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a b s t r a c t

The thermoelectric generator (TEG) system has attracted extensive attention because of its applications
in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the
TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse
temperature differences, the TEG modules show non-linear performance. Due to the non-uniform
temperature distribution (NUTD) condition, several maximum power points (MPPs) appear on the
P/V curve. In multiple MPPs, the true global maximum power points (GMPP) are very important for
optimum action. The existing conventional technologies have slow tracking speed, low productivity,
and unwanted fluctuations in voltage curves. To overcome the TEG system behavior and shortcomings,
A novel control technology for the TEG system is proposed, which utilizes the improved generalized
regression neural network and fitness dependent optimization (GRNNFDO) to track the GMPP under
dynamic operating conditions. Conventional TEG system control techniques are not likely to trace
true GMPP. Our novel GRNNFDO can trace the true GMPP for NUTD and under varying temperature
conditions In this article, some major contributions in the area of the TEG systems are investigated
by solving the issues such as NUTD global maxima tracking, low efficiency of TEG module due to
mismatch, and oscillations around optimum point. The results of GRNNFDO are compared with the
Cuckoo-search algorithm (CSA), and grasshopper optimization (GHO) algorithm and particle swarm
optimization (PSO) algorithm. Results of GRNNFDO are verified with experiments and authenticated
with MATLAB/SIMULINK. The proposed GRNNFDO control technique generates up to 7% more energy
than PSO and 60% fast-tracking than meta-heuristic algorithms.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, the contribution of renewable sources is progres-
ively increasing due to rising concern of CO2 emission, better
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cost/watt promising governmental green energy-related
policies, The most reviewed approaches to converting solar en-
ergy into electrical energy are PV systems, thermoelectric gen-
eration (TEG) systems, and concentrated PV-TEG (Mirza et al.,
2021). The TEG systems were ignored due to the low power
ratings, complex behavior under diverse temperatures, and im-
plementation cost. Lately, the advanced engineering techniques,
the finding of newmaterials, and revolutions in low-priced silicon
manufacturing make TEG systems an ideal member of renewable
energy sources (Mansoor et al., 2021).
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TEG module can endure high temperatures, so it is very suit-
ble for solar energy applications. On the contrary, when the
emperature is higher than room temperature, solar cells will lose
fficiency (Garmejani and Hossainpour, 2021). Another advantage
f TEG is that it can be connected in different configurations to
et a high output power rating (Valera et al., 2021). DC converter
lso performs the control action of the reference voltage by
odifying the duty cycle, which is defined as a control signal. This
ontrol action also allows the TEG system to work dynamically
t max. attainable power. Fig. 1 displays the typical TEG system
ith an intelligent controller. The TEG module is connected to
centralized DC-DC boost converter that provides the interface
etween power and the load (Li et al., 2021). The duty cycle can
e modified by PWM signal and MOSFET drive circuit provides
ontrol to achieve effective MPPT operation (Mohamed et al.,
021).
In the literature, numerous MPPT technologies are considered

or renewable energy systems, including photovoltaic systems,
ind power generation systems, and centralized TEG
ystems (Zafar et al., 2021). MPPT technologies can be sepa-
ated into two categories: which are conventional technologies
nd intelligent technologies. Conventional MPPT methods are di-
ided into analytical MPPT methods and gradient-based methods.
pen-circuit voltage (OCVVOC ) based method, and short-circuit
urrent (SCC ISC ) based MPPT method belong to analytical MPPT
echnologies. The disadvantage of these techniques is that the
arameter values vary with the operating temperature. The issue
ith the TEG system is that parameters such as VOC , ISC and
fficiency is also dependent on working conditions. When the
orking conditions change, the operating efficiency will also be
ffected. Therefore, the setpoint needs to be adjusted regularly
y removing the load. In addition, the main problems of these
echniques are non-adjustable functioning, low efficiency, and
he incapability to solve the NUTD problem. Various gradient-
ased MPPT algorithms for TEG systems have been established,
hich use a gradient-based procedure. Namely P&O (Ali and
ohamed, 2022), incremental conductance algorithm (ICA), and
ill-climbing algorithm (HCA) (Ahmed and Salam, 2018).
The AI-based control technologies can be divided into FLC-

ased technologies, swarm intelligence (SI) based technologies,
nd Artificial Neural networks (ANN) based technologies (Sahri
t al., 2021). The deep learning technologies use the ANN. ANN
an efficiently handle the non-linear behavior, but a large number
f training tests are required to train the system (Ali et al., 2021).
The multiple TEG modules can be organized in many config-

rations, such as series type configuration, parallel type configu-
ation, or can be organized in series-parallel configuration (Yang
t al., 2019). In the present work, a centralized TEG system
ith DC − DC boost converter is used. Non-uniform tempera-
ure on TEG modules generates a mismatching current. As we
now that current in a series circuit must be the same so to
olve this issue a bypass diode can be connected in parallel
ombination with TEG modules (Kalyani et al., 2020; Khan et al.,
022). Bypass diode can be activated at different voltage mag-
itudes, which makes the non-linear behavior of TEG module
ven more complex. This problem is very prominent under NUTD
onditions (Yedala and Kaisare, 2021). Hence, the centralized
EG system meaningfully reduces the DC-DC boost converter’s
osts. Centralized TEG system control can be regarded as an
ptimization problem. Compared with other technologies, the
ain advantage of most MPPT technologies based on swarm

ntelligence and an evolutionary algorithm is to track GMPP un-
er NUTD. Heuristics algorithms such as cuckoo search algo-
ithm(CSA) (Ahmed and Salam, 2014; Ma et al., 2013), particle
warm optimization (PSO) (Renaudineau et al., 2014; Ishaque

t al., 2012; Priyadarshi et al., 2020), overall distribution (OD)

6333
lgorithm (Li et al., 2018), grasshopper optimization (GHO) (Man-
oor et al., 2020b), artificial bee colony (ABC) (soufyane Benyoucef
t al., 2015), simulated annealing (SA) (Lyden and Haque, 2015),
verall distribution (OD) algorithm (Li et al., 2018), Butterfly
ptimization algorithm(BOA) (Fathy, 2020), adaptive cuckoo op-
imization algorithm (ACOA) (Mirza et al., 2019), Harris hawk
ptimization (HHO) (Mansoor et al., 2020a), grey wolf optimiza-
ion (GWO) (Mohanty et al., 2015; Darcy Gnana Jegha et al., 2020),
alp swarm optimization algorithm (SSA) (Mirza et al., 2020), and
article swarm optimization gravitational search (PSOGS) have
een studied. Performance of SI techniques is subjected to aspects
uch as initiated population size, information sharing mechanism
etween the swarms, total iterations, random parameters, and
omputational load (Zhao et al., 2020; Zafar et al., 2020).
The optimization techniques are based on randomly initial-

zed populations and particles to search for the optimal location
nder different parameters. Fine-tuning of parameters and the
nitialization of the population can impact the performance of
eta-heuristic based MPPT technologies (Li et al., 2018; Tariq
t al., 2021). MPPT technology based on particle swarm opti-
ization (PSO) uses the social interaction of swarm particles

o share the information of the best global solution obtained
y searching particles. In particle swarm position updating, the
eighted vector influence is used to share the information. The
cheme is helpful for the population to converge to the global
est iterative solution. To break through local best iterative so-
ution, arbitrary numbers are generated into the velocity vpso
nd position equations of PSO. The arbitrary number will pro-
uce unexpected oscillation and affect the stability time of the
SO algorithm (Huang et al., 2017). PSOGS combines the effec-
ive exploration of PSO through the precise development of GS,
hich greatly improves the work efficiency of PSO. Although the
nhancement of steady-state oscillation can be observed, the sta-
ilization time is not significantly minimized. The addition of GS
nto the PSO algorithm increases the quantity of constraints to be
ptimized, the technical difficulty and the computational power
f system. ACO uses pheromones to communicate the informa-
ion. Pheromones evaporate over time. Each ant is a member
f a collection of possible solutions, so careful selection mech-
nisms are required. Scout ants are also used to explore search
pace (Priyadarshi et al., 2019). Due to the selection of candidate
olutions and the probabilistic properties of their positions in the
earch space, an unexpected output will be produced. Similarly,
n CSA, Levy flight is used to allocate random burst values, which
ill lead to undesirable fluctuations in the output signal (Ahmed
nd Salam, 2014). With the same inspiration, this paper proposes
novel hybrid technique. In which novel FDO is used to de-

ermine the spread parameter of GRNN to calculate the masses
nd biases values of hidden layer effectively. Novel GRNNFDO is
ested under various operating conditions and concluded that it is
ery effective for tracking GMMP. The main contributions of this
rticle are summarized as follows:

• The proposed learning-based GRNNFDO control technique
requires less tracking time to trace the GMPP than other
control techniques.

• GRNNFDO can trace the GMPP under complex operating
conditions of TEG systems. GRNNFDO has reduced the track-
ing time of TEG systems by up to 50%. The statistical
analysis-based study is studied such as relative error (RE),
Success rate (SR), root mean square error (RMSE), and mean
absolute error (MAE).

The manuscript is organized as follows: Modeling and the
onfiguration of TEG system are explained in Section 2, Proposed
RNNFDO technology is explained in Section 3, GRNNFDO, CSA,
HO, and PSO based results are presented in Section 4, the
ummary of results with common discussions are presented in
ection 5 and at the end, the manuscript is concluded in Section 6.
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Fig. 1. TEG modules linked with DC − DC Boost converter through proposed GRNNFDO control.
. Modeling of TEG system

The equivalent TEG model is shown in Fig. 1. Fig. 1 shows
hat the TEG module behaves as a voltage source (Voltagesource),
TEG is the resistance connected with TEG. Open-circuit voltage is
efined as VOC The open-circuit voltage VOC can be described in
q. (1) as.

oc = αpn (Th − Tc) n = αpn∆Tn (1)

here ∆T is the variation of temperature on hot sides (Th) and
ariation of temperature on the cold side defined as (Tc). n is the
otal number of TEG modules, αpn is Seebeck co-efficient.

Usually, the Seebeck effect on TEG and Thomson effect on TEG
s important. The Thompson co-efficient in the TEG is defined as
and it can be modeled as

= T
dαpn

dT
(2)

Hence, the more precise Seebeck co-efficient can be gotten with
the variation in mean temperature T , which is stated in Eq. (3).

α (T ) = αo + α1ln

(
T
To

)
(3)

where αo is the elementary part of Seebeck coefficient. As α is the
rate of difference of Seebeck coefficient and To is denoted as the
temperature reference. The output power of TEG can be defined
as

PTEG =
(
αpn

)2 R1

(RL+RTEG)
2 (4)

where R1 and RTEG are the load resistance of TEG and internal
resistance of TEG, PTEG is the power produced by TEG. TEG module
electrical parameters are presented in Table 1 (see Fig. 2).

2.1. Configuration of TEG system

TEG systems can produce good output power for various ap-
plications. Different type of TEG module arranging has been stud-
ied in the literature. The grouping of TEG modules in series &
6334
Table 1
TEG module parameters used in this study.
Parameter Conditions Value

P Th = 250, Tc = 50 @Matched Load 24.3 W
VOC Th = 250, Tc = 50 10.8 V
VLOAD Th = 250, Tc = 50 5.4 V
RTEG Th = 250, Tc = 50 1.2 �

ILOAD Th = 250, Tc = 50 @Matched Load 4.5 A

parallel configurations can increase the output power ratings.
Distributed-TEG System with multiple control units is shown
in Fig. 3 & Centralized-TEG system with single control unit is
presented in Fig. 4 (Zhang et al., 2020).

2.2. TEG system mathematical modeling under NUTD

The productivity of the industrialized Centralized-TEG sys-
tem differs from the working conditions. Nowadays, every TEG
module works on a dissimilar Temp. T level. The mathematical
equation of the TEG system is presented in Eq. (5).

Ii =

⎧⎨⎩(Voci − VLi)
Isci
Voci

= Isci −
VLi

RTEGi
0 < VLi ≤

Isci
Voci

0 otherwise
(5)

PTEGi can be modeled as Eq. (6)

PTEGi =

⎧⎨⎩VLiIi = IsciVLi −
Isci
RTEGi

if 0 < VLi ≤
Isci
Voci

0 otherwise
(6)

The total power of the TEG module is

PTEGE =

N∑
i=1

PTEGi (7)

The dissimilar temperature levels on the TEG devices will
create several peaks on the PV curve of the TEG modules, as
shown in Fig. 5(b). This demonstrates that under NUTD, there

http://mostwiedzy.pl
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Fig. 2. Equivalent detailed model of TEG module.
(
t
d
d
d
t

Fig. 3. Distributed TEG system.

s only one GMPP and several local maxima. Yet, TEG modules
orking under uniform temperature exhibit only one MPP, as
hown in Fig. 5(a). So, under NUTD, a dynamic MPPT control
ethodology is required to efficiently trace the GMPP and extract

he maximum power for the TEG modules.

. Proposed technique based on GRNN with FDO

General regression neural network was first presented in
pecht (1991). GRNN is very simple and needs a few samples of
ata to train. The benefit of using the probabilistic neural network
PNN) is that it displays good convergence and fast response
or the defined function. GRNN structure is separated into four
ayers. A four-layer GRNN is presented in Fig. 6, GRNN primarily
stimates the linear or non-linear regression for the defined input
ector in terms of Xj = [x1, x2, . . . .xn]T and gives the output

vector Y = [y , y , . . . .y ]T .
j 1 2 n

6335
The output Y (x) is represented by

Y (x) =

∑n
j=1 wj exp

[
−

K2
j

2σ2

]
∑n

j=1 exp
[
−

K2
j

2σ2

] (8)

K 2
j = (x − xj)T (x − xj) (9)

Yj = − exp
(
(x − xj)T (x − xj)

2σ 2

)
(10)

GRNN consists of four layers, Input layer (IL), Pattern Layer
PL), Summation layer (SL) and the final Layer of GRNN is called
he output layer (OL). In (8) and (9), the parameter K 2

j is the
istance among the predicted data of output layer and the trained
ata set vector. x denotes to Input vector, xj is the trained vector
ata of the PL. PL neurons use the Gaussian function Yj in (10). The
erm wj is the weight of the neuron jth in PL linked with the SL.
Arithmetic summation is defined as Ss and weighted summation
as Sw. The output vector is denoted as Y . The self-defined parame-
ter of GRNN, which has to be calculated, is the spread parameter
that is defined as variance σ of the basis function. In order to
automatically tune the GRNN , FDO is used to calculate the value
of σ .

Sw =

∑
j=1

wjYj (11)

Y = SS/SW (12)

3.1. Fitness dependent algorithm for TEG system

Fitness dependent optimization (FDO) is a recent optimization
technique in the swarm intelligence (SI) category (Abdullah and
Ahmed, 2019). It is based upon the swarming behavior of bees
during a reproductive process in the search for new hives.

The major contributions of FDO based MPPT control are

1. Implementation of novel bee swarm behavior for MPPT
problem of PV systems undertaking PS problem by fitness
function used for generation suitable weights that help
the algorithms that algorithm is exploration as well as
exploitation phase. Resultantly faster convergence towards
Gm is achieved with the maximum exploration of search
space.

http://mostwiedzy.pl
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Fig. 4. Centralized TEG system.
Fig. 5. (a) TEG under uniform temperature (PV curve) (b) TEG under NUTD (PV curve).
Fig. 6. Four layer GRNN.
2. A unique feature of FDO is the utilization of the pace
variable for use in the next iterations, which incorporates
learning and intelligence in the consecutive iterations

3. It is a swarm-based intelligence technique for position
updating mechanism using only two variables and outper-
forms the competing techniques
6336
4. The FDO successfully undertakes uni-model, multi-model,
and composite functions

3.1.1. FDO
The FDO is a swarm intelligence-based optimizer. The FDO

mimics the behavior of reproducing honeybees in search of new

http://mostwiedzy.pl
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Fig. 7. The flowchart of GRNNFDO based MPPT control.

Fig. 8. PO tracking of GMPP under NUTD.
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Fig. 9. GRNN tracking of GMPP under NUTD.
Fig. 10. CSA tracking of GMPP under NUTD.
locations for hives. The social interaction and lifecycle of hon-
eybees are unique and bees are social workers. The swarm is
classified into three hierarchies: queen, social workers and scouts.
The queen bee is responsible for the survival of the colony. Work-
ers provide food and protection and scout bees provide random
information and search the area for food. Preferred targets are
communicated to the worker bees and a collective decision-
making process is invoked. The information is conveyed by spe-
cific scout bee bees and interpreted by onlookers through wiggle
dance. The decision is made when the majority of information
reinforces the scout search results.

3.1.2. Mathematical model of FDO
The FDO has a simple mathematical model which is developed

to replicate the behavior of honeybees during reproduction. The
main part is played by the scout bees’ searching mechanism
in search of a suitable hive location. The scout bees present a
6338
potential solution. The selection of the scout bee is made based
on fitness. The fitness function is potentially maximized or mini-
mized. The first step in FDO is to randomly initialize the artificial
scout population in the search space for n number of searching
agents in jth dimensional search space as in Eq. (13)

X j
i = X1, X2, X3, . . . , Xn ∗ rand (13)

where Xi (1, 2, 3, . . . , n) ; each position of scout provides a poten-
tial solution. The fitness of each solution is calculated and sorted.
In each iteration, the searching member updates the location
using the initial location and pace as given in Eq. (13). If a better
solution is attained, the weaker solutions are abandoned. If the
current solution does not improvise, the previous fitness solution
is maintained. This helps to avoid large fluctuations in the initial
phase.

In nature, the search is done randomly. To mathematically
mimic the random conduct of moving FDO agents, random walk

http://mostwiedzy.pl
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Fig. 11. GHO tracking of GMPP under NUTD.
Fig. 12. PSO tracking of GMPP under NUTD.
and fitness weight mechanisms are incorporated into the model.
The movement of FDO particles is done by adding a pace to its
current position. The movement in the search space is governed
by Eq. (14)

X j
i,(l+1) = Xi,l + pace (14)

here l is the current iteration, X j
i,(l+1) is the updated position in

the next iteration (l+1) for ith particle in jth dimension and pace
is the random number generated based on fitness weights (fw)
of the random walk mechanism in a random direction. The fw is
calculated by Eq. (15)

fw =

⏐⏐⏐⏐x∗

i,l fitness
xi,l fitness

⏐⏐⏐⏐ ∗ wf (15)

here x∗

i,l is the fittest particle, xi,l is the fitness of the ith particle
n lth iteration, wf is the weight factor and its value is 1 or 0. If
f = 1 indicates the high rate of convergence but convergence
6339
time becomes elongated. To supplement the slower convergence
wf is kept 0. The Eq. (30) is not affected by wf and hence can
be deserted. Still, in some cases, the fitness value is dependent
upon the problem. In some cases, i.e., if the current values are
the GM, the fw = 1 or global and current solutions become equal.
Therefore these values are kept within 0–1. The wf factor controls
the fw. In case when fw = 0 and x∗

i,l fitness = 0, the division
by zero should be avoided for xi,l fitness = 0. The rules defined
in Eqs. (16)–(17)(b) are utilized to avoid division by zero, which
affects the pace as

fw = 1 or fw = 0 xi,l fitness = 0, pace = xi,l · r (16)

fw > 0 and fw < 1

{
r < 0, pace =

(
xi,l − x∗

i,l

)
· fw − 1 (a)

r ≥ 0, pace =
(
xi,l − x∗

i,l

)
· fw (b)

(17)

http://mostwiedzy.pl
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Fig. 13. Case study 2: GRNNFDO GMPP tracing under NUTD.
Fig. 14. Case study 2: Duty cycle of GRNNFDO with other control techniques.
Fig. 15. Case study 2: Output power of GRNNFDO GRNNFDO with other control techniques.
where r is a random number with a range of [−1,1]. The random
walk is implemented using the Levy flight function for two rea-
sons. The first is that it has stable movement because of the better
distribution function and the second is that the sigma function is
realizable and fine-tuning is possible (Yang, 2010). The flowchart
of GRNNFDO based MPPT control is presented in Fig. 7.
6340
4. Results and case studies discussion

The results and statistical indices of the GRNNFDO are evalu-
ated and compared against the recently established control tech-
niques such as PSO (Renaudineau et al., 2014; Ishaque et al.,
2012; Priyadarshi et al., 2020), CSA (Mirza et al., 2019), P&O,
and GHO. Different experimental case studies have been done,

http://mostwiedzy.pl
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Fig. 16. Case study 2: Current of GRNNFDO GRNNFDO with other control techniques.
Fig. 17. Case study 2: Voltage of GRNNFDO GRNNFDO with other control techniques.
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ncluding NUTD case1, NUTD case 2, varying temperature case 3,
nd experimental study of TEG emulator case 4.

.1. Case study 1: Non-uniform temperature distribution (NUTD)

Case 1 deals with the NUTD problem. In this case, there is an
xistence of multiple Local minimum power point (LMPP) and
ne true GMPP at 367.6 W. The GMPP exists closely to two LMPPs
nd in this condition, it is not an easy task to track the GMPP by
onventional MPPT control techniques such as P&O, HCA and ICA.
hese techniques can trap LMPP and result in significant power
oss as happened in our studied P&O case shown in Fig. 8. In the
iven scenario, the LMPP exists at ∼337 W and P&O traps at
MPP. Under GRNNFDO and CSA, the magnitude of the duty cycle
urves is presented in Fig. 9. The duty cycle tracking behavior
escribes the optimum performance of GRNNFDO. Particularly
he GMPP is located in 0.12 s, which is much faster compared to
HO, CSA, and PSO. Max. power traced by GRNNFDO is 367.6 W,

followed by GHO 366.3 W, PSO 365.2 W, CSA 365.1 W, and P&O
337 W. The mean average power of GRNNFDO is 360 W, GHO is
355.5 W, PSO is 350.9 W, CSA is 345.4 W, and P&O is 334.4 W,
respectively.

GRNNFDO tracks the GMPP within 130 ms and further takes
only 10–20 ms to settle at GMPP while GHO takes 320 ms, CSA
takes 460 ms, and PSO takes 480 ms, to track GM and additionally
250 ms, 380 ms, and 450 ms to settle at GMPP, respectively.
GRNNFDO has the minimum tracking and settling time. P&O has
a very good tracking speed and easy execution, but its inability to
locate GMPP will lead to serious power loss. Although PSO takes
a relatively long time, as shown in the power tracking curve in
6341
Fig. 12, it still achieves a high average power, which indicates that
the algorithm of updating the position in the search space using
the levy flight function produces large fluctuations, resulting in
more power and energy loss. Fig. 10 shows that CSA can search
for more space. GHO duty cycle and power tracking are shown in
Fig. 11.

4.2. Case study 2: Non-uniform temperature distribution

Case 2 is closely associated with peaks occasion of NUTD. In
this case, the GMPP magnitude is 338.6 W. This case also defines
the problem of closely connected max. power points where GMPP
is fairly near to the next LMPP. This case study is done to in-
vestigate swarm-based technologies and the performance of the
dynamic PV curve of the TEG system. GRNNFDO tracking patterns
on the P − V cures are illustrated in Fig. 13. The duty cycle of
GRNNFDO and output power curves of GRNNFDO are compared in
Figs. 14 and 15, correspondingly. The tracking time of GRNNFDO
is 120 ms, CSA is 337 ms, PSO is 386 ms, and GHO is 320 ms. The
settling time of GRNNFDO is 10–20 ms, GHO is 120 ms, CSA is
180 ms, and PSO is 185 ms. The max. power traced by GRNNFDO
is 338.6 W trailed by GHO 336.5 W, CSA 334.2 W, PSO 333.7 W,
and P&O 320.8 W.

The average power of P&O is not very good as in this case P&O
s stuck at the LMPP, P&O also displays the fluctuations around
he traced LMPP. As output curves show in Figs. 16 and 17, P&O
uffers from the LMPP trap. The general performance of the tested
PPT methodologies can be graded as GRNNFDO > GHO > CSA >

SO > P&O.

http://mostwiedzy.pl


A.F. Mirza, S.K. Haider, A. Ahmed et al. Energy Reports 8 (2022) 6332–6346

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 18. Case study 3: Temperature variation of TEG system (a) Cold side; (b) Hot side.
4.3. Case 3: Varying temperature

This test inputs a sequence of temperature patterns, as men-
tioned in Fig. 18, to confirm the MPPT control action of GRNNFDO.
And as illustrated in Fig. 18(a), the T inputs of the cold side of
the TEG are the non-identical curves for the whole strings. The
hot side of the TEG is exposed to the working environment and
is tested in the T levels of 225 C and 325 C.

The time taken for tracking the GMPP by GRNNFDO, CSA, GHO,
PSO, and P&O is 120 ms, 490 ms, 430 ms, 560 ms, and 120 ms and
it further takes 10–20 ms, 140 ms, 120 ms, 230 s, 20–30 ms

To Stabilize without fluctuation. As shown in Fig. 19, PSO
shows the maximum fluctuation. This is because the PSO loca-
tion is updated using the information shared by the individual
best vector and global best vector. In every cycle, the weights
and random numbers used in the velocity equation are updated.
Randomness affects the proportion of control parameters. For
GHO, the initial exploration phase is invalid. GHO uses a comfort
zone where exploration and development are balanced. However,
because MPP is closely related, the comfort zone is tough to
keep. The TT of GRNNFDO is 63.7% faster compared to PSO,
followed by CSA 54%, and GHO at 50.8%. As depicted in Fig. 20,
the power traced by GRNNFDO, GHO, CSA, PSO, and P&O is
1628.6 W, 1625.4 W, 1626.5 W, 1626.0 W, and 1625 W
with an average efficiency of 99.99%, 99.80%, 99.36%, 99.52%,
99.15%, respectively. The average power in the complete interval
of GRNNFDO is 918.4 W, GHO is 902.7 W, CSA is 887.5 W, PSO
is 884 W, and P&O 883.6 W. Firstly the flaw of PSO caused by
the weighted vector of velocity is exposed and CSA is unable to
track GM in CPS. Secondly, techniques such as GHO can locate the
GMPP but have low average power. The higher average power
is The overall performance sequence in case 4 is GRNNFDO >
GHO > CSA > PSO > P&O. Figs. 21 & 22 show stable output
voltage and current.

4.4. Case 4: Varying load condition

In this case study, the proposed GENNFDO is used with the PI
controller, as the behavior of the load and usage of a working
environment can vary suddenly. If the reference voltage (Vref)
is not tunned instantly, according to the maximum power trans-
mission theorem, the mismatch between the boost converter and
the update load will lead to a serious loss of available power.
This problem has caused a major loss of power in grid-connected
operations. The conventional technique of PID tunning by using
Ziegler–Nichols(ZG) can yield fluctuation at the transition point
of load. The current research using a direct current sweep study

shows that for the TEG module, the Voltage oscillation may rise to

6342
Fig. 19. Case 3: Step change temperature condition duty cycle curve of
GRNNFDO.

Fig. 20. Case study 3: Step change temperature condition power curve of
GRNNFDO.

2.501 V, reaching 9.5% of the peak rating. However, the proposed
GRNNFDO with PI controller can successfully eradicate the volt-
age oscillation and progresses the protection of load appliances.
The load varies from 11 to 15 � to 6 � , then 25 � for a constant
Thot and Tcold. Calculate every half second. The reference voltage
calculation is only affected by the change of load impedance.
The performance of the proposed GRNNFDO will be measured
when the load changes periodically. The Fig. 23. Displays the
transient actions of GRNNFDO based PID MPPT controller, It dis-
plays that there are limited fluctuations, and comparatively low
time is required to trace the set value of voltage comparative to
the ZG technique based PID as illustrated in Fig. 24. Moreover,
results demonstrate that the settling time of GRNNFDO with PID
controller for the varying load is 60% lower than ZG method.
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Fig. 21. Case study 3: Step change temperature condition current curve of GRNNFDO.
Fig. 22. Case study 3: Step change temperature condition voltage curve of GRNNFDO.
Fig. 23. Varying load output of GRNNFDO trained PID controller.
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.5. Case 5: Experimental study of TEG emulator

To authenticate the MPPT control implementation for TEG
ystems, a cost-effective TEG practical simulator is utilized. As
xplained in Section 2, TEG output is very dependent on the
emperature values and it acts as a Vsource whose Voc changes
with the surrounding temperature. Therefore, the DC supply with
Vhigh and RL in series simulates the effect of the TEG module. The
power ratings of the emulator are set according to the experiment
demands. Fig. 25 shows the connection of components with the
DC − DC boost converter , Current , Voltage , µcontroller
sensor sensor a

6343
and Load(RL). The experimental hardware system of the TEG
mulator is shown in Fig. 26. Table 2 labels the components which
re used in the implementation of the TEG emulator system.
Fig. 27 displays the power traced by CSA under changing

emperature conditions, which authenticates that CSA took up
o 400 ms to trace and settle down at GMPP. After attaining the
MPP, little fluctuations can be observed. CSA settle down at less
ower, causing significant output power loss and reducing the
verall efficiency of MPPT control. Whereas in comparison with
SA, GRNNFDO traces and settles down at GMPP within 200 ms,
s displayed in Fig. 27. In comparison with CSA, GRNNFDO shows
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Fig. 24. Varying load output of ZN trained PID controller.
Fig. 25. Implementation of TEG system control on a low-priced TEG-emulator.
Fig. 26. Experimental setup for TEG system.
a very quick tracing because of the stable duty cycle response and
takes less than 200 ms to track and settle down at GMPP.

5. Common results and discussion

This section summarizes the common findings of all case
studies.
6344
5.1. Settling time and tracking time

The tracking time (TT) is the time taken by the MPPT controller
to locate GM and the settling time is the time taken by its
searching agents in search space to converge on GMPP without
further oscillations. Minimum TT and ST are preferred within the
least number of iterations. Tracking time and settling time are
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Fig. 27. Experiment results showing GRNNFDO and CSA max. power point tracking.
Fig. 28. GRNNFDO RE, RMSE, SR, and MAE.
R

w

Table 2
Specifications of components.
Components Values

Inductor, (L) 1 mH
Input capacitor (Cin) 100 µF
Output capacitor (Cout ) 1000 µF
MOSFET IRF730
Switching frequency, (f ) 61 kHz
Load, (RL) 5 �

Vsensor B25
Csensor ACS − 172
Micro-controller ATmega2560

two important qualitative measures. Minimum time constraints
are desired from an efficient MPPT controller. The best ST and TT
are achieved by GRNN FDO followed by GHO, CSA, PSO and P&O.
on average proposed techniques give a 10%–20% enhancement.

5.2. Power tracking efficiency

The maximum power efficiency and mean power efficiencies
re studied. In both indices, proposed techniques outperform op-
osing technologies. The NUTD cases highlight the drawbacks of
SO and CSA in power tracing efficiencies. The P&O performance
emains between 60 and 80%.

.3. Oscillations and fluctuations

Classical techniques have a major issue of oscillations in volt-
ge transients around MPP. Similarly, fluctuations are observed
n swarm-based technologies that utilize Levy functions or Brow-
ian motion functions to break LM traps. These oscillations are
ndesirable. Proposed techniques successfully eliminate these
rom power and voltage transient. The ripples remain ≤1 W in

ll cases.

6345
5.4. Statistical analysis of the GRNNFDO

Here the statistical analysis of the proposed GRNNFDO tech-
niques is made. The sensitivity of the technologies is measured by
relative error (RE) Eq. (18), Success rate (SR), mean absolute error
(MAE) Eq. (19) and root mean square error (RMSE) in Eq. (20) as:

RE =

∑n
i=1

(
Ppvi − Ppv

)
Ppv

∗ 100% (18)

MAE =

∑n
i=1

(
Ppvi − Ppv

)
n

(19)

MSE =

√∑n
i=1

(
Ppvi − Ppv

)2
n

(20)

here Ppvi is the output power in the ith run, Ppv is the max.
the possible output power of the TEG system, n is the total
number of runs. In addition to the measures in Eqs. (17)(b)–
(20), median, means and standard deviation, and success rate (SR)
are considered. The proposed technique achieves smaller RE and
MAE than PSO, CSA, PSO and P&O. Fig. 28 provides the statistical
analysis graphically.

6. Conclusion

In this work, a novel Machine learning-based control technol-
ogy is proposed for the centralized TEG system under varying
operating conditions. The GRNNFDO is implemented to work pro-
ficiently under non-static conditions and NUTD conditions. GRN-
NFDO results are compared with other MPPT technologies such
as CSA, PandO, PSO, and GHO. GRNNFDO attains the finest results,
tracking time of GRNNFDO is lowest, the proposed method tracks
global maxima with a very good efficiency measured as >99%.
GRNNFDO takes up to 110.1 ms to trace the true GMPP. GRNNFDO
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scillations around global maxima are very low in comparison
ith GHO, PandO, and PSO based MPPT technologies. GRNNFDO
roduces 8.3% more output under NUTD comparatively. It is also
oncluded that GRNN optimized spread parameter value is very
mportant for efficiently tracing GMPP under various operating
onditions. In the future, the more complex behavior of TEG
ystems will be studied and concentrated PV-TEG, Hybrid PV-TEG
ystems will be considered for the optimum usage of solar energy.
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