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Abstract: Wind energy (WE), which is one of the renewable energy (RE) sources for generating
electricity, has been making a significant contribution to obtaining clean and green energy in recent
years. Fitting an appropriate statistical distribution to the wind speed (WS) data is crucial in analyzing
and estimating WE potential. Once the best suitable statistical distribution for WS data is determined,
WE potential and potential yield could be estimated with high accuracy. The main objective of this
paper is to propose a novel approach for calculating wind energy potential. For this purpose, the
Efficient Global Optimization (EGO) technique was proposed for fitting a statistical distribution to
WS data and the performance of the technique was compared with genetic algorithm (GA), simulated
annealing (SA), and differential evolution (DE). Performance metrics showed that EGO is providing
better estimations compared with GA, SA, and DE. Based on Weibull parameters obtained by using
EGO, potential WE and potential annual revenue were estimated for Gdańsk, which is the capital of
Pomerania Voivodeship in Poland, in the case of having city-type wind turbines in the city center.
Estimations for Gdańsk showed that city-type wind turbines might be helpful for producing electricity
from WE in the city without being limited by constraints such as having a long distance between wind
turbines and buildings. If such wind turbines were erected on the roofs of residential buildings, malls,
or office buildings, there is a possibility that part of the electric energy needed for such buildings
could be generated using WE. However, this topic should be further investigated from technical and
financial perspectives.

Keywords: renewable energy; energy transition; wind energy; energy prices; efficient global
optimization (EGO); Weibull distribution

1. Introduction

The subject of the article is the issue of WE production, which is an important source of
RE in the world. Undoubtedly, the topic raised is relevant to the energy transition currently
taking place in most of the world’s economies [1–3]. The main objective of the energy
transition is to move from the dominant role of fossil/nuclear fuels to the consideration
of diverse RE sources, where WE, if the physical conditions are right, can represent a
significant share of the RE portfolio [4–6]. Due to the systematic growth of global energy
demand, the rational use of energy from renewable sources is one of the most important
elements of sustainable development, bringing tangible effects for humanity as well as
energy and ecology [7–10].

It should be emphasized that the production of RE and the implementation of energy
transition has been possible for two decades at least. It turns out that it was only the occur-
rence of appropriate institutional, economic, and social changes in economies that allowed
the real energy transformation of entire economies to begin, including state structures,
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local governments, businesses, and citizens [11–16]. Undoubtedly, most of the significant
changes are due to the globalization processes that have been developing systematically
for nearly 30 years. These processes have resulted in a significant increase in the interde-
pendence between all markets [17–20]. This has contributed to a significant increase in
the socio-economic level of countries [21–24]. Global economies are experiencing strong
growth, which is being attributed to the increase in investment and the level of innova-
tion [25–30]. In addition, we should notice the increase in the level of wealth of society, the
emergence of new patterns of consumption, and changes in the labour market [31–39]. All
this has contributed to the fact that both the production of RE from the national level to
the level of the individual consumer and other activities related to the energy transition
have found ground for implementation. In the case of the European Union (EU) member
states, including Poland, the processes of energy transformation are intimately linked to
the achievement of the Sustainable Development Goals [40–43]. It should be noted that
many efforts also indicate that the effective implementation of energy transition processes
requires bottom-up involvement and consideration of energy justice [44].

Significant development of RE in Poland took place at the beginning of the second
decade of the 21st century when the process of implementing the third energy package and
the implementation of the ambitious goals of the EU’s climate policy started to be in charge
under the commitments’ so-called “20-20-20 in 2020”, i.e., increasing energy efficiency by
controlling energy consumption more, increasing the share of RE, and reducing carbon
dioxide emissions [44]. RE sources are undoubtedly seen by European decision makers
as a solution to reduce emissions [4]. RE sources are an alternative to primary and non-
renewable hydrocarbon fuels. Although RE is characterized by the cyclical replenishment
of resources in natural processes, the level of consumption of this type of energy as a
primary energy source is still low [5,6]. As shown in Table 1, the capacity of renewable
sources has been increasing since 2010 and showed a significant increase in 2020. However,
the capacity is not at the desired level to be able to use RE as a primary energy source.

Table 1. Installed capacity of RE sources [45].

Type of RE Installation
Installed Capacity [MW]

2010 2015 2020

Biogas 82.884 212.497 255.699
Biomass 356.190 1122.670 1512.885

Photovoltaics 0.033 71.031 887.434
Wind Energy 1180.044 4582.036 6347.111
Hydropower 937.044 981.799 976.047

Total 2556.423 6970.033 9979.176

Total global wind capacity is currently up to 743 GW, helping the world avoid over
1.1 billion tons of CO2 per year equivalent to the annual CO2 emissions in South America.
However, WE sources with the capacity of 180 GW should be activated each year in
the world to avoid the worst effects of climate change. This means that industry and
policymakers must act quickly to accelerate the switch from traditional energy sources to
RE sources [46,47].

In spite of the termination of China’s feed-in tariffs (FiT) and the planned phase-out of
the United States’ full-rate Production Tax Credit (PTC), the world’s two largest economies
increased their combined market share by 15 percent to 76 percent [46].

A record for onshore installations was also achieved in the Asia Pacific, North America,
and Latin America regions in the calendar year 2020. According to the International Energy
Agency, in these three regions a total of 74 GW of new onshore wind power was installed.
This represents a 76 percent increase in capacity over the previous year. There was just a
0.6 percent year-over-year (YoY) rise in new onshore wind installations in Europe last year,
which was due to the slow recovery of onshore wind installations in Germany. There were
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8.2 GW onshore installations in Africa and the Middle East last year, which is almost the
same as in 2019 [46].

The main objective of this paper is to propose an approach to the problem of WE
generation that will ensure the highest efficiency of the energy generation process and the
economic viability of this process. In order to achieve the objective, the authors developed
the following added values: an overview in terms of development of WE in Poland and
Pomerania Voivodeship, which is the area in Poland with significant potential when it
comes to WE, was carried out; a novel approach was proposed for fitting a statistical
distribution to WS data for estimating WE potential in a more efficient way; the discussion
was conducted about the potential benefits of having a city-type wind turbine in the city.

The city-type wind turbine offers a possibility to install the turbines on the top of
buildings in the city and, thanks to this, residents in each building could generate part of the
electricity that they need. This could potentially make the transition to WE from traditional
energy sources faster, as installing this type of turbine would not require big spaces, long-
lasting investment planning, or any other limitations. For these purposes, within the scope
of the study, WS data in an hourly format for almost the last seven years for Gdańsk (Poland)
were obtained from a third-party provider. The two-parameter Weibull distribution (TPWD)
was then fitted to WS with the help of Maximum Likelihood Estimation (MLE). Efficient
Global Optimization (EGO) was used on top of MLE to find optimum parameters of TPWD.
Moreover, performance of EGO was compared with performance of GA, SA, and DE,
which are the algorithms that have been used by researchers in the literature to fit statistical
distribution to WS. To compare the performances, root mean squared error (RMSE) and
coefficient of determination (R2) were used. Parameters were obtained for each month and
annual data by using each technique. Comparisons were provided. By using parameters
of TPWD for annual data, potential WE was estimated for Gdańsk, which is the capital of
Pomerania Voivodeship in Poland, for the case of having city-type wind turbine in the city
center of Gdańsk.

The construction of the paper is as follows: Section 2 focuses on a brief history of WE
in general, the development of WE in Poland, and WE potential in Pomerania Voivodeship.
Section 3 describes the methodology used in the study. Section 4 covers details about
dataset used in the study. In Section 5, results are discussed, while Section 6 concludes the
study and provides information about potential further research studies.

2. Development of the WE Market in Poland
2.1. WE: A Brief History

WE has been used by humans for a really long time, alongside sunlight, e.g., to dry
agricultural crops. It is also worth remembering that important geographical discoveries
were possible thanks to WE that “powered” sailing ships [47,48].

In early 2000 BCE, Egyptians used WE to propel their boats. The Code of Hammurabi
(circa 1750 BCE) shows that WE was also used in Persia. In India, in the fourth century
BCE, the first windmill was used for pumping water and already in the second century
BCE in China windmills were used to irrigate farmland. At the beginning of our era, the
first windmills were constructed in the Mediterranean countries [48].

The first European windmills appeared in England in the 9th century, in France in the
11th century, and in the 13th century they became popular in all Western Europe. The oldest
image of a windmill in Europe is on the first page of an English manuscript from 1270.
Originally, the windmill was a wooden “booth” that was rotated around a centrally located
pole to set the wings to the wind. The revolution in the construction of windmills was made
by the Dutch, who in 1390 introduced four-wing structures. The “Dutch” type windmills
gained popularity in Europe in the 17th century [48].

The industry became more interested in wind power plants in the early 1980s. As an
initiative of Danish power companies, a turbine with a capacity of 660 kW was developed.
The following years were marked by the resolution of many technical problems related
to the generator’s construction, mechanical strength, and the selection of appropriate
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materials for the towers and rotor blades. In the last 20 years, a real “boom” in aero energy
in the world has been happening [48].

The first Polish wind turbines were erected in the 1930s in Podkarpackie, a region in
the south-east of Poland. Before the outbreak of World War II, 504 wind turbines were
in operation in Poland. The first Polish wind potential map was published in 1958 in the
book by Rynkowski entitled Small Wind Farms. The first wind turbine in Poland based on
the new technology was erected in 1991 in Żarnowiec, a village in the north of Poland,
as a replacement for the existing hydroelectric power plant. The first Polish wind farm
(6 × 800 MW) was built in Barzowice in Pomerania Voivodeship in 2001 [48].

2.2. WE in Poland and Pomerania Voivodeship

Until 2016, WE was developing well in Poland (Table 2). As a result of the entry
that went into force in 2016 regarding the act on investments in wind farms, there was a
stagnation on new WE projects. The barrier is the inability to meet the requirement of a
minimum distance of 10 × H (H = total height of the wind turbine with the blade in full
elevation) from the buildings [49,50].

Table 2. Dynamics of the WE market in Poland [51].

Year Installed Capacity of Onshore Wind Installations [GW]

2013 3.39
2014 3.83
2015 4.58
2016 5.81
2017 5.85
2018 5.86
2019 5.92
2020 6.35
2021 ≈6.80

The progressive inclusion of the most advanced projects in 2018–2020 has resulted
in an increase in new onshore wind farm capacity seen in late 2020 and 2021. As a result,
the installed capacity potential increased to approximately 6.80 GW [52] and in the next
two or three years it is planned to exceed 10 GW [52]. The government’s announcements
of distance regulation are likewise positive, with the expectation of another investment
“boom” of 3–4 GW by 2025 [53].

The strategic objective is to maximize the potential of Polish onshore wind energy. By
2030–2035, the Polish Wind Energy Association (PWEA) [48] anticipates that Poland will
be able to generate 22–24 GW of energy from wind [53]. Clean electrical energy derived
from the most sustainable RE sources is important to maintain the Polish economy’s
international competitiveness. Every single additional gigawatt to wind farm capacity
results in significant cost savings. It has a direct effect on the wholesale price of electricity,
which has decreased by an average of more than PLN 20/MWh on the wholesale market
since 2007. Poland’s energy system appears to be defying global trends. Fossil fuels—hard
coal and lignite—continue to account for a share of domestic output; nonetheless, the share
of RE continues to expand. In 2020, coal’s proportion in the energy mix fell below 70% for
the first time in history. In 2020, over 28 TWh of electricity was generated from RE sources,
including nearly 16 TWh from WE. Poland’s energy production is becoming increasingly
uncompetitive as CO2 emissions and domestic coal costs continue to grow. WE is the most
advantageous alternative to fossil fuel based energy production [54].
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2.3. WE in the Pomerania Voivodeship

As shown in Figure 1, at a height of 140 m the Pomerania Voivodeship has exceptionally
excellent WE conditions. The Voivodeship is particularly well-suited to the growth of WE,
both on land and at sea. Offshore WE might serve as a propeller for regional businesses,
such as shipyards, which already supply components for the offshore industry [55].
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WE capacity in Pomerania Voivodeship is 786 MW [56]. Taking into consideration the
available area of the Polish exclusive economic zone (which is expected to grow to 2000 km2

by 2030), wind conditions, productivity, and installed power density (6 MW/km2), the
theoretical potential is estimated to be 12 GW, with an approximate energy generation of
48–56 TWh, according to the draft program for the development of offshore wind energy
and maritime industry.

The first wind farm in the Pomerania Voivodeship, with a capacity of 150 kW, was
established in 1991 in Lisewo near Gniewino. In the same year, a 90 kW power plant was
built in Swarzewo near Puck (currently closed). Since 2005, following Poland joining the
EU when some legal barriers were removed, the number of investments in WE have started
to increase [57].

The Energy Regulatory Office issued a license for the largest wind farm in Poland,
which is located in the Pomerania and West-Pomerania voivodeships. The investment was
carried out by the Potęgowo company belonging to the Israeli Mashav fund. Its power is
219 MW. The Potęgowo wind farm is located in the Słupsk and Sławno districts. It consists
of 81 General Electric turbines with a capacity of 2.5 MW and 2.75 MW. For its construction,
the investor received a loan from the European Bank in the amount of PLN 209 million.
The total cost of the investment was PLN 1.25 billion. The farm also won an auction to
supply electricity [51,58].

The Airport Wind Farm, which has a capacity of 90 MW, was officially inaugurated in
the Voivodeship in 2015. PGE Energia Odnawialna S.A., a subsidiary of the PGE Capital
Group, is the company that owns and operates the power plant. The Airport Wind Farm is
the largest renewable energy investment made by the PGE Group since May 2014 [58].

The area available for the construction of wind farms in the Pomerania Voivodeship,
including the buffer zone 2150 m from residential buildings, is 2716 km2 (Figure 2).
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The area available for the construction of wind farms in the Pomerania Voivodeship,
including the buffer zone 2150 m from protected areas such as national parks, landscape
parks, and nature reserves, is 2552 km2 (Figure 3). The available area for wind farm
construction in the Pomerania Voivodeship, including the buffer zone 200 m from forests (a
condition regarding protecting bats), is 9568 km2 (Figure 4).
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The area available for the construction of wind farms in the Pomerania Voivodeship,
including the hydrographic network and the 90 m buffer zone (propeller length 75 m
increased by an additional 15 m) from the surface waters, is 3106 km2 (Figure 5). The
available area for the construction of wind farms in the Pomerania Voivodeship, including
the infrastructure network and the 90 m buffer zone (propeller length 75 m increased by
an additional 15 m), is 15,820 km2 (Figure 6). Even after taking into consideration all the
restricting factors, the accessible land area amounts to only 60 km2 or less than 0.3 percent
of the total land area of the Pomerania Voivodeship (Figure 7).
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3. Methodology

In recent years, WE has made a substantial contribution to the production of clean
and green energy. It is vital to be able to examine and estimate WE potential by fitting
an appropriate statistical distribution to the WS data. Hourly WS data for Gdańsk over
the last seven years were gathered from a third-party provider for this purpose as part
of the study’s scope. Then, using MLE, TPWD was fitted to the WS data. EGO, GA, SA,
and DE were utilized to find the optimum TPWD parameters that maximize the likelihood
function. Performance metrics were calculated to compare the performance of EGO with
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other methods. Following this, potential WE for Gdańsk, the capital of the Pomerania
Voivodeship in Poland, was evaluated using TPWD parameters.

3.1. Parameter Estimation for Distribution of WS

Because of the intermittent nature of WS, it is necessary to understand and analyze
the statistical properties of WS that have a substantial impact on WE and the design of
power generators [56]. Probability distribution functions (PDF) are a way to describe how
the random variables are likely to behave. The PDF can help to describe the change in
WS over time. For the purpose of depicting WS patterns, several probability distributions
such as Weibull, lognormal, gamma, Rayleigh, and mixed distributions are utilized, among
others [52,59,60]. TPWD is widely used in the literature. The Weibull is flexible and is
proven to fit WS data very well [52,61]. The parameters of the TPWD are shape and scale.
An accurate assessment of the Weibull parameters is required to anticipate WE potential
and understand WS characteristics. In order to determine the optimal parameters of the
Weibull distribution (WD), researchers have developed a number of different ways over
the years. The graphical method (GM), the moments method (MOM), the least-squares
estimation (LSE), and (MLE) are the most frequently used methodologies [62,63].

Justus et al., proposed an approach [64] that employs mean and standard deviation
of WS for estimating parameters of WS PDF. Stevens and Smulders used MLE to find
parameters of WS PDF [63]. Jowder compared the empirical techniques to the graphical
approaches and found that empirical techniques produce more accurate results [65]. For
the parameter estimation, Akdag and Dinler proposed the power density factor and energy
pattern factor [62]. The novel method was used for several locations in Turkey and the
findings were compared with those produced using the GM and MLE methods. George
compared five alternative approaches for calculating shape and scale parameters of the
TPWD [66]. The maximum likelihood method outperformed among others. Chang ex-
amined six approaches for estimating the parameters of the WD: GM, MOM, empirical
method (EM), MLE, modified MLE, and energy pattern factor/power density method
(EPFPDM) [67].

Researchers also used the equivalent energy method to estimate parameters of the
WD [68,69]. The performance of parameter estimation of the WD is also influenced by the
sample size [70]. To predict Weibull parameters, probability-weighted moments based on
the power density method (PWMBP) was used and PWMBP outperformed among other
methods [71].

Aside from numerical approaches, a metaheuristic optimization algorithm can be used
to estimate parameters. The parameters can be determined using various optimization
algorithms. Chang used particle swarm optimization (PSO) to estimate parameters of the
WD. PSO was used to estimate parameters using WS data collected from several climatic
zones in Taiwan [68].

Wu et al. [72] proposed logistic distributions for assessing the WE potential in In-
ner Mongolia using maximum likelihood estimation. Using multi-objective moments,
Usta et al., developed a novel approach for estimating the parameters of the WD [73]. To-
sunoglu [74] focused on fitting several distributions to WS data for Turkey. MOM, MLE,
and probability-weighted moments (PWMs) methods were applied. Chaurasiya et al. [75]
applied nine numerical approaches for estimating the shape and scale parameters of the
WD for calculating wind power in southern India. The results showed that shape and scale
parameters have a significant impact on wind power calculations [76]. The least-squares
method was applied to find the parameter of the WD [77,78]. For estimating the single
and combined parameters of probability distributions, Alrashidi et al. [77] introduced
a new metaheuristic optimization algorithm. Gungor et al. [79] explored the suitability
of four different numerical approaches for estimating the WD parameters for WS data.
Kumar et al. [80] concentrated on MLE using the differential evolution technique.

According to the reviewed literature, the TPWD is the most general distribution
for representing WS distribution and assessing WE potential. To estimate the parameter,
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the researchers used a number of strategies to optimize the distribution’s log-likelihood
function. It is also noticed in the literature that researchers mostly use RMSE and R2 for
comparing performance of different optimization algorithms while estimating statistical
distribution of WS. This study is primarily concerned with MLE and EGO.

3.2. Estimating Parameters of WD Using MLE

Modern estimation theory has application in a wide variety of fields, spanning from
statistics to economics, engineering design, and many more. For a vast majority of ap-
plications, the estimation of an unknown parameter is required based on a collection of
observations. Different parameter estimation methods can be found in the literature, the
most common ones are GM, MLE, and MOM. Because of its theoretical capabilities, the
MLE is often preferred over other methods.

The likelihood function is maximized by a set of parameters, which are MLE esti-
mations. When fitting a distribution to the WS data, the TPWD is commonly used. The
distribution function can be written as shown in Equation (11) [80].

f (x) =
(

k
c

)( x
c

)k−1
e−(

x
c )

k
, x ≥ 0, c > 0, k > 0 (1)

The WD likelihood function is as shown in Equation (1).

L =
N

∏
i=!

(
k
c

)( x
c

)k−1
e−(

x
c )

k
(2)

and its log-likelihood function will be:

log(L) = Nlnk− Nclnc−∑N
i=1

( xi
c

)k
+ (k− 1)∑N

i=1 lnxi (3)

The EGO is used and compared with other techniques such as GA, SA, and DE
for optimizing the log-likelihood function of the WD in this study. Detailed results are
presented in the following section.

3.3. EGO

EGO is closely linked with kriging metamodeling. The EGO approach is focused on
solving optimization problems in a low number of function evaluations and the approach
offers clear stopping criteria based on expected improvement (EI). The EI function is
produced based on the Kriging model. To get a new sampling point, the EI function is
maximized. Then this new data point is added to the initial set. This process is repeated
until the EI function value does not change significantly.

The Kriging model can be simply defined as shown in Equation (4), where
x(i) =

(
x(i)1 , . . . , x(n)k

)
and y (i) = y

(
x(i)
)

.

y
(

x(i)
)
= µ + ε

(
x(i)
)

(4)

In this equation, µ is the mean of the stochastic process; ε
(

x(i)
)

is normally distributed

independent error term with mean zero and variance σ2. Correlation between ε
(

x(i)
)

and

ε
(

x(j)
)

could be defined as shown in Equation (5) [81].

Corr[ε(x(i)), ε(x(j))] = ∑k
h=1 θh

∣∣∣xi
h − xj

h

∣∣∣ph
, θh ≥ 0, ph ∈ [1, 2], i, j = (1, . . . , n) (5)

θh is importance measuring for the variable xh and ph is the smoothness parameter
of the correlation function. µ and σ2 are unknown. They can be estimated by using the
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parameters of the correlation function which are θh and ph. For estimating the parameters,
MLE is used. Likelihood function could be written as shown in Equation (6) [81]:

L =
1

(2π)
n
2 (σ2)

n
2 |R|

1
2

exp

[
− (y− 1µ)′R−1(y− 1µ)

2σ2

]
(6)

where y = (y(i), . . . , y(n)) is the n-vector for response values and 1 is a vector of ones.
Since µ and σ2 are unknown, estimations of µ and σ2 could be calculated as shown in
Equations (7) and (8).

µ̂ =
1′R−1y
1′R−11

(7)

σ̂2 =
(y− 1µ̂)′R−1(y− 1µ̂)

n
(8)

By changing the Equations (7) and (8) with µ̂ and σ̂2 from the likelihood function,
“concentrated likelihood function” is created. It depends only on θh and ph. Denote that r
gives the correlation between the error terms for x*, which is not observed previously, and
the error for x, which is observed previously. The correlation between those two could be
written as shown in Equation (9).

r(x∗) ≡ Corr[ε(x∗) , ε(x)]. (9)

After having all the equations together, the Kriging model can be converted into the
form shown in Equation (10).

ŷ(x∗) = µ̂ + r′R−1(y− 1µ̂
)

(10)

Following the process of creating the Kriging model, EI criteria is described as follows.
Denote that the function y = f (x), the improvement (I) over fmin, which is the minimum
response value of f (x). The improvement now can be defined as

I =
{

( fmin − y), y < fmin
0, otherwise

. (11)

When y has normal distribution with ŷ mean and s2 variance, expected value of I can
be calculated by following Equations (12) and (13).

E(I) =
∫ fmin

−∞
( fmin − y)φ(y)dy (12)

Expected Improvement (EI) function can be shown as follows:

EI = ( fmin − ŷ)Φ
(

fmin − ŷ
s

)
+ sφ

(
fmin − ŷ

s

)
(13)

where Φ () is cumulative distribution function (CDF) and φ is PDF of a standard Normal
distribution [81].

4. Data

The hourly WS dataset for Gdańsk (latitude: 54.352◦ N, longitude: 18.646◦ E, 10 m.
height) over the last seven years between 1 January 2015 and 26 July 2021 was gathered
from Open Weather Map [82]. Then, using MLE, the TPWD was fitted to the WS data for
each month and the annual data. For the purpose of determining the optimal parameters of
the WD that maximize the likelihood function, the SA, GA, DE, and EGO were applied and
performance of the techniques was compared. Following the obtaining of the parameters,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2022, 15, 3159 12 of 22

potential WE and wind power for Gdańsk, the capital of the Pomerania Voivodeship in
Poland, were calculated.

The dataset contains 60,100 rows and 25 columns and it provides information about
WS, minimum temperature, maximum temperature, pressure, wind angle, amount of rain,
amount of snow, information about how the weather looks (rainy, snowy, etc.).

Table 3 shows summary statistics regarding monthly average of WS and minimum and
maximum temperatures in Celcius
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. As shown in the table, the warmest month for Gdańsk
is August and the coldest month is January. Table 3 also presents the monthly average
of WS (m/s) in Gdańsk. As shown in the table, the monthly average WS does not differ
dramatically between months within a year. According to the table, it can be concluded
that the months in which the average WS is higher than others are April, December, and
May. The lowest WS average is observed in August.

Table 3. Average WS, minimum temperature, maximum temperature per month in Gdańsk between
1 January 2015 and 26 July 2021.

Month Average
WS (m/s)

Min. Temperature
(Average—Celcius
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Since obtaining the dataset from the third-party vendor was easy and quick and since
the dataset contains hourly WS information for almost seven years, it was preferred to be
used in the study. However, variables, including WS, in the dataset were collected by a
single sensor located near the old town in Gdańsk. In conclusion to this, estimations for
potential wind power were made only for this location. There was also no possibility to get
WS information for different heights or for different parts of the city (e.g., parts of the city
where long and tall buildings are located). For future studies, researchers plan to obtain
datasets from different sources, such as local authorities or any other official sources, to be
able to avoid the limitations mentioned above.

5. Results

As one of the goals of the study is fitting WS data to TPWD and estimating parameters
of the distribution, an R package called “DiceOptim” was used for applying EGO, a
“DEoptim” package was used for applying DE, a “GA” package was used for applying GA,
and an “optimization” package was used for applying SA [83–87].

Table 4 shows the estimated value of shape (k) and scale (c) parameters of the TPWD
using four different techniques. From the table, it can be concluded that there are no
huge differences between the parameters estimated using the four different techniques.
Figures 8 and 9 represent the histogram of observed wind speed and the estimated TPWD
obtained using four techniques per each month of the year. Table 5 and Figures 10 and 11
show the performance of techniques based on two different metrics: RMSE and R2. From
Table 5 and Figures 10 and 11, it can be seen that EGO performs better than other techniques
for estimating the parameters of TWPD; the larger the value of R2 the better the performance
of estimation as seen in Figure 10 that R2 calculated for estimations.
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Table 4. Estimated TPWD parameters for monthly wind speed data.

Month
SA GA DE EGO

k c k c k c k c

January 1.93 4.15 1.91 4.23 1.93 4.21 1.72 4.11
February 2.00 4.42 2.06 4.32 2.06 4.33 1.96 4.28

March 2.06 4.51 2.15 4.64 2.15 4.64 2.12 4.60
April 2.20 4.86 2.26 4.98 2.24 4.98 2.22 5.02
May 2.44 4.56 2.38 4.50 2.36 4.48 2.23 4.46
June 2.25 4.44 2.27 4.35 2.27 4.34 2.26 4.31
July 2.31 4.35 2.30 4.35 2.30 4.35 2.32 4.31

August 2.48 3.64 2.53 3.78 2.53 3.78 2.59 3.70
September 2.41 4.04 2.24 4.13 2.26 4.13 2.17 4.09

October 2.02 4.25 2.00 4.25 2.00 4.22 1.72 4.11
November 2.09 3.86 2.21 3.96 2.11 3.91 2.04 3.94
December 2.24 4.45 2.13 4.28 2.13 4.28 2.09 4.27

Table 5. Performance comparison based on different metrics.

Month
SA GA DE EGO

RMSE R2 RMSE R2 RMSE R2 RMSE R2

January 0.6512 0.9022 0.6496 0.9027 0.6616 0.8990 0.6136 0.9132
February 0.4967 0.9373 0.5130 0.9331 0.5007 0.9363 0.4650 0.9451

March 0.4762 0.9451 0.5178 0.9350 0.4835 0.9434 0.4758 0.9452
April 0.3828 0.9667 0.3830 0.9667 0.3856 0.9662 0.3802 0.9671
May 0.3760 0.9560 0.3732 0.9566 0.3658 0.9583 0.3665 0.9582
June 0.3632 0.9592 0.3605 0.9598 0.3358 0.9651 0.3363 0.9650
July 0.3713 0.9567 0.3672 0.9577 0.3703 0.9570 0.3599 0.9594

August 0.4569 0.8925 0.4526 0.8945 0.4487 0.8963 0.4539 0.8939
September 0.4913 0.9182 0.4471 0.9323 0.4664 0.9263 0.4234 0.9392

October 0.6639 0.8896 0.6802 0.8841 0.6649 0.8893 0.6229 0.9028
November 0.5996 0.8805 0.6262 0.8697 0.5745 0.8903 0.5636 0.8945
December 0.6441 0.8830 0.6111 0.8946 0.5934 0.9007 0.5602 0.9115
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RMSE is also one of the most common metrics to compare the techniques for distri-
bution fitting; the smaller the value of RMSE the better the performance of estimation.
Figure 11 shows that RMSE calculated for estimations based on EGO is lower than others
for most of the months. Table 6 shows estimated value of shape (k) and scale (c) parameters
of the TPWD for annual data using four different techniques. Figure 12 represents the his-
togram of observed wind speed and the estimated TPWD obtained using four techniques
for annual data. From both Table 6 and Figure 12, it can be concluded that there are no
huge differences between the parameters estimated using the four different techniques.
Table 6 also shows the performance of techniques based on two different metrics: RMSE
and R2. From Table 6 and Figure 13, it can be seen that EGO provides the lowest RMSE and
the highest R2. In other words, EGO has the best performance among other techniques for
estimating the parameters of TWPD for annual data.

In order to evaluate the wind energy potential, it is critical to estimate the TPWD
parameters. EGO was utilized to estimate the parameters of TPWD in this study. EGO
findings were compared with findings from the GA, SA, and DE algorithms. The EGO
parameter estimation for TPWD yielded more precise outcomes. According to R2 and
RMSE, the EGO is superior to other algorithms.

Table 6. Performance comparison and parameter estimation for yearly data.

Parameters Metrics

Technique k c RMSE R2

SA 2.16 4.40 0.501242 0.9300
GA 2.14 4.33 0.486022 0.9342
DE 2.15 4.33 0.482129 0.9352

EGO 2.05 4.25 0.465032 0.9397

When the Weibull is chosen as PDF, the average wind power density per square meter
is calculated as shown below [87,88]:

PW =
1
2

ρx3 Γ(1 + 3
k )

[Γ(1 + 1
k )]

3 (14)
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Based on the estimated parameters of the WD, wind power density can be calculated
by using the Equation (14), where x is the average wind speed, k is the shape parameter of
the WD, and ρ is the standard air density, which is assumed to be equal to 1.225 kg/m3 [87].
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According to the Small Wind Guidebook provided by the U.S. Department of Energy,
Office of Energy Efficiency and Renewable Energy, Skystream 3.7 is a type of wind turbine
that can be used in urban areas [89]. The Skystream 3.7 is a wind turbine that turns
wind into usable electricity for homes and small businesses. For households and smaller
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businesses, Skystream 3.7 may supply 40% or up to 90% of their total energy needs [88].
Taking this information into account, potential WE is calculated under the assumption of
having Skystream 3.7 installed in Gdańsk city center.

WE is calculated as shown in Equation (15). To be able to calculate potential WE,
information about swept area (SWA) and power coefficient (PC) of the wind tribune must
be known [90].

PE = PW ∗ PC ∗ SA (15)

SWA and maximum PC of Skystream 3.7 are 10.87 m2 and 0.4, respectively [90–92].
PE is calculated as 273.4457 kWh. Annually, PE is calculated as 3281 kWh. According to
Rachuneo.pl [93], energy prices per kWh in Poland range between 0.69 PLN and 0.78 PLN.
By using this information, approximate annual revenue could be calculated between
2263 PLN and 2559 PLN.

6. Conclusions and Recommendations

For the purpose of analyzing and estimating WE potential, it is critical that WS data
are fitted to a correct statistical distribution with high precision. Then, using the parameters
of the statistical distribution, potential WE and wind power can be calculated. Within
the scope of this study, wind power and WE potential were calculated for Gdańsk, the
capital of Pomerania Voivodeship—one of the most important regions in Poland in terms
of WE potential. Goals of the study are to propose a novel approach for estimating TPWD’s
parameters by using EGO and to shed a bit more light on the topic of potential benefits of
having city-type wind turbines in a city. For these purposes, a dataset that contains hourly
WS information for Gdańsk was used. In the following step, the TPWD was fitted to the
monthly and annual WS data using MLE with EGO, SA, DE, and GA. Performance of the
EGO was compared with other techniques using RMSE and R2. Comparisons showed that
EGO is providing more accurate estimations than other techniques. Using the parameters
of the TPWD for annual data obtained by using EGO, potential WE and wind power for
Gdańsk were calculated.

Based on the calculations, by having single Skystream 3.7 wind turbines in the city
center of Gdańsk, 3281 kWh energy could be generated annually and this could bring
revenue between 2263 PLN and 2559 PLN. These calculations revealed that city-type
wind turbines might play an important role in generating electricity from WE. Erecting
large wind turbines has limitations such as long distances between wind turbines and
buildings according to the official regulations. If the city-type wind turbines were to be
installed on the rooftops of residential buildings, shopping malls, or office buildings in
Gdańsk city center, a portion of the electric energy needed by these buildings could be
generated by using WE. However, payback periods and other potential limitations should
be investigated.

The most important question is how to have widespread installation of smaller urban-
type wind turbines. Two important directions should be emphasized here. The first
direction is the development of entrepreneurship directed to the production of green
energy. Undoubtedly, an important role is played here by business angels and the creation
of sustainable startups. The creation of startups can most significantly translate into
the widespread establishment of urban-type wind turbines by companies and consumer
households [94–96]. Many startups should succeed in the market in this matter; then there
is a need to transform the startup into a listed company in order to raise the necessary
funds for development. In this case, it is important to decide the appropriate capital market
and the timing of the market entry [97–100]. The second course of action is to focus on
grassroot civic initiatives; adequately targeted activities at the local level can play a key
role in the community’s approach to wind energy and the widespread use of urban-type
wind turbines for energy production [101–103].

For future studies, the authors would like to consider not only calculating potential
wind energy for different parts of the city but also potential challenges when it comes to
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installing city-type wind turbines. In addition, they aim to expand the scope of the study
by calculating wind energy potential for other cities in Pomerania Voivodeship.
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