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Abstract: Finesse coefficient is one of the most important parameters describing the properties of a
resonant cavity. In this research, a mathematical investigation of the application of diamond structures
in a fiber-optic Fabry–Perot measurement head to assess their impact on the finesse coefficient is
proposed. We present modeled transmission functions of cavities utilizing a nitrogen-doped diamond,
a boron-doped diamond, nanocrystalline diamond sheet and a silver mirror. The diamond structures
were deposited using a microwave plasma-assisted chemical vapor deposition system. A SEM
investigation of surface morphology was conducted. The modeling took into consideration the
fiber-optic Fabry–Perot setup working in a reflective mode, with an external cavity and a light source
of 1550 nm. A comparison of the mathematical investigation and experimental results is presented.

Keywords: diamond; CVD; cavity; optoelectronic devices; fiber-optic sensor

1. Introduction

The growing interest in optical measurements is related to many benefits this approach
offers. Optical techniques are non-contact and do not damage the investigated samples
due to their non-destructive working manner. This can be crucial for measurements where
direct contact of the probe may alter or damage the sample. Optical methods assure
fast operation and allow a real-time monitoring. Moreover, they exhibit a great potential
for coupling with other methods, giving multi-mode systems capable of providing more
comprehensive results [1,2].

Among numerous sensing solutions, interferometric fiber-optic sensors are of greatest
interest as they provide high sensitivity, resolution and dynamic range of measurements [3].
They are immune to electromagnetic and radio frequency interference as well as being
spark-free because the measurement head only uses light [4]. Small weight and dimensions
allow their installation in challenging locations and environmental conditions. Depending
on the selected configuration they can serve as pointwise or distributed sensors with ease
to couple with existing telecommunication systems [5]. While applying a broadband light
source or a wavelength-tunable laser, we achieve absolute values of the measurand [6].

A Fabry–Perot fiber-optic interferometer offers relatively simple and cheap configuration.
Its cavity is created between two partially reflective parallel mirrors with a gap between them:
such configuration forms a multi-beam interferometer. However, it can be simplified and
approximated to a two-beam interferometer by tailoring its cavity. Application of mirrors with
low reflectivity for the cavity construction leads to a low-finesse interferometer that can be
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considered as a two-beam interferometer, because higher-order reflections do not significantly
contribute to the resulting spectrum, and hence can be neglected [7]. The reasoning behind
such interferometers lies in their robustness, simplified fabrication process and cost reduction,
while maintaining high measurement resolution and sensitivity. Therefore, low-finesse Fabry–
Perot interferometers successfully serve as sensors [8–11].

Finesse is the ratio of the phase separation of neighboring maxima (called the free
spectral range—FSR) and the full width at half maximum—FWHM [12]. Effectively, it
indicates how many times the beam bounces inside the cavity before it gets transmitted
out, absorbed or scattered [13]. The finesse can be tailored depending on our needs: low
finesse cavities can be applied for filtering, while high finesse cavities can serve for precise
spectroscopy [14,15]. There are several factors that impact the finesse value: reflectance
of the mirrors, microroughness of their surfaces, coating non-uniformities, scattering
(defects after polishing or dust particles) and losses (non-parallelism between the surface,
divergence of the incident light). Lots of these shortcomings were compensated by the use
of new constructions of mirrors (e.g., curved, spherical ones [16,17]).

Nowadays, researchers investigate possibilities of tuning properties of the measure-
ment devices by applying new materials for their construction. The synergy between
optoelectronics and material engineering leads to solutions tailored for specific applica-
tions [18]. A great amount of attention is paid to diamond structures due to their unique
properties [19], making them willingly used in the construction of sensors and elements of
measuring heads [20–23]. Our previous research [24] presented the viability of diamond
application in Fabry–Perot interferometers as reflective surfaces with increased immunity
to mechanical and chemical damage, biocompatibility and prolonged lifespan. As a CVD-
deposited-doped diamond also has satisfactory optical and electrochemical properties,
it was possible to develop an opto-electrochemical setup where boron-doped diamond
played a dual role of a reflective surface and a working electrode. The electrochemical
solutions under test can have different optical properties and therefore the visibility of the
registered optical spectra may be not sufficient. Hence, there is a need for tailoring of the
finesse coefficient of the Fabry–Perot cavity with diamond structures in order to adjust it to
investigated chemical solutions [25]. In this research, we mathematically investigate the appli-
cation of diamond structures in Fabry–Perot cavities to tune their finesse. The optimalization
of optical properties of the cavity with diamond structures in the considered setup will allow
us to achieve a desired contrast of the interferometric fringes of the investigated liquids.

In this study, a transmission function of cavities utilizing a nitrogen-doped diamond,
a boron-doped diamond and a silver mirror are presented. The simple and fast procedure
of tailoring the finesse by exchanging diamond structures is an advantage of our setup:
the properties of the structures can be tailored to desired needs by adjusting the CVD
parameters process, e.g., by changing deposition time or dopant level. The proposed cavity
is also compact and robust with the possibility of changing its length from 0 to 1 mm.

2. Mathematical Investigation

We consider a fiber-optic Fabry–Perot interferometer working in a reflective mode,
with an external air-gap cavity. Such construction allows an easy access for liquid sample
injection and full configurability in changing the mirrors. The interferometer is constructed
of two parallel, partially reflecting surfaces M1 and M2, separated from each other with
a small gap. Those two plane mirrors with reflectance R1 and R2 and the separation of
length L create a cavity that traps the light at specific resonance frequencies in the form of a
standing wave [13]. The light entering the cavity through the first surface R1 is partially
reflected and partially transmitted through it. The transmitted light, propagating inside
the cavity, is then partially reflected from the surface R2 and partially transmitted. The
reflected light undergoes further partial reflections and transmissions.

The first reflective surface M1 is created on the interface fiber end-face/medium inside
cavity (here air, n = 1) and the second surface M2 on the boundary between the medium and
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tested mirror. Since the reflectivity of the investigated samples is low and the cavity length
is greater than the operating wavelength, a two-beam interferometer was assumed [26].

The reflectivity R of the surfaces creating the cavity is dependent on the refractive
indices n1 and n2. As the properties of diamond structures can be tailored to desired needs
by adjusting CVD process parameters (e.g., by changing dopant element or dopant level
which results in changes of refractive index of the diamond sample), we can change the
mirror reflectivity [27]:

R =

(
n1 − n2

n1 + n2

)2
(1)

The finesse coefficient F for an interferometer built with two asymmetrical mirrors
characterized by R1 and R2 can be described as [27]:

F =
4
√

R1R2(
1−
√

R1R2
)2 (2)

where R1 and R2 describe reflectivities of the mirrors. The finesse coefficient F is therefore a
function of reflectivity. With reflectivity closer to the unity, the finesse coefficient becomes
bigger and, in consequence, the minima of the transmitted light characteristics decrease,
resulting in narrower peaks. The sharpness of the obtained fringes can be described by
their full width at half maximum (FWHM). The ratio of the phase separation of neighboring
fringes—free spectral range—and the FWHM is called the finesse. The value of FSR and
FWHM ratio (i.e., the finesse) depends on the reflectivities of the reflective surfaces used
for the construction of the cavity [28].

3. Results

The investigation is based on diamond structures produced during a microwave
plasma-assisted chemical vapor deposition process. The details about the growth parame-
ters and chemicals used, as well as the investigation of the material properties can be found
elsewhere [29–31]. The representative SEM images characterizing the structures’ surfaces
are presented in Figure 1.
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Figure 1. SEM images of (A) boron-doped diamond film, (B) nitrogen-doped diamond film and
(C) nanocrystalline diamond sheet.

It is worth noting that all structures have crystalline character with uniform crystal-
lites size and distribution over the silica substrate. The diamond grows uniformly on the
substrates, covering them entirely which is crucial for the application in a Fabry–Perot cavity.

The cavities built with mirrors with highly reflecting mirrors assure high values of
the finesse resulting in narrower transmittance peaks in comparison to mirrors with lower
reflectivities. The intensity of the reflected light Ir is expressed by [27,28]:

Ir =
(2− 2cos δ)R

1 + R2 − 2Rcosδ
Ii =

4Rsin2 δ
2

(1− R)2 + 4Rsin2 δ
2

Ii (3)

where R is the reflectivity, δ is the phase difference and Ii is the incident light intensity.
The corresponding intensity of the transmitted light It is:

It =
T2

1 + R2 − 2Rcosδ
Ii =

T2

(1− R)2 + 4Rsin2 δ
2

Ii =
(1− R)2

(1− R)2 + 4Rsin2 δ
2

Ii (4)

where R is the reflectivity, T is the transmission, δ is the phase difference between interfering
beams and Ii is the incident light intensity.

In this study, we focused on the configuration of the Fabry–Perot cavity where fiber-
optic end-face is used as one of the cavity interfaces. For this reason, only perpendicular
light incidence is considered: the first interface is created by the polished fiber-optic end-
face/medium inside the cavity, and the second is medium inside the cavity/diamond
structure for configurations with diamond films. As the reflective surfaces have to be
parallel in such construction, the slanted angle of light incidence should not occur as the
fiber is placed in a micromechanical setup for proper positioning and stabilization. Using
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the aforementioned formulas, we can model the transmission of the Fabry–Perot cavity
with regard to different values of the finesse coefficients.

The following plots (Figure 2) show results of theoretical modeling of the cavities built
with a fiber end-face and the investigated mirror, with the air fulfilling the gap between them.
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The parameters of the obtained plots are presented in Table 1.

Table 1. Parameters of the investigated cases: A—silver mirror; B—boron-doped diamond; C—
nitrogen-doped diamond; D—nanocrystalline diamond sheet with silver mirror.

Parameter A B C D

Finesse
coefficient 0.4891 0.3094 0.3653 4.4383

Minimal value 0.6716 0.7637 0.7324 0.2253

To assess the quality of the models, we directly compare the results of the measure-
ments taken with the Fabry–Perot interferometer applying the investigated samples. The
setup and procedure of the measurement were described in detail elsewhere [32]. The
broadband light source that was used, while performing experiments, operated at the
central wavelength of 1550 nm. The scheme of the measurement setup and three main
configurations are presented in Figure 3.
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the Gaussian light source characteristics were filtered out. The modeled and the measured
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Figure 4. Comparison between the modeled and the measured spectra after removing the Gaussian
characteristics and normalization. The cavities were fulfilled with air (n = 1). (A) silver mirror
d = 100 µm, (B) boron-doped diamond film d = 100 µm, (C) nitrogen-doped diamond film
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Table 2. Label convention of registered signals.

A B C D

Reflective
surface Silver Boron-doped

diamond
Nitrogen-doped

diamond
Nanocrystalline diamond

sheet and silver
Cavity length 100 µm 100 µm 150 µm 180 µm

The differences between the calculated spectra and measured ones may be caused by
several factors. Smaller amplitude is probably caused by the fact that the optical spectrum
analyzer samples the spectrum in a sequence of wavelength intervals leading to some
averaging of the acquired signal. The light source instability and a non-ideal measure-
ment head positioning, as well as non-ideal nanocrystalline diamond sheet placement in
the real laboratory conditions also have an impact on noted differences. However, the
inconsistencies are small and the measured and calculated results remain in agreement.

4. Conclusions

The results show that we can tailor the properties of the Fabry–Perot cavities with
different materials used for the mirror construction. Various refractive indices directly
impact reflectivities of both boundaries, which changes the cavity finesse. In investigated
cases, the silver mirror assures the highest finesse coefficient, while boron-doped diamond
mirror the lowest. Tailoring of the cavity finesse is important in modeling the optoelectronic
systems to better suit the requirements. Depending on the desired application, different
values of finesse will increase the performance of the device, e.g., in an opto-electrochemical
setup where optical parameters of the resonator can be tuned to match optical parameters
of the investigated solution.
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A.K.M.; data curation, M.K. writing—original draft preparation M.K., M.R. and A.K.M.; writing—
review and editing, M.S. and K.H.; visualization, M.K. and A.K.M.; supervision, M.S.; funding acqui-
sition, M.K. and M.S. All authors have read and agreed to the published version of the manuscript.
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