples of content objects include cinema video trailers superimposed onto movie posters,
graphical charts showing aggregated users’ opinions, 3D interactive maps presenting the locations of
events, pictures depicting faces of university lectures, or simply sounds directing user’s attention.

A content object may be represented within the Contextual Augmented Reality Language (CARL) –
using the <ContentObject> element.

Definition 3 - Data Object Class

A Data Object Class (DOC) – is an abstract class of objects representing numerical and textual data
that can be used to compose contextual AR presentations.

Conceptually, DOC is a subclass of ARRC. Instances of DOC are referred to as data objects or do.
A set of data objects that can augment real-world views is denoted as:

DO = {do1,do2, ...,don}. (4.3)

Let DON = {n1,n2, . . . ,nk} be a set of numerical objects, DOT = {t1, t1, . . . , tl} be a set of textual objects.
Formally, DO is a sum of DON and DOT :

DO = DON ∪DOT , (4.4)

∀doi ∈ DO : doi ∈ DON ∨doi ∈ DOT , i ∈< 1,n > . (4.5)

The elements of DO may refer to numerical or textual information such as prices, discounts, duty
hours, titles, names, surnames, date and time, etc. Data objects may change over time due to the fact
that, e.g., prices can fluctuate, duty hours can vary during different times of year, titles can be modified,
etc.

A data object may be represented in CARL using the <DataObject> element.

Definition 4 - Trackable Object Class

A Trackable Object Class (TOC) – is an abstract class of representations of elements of the real-world
environment that can be recognized and tracked by sensor-based software.

Conceptually, TOC is a subclass of ARRC. Instances of TOC are referred to as trackables or trackable
objects.
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A finite set of trackable objects representing elements of the real-world environment is denoted as
follows:

TO = {to1, to2, ..., tot}, (4.6)

where t is the total number of trackables in a CARE environment.
Let FM = { f m1, f m2, ..., f m f } be a finite set of fiducial markers, IM = {im1, im2, ..., imm} be a

finite set of image-based markers, OM = {om1,om2, ...,omo} be a finite set of 3D objects as markers,
S = {s1,s2, ...,ss} be a finite set of surfaces that can be tracked. Formally, TO is a sum of FM, IM,OM,

and S. That is,

TO = FM∪ IM∪OM∪S (4.7)

∀toi ∈ TO : toi ∈ F ∨ toi ∈ IM∨ toi ∈ OM∨ toi ∈ S, i ∈< 1, t > . (4.8)

Trackables allow the client device to track its position relative to the real-world environment and to
position of tracked objects relative to the device. TO refers to the views registered by a camera indicating
the elements of reality to be augmented with objects belonging to CO or DO. Similarly to content and
data objects, trackables may be independently provided by different AR service providers. The same
trackable object can be reused in multiple AR presentations. For example, a TO representing a movie
poster could be used as a tracking source to overlay film trailer onto it, while the same object could be
reused to superimpose a 3D-based animation encouraging a user to watch a film in different context.

A trackable may be represented in CARL using the <Trackable> element.

Definition 5 - Scenario Object Class

A Scenario Object Class (SOC) – is an abstract class of representations of behavior of AR resources.

Instances of SOC are referred to as scenarios or so.
Let I = {i1, i1, . . . , i j} be a finite set of interactions, C = {c1,c2, . . . ,cc} be a finite set of object

components, and A = {a1,a2, . . . ,aa} be a finite set of actions.
A scenario can be denoted as the following triple:

so = (I,C,A), (4.9)

where:

• I – is a set of interactions assigned to so,
• C – is set of object components assigned to so,
• A is a set of actions assigned to so.

The set of scenarios that can be used to describe behavior of elements of forming a particular CARP
is denoted as follows:

SO = {so1,so2, ...,sos}, (4.10)

where s is the total number of scenarios available in a CARE environment.
A scenario may be represented in CARL using the <Scenario> element.
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Definition 6 - AR Service Provider Class

An AR Service Provider Class – is an abstract class of distributed web service providers delivering AR
resources.

Four kinds of AR service providers can be distinguished. Let PCO = {pCO1 , pCO2 , ..., pCOw} be a
finite set of content object providers delivering sets of unique co, PDO = {pDO1 , pDO2 , ..., pDOx} be a
finite set of data object providers delivering sets of unique do, PTO = {pTO1 , pTO2 , ..., pTOy} be a finite
set of trackable providers delivering sets of unique to, and PSO = {pSO1 , pSO2 , ..., pSOz} be a finite set of
scenario providers delivering sets of unique so.

Formally, content object providers can be denoted as the following function ζ:

ζ : PCO→CO⇔ ζ⊂ PCO×CO∧∀pCO ∈ PCO ∃!C ⊂CO. (pCO,C) ∈ ζ. (4.11)

By analogy, data providers can be described as the function ε:

ε : PDO→ DO⇔ ε⊂ PDO×DO∧∀pDO ∈ PDO ∃!D⊂ DO. (pDO,D) ∈ ε. (4.12)

Next, the τ function describes trackable providers:

τ : PTO→ TO⇔ τ⊂ PTO×TO∧∀pTO ∈ PTO ∃!T ⊂ TO. (pTO,T ) ∈ τ. (4.13)

Finally, the σ function describes scenario providers:

σ : PSO→ SO⇔ σ⊂ PSO×SO∧∀pSO ∈ PSO ∃!S⊂ SO. (pSO,S) ∈ σ. (4.14)

Definition 7 - CARE User Context

A CARE User Context (CUC) – is a set of properties characterizing the state of a user in a CARE
environment.

Based on CUC, AR resources provided by AR service providers, are dynamically discovered,
selected, composed to finally form contextual augmented reality presentations. The CARE user context
may be explicit (provided by the user) or implicit (automatically retrieved from the user’s device). CUC
may be composed of the combination of the following elements: user’s preferences, time and date, device
type (such as smartphone, tablet, or AR glasses), data provided by the GPS and bluetooth modules.
Formally, CUC is a pair:

CUC = (P,S), (4.15)

where:

• P – denotes user’s preferences,
• S – denotes user’s device state.

Following, user’s preferences is an unordered pair:

P = {α,r}, (4.16)
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where:

• α – is a set of application domain identifiers α = {α1,α2, ...,αn}, i.e., categories of AR experiences,
• r – is set of geographical ranges r = {r1,r2, ...,rn}.

In turn, a device’s state is denoted as a 4-tuple:

S = (λ,β,κ,θ), (4.17)

where:

• λ – the outdoor location (e.g., the GPS position),
• β – the indoor location (e.g., provided by a beacon device),
• δ – the device type,
• θ – current date and time.

Definition 8 - Contextual Augmented Reality Presentation

A Contextual Augmented Reality Presentation (CARP) – is an augmented reality experience built as a
combination of AR resources available in a particular context.

CARP reflects what the user may or wants to experience, taking into account preferences, device
capabilities, and spatio-temporal properties, regardless of whether the user is located inside or outside
a building. In AR browsers, elements of CARPs are dynamically selected and downloaded from
independent service providers, and final CARP is built at runtime of the application – similarly, as web
browsers work.

Definition 9 - Description of Contextual Augmented Reality Presentation

A Description of Contextual Augmented Reality Presentation (dCARP) – is a description of AR resources
constituting a CARP.

Formally, dCARP is the following triple denoted as:

dCARP = (ϑ,ϒ,ω,ψ), (4.18)

where ϑ,ϒ,ω, and ψ are multivalued functions responsible for returning subsets of CO, DO, TO, and
SO, respectively. Each subset of CO, DO, TO, and SO can be associated with the elements of CUC.
Let CX denote a range of user’s context (CUC). Let ϑ : CUC→CO denote a multivalued function that
assigns subsets of CO to elements of the CUC domain. Function ϑ returns contextual content objects
and formally can be presented as follows:

ϑ(CX) =
⋃

x∈CX

{
ϑ(x)

}
. (4.19)

Let ϒ : CUC→ DO denote a multivalued function that returns contextual business data objects:

ϒ(B) =
⋃

x∈B

{
ϒ(x)

}
∀B⊂CUC. (4.20)
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Let ω : CUC→ T denote a multivalued function that returns contextual trackables:

ω(C) =
⋃

x∈C

{
ω(x)

}
∀C ⊂CUC. (4.21)

In other words, AR resources are assigned to ranges of CUC. A CARE user context plays an essential
role in a CARE environment for selecting the best criteria-meeting AR resources. Semantic Discovery
and Matching Method processes the user’s context, while performing SPARQL queries to generate
CARP descriptions.

Definition 10 - CARE Knowledge Base

A CARE knowledge base (KB) is a semantic knowledge base containing a set of statements assigning AR
resources to particular ranges of context.

The CARE knowledge base is compliant with the Semantic Augmented Reality Ontology described
in Section 4.4. It contains individuals, their object- and data properties describing characteristics of AR
service providers, AR resources, their relationships, and contexts in which these various elements can be
composed to build CARPs meeting end-user criteria.

Definition 11 - CARE Environment

Formally, CARE Environment is a 5-tuple denoted as follows:

env = (ζ,ε,τ,σ,KB,CUC), (4.22)

where:

— ζ – are content object providers,
— ε – are data object providers,
— τ – are trackable providers,
— σ – are scenario providers,
— KB – is a CARE knowledge base,
— CUC – is a CARE user context.

4.3. CARE Architecture

The architecture of distributed augmented reality services in CARE is based on the SOA paradigm
(Fig. 4.2). The Service-Oriented Architecture enables building distributed systems that provide
application functionality as services to either end user applications or other services. These services are
used by end users exploring an AR environment with the use of a contextual AR browser and designers
who create elements of CARPs with the use of a 3D software modeler. Splitting CARE functionality
between clients and servers permits, on the one hand, to perform complex and extensive computation of
semantic processing of distributed AR resources on the server-side, while composition and rendering of
CARPs may be dynamically performed in real time on the client-side.

The proposed CARE Architecture consists of two client-side applications – a contextual AR browser
and a 3D software modeler. In turn, the server-side is composed of multiple distributed service
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Figure 4.2: The CARE architecture of distributed AR services.

applications – semantic middleware and AR service providers. In the following subsections, a description
of each software component is provided.

4.3.1. Semantic middleware

Semantic middleware is a server-based software component providing an API for persisting,
discovering, and matching AR service providers and their AR resources based on a user’s context. One of
the main elements of the middleware is the CARE knowledge base. The semantic middleware constitutes
an access layer to the semantic KB via web services – on the one hand, for the designers responsible for
creating contextual AR presentations, while on the other hand, for end-users experiencing CARPs with
the use of a contextual AR browser component. The semantic middleware provides an API for persisting
information about AR service providers, AR resources, and contexts, in which all these elements can be
mixed into interactive AR presentations. Moreover, it provides an endpoint for semantic searching and
matching AR service providers and AR resources for the contextual AR browser.

4.3.2. AR service providers

AR service providers are independent software components responsible for providing an API for
persisting and retrieving AR resources, such as 3D models, images, videos, and sounds. Their main task
is to deliver particular AR resources in a given context, to finally achieve a common goal – building
interactive AR presentations personalized for end users. AR service providers and AR resources are
semantically described within the CARE knowledge base.
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4.3.3. Contextual AR browser

A contextual augmented reality browser is a vision-based reusable mobile software component
capable of retrieving, processing, and rendering personalized documents describing CARPs (dCARPs).

The novelty lies in the use of the user context that is a key to find relevant distributed AR resources. In
the case of a typical web browser, a user manually passes a URI to the address bar to retrieve information
resources. Alternatively, a search engine can be used to find interesting resources. In the case of a
contextual AR browser, a user interacts with it only by indicating what kind of information he/she is
interested in. The device automatically collects the rest of data describing the user context. When the
elements of context are collected, the device sends a personalized context to a semantic middleware
component that is responsible for matching the user’s requirement to available AR service providers and
their resources. After that, the semantic middleware responses with a description of CARPs. Once a
dCARP has been generated and delivered to the end user, the next task of an AR browser is to interpret
it. Then, the application invokes independent distributed AR services to retrieve AR resources that form
the CARP. When all AR resources are retrieved and the AR browser is capable of tracking a real-world
environment, it starts to render virtual objects on a view registered by the device camera. Last but not
least, when the user’s context changes and new data come to an AR browser, the same application is
capable of preparing a different AR presentation without the need to change the source code.

4.3.4. 3D software modeler

A 3D software modeler is a client-side software component allowing designers to model contextual
AR presentations. The tool can be used to design CARPs consisting of multiple content objects, data
objects, and trackables. Moreover, the software enables specifying constraints on a user’s context in
which particular AR resources are available to the end users. Finally, the application communicates with
semantic middleware to register AR service providers, AR resources, and context, in which all elements
can form CARPs. Also, the software uses the API of AR service providers to persist AR resources
forming CARPs.

4.4. Semantic Augmented Reality Ontology

The Semantic Augmented Reality Ontology is the central element of the CARE approach as
it encompasses the set of concepts and properties describing various aspects of context, resources
constituting AR presentations, as well as relations between them [122]. The ontology is used to build
ubiquitous dynamic augmented reality environments based on semantically described resources that are
contextually provided by AR service providers. SARO is based on the semantic web standards (RDF,
RDFS, and OWL 2). SARO consists of six specific sub-ontologies that enable creation of a semantic
knowledge base that is compliant with CARE.

Formally, SARO is a 6-tuple denoted as:

SARO = (Σ,∆,B,Λ,T,Θ), (4.23)

where:

— Σ - is the AR Service Provider Ontology,
— ∆ - is the Domain AR Ontology,
— B - is the Indoor Position Detection Ontology,
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— Λ - is the Geography Markup Language Ontology,
— T - is the OWL-Time Ontology,
— Θ - is the Device Type Ontology.

Figure 4.3 visualizes Semantic Augmented Reality Ontology as a merged graph.
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Figure 4.3: Visualization of the SARO ontology.

The following subsections present particular elements of the ontology.

4.4.1. AR Service Provider Ontology

The AR Service Provider Ontology (Σ) represents elements of AR services providers responsible for
making available diverse AR resources describing the data/content presented in an AR interface. In
the ontology, each individual of the ARResource class may be associated with a number of instances of
ARDocument with the object property called composes. Instances of particular types of ARDocument all
together compose dCARPs. SARO is open for extensions, i.e., it defines the ARDocument concept
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which can be used to build subclasses representing other declarative AR languages, for instance
APRIL [81], MRSML [160], KARML [87], ARML [86, 103]. Within this dissertation four classes are
proposed: CARLContentObject, CARLDataObject, CARLTrackable, and CARLScenario which reflect
main elements of the formal model of CARE: CO, DO, TO, and SO.

4.4.2. Domain AR Ontology

The Domain Augmented Reality Ontology (∆) represents a taxonomy of real-world objects that can
be augmented with synthetic content through AR presentations (e.g., universities, accommodations,
cinemas, shops, etc.). Individuals of these classes may represent particular objects, e.g., buildings of
Poznań University of Economics and Business. All domain-specific classes subclass the Domain class.

4.4.3. Indoor Position Detection Ontology

The Indoor Position Detection Ontology (B) enables description of any kind of indoor positioning
system. Examples include Bluetooth/BLE, WiFi, RFID, and NFC. Indoor positioning technologies
change and develop rapidly. In the presented reference implementation, BLE beacons were used, but
this part of the ontology is expected to grow together with the growing availability of technologies and
devices.

Beacons are small BLE radio devices transmitting a single signal that other BLE-equipped devices
can detect (e.g., smartphones, tablets or wearable AR glasses). Each beacon device broadcasts a globally
unique identifier that consists of a combination of letters and numbers transmitted on a regular interval
of approximately 1/10th of a second. In the SARO ontology, the individuals of the Beacon class provide
context information for AR presentations within an indoor environment (in a case when the user is
located within a building). Each individual of the ARResource class can be linked with an individual of
the Beacon class through the object property called isIdentifiedBy.

4.4.4. Geography Markup Language Ontology

The Geography Markup Language Ontology (Λ) developed by the Open Geospatial Consortium
expresses representations of geographical features [101, 102]. GML serves as a modeling tool for
geospatial properties for web resources. GML enables describing points, linear rings, rectangles, and
polygons as geometric representation properties of geographic features. The GML ontology provides
a general feature class (_Feature) that can be used to characterize elements of AR presentations as
geographic components. To make a statement that a particular ARResource has a specific location
specified by GML, the has object property is used. The specific data property (where) associates each
feature with one of a limited number of _Geometry types, which provide a numerical representation for
analysis (e.g., calculating the distance between a user and a particular individual of ARResource) and
visualization (e.g., showing the possible location of an AR resource on a map). Other data properties
describe additional commonly used feature attributes, such as name, elevation, and radius.

4.4.5. OWL-Time Ontology

The OWL-Time ontology (T ), developed by OGC and W3C, consists of temporal concepts describing
the temporal properties of resources in the real world [33]. The ontology defines a vocabulary for
expressing statements (facts) about topological relations among TemporalEntity individuals, together
with information about durations, and about temporal positions including date-time property. OWL-Time
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has been chosen to describe a period of time when a particular ARResource is available to a user. The
TemporalEntity class has two subclasses – Instant and Interval. Instants represent point-like temporal
elements that have no interior points. An instant is an interval with zero length, where the beginning and
end are the same. Intervals are time periods with a non-zero extent. The class Interval has one subclass
ProperInterval corresponding with the common understanding of intervals, in that the beginning and end
are different. The class ProperInterval has one subclass – DateTimeInterval – whose position and extent
may be expressed using a single DateTimeDescription or xsd:dateTimeStamp. For instance, an interval
can have multiple duration descriptions (e.g., 1 day 4 hours or 28 hours), but can only have one duration.

4.4.6. Device Type Ontology

The Device Type (Θ) ontology describes high-level device classes, such as Smartphone, Tablet and
ARGlasses. These devices differ in their capabilities – processing power, graphics support, display
resolution, field of view, interaction elements and others. In practical applications, to achieve best user
experience, AR presentations must be either designed for a specific class of devices or automatically
adapted to such a class. The Device Type ontology describes for which device type a particular
component was intended. The object property isPresentableOn is used to link concrete device type
to an individual of ARResource.

4.5. Semantic Discovery and Matching Method (SDMM)

The CARE mechanism of building contextual AR presentations based on AR resources coming
from distributed independent AR service providers relies on Semantic Discovery and Matching Method
(SDMM). The method is responsible for selecting semantically described AR resources meeting criteria
of a user’s context. SDMM searches through semantic knowledge base structured with the SARO
ontology (presented in the previous section). SDMM is implemented with the use of semantic web
standards (RDF, RDFS, OWL 2, and SPARQL) that permit the creation of statements about ubiquitous
contextual augmented reality environments.

The Algorithm 1 presents particular steps of the SDMM method that is responsible for composing
contextual augmented reality presentations based on multiple distributed AR resources taking into
account a user’s context. As input data, SDMM takes the elements of CUC that consist of the user’s
preferences (α and r), indoor or outdoor locations (β or λ), device type (δ), date and time (θ). The α and
r elements may be explicitly provided by the user in any AR browser application, or implicitly set based
on default values and user’s behavior. The β, λ, δ, θ are automatically discovered by the AR browser. As
output data, SDMM generates a dCARP description constituting available AR resources within the user’s
context. The description represents CO, DO, TO, and SO that can be matched to the user’s context. The
particular elements reflecting AR resources can be based on any declarative AR language that supports
building AR presentations, e.g., APRIL, MRSML, KARML, ARML, or CARL.

The SDMM method implements two modes of operation – firstEnds and optimalEnds – which
provide two types of results. In the first mode (firstEnds), the SDMM returns the first consistent set of AR
resources available within the user’s context to form a CARP in the shortest possible time. In the second
mode (optimalEnds), AR resources constituting a CARP which is the nearest to spatial user’s location
are returned. In this mode, execution SDMM is significantly more complex and time-consuming.

The first step of the presented algorithm (line 1) is used for searching AR resources within an indoor
environment. The method searchARRIdentifiedByBeacon takes as the input parameters the following
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input : a user’s context consisting of: selected individuals of Domain class (α), geographical
ranges (r), an indoor location (β), an outdoor location (λ), device type (δ),
date and time (θ)

output: a dCARP description

1 dCARP← searchARRIdenti f iedByBeacon(β,δ,θ,α);
2 if dCARP ! = null then
3 dCARP.generateARDocument();
4 return dCARP;
5 end
6 dCARP← searchGeoARR(λ,α,δ,θ);
7 for i← 0 to dCARP.length do
8 for j← 0 to dCARP[i].ϑ.length do
9 ϑ← dCARP.ϑ[j];

10 dist← ϑ.getDistance(λ);
11 if dist <= r then
12 if isFirstModeSet() then
13 break;
14 else
15 if dist < bestDist then
16 best_ϑ← ϑ ;
17 end
18 end
19 end
20 end
21 for j← 0 to dCARP[i].ϒ.length do
22 ϒ← dCARP.ϒ[j];
23 dist← ϒ.getDistance(λ);
24 if dist <= r then
25 if isFirstModeSet() then
26 break;
27 else
28 if dist < bestDist then
29 best_ϒ← ϒ ;
30 end
31 end
32 end
33 end
34 for j← 0 to dCARP[i].ω.length do
35 ω← dCARP.ω[j];
36 dist← ω.getDistance(λ);
37 if dist <= r then
38 if isFirstModeSet() then
39 break;
40 else
41 if dist < bestDist then
42 best_ω← ω ;
43 end
44 end
45 end
46 end
47 end
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48 if isFirstOptionSet() then
49 dCARP← new dCARP(ϑ,ϒ,ω);
50 else
51 dCARP← new dCARP(best_ϑ,best_ϒ,best_ω);
52 end
53 dCARP.generateCARLDocs();
54 return dCARP;

Algorithm 1: Algorithm of Semantic Discovery and Matching Method.

data: indoor location (β), device type (δ), date and time (θ), and selected individuals of the Domain class
(α). These data are used to build a SPARQL query for retrieving individuals describing available AR
resources within the user’s context. In the case when AR resources available in a user’s context are found,
a description of a new CARP is generated on the basis of the selected individuals (line 3). The method
ends by returning a description of CARP consisting of AR resources available in the given indoor spatial
context (line 4).

Next – line 6 – the method searchGeoARR searches all AR resources associated with a geographical
location (λ), chosen domain individuals (α), device type (δ), date and time (θ). Within lines 7-47,
geographical filtering of AR resources is carried out in relation to the location of the user. Namely,
within lines 8-20, SDMM iterates through all AR resources representing content objects and for each
of them the distance to the user is measured. If the distance is less or equal to a given range (line 11)
then two options can be considered depending on the SDMM mode of operation. If the first option is set
(isFirstOptionSet() returns true - line 12), the loop is broken and the method starts to look for contextual
data objects (lines 21-33). In other case, the method works as long as it iterates all AR resources in an
array to seek the optimal result. Loops presented in the lines 21-33 and 34-46 perform analogously for
searching data objects and trackables in an order.

The last part of the algorithm represents creation of a new dCARP description instance (line 49 or 51)
on the basis of AR resources localized in a user’s geographical surrounding; generating an AR document
(line 53); and returning the result (line 54).

4.6. The CARL Language

The CARL language – Contextual Augmented Reality Language – is an XML-based AR language
that has been designed to support building contextual AR presentations [120]. CARL conceptually
reflects main elements of CARE model: CO, DO, TO, SO, and context. The presented language is
mainly used to represent dCARP descriptions generated by Semantic Discovery and Matching Method.
In the following subsections, the main elements of the CARL language are presented.

4.6.1. Content Objects

The first element of an AR environment specification in CARL is the ContentObjects element that
represents 3D models, images, videos, and sounds to be presented to end users as augmentation of the
real-world objects. Each ContentObject has a unique id that can be used, e.g., to call object actions or to
link a concrete content object with a trackable object. Content objects support states. The initial object
state is specified by the initState attribute. The state can be changed by the use of the ContentObjectState
command in actions.
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The Resources element contains information about particular Components and Locations of
component data. Several locations can provide alternative IRIs for different versions of a component
meeting particular criteria, e.g., regarding the model complexity or language. Figure 4.4 depicts an
example 3D model represented by component with id = ”Bars” (List. 4.1, line 5). Next, the Actions
element specifies content object-defined actions that can be called on the content object. An action is
declared with the Action element that has a mandatory name attribute and an optional state attribute. If
the state is specified, the action (if called) will be executed only when the object is in the given state.
Within the Action element, commands based on the VR–BML [155] language are used. These commands
can be used to load, manipulate and animate a component, and change the state of a content object.

Listing 4.1 presents an example declaration of a content object BookRating1 with a component Bars
representing user ratings in the form of 3D bars. The Bars component has been declared in two versions
differing in the level of detail (List. 4.1, lines 6-7). For instance, when a user uses a device with low
hardware capabilities or limited network bandwidth, the component version with lower level of detail
can be used.

Listing 4.1: An example of a content object declaration.

1 <ContentObjects>

2 <ContentObject id="BookRating1" initState="hidden">

3
4 <Resources>

5 <Component id="Bars">

6 <Location detail="low" iri="http://semantic3d.org/cos/bl"/>

7 <Location detail="high" iri="http://semantic3d.org/cos/bh"/>

8 </Component>

9 </Resources>

10
11 <Actions>

12
13 <Action name="show" state="hidden">

14 <SetPosition comp="Bars" x="0" y="0" z="20"/>

15 <SetScale comp="Bars" scale="5"/>

16 <SetOrientation comp="Bars" axis="x" angle="0"/>

17 <Activate comp="Bars" active="true"/>

18 <ObjectState value="shown"/>

19 </Action>

20
21 <Action name="hide" state="shown">

22 <Activate comp="Bars" active="false"/>

23 <ObjectState value="hidden"/>

24 </Action>

25 </Actions>

26 </ContentObject>

27 ...

The initial state of the content object is set to the value hidden. The Actions element is used for
grouping actions that can be executed on the declared content object – in this case the BookRating1
object. The first action named show enables setting the position, the scale and the orientation of the Bars
component and updating the state of the BookRating1 content object. The second action permits hiding
the component and changing the content object state.
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Figure 4.4: An example 3D model that is represented in Listing 4.1 (lines 5–8).

4.6.2. Data Objects

The next element of the CARL language is the DataObjects element indicating a section with
particular data objects. Each DataObject element consists of three parameters: a unique id, isNumerical
taking true/false values indicating whether a data object is numerical or textual, and iri that points out a
value provided by a data object provider. The value can reflect, e.g., price, duty hour, text information
that may change over time. Listing 4.2 presents an example of a declaration of numerical and textual
data objects.

Listing 4.2: An example of data objects declaration.

1 <DataObjects>

2 <DataObject id="price" isNumerical="true" iri="http://semantic3d.org/rest/price/1"/>

3 <DataObject id="info" isNumerical="false" iri="http://semantic3d.org/rest/info/i1"/>

4 ...

5 </DataObjects>

4.6.3. Trackables

The Trackables element (Listings 4.3, 4.4, 4.5) groups Trackable elements that are used for describing
real-world objects that an AR application can detect and track in the 3D space in a given context.
The parameter IRI points to binary resource data representing the real-world trackable objects (visual
markers).

A Trackable element may contain three other elements: Begin, Active and End. The Begin section
is executed when the trackable is identified in the camera view. It can be used for initializing content
objects assigned to the trackable. The Active element describes rules of interaction when the trackable
object is already detected and tracked by the application. The End section is executed when the trackable
disappears from the camera view (with a specific delay).

Listing 4.3 presents an example of three Trackable elements and three linked ContentObject elements
that jointly form an AR scene. Each Trackable element is associated with an id of a ContentObject
(section Begin) to present. This enables displaying appropriate content on the recognized real-world
objects. In the presented example, the BookRating1 content object, from Listing 4.1, was assigned to
the Book1 trackable. Similarly, the content objects BookRating2 and BookRating3 are assigned to the
trackables Book2 and Book3, respectively. Figure 4.5 depicts three books augmented with three content
objects.

Listing 4.3: Three trackables with assigned content objects.

1 <Trackables iri="http://semantic3d.org/books.dat">
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Figure 4.5: Augmentation of three books reflecting the CARL description presented in Listing 4.3.

2 <Trackable id="Book1">

3 <Begin>

4 <ObjectBegin select="Book1Rating1 "/>

5 </Begin>

6 </Trackable>

7
8 <Trackable id="Book2">

9 <Begin>

10 <ObjectBegin id="BookRating2"/>

11 </Begin>

12 </Trackable>

13
14 <Trackable id="Book3">

15 <Begin>

16 <ObjectBegin id="BookRating3"/>

17 </Begin>

18 </Trackable> ...

Another case of an AR scene modelled with the CARL language is presented in Listing 4.4. In this
scene, two content objects BookRating1 and BookPrice1 are assigned to a single trackable element – with
the id: Book1. Figure 4.8 (right) presents an example book augmentation with the AR scene declared in
Listing 4.4.

Listing 4.4: A trackable with two content objects assigned.

1 <Trackables iri="http://semantic3d.org/books.dat">

2 <Trackable id="Book1">

3 <Begin>

4 <ObjectBegin id="BookRating1"/>

5 <ObjectBegin id="BookPrice1"/>

6 </Begin>

7 </Trackable>

8 </Trackables>

4.6.4. Sectors

To enable conditional presentation of visual and aural content depending on the relative position of
the camera and a real-world object, the Sector element was introduced in CARL [121]. The Sector
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element declares an active volumetric sector in the 3D space relative to a trackable object, which can
trigger actions when the camera enters (the In element) or leaves (the Out element) the sector boundaries.
It contains information about what actions should be triggered when the camera enters or leaves the
sector. An example action is fading in or out a sound when camera enters or leaves a sector. The actions
that should be triggered when the camera enters the sector are specified within the In element. In turn,
the ’leaving’ actions are specified within the Out element.

The sector boundaries are described by four ranges. The first range (min_α, max_α) indicates pitch
(elevation) rotation between the camera’s position and the reference plane of the trackable object. The
second range (min_β, max_β) indicates yaw (heading) rotation between the camera position and the
tracked real object. The third range (minDist, maxDist) specifies the minimal and the maximal distance
from the camera to the center of the trackable object. This distance is calculated on the basis of the length
of the translation vector. The last range (minHeight, maxHeight) describes the minimal and the maximal
height between the camera and the trackable object.

Listing 4.5: An example of a trackable with sectors.

1 <Trackables iri="http://semantic3d.org/books.dat">

2 <Trackable id="Book1">

3
4 <Begin>

5 <ObjectBegin id="BookRating"/>

6 <ObjectBegin id="BookPrice"/>

7 </Begin>

8
9 <Active>

10 <Sector id="Rating" minInc="0" maxInc="90"

11 minRot="0" maxRot="360" minDist="0" maxDist="2">

12
13 <In>

14 <ObjectAction id="BookRating" action="show"/>

15 </In>

16
17 <Out>

18 <ObjectAction id="BookRating" action="hide"/>

19 </Out>

20
21 </Sector>

22
23 <Sector id="Price" minInc="0" maxInc="90"

24 minRot="0" maxRot="360" minDist="0" maxDist="1">

25
26 <In>

27 <ObjectAction id="BookPrice" action="show"/>

28 </In>

29
30 <Out>

31 <ObjectAction id="BookPrice" action="hide"/>

32 </Out>

33
34 </Sector>

35 </Active>

36 ...

37 <End> ... </End>
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38 </Trackable>

39 </Trackables>

In Listing 4.5, two sectors Rating and Price are defined for the trackable Book1. Within these
sectors, different In and Out actions are specified. When the camera enters the Rating sector, the action
show is called on the BookRating content object. On leaving the sector, the action hide is executed on
the BookRating content object. With the given sector definition, the book rating information will be
displayed when the user’s device is within the distance of 2 meters from the book cover.

When the camera moves closer to the book and enters the Price sector (defined as a hemisphere with
the radius of 1 meter), the application triggers the action show on the BookPrice content object to display
the price of the book in addition to the already displayed rating. The hide action declared within the Out
element, hides the book price information when the camera is moved away from the book, out of the
Price sector.

Figure 4.6 schematically presents sectors defined for the trackable in this example. An AR browser
calculates pitch, yaw, height, as well as the distance between the camera and the trackable object. By
monitoring these parameters, the application can call appropriate actions when entering and leaving
particular sectors.

Figure 4.6: Sectors defined by the distance (d), inclination (α) and rotation (β) between the camera and
a trackable object.

4.6.5. Spatial sound in CARL

3D sound is a valuable cue for navigation in AR environments. The use of spatial sound in AR
environments can be a significant factor in searching and navigating for hidden objects within indoor
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environments. To enable the use of audio content in a CARE environment, the CARL language provides
audio elements [116]. Moreover, to control auditory objects depending on the relative position of the
camera and a real-world object, the Sector element, presented in section 4.6.4, can be used.

An example auditory object, presented in Listing 4.6, has been described as a ContentObject element
consisting of Resources as well as Actions elements. The Resources element points to locations of
the same audio element with different levels of quality. The Actions element describes actions that
can be called on the content object. In this case, actions are responsible for controlling audio (e.g.,
starting/stopping audio, setting right/left channel’s volume, and setting the sound’s looping). These
actions are triggered by an AR browser, depending on where the camera is situated in 3D space.

Listing 4.6: A description of content object representing the lion’s roaring sound.

1 <ContentObjects>

2 <ContentObject id="lionFX">

3 <Resources>

4 <Component id="http://.../res/lionFX">

5 <Location details="high" iri=".../lionFX"/>

6 </Component>

7 </Resources>

8
9 <Actions>

10 <Action name="startRoaring">

11 <SetLooping>true</SetLooping>

12 <SetVolume left="5" right="5"/>

13 <Play/>

14 </Action>

15
16 <Action name="stopRoaring">

17 <Stop/>

18 </Action>

19
20 <Action name="setVolume($v)">

21 <SetVolume left="$v" right="$v"/>

22 </Action>

23
24 ...

25 <Action name="moreOnRight($v)">

26 <SetVolume left="($v - 30)" right="$v"/>

27 </Action>

28 ...

29 <Action name="roar">

30 <SetVolume left="99" right="99"/>

31 </Action>

32 </Actions>

33 </ContentObject>

34 ...

Listing 4.6 presents the ContentObject with an id = lionFX representing lion’s roaring. The sound’s
resource is identified by iri=http://.../res/lionFX. Six actions are declared within the lionFX content
object that can be called by an AR browser. The first action – startRoaring – is responsible for setting up
and starting the sound effect (lines 10–14). At first, it sets the sound’s looping to true to repeat it without
any gap between its end and start (line 11). Next, it sets the volume level to five units on left and right
channels (line 12). In the end, it starts to play the sound effect with the play command (line 13).
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The next action – stopRoaring – stops audio content representing lion’s roaring sound (lines 16–18).
To increase or decrease the volume, the setVolume action can be used, which takes as a parameter $v the
level of volume. Next, the moreOnRight action increases volume level to $v on the right channel and to
($v - 30) on the left channel, giving a sense that the sound’s source comes from the right side of a user’s
camera (lines 25–27). The last action – roar – sets the volume up to both channels to the maximum value
indicating that the user is close to the source of sound (lines 32–34). These actions will be used when a
user’s camera approaches the source of sound to give a notion of depth perception effect.

Listing 4.7: Sectors responsible for starting and controlling sounds.

1 <Trackable id="landscape">

2
3 <Begin>

4 <ObjectBegin id="lionFX"/>

5 <ObjectBegin id="lion3D"/>

6 ...

7 </Begin>

8
9 <Active>

10 <Sector name="startToPlay"

11 minAlpha="0" maxAlpha="180"

12 minBeta="0" maxBeta="360"

13 minDistance="0" maxDistance="1500"

14 minHeight="0" maxHeight="1500">

15 <In>

16 <ObjectAction id="lionFX" action="startRoaring"/>

17 <ObjectAction id="pigFX" action="startSquealng"/>

18 <ObjectAction id="pigFX" action="startNeighing"/>

19 </In>

20
21 <Out>

22 <ObjectAction id="lionFX" action="stopRoaring"/>

23 ...

24 </Out>

25 </Sector>

26
27 <Sector name="lionVolume10"

28 minAlpha="0" maxAlpha="60"

29 minBeta="35" maxBeta="50"

30 minDistance="1400" maxDistance="1500"

31 minHeight="1212" maxHeight="1300">

32 <In>

33 <ObjectAction id="lionFX" action="setVolume(10)"/>

34 </In>

35 </Sector>

36
37 <Sector name="lionVolume20"

38 minAlpha="0" maxAlpha="60"

39 minBeta="35" maxBeta="50"

40 minDistance="1300" maxDistance="1400"

41 minHeight="1126" maxHeight="1212">

42 <In>

43 <ObjectAction id="lionFX" action="setVolume(20)"/>

44 </In>

45 </Sector>
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46 ...

Listing 4.7 presents a shortened description of the trackable object with declared sectors for starting
and controlling sounds. Lines 3-7 present audio as well as visual objects that are associated with the
landscape object. The first sector startToPlay starts sound effects of animals (lines 10–25). When a
user’s camera enters the sector boundaries, then the AR browser triggers startRoaring, startSquealing,
and startNeighing actions using ObjectAction elements declared within the In element (lines 15–19).
In turn, when the camera leaves the startToPlay sector, the application calls actions declared within
the Out element - in this case sounds of animals will be stopped (lines 21–24). The next two sectors
- lionVolume10 and lionVolume20 - are used when a user approaches to the lion’s sound source (lines
27–45). In this case, decreasing the distance causes the volume of lion’s sound to be turned up.

Listing 4.8: Combining spatial sound with a visual content object.

1 <Sector name="lionOnRight"

2 minAlpha="0" maxAlpha="60"

3 minBeta="15" maxBeta="35"

4 minDistance="0" maxDistance="600"

5 minHeight="0" maxHeight="600">

6 <In>

7 <ObjectAction id="horseFX" action="setVolume(70)"/>

8 <ObjectAction id="lionFX" action="moreOnRight(50)"/>

9 <ObjectAction id="pigFX" action="littleOnLeft(40)"/>

10 <ObjectAction id="horse3D" action="showHorse"/>

11 ...

12 </In>

13 ...

14 </Sector>

15
16 <Sector name="oppositeToLion"

17 minAlpha="0" maxAlpha="60"

18 minBeta="35" maxBeta="50"

19 minDistance="0" maxDistance="500"

20 minHeight="0" maxHeight="500">

21 <In>

22 <ObjectAction id="lionFX" action="roar"/>

23 <ObjectAction id="lion3D" action="showLion"/>

24 ...

25 </In>

26 ...

27 </Sector>

28 ...

Listing 4.8 describes sectors that trigger actions for combining spatial sound with visual content. The
lionOnRight sector declares actions that will be called when a camera points to the center of a trackable
object from the right side and also the distance between the camera and the trackable object is small
(lines 1–12). The first three actions give an effect that the neighing (line 7) is the most audible sound.
The roaring sound is also audible, but in this case only on the right channel (line 8). The squealing sound
is little audible on the left channel (line 9), but it does not play an important role in this sector. This
construction gives a clue that the lion object can be located on the right side of the horse. The last action
(showHorse – line 10), called on content object with the id=horse3D, shows a 3D model representing
the horse object.
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The last sector – oppositeToLion – contains actions that are called when a camera points to the right
side of the trackable object (lines 16–27). The first action – roar (line 22) – is responsible for turning the
roaring sound up. This action is called on content object with the id=lionFX. The next action – showLion
(line 23) – triggered on content object with id=lion3D, shows a 3D model of a lion.

Figure 4.7: Visualization of CARE audio sectors.

4.6.6. Scenarios

CARL specifies scenarios in which different types of interactions can be declared in order to trigger
CARL-defined or content object-defined actions. CARL-defined actions are Move, Rotate, and Scale.

A scenario can distinguish interactions between content objects and trackables using the parameter
type. Interaction with content objects enables activation and manipulation of objects. Interaction with
trackables can be used, e.g., to display objects associated with the tracked markers. In order to recognize
on which AR resources a particular action supposed to be called, the parameter target is used. This
parameter takes an id of an AR resource as a value.

CARL specifies the following interactions SingleTap, DoubleTap, LongPress, Pan, and Pinch.
Listing 4.9 presents an example of a scenario specification, in which a single (lines 4–6) and a double tap
(lines 8–10), long press (lines 12–14), pan (lines 16–18) and pinch (lines 20–22) gestures trigger specific
actions.

Listing 4.9: An example of scenario specification.

1 <Scenarios>

2 <Scenario id="Scenario1">

3
4 <SingleTap target="Book1" type="Trackable">

5 <Trigger action="show(*)"/>

6 </SingleTap>

7
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8 <DoubleTap target="Book1" type="Trackable" >

9 <Trigger action="hide(*)"/>

10 </DoubleTap>

11
12 <LongPress target="*" type="ContentObject">

13 <Move x="0.5" y="0.35" z="1"/>

14 </LongPress>

15
16 <Pan target="*" type="ContentObject" >

17 <Rotate x="0.1" y="0.1" z="2" rotation="0.5"/>

18 </Pan>

19
20 <Pinch target="*" type="ContentObject" >

21 <Scale x="0.5" y="0.5" z="0.5"/>

22 </Pinch>

23
24 </Scenario>

25 </Scenarios>

4.6.7. Context

Elements of CARL can be described with the CARE user context (CUC). The CUC elements groups
Context elements. Each Context specifies a key and a value, which jointly define a constraint facet. Values
of these parameters reflect data describing user’s context. Listing 4.10 presents an example declaration
of the user context encoded in CARL.

Listing 4.10: An example of the CARE user context declaration.

1 <CUC>

2 <Context key="Domain" value="Cinema"/>

3 <Context key="DeviceType" value="ARGlasses"/>

4 <Context key="starts" value="2017-12-10T09:31:10.6"/>

5 <Context key="ends" value="2017-12-31T23:59:59.0"/>

6 ...

7 </CUC>

4.6.8. Dynamism in CARL

In order to enable loose coupling with AR resources, the identifiers can have a form semantic
expressions. In this case, values CARL elements’ parameters are dynamically generated on the basis
of semantic queries. A description of a contextual AR presentation can be generated using a CARL
template. In this case, values of CARL elements’ parameters are dependent on a user context and they
are dynamically generated on the basis of semantic queries. The final description of a CARP is unknown
to an AR system implementing CARL until a system queries a semantic knowledge base in order to
fill-in a template with semantic data, and finally to generate a dCARP.

Listing 4.11 depicts an exemplary CARL-template (lines 8–18) that is described with the user’s
context (lines 3–6). The presented template links each content object with a concrete trackable. SDMM
generates as many such pairs as a semantic query returns results. To meet this requirement, the Foreach
element has been used (line 8).
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Listing 4.11: An example of the semantic template declaration.

1 ...

2 <CUC>

3 <Context key="uuid" value="d0d3fa86-ca76-45ec-9bd9-6af444fdbfc7"/>

4 <Context key="domain" value="Restaurant"/>

5 ...

6 </CUC>

7 ...

8 <Foreach>

9 <ContentObject id="?co_id">

10 ...

11 <Trackables iri="?iri">

12 <Trackable id="?to_id">

13 <Begin>

14 <ObjectBegin id="$co_id"/>

15 </Begin>

16 </Trackable>

17 </Trackables>

18 </Foreach>

19 ...

Having a particular CARL-template on the middleware-side, SDMM can run a semantic query
against a CARE knowledge base in order to generate a final description of a contextual AR presentation.
Listing 4.12 presents an exemplary SPARQL query run by SDMM to generate a dCARP.

Listing 4.12: An example of the semantic query supporting the CARL-template from Listing 4.11.

1 SELECT ?pco ?co ?co_id ?pto ?to ?to_id ?iri ?beacon ?uuid
2
3 WHERE {
4 ?pco saro:isIdentifiedBy ?beacon .
5 ?pco saro:provides ?co .
6 ?co saro:id ?co_id .
7 ?pto saro:isIdentifiedBy ?beacon .
8 ?pto saro:provides ?to .
9 ?pto saro:IRI ?iri .

10 ?to saro:id ?to_id .
11 <http://www.semantic3d.org/dr/daro#Restaurant> daro:encompasses ?to .
12 <http://www.semantic3d.org/dr/daro#Restaurant> daro:encompasses ?co .
13 ?beacon beacon:uuid "d0d3fa86-ca76-45ec-9bd9-6af444fdbfc7"^^xsd:normalizedString .
14 ...
15 }

4.6.9. Application example

Figure 4.8 shows an example of using an AR browser application in a bookstore. Based on a user’s
preferences and the position context (a particular bookstore), the application retrieves trackables from
AR trackable service provider belonging to owners of the bookstore. Retrieved trackables represents
books that are potentially interesting for the user. The context information greatly reduces the number of
visual markers that need to be identified and tracked by the application in the real time. This – in turn –
reduces the power consumption and improves stability of tracking.

When a registered book cover becomes visible to the camera, the AR browser starts tracking the
book. With the CARL trackable specification provided in Listing 4.5 (p. 68), nothing is displayed on
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the book until the user enters the Rating sector (yellow hemispherical area depicted in Figure 4.6, p. 69).
Then, the rating information is retrieved from a publisher web service and is displayed on the book cover
in the form of colored 3D bars – from the highest rates to the lowest (Figure 4.6 left, p. 69). This gives
the user a possibility to compare ratings of different books (cf. Figure 4.5, p. 67). Also, when the user
moves the camera closer, the book price information is shown from the bookstore web service and is
displayed on the book cover next to the rating. The book price depends on the bookstore and may also
depend on the user. The price information together with the rating may help the user to undertake the
buying decision.

Figure 4.8: An example of CARL application – Bookstore AR service.

4.7. Summary

In this chapter, the main contribution of this dissertation – the Contextual Augmented Reality
Environment (CARE) approach – has been described. The overall concept of CARE, including the
formal model and the main elements of CARE have been presented.

At first, the architecture of distributed AR services with particular software entities, including two
client applications (the contextual AR browser and the 3D software modeler) and multiple server-based
applications (a semantic middleware and AR service providers), has been described. Application of
SOA and semantic matching and discovery mechanism enables to dynamically combine diverse and
distributed AR resources into consistent AR presentations in a contextual manner. Performing semantic
computation in the CARE middleware eases the client applications from time-consuming operations and
enables to dynamically build contextual AR presentations without the need of changing the source code
of AR browsers.

Next, the Semantic Augmented Reality Ontology that enables to model independent AR service
providers, resources, and contexts and link all these elements to build a ubiquitous dynamic AR
environment, has been discussed. Using the presented ontology, it is possible to create numerous
semantic knowledge bases that can be applied in many application domains, such as tourism, marketing,
public transport information systems, etc.
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After that, the Semantic Discovery and Matching Method that is responsible for selecting
semantically described data meeting criteria of a user’s context has been described. SDMM searches
through semantic knowledge base structured with the SARO ontology and creates a description of a
contextual AR presentation.

Finally, a new high-level language, called CARL – Contextual Augmented Reality Language, used
for encoding the generated contextual AR presentations has been presented. CARL descriptions are
interpreted by client-side AR browsers to provide users with contextualized AR experiences.
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5. Implementation of CARE

This chapter provides an overview of the reference implementation of the CARE system. First, the
system architecture including data flow diagrams between its main components is presented. Further,
the client-side and server-side components are described. Particular sections include descriptions of
the following software components: Unity3D-based plugin, called CARE Modeler, which is used
for modeling contextual augmented reality environments; BrowsAR – an Android-based augmented
reality browser enabling to experience contextual AR presentations; Java EE-based application server
Semantic Augmented Reality Middleware – responsible for providing semantic search functionality;
and multiple RESTful web services offering AR resources that can be dynamically composed to build
diverse-contextualized augmented reality presentations. After that, real-world examples of CARE
environments are presented. Finally, conclusions to the chapter are provided.

5.1. Architecture and data flow

Figure 5.1 depicts the overall architecture of the implemented CARE system prototype and data flow
visualizing the communication between the main elements of the system. The green arrows present
activities of a CARE designer who performs semantic modeling process of AR environments, while the
blue arrows depict actions taken by end-users while exploring the AR environment. On the server side,
the orange arrows show Jena framework [15] operations, as well as executions of SPARQL queries, run
against the semantic knowledge base.

5.1.1. Semantic modeling of AR environments

The semantic modeling process of AR environments begins with the use of the CARE Modeler tool.
The tool is used by a designer who does not require to have technical programming skills. When CARE
Modeler starts, as a first step, it automatically performs an HTTP GET operation (1) to retrieve the
list of semantically described categories (2) of AR service providers. After that, the tool performs the
second HTTP GET operation (3) to obtain semantically described device types (4). Further, these two
semantic collections are supplied to the CARE Modeler graphical user interface to semantically describe
AR resources.

When the process of downloading categories semantics is completed without HTTP errors, the
designer can start the work. The designer is responsible for arranging AR scenes consisting of trackables,
content objects, and data objects. Then, each of AR resources is separately sent via HTTP POST method
to (possibly independent) AR service providers, as follows: trackables provider (5), content objects
provider (5’), and data provider (5”). After it is published, the same AR resource can be reused in
different use cases dependent on the user’s context. Listing 5.1 presents an example request sent by
CARE Modeler to a content object provider.
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Figure 5.1: Data flow diagram of the CARE system.

Listing 5.1: A shortened example of a request sent to a content object provider (5’).

1 {

2 "name": "sculpture_carl",

3 "type": "obj",

4 "contextPath": "carl/models/3d/",

5 "model64":")ZyBjdWJlMl9jYXJsCnYgLTAuNDMzNDc2NyAtMC42OTgwMTQ3IDAuMjczNjMwMQp2IDAu

6 MTQwMDE3NiAtMC4xMTMwMjg3IDAuODQ3MTI0Mwp2IC0wLjg0NzEyNDMgMC4xMTMwMjg3IC0wLjE0MDAxN

7 zUKdiAtMC4yNzM2MyAwLjY5ODAxNDcgMC40MzM0NzY3CnYgLTAuMTQwMDE3NiAwLjExMzAyODcgLTAuOD

8 Q3MTI0Mwp2IDAuNDMzNDc2NyAwLjY5ODAxNDcgLTAuMjczNjMwMQp2IDAuMjcNjMgLTAuNjk4MDE0NyAt

9 NjQ3NiAwLjgxMTA0MzQgLTAu==",

10 "textures64": ["iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAYAAABccqhmAAAABmJLR0QA/wD/AP+gv

11 AAAsTAAALEwEAmpwYAAAAB3RJTUUH4QIGER8KfgxA/AAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGgg

12 R0lNUFeBDhcAACAASURBVHjabL1ZryRJkqX3iaqa+XKXWDNyq8qu6p5udJMckiBADIEBfyl/AF/4NG8ES

13 WFe0V15+8Rqs8Hd//++4u3v0gNAnsBZ3OfliVUW103tnGArjMNK7B4BcMjkJwzBwOOwjOCZyKVtUu=="]

14 }
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The designer need to know addresses of each AR service provider to enter data into the CARE
Modeler interface to correctly dispatch elements of a CARP. Technically, CARE Modeler encodes data
such as 3D models, textures, trackables objects to the base64 representation [69] and sends it to an
appropriate AR service provider. As a response, each AR service provider sends information back
whether the data have been correctly persisted. CARE Modeler collects the HTTP responses and notifies
the designer about the resource publishing process. If no errors have been detected and the AR resources
have been published correctly on AR service providers, the designer can start the next task – context
modeling.

In the context modeling phase, the designer specifies the context in which a combination of the
above-mentioned resources can be used to form AR presentations. To model the context, not only
lists retrieved in steps (2) and (4) are used, but also data describing user’s geographical position,
characteristics of a beacon, and time-frames, in which the AR resources can be used to compose an AR
presentation. Finally, when the whole process of modeling is finished, the designer registers a description
that links the designed AR resources (available within AR service providers) with the modeled context
to an AR Service Register Point (6). The service responses with HTTP status code (7). The designer can
iteratively repeat steps of the semantic modeling process to build complex contextual AR environments.

5.1.2. Exploration of AR environments

End users can experience AR presentations with the use of the BrowsAR mobile application. When
the mobile application starts, it sends a request (8) to get a list of semantically described categories of AR
resources – as indicated by arrow (1). After BrowsAR loads information about categories, the end user can
set the context by selecting interesting categories manually. Moreover, the end user can provide a distance
range, which will be used to discover resources within the context range based on the geographical
location. At the same time, BrowsAR automatically collects data from GPS and Bluetooth devices to
recognize outdoor/indoor position. Moreover, BrowsAR harvests data from the device operating system
to check what kind of device type is used by the end user. Additionally, to determine whether AR glasses
are used, Vuforia isSeeThru() method is tested. In the case, when BrowsAR collected all needed data, the
application dispatches a representation of context to Search Service (10).

Listing 5.2: An example of an end-user context encoded with JSON.

1 {
2 "location":{
3 "longitude":-74.009464,
4 "latitude":40.706276
5 },
6 "beacon": {
7 "uuid":"d0d3fa86-ca76-45ec-9bd9-6af444fdbfc7",
8 "major":3113,
9 "minor":22979

10 },
11 "range":100,
12 "domain":"http://www.semanticweb.org/dr/2016/daro#Museum",
13 "deviceType":"Smartphone",
14 "userDateTime":"2017-12-20T09:30:10.5"
15 }

An example description of end-user context encoded as a JSON object, which is sent to Search
Service, is presented in Listing 5.2. In the presented case, the context consists of the geographical
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location (lines 2-5); outdoor location connected with a specific beacon (lines 6-10); range of searching
boundary set to 100 meters (line 11); semantic category Museum (line 12); and device type Smartphone
(line 13). The context was read on 20th December 2017 at 09:30:10 (line 14).

Listing 5.3: An example of response sent by Search Service to BrowsAR (11).

1 [{"poi":{"location":{"longitude":-74.009481,"latitude":40.706281},

2 "featureName":"sculpture",

3 "feature":"http://www.semantic3d.org/dr/SARO#_f_sculpture",

4 "distanceToUser":7.79},

5 "contentObjectXML":"

6 <?xml version=\"1.0\" encoding=\"UTF-8\"?>

7 <ContentObjects>

8 <ContentObject id=\"sculpture_carl\" initialState=\"hidden\">

9 <Resources>

10 <Component id=\"c5\">

11 <Location details=\"low\" uri=\"http://www.semantic3d.org/app/sculpture_carl\"/>

12 </Component>

13 </Resources>

14 <Actions>

15 <Action name=\"init\" state=\"hidden\">

16 <SetPosition component=\"c5\" x=\"0\" y=\"0\" z=\"0\"/>

17 <SetOrientation component=\"c5\" axis=\"x\" angle=\"90\"/>

18 <SetOrientation component=\"c5\ axis=\"y\" angle=\"0\"/>

19 <SetScale component=\"c5\" scale=\"40\"/>

20 <Activate active=\"true\" component=\"c5\">

21 <ObjectState value=\"shown\"/>

22 </Activate>

23 </Action>

24 </Actions>

25 </ContentObject>

26 </ContentObjects>",

27 "trackableXML":"<?xml version=\"1.0\" encoding=\"UTF-8\"?>

28 <Trackables>

29 <Trackable id=\"musemuFX=\"http://www.track3d.org/app/carl/trackables/museumFX.dat\"

30 uriXML=\"http://www.track3d.org/app/carl/trackables/museumFX.xml \"

31 thumbnail=\"http://www.track3d.org/app/carl/trackables/museumFX.jpg \">

32 <Begin>

33 <ObjectBegin id=\"sculpture_carl\"/>

34 </Begin>

35 </Trackable>

36 </Trackables>",

37 "dataObjectXML":null, "interfaceXML":null

38 },

39 {"poi":{"location":{"longitude":-74.008781,"latitude":40.705919},

40 "featureName":"atm",

41 "feature":"http://www.semantic3d.org/dr/SARO#_f_atm",

42 "distanceToUser":67.96},

43 "contentObjectXML":null,"trackableXML":null,"dataObjectXML":null,"scenarioXML":null}]

As a response (11), BrowsAR retrieves an array of the dCARP descriptions meeting criteria of
end-user context. Listing 5.3 shows an example response dispatched to the browser application. The
presented example consists of two JSON objects: the first element (lines 1-38) and the second (lines
39-43). What is interesting in this example is that the first element is supplemented with the CARL
description pointing to AR resources available at distributed AR service providers (lines 11 and 29-31).
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However, the second JSON object does not contain such information (line 43) due to the fact that the
distance between end-user and the location of AR resources assigned to the second CARP presentation
(line 42) is greater than the distance to the first CARP (line 4). Thus, SDDM does not generate CARL
descriptions for subsequent JSON objects due to unnecessary data redundancy (line 43), but it only
provides additional data that can be, e.g., overlaid on a map in order to give the end user a hint where
other CARPs can be found. Further, the AR browser performs HTTP GET methods (12) to get best
criteria-meeting resources (13) of the AR presentation from distributed AR service providers.

5.1.3. Providing an endpoint to external programs

In accordance with the main principle of the semantic web, which is sharing and reusing data,
Semantic Augmented Reality Middleware additionally implements an open interface called Statements
Service Endpoint. The interface can be used by researchers and developers to retrieve knowledge about
contextual AR environments. In such a way, the semantic web community can adapt and integrate SARO
concepts with other semantic-based systems.

The bottom part of Figure 5.1 presents an interface enabling external programs to perform HTTP
GET method (14) to retrieve semantic statements representing CARE environments in the form of
subject, predicate, object. As a response, Statements Service Endpoint produces an XML description that
represents semantic triples (15) of the CARE knowledge base. Figure 5.2 depicts an example response
of Statements Service Endpoint retrieved through a web browser.

5.2. Client-side CARE components

5.2.1. The CARE Modeler application

CARE Modeler is a tool that was implemented to help designers and developers to model augmented
reality presentations based on distributed AR resources with the contextual approach. The tool can be
used to model AR presentations consisting of multiple content objects and trackables. The software
enables also to specify context in which particular resources can be available to end-users. The tool
conforms to the SARO ontology. The application is implemented in C# as an editor extension plugin
to the Unity3D game engine [139]. Additionally, the plugin uses data provided by the Vuforia Unity
extension [110].

Figures 5.3 and 5.4 present the graphical user interface of the CARE Modeler. The meaning of the
particular parts of the interface (annotated with numbers in Fig. 5.4a) are presented in the following
subsections.

Modeling contextual AR presentations

With the use of Unity IDE a developer can use standard transform tools, such as move, rotate,
and scale, to position content objects. The transform properties of the content objects will be further
mapped into CARL content object descriptions. The content objects are positioned with the respect to
a particular representation of the view of reality (trackables). These objects are provided by the Vuforia
Unity extension as a marker database. The name of the database should be provided in the Database
Name field of the CARE Modeler interface (Fig. 5.4a, part (2)). Moreover, the developer can optionally
prepare a thumbnail representing a view of the reality which can be augmented in BrowsAR . Further, this
thumbnail will be used by an AR browser to give the end-user a hint, where he/she should point a mobile
device to experience an AR presentation in the particular context. After positioning content objects, the
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developer can preview the AR presentation using the Vuforia Unity extension by clicking on the play
button (as depicted in Fig. 5.5).

Next, the Optional CARL Tools section (Fig. 5.4a, part 5) can be used to generate and preview CARL
descriptions of the AR presentation on the basis of the Unity3D scene. Figure 5.4b presents unfolded
CARL tools element, where the developer can preview an automatically generated CARL description.
Optionally, the designer can modify the CARL description to provide other elements of CARL such as
scenarios or sectors – assuming that the designer knows specification of the CARL language.

Modeling context

The User’s Context section (Figures 5.4a, part (6) and 5.6) is divided into four parts: Beacon,
Location, Device type, and Date and time. Here, the developer can set up particular parts of the context,
in which the designed AR resources will be available to end-users.

Figure 5.7 depicts properties of a beacon device in which uuid, major, and minor fields can be set
up. These properties can be used to localize AR in indoor environments. For instance, in the case when
a user is located in a building and the AR browser receives signals from a particular beacon device, let
say characterized with the following features:

1. uuid: d0d3fa86-ca76-45ec-9bd9-6af4789f73ce;
2. major: 58906;

Figure 5.2: Semantic statements retrieved from Statements Service Endpoint.
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Figure 5.3: Modeling an AR presentation with the CARE Modeler tool.

(a) (b)

Figure 5.4: Primary GUI of CARE Modeler (a). Unfolded Optional CARL Tools section (b).

3. minor: 10758;

an AR presentation associated with context identified by this beacon will be dynamically composed in
run-time, and – in the end – presented on the end-user’s device, when the user turns his/her device into
a particular view of the reality. An example of RDF representation of a beacon device encoded with
the RDF-XML notation is presented in Listing 5.4. The CARE middleware creates an individual of
Beacon class consisting of the SARO namespace, prefix _b, major number, four first letters of uuid, and
generated random number.

Listing 5.4: An example of RDF beacon representation.

1 <rdf:RDF

2 xmlns:SARO="http://www.semantic3d.org/dr/SARO#"

3 ...

4 >

5
6 <SARO:isIdentifiedBy>

7 <Beacon rdf:about="http://www.semantic3d.org/dr/SARO#b_58906_d0d39802">

8 <uuid>d0d3fa86-ca76-45ec-9bd9-6af4789f73ce</uuid>

9 <major rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

10 >58906</major>
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Figure 5.5: Previewing the AR presentation using the Vuforia Unity extension.

Figure 5.6: Unfolded User’s context section.

11 <minor rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

12 >10758</minor>

13 </Beacon>

14 </SARO:isIdentifiedBy>

15 ...

The next panel – Location – presented in Figure 5.8, enables setting outdoor location properties,
such as: GML feature name, longitude, and latitude, which describe a spatial outdoor context associated
with AR resources. Information about particular AR presentations that can be built within the end-user’s
surrounding will be available in the AR browser. The developer can combine outdoor location with
indoor location data when modeling a context for an AR presentation. For instance, the AR browser

Figure 5.7: Setting up beacon properties in CARE Modeler.
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Figure 5.8: Setting up outdoor location properties in CARE Modeler.

Listing 5.5: An example of RDF outdoor location representation.

1 <rdf:RDF
2 xmlns:SARO="http://www.semantic3d.org/dr/SARO#"
3 ...
4 >
5
6 <SARO:has>
7 <gml:_Feature rdf:about="http://www.semantic3d.org/dr/SARO#_f_CEUE-building">
8 <gml:featurename>CEUE-building</gml:featurename>
9 <geo:where>

10 <gml:Point rdf:about=
11 "http://www.semantic3d.org/dr/SARO#loc_point_CEUE-building">
12 <geo2003:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double"
13 >16.916726</geo2003:long>
14 <geo2003:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#double"
15 >52.406305</geo2003:lat>
16 </gml:Point>
17 </geo:where>
18 </gml:_Feature>
19 </SARO:has>
20 ...

application can show on a map positions of places in which different AR resources are associated with
beacon devices. In that case, when the user enters the building and GPS signal is lost, indoor locations
of AR resources can be distinguished with beacons to build appropriate AR presentations inside the
building. Listing 5.5 presents an example of a semantically described spatial context, in which an AR
presentation may be available to end-users.

Figure 5.9 presents the Device type drop-down list consisting of semantically described device types
for which AR resources are aimed. The same AR presentation may be displayed differently on various
devices. Also, devices may differ in their ability to handle different types of objects. Hence, in some cases
it is necessary to model presentations with different properties for various device types to give end-users
the best user experience when presenting AR presentations. Elements of the Device type drop-down list
are dynamically downloaded before the CARE Modeler tool is available to use by the designer. These
data come from the CARE service responsible for providing supported device types.

Figure 5.9: Selecting a device type for an AR presentation in CARE Modeler.

Last but not least, the Date and time panel (Fig. 5.10) enables the developer to specify beginning and
expiration dates and times of the AR presentation, optionally marked with a particular time zone offset.
The CARE Modeler tool automatically generates default values, however, the developer can change the
setting.
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Figure 5.10: Setting validity period of AR resources in CARE Modeler.

The lexical representation of beginning and expiration dates and times consists of sequences of
characters of the following form: YYYY-MM-DD’T’hh:mm:ss(’.’ s+)(zzzzzz), according to the ISO 8601
standard [67], where:

• YYYY indicates the year,
• MM indicates the month,
• DD indicates the day,
• T is a separator indicating that time-of-day follows,
• hh indicates the hour,
• mm indicates the minute,
• ss indicates the second,
• ’.’ s+ (if present) represents the fractional seconds,
• zzzzzz (if present) represents the timezone.

Figure 5.10 presents the beginning and expiration values differing by ten minutes. The semantic
representation of these temporal properties are presented in Listing 5.6.

Listing 5.6: An example of temporal properties described in RDF-XML.

1 ...

2 <SARO:hasTemporalEntity>

3 <time:TemporalEntity rdf:about="http://www.semantic3d.org/dr/SARO#TE_example">

4 <time:hasEnd>

5 <time:Instant rdf:about="http://www.semantic3d.org/dr/SARO#instant_ends_example">

6 <time:inXSDDateTime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime"

7 >2017-03-22T10:10:34.4543130+01:00</time:inXSDDateTime>

8 </time:Instant>

9 </time:hasEnd>

10 <time:hasBeginning>

11 <time:Instant rdf:about="http://www.semantic3d.org/dr/SARO#instant_starts_example">

12 <time:inXSDDateTime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime"

13 >2017-03-22T10:00:34.4543130+01:00</time:inXSDDateTime>

14 </time:Instant>

15 </time:hasBeginning>

16 </time:TemporalEntity>

17 </SARO:hasTemporalEntity>

18 ...

Registering AR resources

The annotation (1) of Figure 5.4a (p. 84) points to AR service provider properties that are used to
persist AR resources. The first five fields declare properties that are used for storing data coming from
the Unity3D IDE. When these values are set, a developer can export representations of visual markers
used for augmentation and their graphical thumbnails (used for guiding users to appropriate real-world
elements) to the external service – by pressing the Export CARLTrackable data button (3). Then, virtual
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objects constituting the AR scene can be exported by pressing the Export CARLContentObjects data
button (4).

The next section – Domain AR object (7) – assigns AR resources to a particular domain-specific
category of AR experiences. In this case, these AR resources will be available in search results in case
of choosing the University keyword preference.

Finally, the button Register AR presentation (8) is used for registration of AR resources with the
specific context in the CARE catalog REST service. Technically, it sends all provided and generated data
using the HTTP POST method to the server. Then, these data are stored within the CARE knowledge
base.

5.2.2. The BrowsAR application

BrowsAR – which stands for "Browser for Augmented Reality" – is an Android-based client
application that is responsible for communication with Semantic Augmented Reality Middleware and
multiple AR service providers, dynamic composition, and real-time rendering of AR presentations based
on the contextual approach. BrowsAR is built on top of the OpenGL ES library [72] that allows rendering
diverse content and data objects. To recognize and track planar images and 3D objects in real time,
the Vuforia computer vision library is used [110]. The BrowsAR application is based on the REST
architectural paradigm [47] and is able to retrieve diverse resources from distributed AR service providers
to compose AR presentations encoded in the CARL language. The application has been implemented
in Java and runs on the Android platform. With the use of BrowsAR, an end-user is able to experience
multiple AR presentations that are dynamically built at runtime of the application. Moreover, end-user
can control BrowsAR with voice commands.

BrowsAR architecture

The multi-layered architecture of BrowsAR meets requirements of the Model-View-Controller
(MVC) design pattern [50]. The application consists of four layers: Network Layer and Data Layer
(model), Presentation Layer (view), and Context Layer (controller). Figure 5.11 illustrates the
four-layered architecture of BrowsAR, in which each rounded rectangle presents a programming library
or an Android module that was used to implement the browser. The particular layers are described below.

Network Layer (NL) is responsible for communication with Semantic Augmented Reality Middleware
and multiple AR service providers. The core element behind the NL is the CARL library, which deals
with asynchronous HTTP operations and processing of results without interrupting the UI thread of
BrowsAR, while end-user context changes and new data are being retrieved. Moreover, the CARL
library provides the CARLFactory class, which conforms to the Factory Method design pattern [51].
This class interprets dCARP descriptions and transforms them into Java CARL objects, additionally
altering these instances with resources retrieved from AR service providers. A CARLFactory instance
produces CARLContentObject, CARLBusinessData, CARLTrackables, and CARLScenarios objects that
are ready for further processing by the Context and Presentation layers. The next element of Network
Layer is Google play-services-map library. In the implemented prototype, version 9.6.1 of the library is
used to support the map component. The library provides access to the Google Maps service [59] and
permits to customize information about nearby AR presentations displayed on a map. Last but not least,
the Speech2Text Processor module is responsible for accessing a speech recognition service to transform
end-user voice into textual commands. These commands are further transferred via the Data Layer to
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Figure 5.11: The architecture of the BrowsAR application.

the Context Layer to analyze and, in the end, to control application with the use of the end-user voice.

Data Layer (DL) constitutes a bridge between the Network and Context layers, i.e., the DL is
responsible for handling data retrieved from the NL and transferring it to the CL. Also, the Data
Layer collects data from various devices, such as: Bluetooth (via Altbeacon that provides APIs for
getting notifications when beacons appear or disappear), GPS (via Android Location Manager to obtain
geographical position of the end user), and from the Android operating system and the Vuforia library
to retrieve knowledge about the type of device that is used by the end user. To notify objects related to
Context Layer when new data come, the DL, as well as the NL, extensively use the Observer design
pattern [51]. The Data Layer converts arbitrarily complex Java Objects into their JSON representations
and vice versa with the use of the GSON library [55].

Context Layer (CL) is the decision-making point of the application. The foundation of this layer is
an instance of the ContextController class that is responsible for processing notifications coming from
the Network and the Data layers, which have impact on the end-user’s context. Based on the received
low-level messages, the instance of ContextController continually measures whether the context
changes, and triggers appropriate actions that influence elements of the DL – by preparing requests to
be sent to Semantic Augmented Reality Middleware, as well as, elements of the Presentation Layer – by
seamlessly altering low-level renderers, without interrupting the UI thread of BrowsAR. Furthermore, the
Context Layer is also responsible for providing notifications to related software components that "listen"
to changes in the context, for instance, by dispatching messages to the the graphical user interface or just
to logging mechanisms. Finally, the CL interprets commands received by the Speech2Text Processor
module and takes actions that are responsible for controlling the application with the use of voice
commands.
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Figure 5.12: The GUI of BrowsAR.

Presentation Layer (PL) is responsible for rendering AR presentations based on the CARL objects
provided by an instance of the CARLFactory class. In order to implement the AR visualization objective,
the PL uses three core libraries as follows: CARL Renderer, OpenGL ES 2.0, and Vuforia. CARL
Renderer consists of three independent classes that implement GLSurfaceView.Renderer interface. These
classes are responsible for making low-level OpenGL ES calls to render 3D models encoded in the
following formats: obj [140], 3ds [144], and md2 [65]. Information, where to position and how to orient
particular 3D models, is provided by Vuforia. This library provides an image registration capability
which produces a camera projection and model view matrices related to the recognized and tracked
marker. These two matrices are further processed by OpenGL to properly transform virtual objects. The
Presentation Layer also includes declarative elements of user interface encoded within Android XML
files that correspond to the Android View classes and subclasses. This approach enables separation of
the graphical user interface elements from the application logic code.

Graphical user interface of BrowsAR

Figure 5.12 depicts the graphical user interface of BrowsAR. The image is additionally marked with
red-numbered annotations of the particular parts of the GUI. Number (1) presents an optional logger
tool that is responsible for printing BrowsAR logs thus helping a developer to debug low-level messages
in the case a mobile device is not connected to a computer with the Android Studio environment [54].
Next, number (2) presents the thumbnail view showing end-users a hint where the camera should be
pointed to track a marker and experience the AR presentation. Number (3) depicts the real world
object that is registered and tracked by the camera. This object is overlaid with virtual content objects
provided by an AR service provider. These 3D objects have been earlier exported by a developer using
the CARE Modeler tool. Number (4) shows the button that triggers the speech recognition function.
With this feature, end-users can control the application with voice commands. After pressing the voice
command button, BrowsAR plays gentle "beep" sound and listens for one second for a voice command.
A description of voice commands is provided in subsection 5.2.2. Number (5) then presents the button
used for showing a map on which blue pin icons are marked representing points of interest (POIs) of
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Figure 5.13: The map activity presenting the positions of end-user and five semantically described AR
presentations.

possible AR presentations that can be accessed within the range of the end-user context. Additionally,
the current geographical position of the end user is labeled as a red pinpoint. The map is configured to
hide unnecessary and distracting Google’s business points of interest using the map styling feature [56].
Figure 5.13 illustrates a map activity on which the positions of end-user and five semantically described
AR presentations are drawn.

Number (6) presents the button that, after the pressing, triggers a function requesting Semantic
Augmented Reality Middleware for dCARP descriptions. When this button changes color from yellow to
green, it means that end-user context has just changed and the button is enabled for an action. In that case,
when Semantic Augmented Reality Middleware responds with a non-empty CARL document, BrowsAR
automatically calls AR service providers to retrieve resources constituting CARPs. When the process of
downloading AR resources is finalized, BrowsAR changes color of the button (7) from yellow to green,
and – in addition – notifies the end user with a textual information that new AR resources have been
downloaded and there is a possibility to reload the AR scene. Finally, number (7) presents the button for
manually reloading OpenGL renderers with new 3D models and updating the Vuforia tracker mechanism
to track new markers. The last annotation – number (8) – depicts semantic categories provided by AR
Service Catalog.

What is worth to mention is that BrowsAR can be setup to fully and automatically work without
manual user interactions. For instance, the application can autonomously call remote methods of
Semantic Augmented Reality Middleware and AR service providers and reload new AR resources in
the case, the end-user context changes. However, this configuration by default is turned off due to the
fact it causes battery drain of the mobile device.

Voice commands

BrowsAR distinguishes six voice commands as follows:

1. screen on – displays the logger tool;
2. screen off – hides the logger tool;
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3. map on – opens a map view with annotated geographical position of the end user and possible AR
presentations meeting criteria of context (see Fig. 5.13);

4. dispatch context – dispatches end-user context to the Search Service; in case of getting non-empty
response, BrowsAR calls remote methods of AR service providers to retrieve AR resources needed to
compose CARPs;

5. reload – reloads Open OpenGL renderers with new 3D models and updates Vuforia tracker
mechanism with new trackable objects to finally prepare CARPs;

6. select <category> – selects semantic category provided by AR Service Catalog, where <category>
stands for a concrete name of a category.

It is also worth to emphasize that BrowsAR supports Android internationalization functionality by
recognizing voice commands stated in other languages. In the current implementation, the application
adapts to the English and Polish languages – but it is easy to add an extension supporting other languages
without modifying the source code. For instance, the application distinguishes "show map" and "pokaż
mapę" commands that are used to show the map component. Every text string (and its different language
equivalents) are listed in an Android string.xml file. The consequence of this approach is that there is
no need to change the source code of the browser while adding new words supporting others languages.
Due to the fact that Google’s speech recognition service not always returns correct results, e.g., for
saying ’map on’ the result could be ’map own’, voice commands have been declared as an XML string
array [57], which includes frequent misinterpreted versions of the commands.

5.3. Server-side CARE components

5.3.1. Semantic Augmented Reality Middleware

Semantic Augmented Reality Middleware serves indirectly in support of BrowsAR, CARE Modeler,
and external applications. It provides REST API that connects semantically described data sources to the
client applications. The middleware fulfils two functions: (1) it manages knowledge about AR service
providers, its resources, and contexts in which particular components of AR service providers can be
composed to build CARPs dynamically; and (2) it creates and provides dCARP descriptions that meet
criteria of the end-user context.

Figure 5.14 presents the three-layered architecture of Semantic Augmented Reality Middleware, in
which each rounded rectangle presents a programming framework or library that was used to implement
the software. Semantic Augmented Reality Middleware consists of the following three layers: Network
Layer, Data Layer, and Semantic Layer. Each of these layers is described below.

Network Layer (NL) is responsible for communication with the clients. It provides five RESTful
services as follows: AR Service Register Point, Device Types Service, AR Service Catalog, Search
Service, and Statements Service Endpoint. To enable implementation of the above-mentioned services,
Apache CXF and Spring frameworks have been used [14, 108]. CXF provides tools to develop RESTful
services via annotations using the HTTP binding. Using URI templates and annotations, there is a
possibility to bind a service operation to arbitrary URL and HTTP verb (such as GET, PUT, POST,
and DELETE) combinations. For example, a getARServiceProviders method can be annotated with
@Get and @HttpResource("/catalog/{category}"). CXF will then listen for GET requests on that URL
and using the parameter at the category location as a parameter of the service will list all semantically
described individuals of AR Service Providers. Moreover, CXF supports Spring XML syntax, making
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Figure 5.14: The architecture of Semantic Augmented Reality Middleware.

easy to declare endpoints which are backed by Spring.

Data Layer (DL) is responsible for two kinds of operation. First, it handles data received from the
clients (through the Network Layer) by processing JSON content into Plain Old Java Objects (POJOs)
using the Jackson JAX-RS library [7]. Second, it processes dCARP descriptions retrieved from the
Semantic Layer by decoding them into JSON objects to send to the clients via the Network Layer.

Semantic Layer (SL) is responsible for extracting and writing data provided by the clients to the CARE
knowledge base. To perform these operations, Apache Jena framework was chosen [15]. Furthermore, to
retrieve semantic-based data, the SDMM method uses SPARQL queries that are executed against CARE
knowledge base (an example is presented in Listing 5.7). The results of the SDMM method are packed
into dCARP descriptions that are further handled by the Data Layer and finally are dispatched to the
clients. Last but not least, SARO Manager is responsible for persisting semantic triples describing the
CARE environment within the CARE knowledge base.

Listing 5.7: An example of SPARQL query performed within the Semantic Layer.

1 PREFIX owl: <http://www.w3.org/2002/07/owl#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4 PREFIX geo: <http://www.georss.org/georss/>

5 PREFIX gml: <http://www.opengis.net/gml/>

6 PREFIX saro: <http://www.semantic3d.org/dr/SARO#>

7 PREFIX daro: <http://www.semantic3d.org/dr/daro#>

8 PREFIX beacon: <http://www.semantic3d.org/dr/beacon#>

9 PREFIX dt: <http://www.semantic3d.org/dr/deviceType#>

10 PREFIX time: <http://www.w3.org/2006/time#>

11
12
13 SELECT ?arresource ?beacon ?devType ?temporalEntity ?start ?end

14 WHERE {

15 ?arresource saro:isIdentifiedBy ?beacon .

16 ?beacon beacon:uuid "b9407f30-f5f8-466e-aff9-25556b57fe6d"^^xsd:normalizedString .
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17 ?beacon beacon:major "19464"^^xsd:int .

18 ?beacon beacon:minor "30157"^^xsd:int .

19 ?arresource dt:isPresentableOn <http://www.semantic3d.org/dr/deviceType#Smartphone> .

20 <http://www.semantic3d.org/dr/daro#University> daro:encompasses ?arresource .

21 ?arresource saro:hasTemporalEntity ?temporalEntity .

22 ?temporalEntity time:hasBeginning ?hasBeginning .

23 ?temporalEntity time:hasEnd ?hasEnd .

24 ?hasBeginning time:inXSDDateTime ?start .

25 ?hasEnd time:inXSDDateTime ?end .

26
27 FILTER (?start <= "2017-03-22T10:00:39.254+01:00"^^xsd:dateTime &&

28 ?end >= "2017-03-22T10:00:39.254+01:00"^^xsd:dateTime)

29 }

5.3.2. AR service providers

AR service providers are repositories of augmented reality resources that are used to compose
diverse CARPs depending on the end-user’s context. These distributed applications are characterized
by independence from other elements of the CARE system. Their primary task is to deliver IRIs to AR
resources. Moreover, AR service providers provide REST API that is used for persisting AR resources
dispatched by CARE Modeler.

Figure 5.15 presents the two-layered architecture of AR service providers. Each AR service provider
consists of: the Network Layer and the Data Layer. The technical implementation is very similar to the
implementation of Semantic Augmented Reality Middleware. AR service providers also use Apache
CXF and Spring as basic frameworks to implement RESTful services, as well as Jackson JAX-RS
library to process JSON objects. However, AR service providers do not require the semantic layer since
semantic data are handled by Semantic Augmented Reality Middleware. Particular layers of AR service
providers are described below.

AR Service Provider

RESTful Service Server

Data

Layer

Network

Layer

Spring

Framework

Apache CXF

Framework

Jackson

JAX-RS

Figure 5.15: The architecture of AR service providers.

Network Layer (NL) is responsible for communication with CARE Modeler as well as BrowsAR. It
provides three RESTful services responsible for persisting AR resources. Each AR resource is sent by a
CARE environment designer via the CARE Modeler interface. Every multimedia content, sent via CARE
Modeler, is encoded with the base64 algorithm. Further, these base64 representations are handled by the
Data Layer. After decoding the representations and persisting multimedia content, trackables, content
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objects, and data objects are assigned publicly available IRIs. Further, these IRIs are semantically
described within Semantic Augmented Reality Middleware, and – in the end – are used as AR resources
to dynamically compose CARPs in BrowsAR.

Data Layer (DL) is responsible in four types of operations. First, it processes data received from CARE
Modeler, through the Network Layer, with the use of the Jackson JAX-RS library [7]. Second, it decodes
JSON base64 contents into binary data. Third, it persists binary data by creating file output streams to
write to the files. Finally, it constructs publicly available Internationalized Resource Identifiers (IRIs) for
AR resources.

5.4. Examples

This section presents two use cases presenting contextual AR presentations modeled with the use of
CARE.

5.4.1. AR Staff Members Information Service

The first example – ’AR Staff Information Service’ – has been designed to provide useful information
about university staff members. The service has been developed to augment the view of intercom devices
with extra visual information about staff members – in this case university lecturers. The application
displays lecturers’ photos on a view of the intercom, where normally only lecturers’ surnames are
printed. Virtual photo-labels are linked with the real printed surnames. With this solution, end-users,
e.g., students, can quickly associate a lecturer’s face with the surname in order to make sure that they
reach the person that they are looking for. The application renders also some extra information below a
particular lecturer image, e.g., duty hours of the lecturer.

(a) Scene for smartphone. (b) Scene for AR glasses.

Figure 5.16: Modeling two AR scenes with different transform properties.

Figure 5.16 shows two scenes presenting the same information, but displayed in different forms.
The first scene is modeled for a smartphone device and the second for AR glasses. Due to the fact that
the AR glasses devices have low-resolution cameras and the field of view is relatively small, graphical
objects are modeled in a more compact way (Fig. 5.16b) comparing to the scene presented in Fig. 5.16a.
Elements of the AR presentations were exported to an external AR service provider with the use of the
CARE Modeler. Additionally, a particular beacon information was set in the user’s context options. The
use of beacons for context identification greatly enhances the scalability of the solution. Dozens of doors
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(a) Smartphone view. (b) AR Glasses view. (c) A user experiences the AR presentation using AR
Glasses.

Figure 5.17: AR Staff Members Information Service.

with labels can be unambiguously described, even if visually their representations differ only slightly.
When a user approaches a particular context zone, the application downloads an appropriate set of visual
markers to track, without having to identify them from the whole database with only visual properties.
Also, the appropriate set of visual objects is downloaded based on the properties of the device class.
Figure 5.17 depicts screenshots showing AR presentations displayed on a smartphone (5.17a) and AR
glasses (5.17b).

5.4.2. AR City Events Information Service

The second example has been specially designed to inform and register a user in a novel way for a
well-known event called Researchers’ night taking place in many academic cities in Poland. Figure 5.18
presents the CARP consisting of four independent elements coming from AR service providers.

A fragment of the virtual map, a pin point, a button, and a trackable representing a poster have
been combined to build an interactive AR presentation, whereby an end-user not only can experience
information about the event, but can also register for participation with the use of an independent external
service. The AR presentation has been modeled for a smartphone (Fig. 5.18a) and AR glasses (Fig. 5.18b
and c), similarly as presented in the previous example. Additionally, Fig. 5.18c depicts a stereoscopic
view taken from AR glasses.

5.5. Summary

In this chapter the CARE system implementation has been described, explaining the client-side
architecture and the main elements of the system. In order to build semantic modeling system for
contextual augmented reality applications, a distributed software infrastructure has been designed and
implemented. Working prototype of the CARE system proves the feasibility of the approach presented
in Chapter 4.

The presented architecture includes the main software elements such as BrowsAR, CARE Modeler,
Semantic Augmented Reality Middleware, and multiple instances of AR service providers. The
implementation is mainly based on the Java language (excluding CARE Modeler that is written in the C#
language as an extension to the Unity3D game engine).
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The CARE system is designed for the development of mobile AR experiences. The examples
described in this chapter demonstrate usefulness of the CARE system for real-world applications.

(a) Smartphone. (b) AR Glasses.

(c) A user experiences the AR presentation using AR Glasses.

Figure 5.18: AR City Events Information Service.
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6. Evaluation of CARE

The chapter presents results of qualitative and quantitative evaluation of the CARE approach. A
user study was conducted to test usefulness and easiness of use of CARE tools. Also, load testing was
performed to investigate the CARE semantic search performance.

6.1. Qualitative evaluation

This section presents a qualitative user study that has been performed to evaluate usefulness and
easiness to use of the CARE Modeler and BrowsAR applications while modeling and exploring contextual
augmented reality environments. The following subsections cover design of the study, characteristics of
participants that took part in the study, the collected results, and discussion.

6.1.1. Design of the study

The presented study consists of 3 parts that are listed below:

I. Learning and adopting new skills in the field of modeling AR presentations; deploying AR
applications to mobile devices using Unity3D and Vuforia extension plugin; familiarizing with the
CARE approach, CARE Modeler and BrowsAR;

II. Performing tasks related to modeling and exploring contextual AR environments;
III. Filling online questionnaire.

Part I: Learning and adopting new skills

First, the participants needed to learn how to develop a basic AR application using the Vuforia
extension plugin to Unity3D. A tutor demonstrated how to model an AR presentation and how to deploy
it on an Android device. At the same time, participants repeated activities and were asked to deploy their
works as Android applications and test these applications on mobile devices. The goal of this assignment
was to familiarize the participants with the Unity3D IDE and some essential features of Vuforia, such as
image databases, image target, and AR camera, how to deploy an AR application, and how to test it.

After the participants acquired practical skills, the tutor introduced problems related to developing
contextual AR environments and presented the CARE approach: what is the context; how it can be
specified in CARE; how context can be used to describe resources, what is an AR service provider.
Moreover, the tutor introduced beacon devices and explained how they can be used to describe contextual
resources in case of indoor environments.

After the theoretical presentation, the participants were asked to download the CARE Modeler plugin
and install it in Unity3D IDE. After the installation process, the tutor presented main assets of the tool,
i.e., scripts, 3D models, and image databases, that can be used while modeling AR presentations, and
explained particular parts of the graphical user interface of CARE Modeler. Next, the tutor developed
an example context, which was used for describing resources of a created AR presentation and deployed
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these elements to external AR service providers. Finally, the tutor demonstrated just-created contextual
AR presentation within the BrowsAR mobile application. After the presentation, the participants were
asked to develop a unique context and deploy their own contextual AR presentations using the CARE
Modeler tool. The goal of this task was to familiarize the participants with the GUI and primary functions
of the plugin.

Next task consisted in exploration of just-created AR environment by the participants. The tutor
provided five smartphones with the BrowsAR application installed. The participants were asked to find
and experience AR presentations that were created by them within the contextual AR environment. The
goal of this task was to familiarize the participants with the AR interface and to demonstrate how easy is
to locate and experience various contextual AR presentations created by the participants.

Part II: Performing tasks – standard tools vs. CARE tools

When the participants acquired the required skills, they were prepared to carry out tasks themselves.
The participants were asked to model new AR presentations consisting of five 3D models derived from
the assets of CARE Modeler, and to deploy it as an Android application to a mobile device using standard
tools. The participants were asked to measure time from the beginning of building an Android application
to the first experience of the AR presentation on a mobile device.

After the above-mentioned activity, the participants were asked to describe unique contexts in which
AR resources of previously created AR presentation could be available to end-users to form CARPs.
They were also asked to deploy contextually-described resources to external services and view their
work in BrowsAR. Similarly, the participants were asked to measure the time from the beginning of
deploying of a contextual AR presentation to the first experience of the created work within BrowsAR.
Figure 6.1 depicts an example of an AR scene modeled by one of the participants.

Figure 6.1: An example of an AR scene modeled by the one of the participants.

Part III: Filling online questionnaire

Finally, the participants were asked to fill-in an online questionnaire with the Likert scale rating items
on a scale of 1 (uselessness/totally difficult/unintelligible) to 5 (critical/totally easy/totally intelligible).

6.1.2. Participants

All the participants took part in a facultative seminar whose topic was "Learn to design contextual
augmented reality environment". A total of 14 test subjects (2 female and 12 male) participated in the
study. However, four of them had to leave the class before the exploration task has begun. The subjects
ranged in age from 19 to 22 years (M = 20.8 years, SD = 2.82 years).
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Only two of them had some experience with the use of the Unity3D IDE.

6.1.3. Environment setup

In order to perform the user study, CARE Modeler was installed within Unity3D IDE 2017 by the
participants. The software run within a virtual machine with Windows 8.1 Enterprise x64. The virtual
machine consisted of two Intel Xeon E5-2660 v3 CPU 2.60GHz processors. The participants used
Samsung Galaxy S6 devices with installed Android v. 7.0.

6.1.4. Results and analysis

Within this subsection, the results of the study are reported. They include, task completion times,
questionnaire data gathered from the participants, as well as an analysis of the data, and discussion.

Task completion time

The time taken from deployment to first experience of an AR presentation using standard vs. CARE
tools, as presented in Fig. 6.2, was analyzed using an independent t-test. The two-sample unequal
variance (heteroscedastic) test was performed. The two-tailed distribution was used. The test confirmed
that significant differences in the task completion times existed between using standard and CARE tools:
T=6.69, p=0.0024 (p < 0.05).

Figure 6.2: The mean completion time for completing the task with standard tools vs. CARE tools.

The time taken to complete the task was significantly shorter while using the CARE Modeler tool.
Since Unity3D automatically starts an application after the process of building it, there was no time
gap, e.g., to find an application to start it from the main menu of the Android system. The most
time-consuming part, in the case of using standard tools, was the building process – statistically, it took
almost 65% of the time. In the case of using CARE tools, the most time-consuming was the process
of exporting AR resources (3D models, textures, and trackables) and the process of downloading these
objects from AR service providers. What is important to note is that there was no need to recompile and
rebuild BrowsAR. Theoretically, even if, the time of building an application would be removed from the
calculation, it is still faster to experience an AR presentation using the CARE approach.
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Questionnaire: Likert scale rating

After finishing the tasks related to Part II, the participants were asked to answer the questionnaire that
included 9 questions (Tab. 6.1). The Cronbach’s alpha indicated acceptable internal consistency among
Likert items (α=.739; 0.8> α≥ 0.7).

Q# Evaluation of M ± SD

Q1 CARE Modeler usefulness 4.2 ±0.63
Q2 Easiness of installation 3.8 ±1.03
Q3 Easiness of context description 3.7 ±0.94
Q4 Easiness of trackables exportation 3.9 ±0.73
Q5 Easiness of content objects exportation 4.0 ±1.05
Q6 Easiness of AR resources registration 3.9 ±0.74
Q7 BrowsAR usefulness 4.1 ±0.74
Q8 Intelligibility of CARP modeling 4.0 ±0.47
Q9 Practical applications of CARP 4.5 ±0.52

Table 6.1: Likert scale rating questionnaire with means and standard deviation (scale 1-5).

The first six questions concerned the CARE Modeler usefulness as well as easiness of use of
particular parts of the tool. To the first question Q1: "Please assess the usefulness of CARE Modeler
in modeling contextual AR environments." most of the participants responded that CARE Modeler was
a very easy-to-use tool, which can be helpful for modeling contextual AR presentations. Three of them
assessed that CARE Modeler was critical. The results of Q1 are presented in Figure 6.3a.

Concerning Q2: "Please assess easiness of the installation process of CARE Modeler." two
participants had a problem with the installation of the tool and assessed installation process as difficult.
The rest assessed the process as easy/very easy.

To the third question Q3: "Please assess easiness of context description." two subjects responded that
it was difficult to describe the context. This assessment could be an effect of entering beacon’s identifiers
in a wrong way. Each identifier consists of three components. By mistakenly entering an additional
character or changing the number, the AR presentation elements are not correctly identified by a beacon.
As a result, these participants had a problem with experiencing AR presentations created by them. For
the rest, the process of describing the indoor context was very easy.

Answers to questions Q4: "Please assess easiness of exporting content objects."; Q5: "Please assess
easiness of exporting trackables."; Q6: "Please assess easiness of registration of AR resources." were
assessed similarly – as very easy. In order to perform these tasks, the participants only needed to press
the appropriate button and wait for the response results that appear as GUI messages.

The BrowsAR usefulness (Q7: "Please assess the usefulness of BrowsAR.") was assessed as very
useful in most cases. Three subjects responded that the mobile application was a critical tool to explore
the AR environment. The results of the Q7 are presented in Figure 6.3b.

Question Q8: "Please assess intelligibility of the modeling contextual AR presentations." concerned
whether the process of modeling contextual AR presentations was intelligible for the participants. The
subjects assess the process as intelligible/very intelligible.

Finally, answer to question Q9: "Do you think that the use of contextual AR applications can have
a practical use?" – was rated very high. The participants agreed that contextual AR presentations could
have the practical use.
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(a) CARE Modeler (b) BrowsAR

Figure 6.3: Aggregated ratings of evaluated CARE tools using Likert scale (1-useless, 2-slightly useful,
3-useful, 4-very useful, 5-critical).

6.1.5. Discussion

The obtained results are promising and demonstrate that non-experienced participants were able to
finish tasks related to deployment and experience AR presentations in a shorter time using CARE tools
in comparison with the use of standard tools provided by Unity3D. The tasks were performed without
significant difficulties.

The collected data suggest that the CARE Modeler and the BrowsAR application were very useful
in prototyping and experiencing contextual AR presentations. For three of them, the tools were rated
as critical. None of the participants assessed usefulness level below three (useful). The results from
questionnaire show that describing indoor context was either easy or very easy – only two subjects had a
problem because they entered incorrect data and – as a result – they had a problem with location of their
AR presentations while exploring the AR environment.

The following limitations of the presented quantitative user study must be considered. First, the
research was performed within laboratory environment in which all CARE components worked together
in intranet network with no internet latency issues. In a real-world case studies, the success of
experiencing contextual AR presentations depends – on the one hand, on efficiency of searching and
delivering dCARPs and, on the other hand, on the speed of providing AR resources by distributed AR
service providers – both must be within an acceptable time. These components including the client-side
– in most cases – will not work in the same local network, and in a case when an AR service provider
does not perform very well, the overall time of building a particular CARP may be affected – including
user experience. Due to distributed nature of the CARE environment, however, other CARPs will not be
affected. Another issue is the limited sample size that can impact the confidence level of the study [45].

Moreover, the conducted user study has shown that non-experienced participants could acquaint
themselves with the problem of building contextual AR environments and were able to learn how to
model and experience contextual AR presentations – in most cases without significant difficulties. In
addition, BrowsAR allowed participants not only to experience single self-created CARPs, but after
switching the context, it was possible for them to access other CARPs created by other participants. In
contrast to the standard Unity design process, the participants were often updating their AR presentations,
and the results of the change were almost immediately visible in BrowsAR. What is important, the
participants did not have to recompile the code – they were only focused on modeling and exploring
AR presentations. It is worth to mention that the exploration activity has caused a lot of enjoyment for
the participants.
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6.2. Quantitative evaluation

This section presents a quantitative evaluation of the Semantic Augmented Reality Middleware
performance. Load testing was performed under various conditions to determine Semantic Augmented
Reality Middleware behavior – in particular the Search Service – that was configured in two different
ways. Moreover, the completion time of the SDMM method was measured to compare the method’s
performance versus Search Service response time.

The following subsections cover design of the study, characteristics of the test plan, procedures and
environment setup, followed by presentation of the performance results. Finally, discussion section is
provided.

6.2.1. Design of the study

The purpose of this study was to test the response time performance of Search Service and SDMM
with the use of a test plan imitating real-world user actions in large-scale CARE environments. The
test plan takes into account various configurations including the number of users performing at the same
time, ramp-up period, and duration of each test.

Table 6.2: Characteristics of the generated CARE knowledge bases.

KB contexts triples size
1 10 1237 168K
2 100 3071 743K
3 1K 18371 6.2M
4 10K 171091 61M
5 100K 1701371 604M

In order to perform the load testing, five test CARE knowledge bases were generated differing in
the number of context zones and the overall size of the triple base. Table 6.2 presents characteristics of
the created CARE KBs that have been provided to the Semantic Augmented Reality Middleware while
testing its performance. Each CARE knowledge base was built on the basis of contextually described
AR resources that have been pseudo-randomly generated. In turn, each AR resource was associated with
a pseudo-randomly generated context including a geographical location contained within the following
ranges:

• latitude: [52.378509, 52.440262];
• longitude: [16.845494, 16.999999].

Figure 6.4 visualizes geographical boundaries of the above ranges.

6.2.2. Test plan

Firstly, a parametrized test plan was designed with the use of JMeter [16]. The test plan describes
a series of steps imitating user actions executed against the middleware while exploring an AR
environment. Due to the fact that Search Service is a core element responsible for searching semantically
described AR resources on the basis of the user’s context, the service was tested in various configurations.
The test plan allows one to set:

• the number of users (threads),
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Figure 6.4: Visualization of geographical boundaries for the created test CARE knowledge bases.

• the ramp-up period,
• the duration of the test.

Each simulated user process executed the test plan in its entirety and independently of other users.
The ramp-up period expresses how long does it take to "ramp-up" to the full number of users chosen.
For instance, if 40 users test is performed and the rump-up period is 120 seconds, then jMeter will take
120 seconds to run all 40 simulated user’s processes. Thus, each process will start 3 seconds after the
previous has been launched.

Listing 6.1: The template of HTTP message body representing a user’s context.

1 {
2 "location":{
3 "latitude":52.${RANDOM_LATITUDE_VAR},
4 "longitude":16.${RANDOM_LONGITUDE_VAR}
5 },
6 "range":${RANDOM_RANGE_VAR},
7 "domain":${RANDOM_DOMAIN_VAR},
8 "deviceType":${RANDOM_DEVICE_TYPE_VAR},
9 "userDateTime":${RANDOM_DATE_VAR}

10 }

In order to test Search Service response times, a template of HTTP message body representing
a simulated user’s context was developed (as shown in Listing 6.1). The description consists of a
geographical location (lines 2-5), range (line 6), domain (line 7), device type (line 8), and date/time
(line 9).

The template uses randomized variables to generate user context. The following variables take
pseudo-random values in the specified ranges:

• RANDOM_LATITUDE_VAR: 378509 to 440262,
• RANDOM_LONGITUDE_VAR: 845494 to 999999,
• RANDOM_RANGE_VAR: 100 to 600.
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Additionally, values of RANDOM_DOMAIN_VAR and RANDOM_DEVICE_TYPE_VAR are
randomly generated on the basis of subclasses of the Domain and the DeviceType classes from ∆ and
Θ ontologies. Lastly, the RANDOM_DATE_VAR variable takes pseudo-random date and time.

On the basis of the template, jMeter generates HTTP request messages imitating users’ activity.
Listing 6.2 presents an example HTTP request message having in its body generated user’s context
generated by jMeter.

Listing 6.2: An example of pseudo-random end-user context encoded with JSON.

1 POST http://www.semantic3d.org/Semantic-ARP/rest/catalog/search HTTP/1.1
2 Connection: keep-alive
3 Content-Type: application/json
4 Content-Length: 486
5 Host: 150.254.204.55:8080
6 User-Agent: Apache-HttpClient/4.5.3 (Java/1.8.0_73)
7 {
8 "location":{
9 "latitude":52.437491,

10 "longitude":16.918441
11 },
12 "range":564,
13 "domain":"http://www.semantic3d.org/dr/daro#Shop",
14 "deviceType":"http://www.semantic3d.org/dr/deviceType#Smartphone",
15 "userDateTime":"2018-01-10T10:30:10.2"
16 }

6.2.3. Procedures and environment setup

Two experiments were carried out using the developed test plan. Each experiment consisted of a
series of tests that were configured in different ways.

The goal of the first experiment was to analyze the performance of Search Service and track
which configuration meets satisfied and tolerated user satisfaction levels specified in [129], when using
the CARE knowledge base with 1.701.371 triples (KB=5). Such a large-scale knowledge base can
correspond to multi-domain CARE environment configured for a medium-size city. In this experiment,
Search Service was tested in 11 configurations differing in the number of users performing at the same
time. Each test lasted 60 seconds, while the ramp-up period was set to 0.5 seconds. The SDMM method
has been set to the so-called firstEnds mode in which it returns only the first dCARP that is within
the user’s context – leaving aside the search for the best result. Within the experiment, the following
statistical data were collected: the number of samples, mean, standard deviation, median, 90th, 95th,
99th percentile, minimum, maximum of the response time of Search Service, and the Apdex index.
Finally, after running each test, an internal tool of the middleware was executed to collect the same type
of data related only to the SDMM method to compare them with the data describing the performance of
the whole Search Service.

The goal of the second experiment was to compare the performance of the Search Service in relation
to the size of a particular CARE knowledge base. Within this experiment, CARE knowledge bases from
1 to 5 have been used (table 6.2). The Search Service was configured in two ways, i.e., by returning
the first result – similarly as SDMM was set in the previous experiment (the firstEnds mode) – and by
returning the optimal result (the optimalEnds mode). The configuration of the test plan was the same for
each test, i.e., 100 users; 0.5 sec. for the ramp-up period; each test lasted 60 sec. After the completion
of each test plan, statistical data were collected including: number of samples, mean, standard deviation
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median, 90th, 95th, 99th percentile, minimum, maximum of the response time of Search Service, and the
Apdex index.

The Apdex index was calculated using the following formula:

Apdex =
C(s)+

C(t)
2

+0∗C( f )

C(a)
, (6.1)

where:

• C(s) – the number of samples of s1,s2, ...,sl in which response time is less or equal T time (the
so-called satis f ied level);
• C(t) – the number of samples of t1, t2, ..., tm in which response time is greater than T time and less or

equal 4T (the so-called tolerated level);
• C( f ) – the number of samples of f1, f2, ..., fn in which response time is greater than 4T time (the

so-called f rustrated level);
• C(a) – the sum of all samples (C(s)+C(t)+C( f )).

Taking into account specificity of mobile network applications, the satis f ied level has been set to 1
sec. (103 ms) and the tolerated level to 10 sec. (104 ms), following Nielsen [98] research on the subject.

Semantic Augmented Reality Middleware has been installed on Apache Tomcat Server v.8.0.41 run
within Ubuntu v.15.10 i686 with installed Java v.1.8.0_73. Java was set up with the following parameters:
-Xms2048m -Xmx2048m. The computer was equipped with in an Intel Core i7-2600K CPU 3.40GHz
eight-core processor.

6.2.4. Results and analysis

This subsection presents the collected results of quantitative evaluation as well as an analysis of two
conducted experiments.

Experiment 1

Table 6.3 presents the collected results of Experiment 1. The unit of columns 4 to 11 is millisecond.
The first test simulated 10 users, the second – 50, and each next test was increased by 50 users.

Table 6.3: Collected results of the Experiment 1 – Search Service.

Test Users Samples Mean SD Median 90th 95th 99th Min Max Apdex
1 10 10429 57 119 21 135 222 604 2 2608 0.999
2 50 11072 271 548 103 647 1080 2698 2 13614 0.972
3 100 10647 566 985 250 1371 2176 4852 2 17116 0.925
4 150 10640 852 1479 374 2095 3320 7341 2 36210 0.882
5 200 11415 1062 2044 440 2568 4159 9605 2 52698 0.858
6 250 10686 1424 2696 610 3358 5653 12467 2 62094 0.813
7 300 10830 1694 3477 668 3985 6830 16726 2 66746 0.797
8 350 11557 1852 3352 805 4520 7417 15300 2 62934 0.767
9 400 12054 2039 3720 887 4933 7958 18929 2 58119 0.751
10 450 12136 2289 4023 989 5604 9201 19875 2 65841 0.731
11 500 11991 2568 4367 1118 6386 10348 21784 2 66596 0.708
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First of all, what can be noted in the presented data, is the increase of response time in relation to the
number of users performing in each test. Consequently, the Apdex index decreases with each subsequent
test. The satis f ied level is exceeded by about 62 milliseconds of the mean response time for the test
number 5. The rest of mean response times are within the tolerated level.

The standard deviation (SD), in most cases, is significantly greater than the mean response time
signaling that SD (and also the mean) are affected by high results of response times in the data set. These
outliers may result from long-lasting processes of matching the geographical location of a user to AR
resources in specific cases.

To give a broader view of obtained results the 50th, 90th, 95th, and 99th percentiles of response time
were analyzed. In each test, the median is significantly lower than the mean time. For 50% of samples
the service execution took less than 103 ms for tests from 1 to 10. For more than 90% of samples the
service execution took less than 104 ms for all tests. Only for 5% of samples of test number 11 the
response time exceeded the tolerated level.

Table 6.4: Collected results in the Experiment 1 – SDMM method.

Test Users Samples Mean SD Median 90th 95th 99th Min Max Apdex
1 10 10429 56 117 20 133 221 577 1 2605 0.999
2 50 11072 270 548 102 646 1079 2701 1 13614 0.972
3 100 10647 565 985 248 1369 2175 4866 1 17115 0.925
4 150 10640 850 1479 372 2094 3320 7290 1 36205 0.882
5 200 11415 1059 2043 434 2566 4158 9611 1 52696 0.858
6 250 10686 1418 2696 604 3359 5653 12503 1 62050 0.814
7 300 10830 1685 3475 657 3977 6836 16733 1 66746 0.798
8 350 11557 1841 3352 792 4516 7422 15366 1 62932 0.769
9 400 12054 2029 3720 871 4917 7964 18939 2 58118 0.752
10 450 12136 2277 4023 971 5597 9202 19915 1 65693 0.733
11 500 11991 2560 4367 1109 6383 10347 21800 1 66596 0.71

In parallel, the same kind of data concerning the performance of the SDMM method (excluding
other elements of the CARE middleware service), have been collected (as presented in Table 6.4). The
results are convergent for all tests when comparing them to the data from Table 6.3 – the values are
slightly lower. The difference may indicate a small latency associated with transmitting messages over
the network.

Figure 6.5 presents the mean response time in relation to the number of users. What can be noticed is
the near linear relationship between the mean response time of Search Service and the number of users.

In turn, Figure 6.6 presents the Apdex index in relation to the number of users. The diagram shows
relatively small decrease of Apdex in relation to the number of users. However, the Apdex index is still
within the satisfied level even for hundreds of concurrent users, suggesting that Search Service performed
very well while conducting Experiment 1.
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Figure 6.5: Relationship between mean response time and the number of users.

Figure 6.6: The Apdex index of the Search Service.

Experiment 2

Tables 6.5 and 6.6 present results obtained in Experiment 2 – the Search Service performance related
to the use of different CARE knowledge bases configured by means of the firstEnds and optimalEnds
modes, respectively.

What can be first noticed in both tables (6.5 and 6.6), is the rise of the mean response time in relation
to the size of CARE knowledge bases. For the firstEnds mode, the increase is in an acceptable limits and
almost all results stay under the satisfied level for each knowledge base. Only 1% of data of the test with
KB=5 exceeded 4957ms (about 5 sec.).

In contrast, in the case of the optimalEnds mode, the test with KB=5 (Table 6.6) shows that most
of the results exceeded the tolerated level. This may be due to the limited capabilities of the used
hardware equipment (a regular PC). To verify the possibility of using very large knowledge bases (at
the level of hundreds of thousands context ranges), the test has been repeated on enterprise-level server
infrastructure.

Table 6.7 presents the results obtained from the repeated Experiment 2 performed on a virtual
machine installed on a cluster with 4 Intel Xeon E7-2830K CPU 2.13GHz four-core processors running
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on Windows Server 2008 x64 with installed Java v.1.8.0_73. The machine was equipped with 32 GB
of RAM. In that case, the performance of Search Service configured in the optimalEnds mode was
significantly better when compared with data from Table 6.6 – especially for the largest knowledge base
(KB=5) with 105 context ranges. At least 50% of results are within the tolerated level.

Table 6.5: Results of Search Service configured in the firstEnds mode on PC.

KB Samples Mean SD Median 90th 95th 99th Min Max Apdex
1 262411 9 27 1 22 60 140 0 449 1.000
2 163246 34 63 2 117 167 284 0 773 1.000
3 41164 144 134 111 328 405 569 1 1288 1.000
4 13495 443 560 229 1258 1776 2421 1 4488 0.933
5 11131 539 1034 224 1286 2177 4957 1 20457 0.930

Table 6.6: Results of Search Service configured in the optimalEnds mode on PC.

KB Samples Mean SD Median 90th 95th 99th Min Max Apdex
1 232918 11 30 1 28 69 158 0 454 1.000
2 154974 36 66 2 121 176 295 0 846 1.000
3 29970 199 140 176 389 463 616 2 1092 1.000
4 3152 1912 484 1877 2537 2758 3266 610 3883 0.508
5 389 18917 1930 18695 20437 21499 28592 14509 33270 0.000

Table 6.7: Results of Search Service configured in the optimalEnds mode on enetrprise server.

KB Samples Mean SD Median 90th 95th 99th Min Max Apdex
1 179699 2 5 0 15 16 16 0 110 1.000
2 145404 3 6 0 16 16 16 0 172 1.000
3 54117 98 230 15 405 608 1029 0 3183 1.000
4 6162 968 310 967 1279 1404 1992 31 4306 0.793
5 698 9136 972 9220 10311 10608 11218 5319 11856 0.413

Figure 6.7 presents results obtained on two different computer systems. What can be observed, is the
near linear relationship between the mean response time and the number of context ranges – especially
for knowledge bases with 1000 context ranges and larger. This observation means that the CARE system
is scalable and can be used for very large knowledge bases, provided that appropriate hardware and
software environment is employed.

6.2.5. Discussion

The findings suggest that an application of semantic web techniques can be an efficient solution
to search contextually described distributed resources constituting interactive AR presentations. Two
performed experiments have shown that semantically described AR resources can be selected, matched,
and provided in an acceptable time. The Search Service was able to perform well, even for large
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Figure 6.7: Relationship between the mean response time and the number of context ranges using the
optimalEnds mode for PC and enterprise server.

knowledge bases – up to several hundreds thousands context ranges – which can cover a medium-size
city with AR presentations in multiple domains.

Increasing the number of users performing at the same time caused a slight decrease of performance
of Search Service, as well as SDMM in Experiment 1. In the second experiment, the size of a particular
knowledge base had an impact on the final results. The mean response time near linearly increased in
relation to the number of users and the number of context ranges, indicating that the CARE system is
scalable and can be used for very large knowledge bases.

What is important in the presented approach, is that separate knowledge bases can be created for
different application domains and different geographical regions, thus limiting the maximum necessary
size of the KB and greatly improving performance of the Search Service. Also, the SARO ontology could
be extended with a City ontology providing classes, such as District, Suburbs, Streets, Address, etc., by
means of which a more precise description of context could be possible.

The presented results contribute to filling the gap concerning the performance evaluation of
augmented reality systems supported with semantic web techniques. While the solutions introduced
within Chapter 2 Section 3.3.2 look promising, little, or no attention has been paid in the existing
literature regarding to the quantitative analysis of the performance of presented works.
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7. Conclusions

Despite the current success of the augmented reality technology, including significant progress in the
development of AR applications and the rapid growth of the AR market, many research areas related to
AR have not yet been sufficiently addressed. One of such areas is the dynamic contextual composition
of AR presentations based on data coming from independent distributed sources. The CARE approach,
which is the main contribution of this dissertation, goes beyond the current state of the art in the field of
AR by providing a generic solution to the problem of building ubiquitous contextual AR environments,
in which AR presentations are not dependent on a specific application, platform or device, but elements
forming AR experiences are independently provided by the available external sources. In CARE, the
key mechanism responsible for automatic selection and composition of AR resources is based on the
user’s context. The context reflects which real-world objects should be augmented and with what kind
of content, taking into user’s preferences, date, time, outdoor and indoor location, the user’s device type
and its capabilities.

The presented solution detaches AR applications from specific multimedia content, data, and
trackables, which now may be provided by independent AR service providers. Moving AR resources
outside applications permits to overcome the main limitation of current AR applications, i.e.,
fragmentation of functionality between various specific applications. With the use of CARE, users can
freely experience AR presentations in a continuous and contextual manner using a single browser.

The possibility of combining in a single AR presentation resources coming from different distributed
service providers enables building a new class of ubiquitous AR systems and is a key to application
AR technology to new application domains. For example, in a city AR service, trackable markers
may come from municipal services, content objects from different providers of AR services, while
scenarios from application developers. Only in such a heterogeneous environment, practical ubiquitous
AR environments may be realized.

The "heart" of CARE – the SARO ontology – is based on a generic data model that enables to link
AR resources and service providers to various elements of the user’s context. SARO is built on top of the
well-known standards, such as the Geography Markup Language Encoding Standard (GML) and W3C
OWL-time ontology. The use of standards facilities adoption of the presented ontology in other systems
in which the user’s context plays an important role. In addition, in the context description, SARO not
only supports outdoor positioning, but also indoor environments by the use of Indoor Position Detection
Ontology. CARE enables to semantically describe AR resources and service providers that can be further
searched, matched, combined, and presented within rich context-dependent AR presentations. This
functionality is provided by the SDMM method. Moreover, SDMM allows users to re-search, re-match,
re-combine, and re-present AR presentations based on the continuously changing user’s context.

CARE provides easy-to-use software components: CARE Modeler, BrowsAR, Semantic Augmented
Reality Middleware, and AR service providers supported with semantics, which can be used in modeling
as well as exploring large-scale CARE environments – by designers that do not require to have technical
skills and end users accessing the presentations.
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The obtained evaluation results, presented in Chapter 6, contribute to filling the gap concerning the
performance evaluation of augmented reality systems supported with semantic web techniques. These
findings suggest that application of semantic web techniques is a viable solution to the problem of
building dynamic contextual AR presentations. Two performed quantitative experiments have shown that
semantically described data can be selected, matched, and provided in a reasonable time – not disturbing
end users.

This dissertation makes several major contributions to the field of augmented reality. These
contributions are as follows:

1. A literature review of augmented reality technology including application of semantic web techniques
to AR. The focus of this review is on the diversity of AR application domains including areas
supported with semantics. Also, a review of AR software packages and frameworks widely used
for building AR applications has been provided.

2. The CARE Architecture, which enables execution of complex and extensive computation of semantic
processing of distributed AR resources on the server-side, while contextual AR presentations are
designed, dynamically formed and rendered in real time on the client-side.

3. Formal definition of Contextual Augmented Reality Environment. The model formalizes the concepts
of various types of AR resources, AR service providers, CARE user’s context, contextual AR
presentation, its description, and the CARE environment.

4. Semantic Augmented Reality Ontology used to model large-scale contextual distributed augmented
reality environments. SARO covers various elements of the user context, such as preferences, time,
date, indoor and outdoor locations, a device type, its capabilities, and also context-depended AR
resources and AR service providers.

5. A novel declarative language, called Contextual Augmented Reality Language, that supports
modeling contextual AR environments.

6. Semantic Discovery and Matching Method – the method and algorithm of semantic discovery and
matching AR resources constituting contextual AR presentations.

7. Software components: CARE Modeler, BrowsAR, Semantic Augmented Reality Middleware, and
multiple AR service providers.

8. The qualitative user study demonstrating that non-experienced users are able to perform the tasks of
AR environment modeling and exploring without significant difficulties in a shorter time with the use
of the proposed software tools in comparison to standard tools. The collected data suggest that CARE
Modeler and BrowsAR were useful for prototyping and experiencing contextual AR presentations.

9. The performance evaluation of the CARE system including – inter alia – the mean response time,
throughput, the Apdex index – taking into account multiple test configurations differing in the number
of simulated users performing at the same time as well as knowledge bases of different sizes.

To summarize, the goal of this dissertation has been fully achieved. Performed experiments and
obtained results presented in Chapter 6 prove that the CARE approach enables efficient modeling of
large-scale contextual distributed augmented reality environments.

There are areas of potential future research. First, the limitations discussed in Chapter 6 can be
addressed. A qualitative user study is recommended to be repeated outside the laboratory environment,
i.e., in such conditions in which all software components including elements of the server and the
client sides work in different networks – to explore how internet latency may affect experience of users
performing in a CARE environment. While the CARE system has succeeded in laboratory conditions,
there is still a pending question how it would perform in an open real-world environment.
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Second, since AR glasses are not yet available and accessible for mass usage, further research on
the usability of CARE on such devices is needed. In the near future when this kind of devices will have
a chance to be widely adopted in the daily use – just as mobile phones today – it will be important to
conduct experiments how users perform in CARE with this type of devices.
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AR – Augmented Reality
ARP – AR Service Provider
ARR – AR Resource
CARE – Contextual Augmented Reality Environment
CARL – Contextual Augmented Reality Language
CARP – Contextual Augmented Reality Presentation
CUC – Contextual User Context
dCARP – Description of Contextual Augmented Reality Presentation
GML – Geography Markup Language Encoding Standard
IRI – Internationalized Resource Identifier
KB – Knowledge Base
RDF – Resource Description Framework
RDFS – Resource Description Framework Schema
RV – The Reality-Virtuality continuum
SARO – Semantic Augmented Reality Ontology
SDMM – Semantic Discovery and Matching Method
SPARQL – Protocol And RDF Query Language
VR – Virtual Reality
W3C – World Wide Web Consortium
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