# Journal Pre-proof Biocomposites from recycled resources as candidates for laboratory reference material to validate analytical tools used in organic compounds emissions investigation Mariusz Marć, Małgorzata Rutkowska, Aleksander Hejna, Mateusz Barczewski PII: S0360-1323(22)00494-2 DOI: https://doi.org/10.1016/j.buildenv.2022.109259 Reference: BAE 109259 To appear in: Building and Environment Received Date: 23 March 2022 Revised Date: 27 May 2022 Accepted Date: 1 June 2022 Please cite this article as: Marć M, Rutkowska Mał, Hejna A, Barczewski M, Biocomposites from recycled resources as candidates for laboratory reference material to validate analytical tools used in organic compounds emissions investigation, *Building and Environment* (2022), doi: https://doi.org/10.1016/j.buildenv.2022.109259. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2022 Published by Elsevier Ltd. - 1 Biocomposites from recycled resources as candidates for laboratory reference material - 2 to validate analytical tools used in organic compounds emissions investigation 4 Mariusz Marć<sup>1\*</sup>, Małgorzata Rutkowska<sup>1</sup>, Aleksander Hejna<sup>2</sup>, Mateusz Barczewski<sup>3</sup> 5 - 6 <sup>1</sup>Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology - <sup>2</sup>Department of Polymer Technology, Chemical Faculty, Gdansk University of Technology - 8 <sup>3</sup>Institute of Materials Technology, Poznan University of Technology 9 - \*Corresponding author: marmarc@pg.edu.pl - 11 Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, - Narutowicza 11/12 street, 80-233 Gdansk, Poland 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ## Abstract A suitably chosen reference material should meet specific criteria like representing one of the compound classes most commonly occurring in indoor materials as well as having optimal long-term stability during storage and transport to its destination point and having a compact size. The described interdisciplinary pilot research was aimed to develop and characterize a polymer-based candidate for the laboratory reference material (LRM) of selected representatives of monoaromatic hydrocarbons (toluene and furfural) and terpenes emissions. Recycled, petroleum-based low-density polyethylene (LDPE) was applied as a matrix and was filled with plant-based wastes, such as apple pomace (AP), sunflower husks (SH), or yerba mate (YM) residues. The performance and suitability of the developed candidate for use as laboratory reference material was analyzed using FT-IR spectroscopy and differential scanning calorimetry (DSC). The migration potential of the representatives of monoaromatic hydrocarbons and terpenes emitted from the developed polymer material was assessed using the stationary emission microchamber system ( $\mu$ -CTE 250). In the case of candidates for LRM with the addition of YM and AP, a clear relationship was observed between the samples seasoning time in the chamber and the total amount of VOCs released into the gaseous phase, including identified and determined representatives of terpenes. Furthermore, the existence of a clear relationship between the size (intensity) of the emission defined by the calculated summary parameters (TVOCs and sum of terpenes) and the seasoning/conditioning temperature of polymeric materials with bioadditives was observed. 34 Keywords: reference material; indoor materials; product emissions testing; emissions; 1 Following the International Union of Pure and Applied Chemistry (IUPAC), the primary bioadditives; terpenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ## 1. Introduction alternative for testing the accuracy of an analytical method is to analyze a certified reference material (CRM) [1]. Nevertheless, it is not easy to obtain a CRM with the same or similar matrix as the sample analyzed. According to the Committee on Reference Materials of the International Organization for Standardization, a reference material is one that is "sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process" [2]. CRMs should be similar to real samples in terms of the composition of the matrix, levels of analytes, potential interferences, and the material's physical state [3]. In addition, generally available CRMs have a high price due to time-consuming and costly certification steps. In the absence of a suitable CRM, an alternative strategy is to use a reference material (RM), also known as a laboratory reference material (LRM) or laboratory control material (LCM) that must also meet the same homogeneity and stability criteria to provide suitability. Such materials can be used at all steps of the measurement process, from instrument calibration, validation of analytical methods, and the quality control process [4]. Synthetic materials can contain many chemical additives and contaminants that can migrate and contaminate food, water, soil, and air. Among other things, volatile organic compounds (VOCs) contained in plastic-based materials can be released into the air at ambient temperatures due to their high vapor pressure. Specialized laboratory equipment, such as emission test chambers, allow samples to be characterized under conditions that mimic the indoor environment [5]. However, there is a lack of a proven method or analytical tool to assess the precision of the results obtained employing the stationary emission chamber (dynamic headspace analysis) or automatically headspace system (static headspace analysis). Only a few solutions are known in which the suitability of the designed and used analytical devices measuring emissions of organic compounds are studied with non-commercial laboratory-made RMs. The published solutions are mainly based on a predefined quantity of toluene – research associated with the new type of diffusion-controlled RM for VOCs emission studies. The thin film of synthetic homogeneous material made of polymethyl pentene (PMP) was used as a carrier medium. Then selected organic compound – toluene was loaded to the PMP carrier medium structure through a diffusion process. A described analytical tool might be considered a representative or substitute for a "dry" building or constructing material in the emission studies. Besides, it 1 should be noted that diffusion-controlled RM using PMP as a carrier medium was the main 2 subject of the pilot inter-laboratory research project, which contains four participating 3 laboratories [6, 7]. A different solution was associated with the preparation and characterization 4 of a tool defined as a liquid-inner tube diffusion-film-emission (LIFE). The LIFE was prepared 5 based on the following elements: (i) a cylindrical container made of Teflon; (ii) a thin diffusion 6 7 film (membrane) made of aluminum oxide melamine-impregnated paper as a cover and (iii) 8 liquid – a solution of a single purified organic compound representing VOCs. The device was 9 designed to assess the working parameters (the performance) of stationary emission chambers (for both large-scale and small-scale chambers) applied to estimate organic compounds' 10 emission rate from furniture materials. The proposed solution was an easily-used analytical tool 11 with a constant emission rate of toluene under defined temperature and relative humidity 12 13 conditions [8, 9]. An example of another approach is thermoplastic material (polyurethane) as a carrier for selected VOCs. Thermoplastic polyurethane is a specific carrier coated with VOCs. 14 15 The coating is conducted under increased pressure to ensure optimal penetration of VOCs to deeper layers of the carrier material [10]. 16 A comparison of data achieved employing two different analytical devices or methods for 17 determining the type and quantity of chemicals released from indoor materials is not an easy 18 process. Very often, there is no explicit statistically significant agreement between the 19 emissions of contaminants released from the same studied material. Differences between the 20 results are primarily attributed to the fact that these devices operate in different analytes 21 sampling modes. Dissimilarities between results may also be directly caused by the investigated 22 characteristics, composition, superficial structure, indoor material's 23 storage/conditioning time at the retailer's premises. Because most indoor materials are 24 characterized by varying degrees of homogeneity, it is expected that by using two different 25 analytical devices or methods, statistically significant differences will be found for the obtained 26 27 data [11, 12]. One solution that would allow for comparing research results acquired using the 28 different methodological approaches and showing the potential differences is to introduce a suitable prepared LRM characterized by a constant predefined emission profile of selected 29 30 chemical compounds. This option would allow a detailed comparison and indicate the analytical device offering better precision and accuracy [13, 14]. An adequately chosen LRM should meet 31 32 specific standards like being neutral to elements of the sampling device, and the specific compound or defined group of chemicals ought to be released from the developed LRM at a 33 34 predefined rate in a predefined time interval. Because the complicated testing procedure employed various types of devices classified as the emission chambers, LRMs for the quality 1 assurance of the organic compounds emissions research are required [8, 9, 13, 14]. 2 Consequently, the challenge for interdisciplinary research centers is to develop and characterize 3 the new types of LRMs containing a valuable tool in the field of estimating the chemical 4 compounds emissions from representatives of various types of indoor and building materials. 5 In the indoor environment, VOCs might be emitted directly to the gaseous phase by building 6 7 materials (e.g., bricks, breezeblocks, paints, and impregnates) as well as from household equipment (furniture, floor coverings, wide spectrum of electronic equipment, wallpapers, 8 9 textiles). Many of mentioned materials or equipment's contain or consist entirely of a polymer matrix [11, 13]. Consequently, the challenge for interdisciplinary research centers is to develop 10 and characterize the new types of LRMs containing a valuable tool in the field of estimating 11 the chemical compounds emissions from representatives of indoor materials containing 12 13 polymeric matrix. Prospective application of LRM might contain an alternative solution for both long-term emission chamber investigations (under dynamic conditions in constant flow 14 15 rate) as well as mathematical calculations to perform model predictions of characteristics of emission rate of volatile and semi-volatile organic compounds (SVOCs) [8]. Li [15] 16 17 demonstrate and describe the mass-diffusion mathematically-physics model suitable for three different VOCs emission stages - predicting organic emissions in early, midterm, as well as late 18 stages. Mathematical calculations were performed based on the results obtained with the use of 19 20 two reported small environmental-chamber investigations [15]. The main objective of this study was to develop and fully characterize the candidate for LRM 21 with its morphological characteristics and preliminary emissions profile (specific emission rate) 22 of representatives of monoaromatic hydrocarbons (toluene and furfural - a compound derived 23 from the added fruit wastes [16]) and terpenes. Investigations were performed depending on 24 25 the temperature conditions and seasoning time (defined as a storage time of a material sample inside the emission chamber under given conditions of humidity, temperature and gas flow 26 rate). The novelty of performed interdisciplinary research was that proposed candidates for 27 28 LRMs were prepared based on commonly used low-density polyethylene (LDPE), and plantbased wastes (originated from the food industry – apple pomace, sunflower husks, and yerba 29 30 mate residues) introduced in a defined amount of 10 wt.%. The LPDE was selected as a potential matrix representing conventional petroleum-based polyolefins characterized by very 31 32 low content and emission level of monoaromatic hydrocarbons and terpenes. In addition, an essential aspect of a novelty of preformed research is checking whether the defined addition of biocomposites to the polymer mass allows for a stable and repeatable emission profile of 1 compounds that might be released from the introduced additives. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ## 2. Materials and methods ## 2.1.Materials for candidates of LRM Recycled low-density polyethylene (LDPE), obtained from the local recycling company (Katowice, Poland), was applied as a matrix to prepare investigated composites. It was characterized by a density of 0.9142 g·cm<sup>-3</sup> and melt flow rate (MFR) of 1.35 g·10 min<sup>-1</sup> (190 °C, 2.16 kg). Apple pomace (AP) was generated during the production of homemade apple juice from White Transparent apples using SilverCrest® SSJ 300 B2 Slow Juicer from Lidl (Germany). Sunflower husks (SH) were obtained during the pressing of sunflower oil using PS-101 screw oil press from P.U-H OLA (Poland). Yerba mate residues (YM) were generated during the brewing of Compuesta Hierbas from Amanda (Argentina) acquired from the online store coffeedesk.pl (Poland). This type contains 95% yerba mate produced with stems, anti-acid and digestive herbs – peppermint, pennyroyal, incavuyo, linden, boldo, mint, and lemon vervain. Mentioned type of wastes have been chosen as exemplary materials from different branches of food industry - juice production, oil production and beverages. They are characterized by different composition and it was supposed that their emission profile considering monoaromatic hydrocarbons and terpenes would differ, so they could be applied for detecting and assessing the emissions of different chemicals. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ## 2.2. Preparation of polymer-based candidates for laboratory reference material The samples were prepared by mixing in a molten state using a two-roll mill from Shaw Robinson (London, UK) at a temperature of 95°C. Samples were prepared in the air atmosphere. Its composition was not analyzed, but according to literature data it contains 78.084% of nitrogen, 20.946% of oxygen, 0.934% of argon, 0.041% of carbon dioxide, and 0.00268% of other gases including neon, helium, methane, hydrogen and krypton. Time of processing equaled 15 min, including the 3 min phase of polyethylene plastification and 12 min of melt blending of polymer matrix with 10 wt.% of selected filler. The resulting composites were then compression molded at 150°C and 4.9 MPa for 2 min and then kept under pressure at room temperature for another 5 min to solidify the material. Then, samples were vacuum-packed using SilverCrest® Kitchen Tools SV 125 C3 Vacuum Packer from Lidl (Germany) to reduce VOCs emissions during storage before analyses. The general view of investigated candidates for laboratory reference material (LRM) prepared based on low-density polyethylene (LDPE), - and plant-based wastes are shown in Figure 1. The outer diameter of a single pellet/disc was 1 - 24.6 mm and the thickness was 1.1 mm (9.86 cm<sup>2</sup>). 2 4 ## 2.3. Characteristic of candidates for laboratory reference material - The chemical structures of prepared polyethylene-based materials were determined using 5 - Fourier transform infrared spectroscopy (FT-IR) analysis performed by a Nicolet Spectrometer 6 - 7 IR200 from Thermo Fisher Scientific (Waltham, MA, USA). The device had an ATR - attachment with a diamond crystal. Measurements were performed with 1 cm<sup>-1</sup> resolution in 8 - the range from 4000 to 400 cm<sup>-1</sup> and 64 scans. Provided FTIR spectra were averaged from at 9 - least 10 different spectra. 10 - To measure the crystallization and melting temperatures, and determine the temperature 11 - window for the use of prepared materials, differential scanning calorimetry (DSC), was applied. 12 - 13 The $5.0 \pm 0.1$ mg samples were placed in aluminum crucibles with pierced lids. They were - heated from 20 to 200°C with a heating rate of 10°C·min<sup>-1</sup> and then cooled back to the initial 14 - temperature at a cooling rate of 10°C·min<sup>-1</sup>. The heating/cooling cycle was performed twice to 15 - erase the polymers' thermal history during the first heating. The measurements were conducted 16 - using a Netzsch 204F1 Phoenix apparatus (Netzsch, Selb, Germany) in an inert nitrogen 17 - atmosphere. From the DSC results, the crystallinity degree (X<sub>CR</sub>) of the samples was calculated 18 - using formula (1) [17, 18]: 19 20 21 $$X_{CR} = \frac{\Delta H_m}{(1-\theta) \cdot \Delta H_{m100\%}} \cdot 100\%$$ (1) 22 23 where: $\Delta H_m$ – melting enthalpy of a sample, $\Delta H_{m100\%}$ – melting enthalpy of 100 % crystalline polyethylene, $\Delta H_{m100\%} = 293.6 \text{ J/g}$ , $\theta$ – filler weight fraction. 24 25 26 ## 2.4. Reagents and analytical equipment - The following solvents and reference solutions were used during the whole analytical 27 - procedure: (i) methanol for GC (MS SupraSolv®, Merck KGaA, Darmstadt, Germany) solvent 28 - applied to prepare the appropriate calibration solutions; (ii) reference standard solution 29 - containing 20 terpenes dissolved in MeOH at content level 2000 µg·mL<sup>-1</sup> of each (Cannabis 30 - Terpene Mix A certified reference material, TraceCERT<sup>®</sup>, Merck KGaA, Darmstadt, Germany) 31 - external standard (ESTD) for calibration of the thermal desorption—gas chromatography— 32 - flame ionization detector (TD-GC-FID) system; (iii) reference standard solution containing 33 - deuterated toluene in MeOH at content level of 2000 μg·mL<sup>-1</sup> (Toluene-d<sub>8</sub> solution certified 1 - reference material, TraceCERT®, Merck KGaA, Darmstadt, Germany) internal standard 2 - (ISTD) for the assessment of the emission of total volatile organic compounds as well as an 3 - injection and organic compounds recovery standard. 4 - To collect the organic compounds (including terpenes) emitted to the gaseous phase from 5 - investigated materials, the stainless steel tubes filled with Tenax TA sorption medium (60/80 6 - 7 mesh, stainless steel TD tube, O.D. × L 1/4 in. × 3 1/2 in., preconditioned, Merck KGaA, - Darmstadt, Germany) were applied. Before employment, each Tenax TA tube was conditioned 8 - 9 at elevated temperature (300°C for 30 min) under a stream of nitrogen (flow rate approx. 50 - $mL \cdot min^{-1}$ ; RH = 0%). 10 - To perform the organic compounds emission studies from investigated materials, the stationary 11 - emission chambers system was used (Micro-Chamber/Thermal Extractor<sup>TM</sup> (μ-CTE<sup>TM</sup> 250, 12 - Markes International, Inc.). The mentioned device contains four equivalent (114 cm<sup>3</sup> capacity) 13 - cylindrical chambers made of high-quality polished steel. The studies using u-CTE<sup>TM</sup> 250 might 14 - 15 be performed in a dynamic (constant flow rate) or static mode, with a temperature range of - 25°C to 250°C and an inert gas flow rate (dynamic mode) of 10 to 500 mL·min<sup>-1</sup>. Detailed 16 - description, operating parameters, and potential application range of the Micro-17 - Chamber/Thermal Extractor<sup>TM</sup> might be found elsewhere [14, 19-21]. 18 - To extract the organic compounds collected on a sorption medium (Tenax TA) the two-stage 19 - 20 thermal desorption technique was used. To perform the effective extraction process, the - stationary thermal desorption (TD) units were employed: (i) Markes Series 2 Thermal 21 - Desorption Systems; UNITY/TD-100 (Markes International, Inc.) combined with gas 22 - chromatography-flame ionization detector (GC-FID) system; (ii) Markes Unity v.2, (Markes 23 - International, Inc.) connected with GC combined with mass spectrometer (GC-MS) system. 24 - 25 Both TD systems were equipped with multibed glass microtrap, cooled down to 0°C dedicated - for determining organic compounds, including terpenes and the transfer line connecting TD 26 - units with appropriate GC systems was constantly heated up to 160°C. The separation, initial 27 - 28 identification and quantitative determination of emitted organic compounds from investigated - synthetic materials were carried out applying GC-FID system (Agilent Technologies 7820A 29 - 30 GC System, FID working temperature – 280°C) equipped with GC capillary column (30 m × - 320 µm × 5 µm, J&W DB-1, USA). The helium (He, 5.0) constant flow rate was 2.0 mL·min<sup>-</sup> 31 - 32 <sup>1</sup>. Moreover, to obtain a better identification of the emitted chemical compounds from the - investigated materials the GC-MS system (GC Agilent Technologies 6890; 5873 Network Mass 33 - 34 Selective Detector, Agilent Technologies) with the GC capillary column (30 m $\times$ 250 $\mu$ m $\times$ 1 - μm, J&W HP-1MS, USA) was employed. The helium flow rate (He. 5.0) was 1.0 mL·min<sup>-1</sup>. 1 - The MS ion source, the quadrupole mass analyser and GC-MS transfer line temperatures were 2 - 250°C, 150°C and 280°C, respectively. The identification of emitted chemical compounds was 3 - carried out employing the mass spectra database (NIST 2.0 Mass Spectral Library) attached to 4 - the MS system software (The NIST Mass Spectral Search Program for the NIST/EPA/NIH 5 - Mass Spectral Library Version 2.0d, USA). 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ## 2.5.General description of the applied analytical procedure Before performing the analysis of prepared synthetic materials, the μ-CTE<sup>TM</sup> emission chambers were bake-out (conditioned) at elevated temperature (150°C) for 30 min under the continuous nitrogen gas flow rate (35 mL·min<sup>-1</sup>; RH = 0%). Next background signal by investigation the blank samples – the chemical compounds emitted from empty emission chambers. After this, the general analytical procedure was introduced to assess the emissions of chemical compounds from prepared candidates for laboratory reference materials. Detailed information about the conditions and parameters of the applied analytical protocol was presented in the Figure 2. Regarding samples analyzed by the GC-MS system, one disc was selected and placed inside an emission chamber to identify emitted organic compounds from each pack of prepared synthetic materials. In this case the seasoning/conditioning parameters were as follows: seasoning temperature – 45°C; seasoning time - 30 min, seasoning mode – static mode; chemical compounds flushing/sampling time -10 min; inert gas (RH = 0%) flow rate during sampling stage $-35 \text{ mL} \cdot \text{min}^{-1}$ . To calculate the numerical values of linear retention index (LRI) of determined organic compounds, the mixture in acetone containing 1 µL of each chemical compound from C8 to C17 was prepared. The mentioned mixture was analyzed under the same thermal desorption and chromatographic conditions as real samples. Following obtained retention times, resulting from the chemical compounds present in investigated samples and the mixture of n-alkanes (C8 -C17), the numerical values of LRI were calculated according to the equation (2): 28 29 $$RI = 100n + {100 \times [TR_{(x)} - TR_{(n)}] / [TR_{(n+1)} - TR_{(n)}]}$$ (2) 30 31 32 33 In the above equation (2) TR is the determined retention time and (n + 1) and n are defined as the numbers of carbon atoms in the alkanes containing the prepared mixture which reached the detector after and before the unknown component of investigated sample x, respectively [22]. - As for the estimation of the values of TVOCs parameter (total volatile organic compounds), in 1 - line with literature information, the TVOC parameter is defined as the sum of all organic 2 - compounds, eluting between n-hexane and n-hexadecane (defined as analytical window) on 3 - non-polar/slightly polar stationary phases of the GC capillary column using flame ionization 4 - detector and quantifying as toluene equivalents [23-25]. 5 10 11 ## 2.6. Quality assurance and quality control The mass (in nanograms) of determined organic compounds emitted from the investigated 8 9 candidates for laboratory reference material and adsorbed on the applied sorption medium was calculated based on the external standard calibration method (ESTD). To perform the calibration of the TD-GC-FID system, a reference standard solution containing 2000 μg·mL<sup>-1</sup> of each 20 terpenes (beta-Pinene; Camphene; alpha-Pinene; 3-Carene; alpha-Terpinene; (R)-12 13 (+)-Limonene; gamma-Terpinene L-(-)-Fenchone; Fenchol; (1R)-(+)-Camphor; Isoborneol; Menthol; Citronellol; (+)-Pulegone; Geranyl acetate; alpha-Cedrene; alpha-Humulene; 14 15 Nerolidol; (+)-Cedrol; (-)-alpha Bisabolol) in MeOH and certificate standard solution of deuterated toluene in MeOH (2000 µg·mL<sup>-1</sup>) were used. Determination of the correlation 16 17 between the mass of the analyte retained on the sorption bed on the detector signal of the applied TD-GC-FID system was performed based on previously published calibration procedure [14, 18 19 26-28]. 24 27 29 34 Due to the fact, that the emitted organic compounds were at a low concentration level, only one 20 range of calibration curves was needed. The mass ranges of prepared calibration curves were 21 from 2 ng to 200 ng per sorption bed. Five calibration reference solutions (for five-point 22 calibration curve) in 1 mL of MeOH were prepared. Each point on the calibration curve was 23 repeated three times. The reference solution samples were analyzed under the same TD-GC- FID system conditions as the investigated synthetic materials. The correlation coefficients (R<sup>2</sup>) 25 of the calibration curves ranged from 0.992 to 0.998. To ensure the quality of the analytical 26 procedure and results (QA/QC protocol), a randomly selected tube was again desorbed after 28 each analysis. Before each analysis of prepared candidates for laboratory reference material, the value of a blank sample was investigated. Based on these studies it was possible to correct 30 the obtained research results considering the purity of the applied gases, the wall-memory effects of applied seasoning and sampling devices, and the potential impurities that might occur 31 32 in the chromatographic system. The analysis of blank samples was carried out applying analogous conditions as those used to analyze the real samples and the amount of the emitted 33 organic compounds was corrected for the blank sample value [14, 26-28]. - 1 Furthermore, to study the recovery of the thermal desorption process, a 1000 ng of deuterated - toluene was introduced on a clean sorption medium (representative of a chemical compound - 3 that might be adsorbed most tangibly). Based on obtained results it was noticed that the recovery - of determined organic compounds was in an acceptable level of approx. $\pm$ 5%. The instrumental - 5 (detector) limit of detection (ILD) value was calculated based on the signal-to-noise ratio (S/N) - 6 for samples with the lowest amount of deuterated toluene as well as selected organic compounds - 7 and reached an average value of 0.30 ng. The instrumental limit of quantitation (ILQ) was - 8 estimated as three times the ILD values. # 10 3. Results and Discussion ## 3.1.FT-IR analysis 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Figure 3 presents the FT-IR spectra of applied plant-based wastes. It can be seen that all of the materials show spectra typical for lignocellulose materials [29]. The broad peak at 3280-3350 cm<sup>-1</sup> points to the stretching vibrations of hydroxyl groups, widely present in the structure of plant-based materials, including celluloses, lignin, and various polysaccharides [30]. Signals in the range of 2850-2930 cm<sup>-1</sup> can be associated with the symmetric and asymmetric stretching vibrations of C-H bonds, which are present in the macromolecules of celluloses and lignin, main components of plant-based wastes, as well as the backbone of other components like lipids or proteins [31]. In the case of SH material, the enhanced intensity of these signals, and the presence of a minor signal at 3010 cm<sup>-1</sup> indicate the presence of oils containing unsaturated fatty acids [32]. Around 1730 cm<sup>-1</sup> were noted peaks attributed to stretching vibrations of carbonyl C=O bonds, while around 1640 cm<sup>-1</sup> peaks of characteristic for the stretching vibrations of unconjugated C=O and C=C bonds in polysaccharides and lipids, which were most pronounced for SH filler, confirming the presence of oils [33]. Potent signals in the range of 990-1150 cm<sup>-1</sup> were associated with the vibrations of $\delta$ bonds between carbon and oxygen atoms (in ester and ether groups), related to the chemical structure of analyzed materials [34]. Figure 4 shows FT-IR spectra obtained during spectroscopic analysis of LDPE-based candidates for laboratory reference material, typical for polyethylene materials [35]. Sharp peaks related to the stretching, bending and rocking C-H vibrations around 2914, 2840, 1464, and 730 cm<sup>-1</sup> dominate in spectra due to the chemical structure of the LDPE backbone [36]. Except for them, spectra of composites containing apple pomace and yerba mate residues include only minor peaks in the range of 1090-1370 cm<sup>-1</sup> characteristic for lignocellulose materials [37]. On the other hand, material filled with sunflower husk showed higher intensity - of these peaks and the presence of an additional peak at 1744 cm<sup>-1</sup>, which points to the migration - of oils from the filler onto the composite surface during its processing [38]. Presence of this - 3 peak is in line with the structure of SH filler reported in Figure 3. Nevertheless, presented FT- - 4 IR spectra point to the efficient encapsulation of filler particles by LDPE macromolecules, - 5 which may be crucial for the long-term stability of organic compounds emissions from - 6 composites. Moreover, lack of peaks characteristic for carbonyl bonds in the FTIR spectra of - 7 prepared LDPE-based composites indicate that matrix was not degraded during processing [39, - 8 40]. - 9 Figure 5 shows the thermograms obtained during DSC analysis of prepared composite materials - and mean values of selected thermal parameters (melting Tm, crystallization Tc temperatures - and crystallinity Xc). Peaks observed on the heating curves at 114.4-116.6°C are typical for - low-density polyethylene grade [41]. It can be seen that there are no other peaks were noted, - which points to the relatively high purity of the recycled matrix. Differences in melting - temperatures between samples are associated with the changes in crystallite size. Lower values - indicate the reduced size of crystallites, which may be related to the restrictions in spherulite - growth caused by the presence of solid particles [42]. - Despite the low susceptibility of polyethylene to the phenomena of heterogeneous nucleation, - in the case under consideration, a different fillers' efficiency on the crystallinity level was - observed, in a range that cannot be considered negligible. Moreover, the crystallization - 20 temperature, determined as the temperature position of the peak on the cooling curve, is the - 21 highest for material containing yerba mate residues, followed by apple pomace composite. Such - an effect points to the presence of solid impurities, which may act as nucleating agents, - 23 increasing the crystallization rate [43]. Except for the main crystallization peak, a small - exothermic peak was observed around 60°C. This effect is related to separate second - 25 crystallization of crystallites with various thicknesses, which is characteristic of polyethylene - grades with long-chain branches in their structure, as previously noted for LDPE [44]. - Nevertheless, it does not affect the possibility of using applied material as the matrix for - laboratory reference material. Concluding, the results of DSC measurements indicate that the - 29 prepared materials could be efficiently applied as laboratory reference materials even at - elevated temperatures around 100°C. However, as heating curves indicate, the melting of LDPE - occurs over a wide range of temperatures. Therefore, the changes in LDPE crystalline structure - 32 could affect the emission profile and emission rate at various temperatures of organic - 33 compounds. #### 1 3.2. Linear retention index of determined representatives of organic compounds The results of calculated values of LRI for chemical compounds emitted and identified from the investigated samples of candidates for LRM are listed in Table 1. From 20 chemical compounds enclosed in the reference standard solution (Cannabis Terpene Mix A), 15 were identified in the studied materials. The highest number of compounds classified as terpenes was identified in the samples of materials with the addition of yerba mate residues (15 compounds), and the smallest - with the addition of sunflower husks (two terpenes and one representative of monoaromatic hydrocarbons). The ranges of calculated values of LRI for determined chemical compounds correspond to the ranges of LRI published in scientific literature determined using similar chromatographic conditions. Several deviations might be caused by the combination of random as well as systematic errors. At this point it should be highlighted that during described studies, the sample injection process was performed using thermal desorption techniques connected directly to the GC column. In the literature data, the injection was performed mainly in a traditional way using a GC injector. Moreover, the presence of variations in calculated LRI values might be the consequence of the use of GC columns characterized by different parameters, such as internal diameter, film thickness, as well as service life. Mentioned factors might slightly affect the analytes retention times, pick shape and the chromatogram resolution. Nevertheless, the presence of listed in Table 1 chemical compounds was confirmed (above 85% compatibility) by analyzing the investigated samples using the MS detector. 20 21 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 # 3.3. The emission rate of determined chemical compounds from investigated candidates for LRM 23 24 25 26 27 28 29 30 31 32 33 34 22 # 3.3.1. Dependence between the emission rate of the determined organic compounds and LRM seasoning/conditioning time Considering the obtained results, the relationship between the emission rate of identified and determined organic compounds and seasoning/conditioning time was investigated. In Figure 6 and Figure 7, the relationship between the emission rate of TVOCs and the sum of terpenes (calculated based on the identified and determined organic compounds released to the gaseous phase from investigated candidates for LRM) and different seasoning/conditioning periods was shown. Detailed information about the correlation between terpenes' emissions and seasoning/conditioning time for studied polymeric materials was shown in Supplementary Figures from 1 to 3. The error bars shown in Figure 6 and Figure 7 represent the standard deviation values for the performed measurements (n = 3). In the case of candidates for LRM with the addition of YM and AP (Figure 6), a clear 1 relationship was observed between the samples seasoning/conditioning time in the chamber and 2 the total amount of VOCs released into the gaseous phase, including identified and determined 3 representatives of terpenes. Moreover, improving the interpretation of these data with the 4 analysis of the information presented in Supplementary Figure 1 (SF1) and Supplementary 5 Figure 2 (SF2), it can be observed that in the case of material with the addition of YM, almost 6 all of the identified and determined organic compounds were characterized by a strong 7 8 correlation between the emission rate and the seasoning/conditioning time. In the case of 9 materials with the addition of AP, the organic compounds whose emission rate was dependent on the seasoning/conditioning time constituted the majority but not as numerous as in the case 10 of the materials with the addition of YM. On the other hand, the candidates for LRM with the 11 addition of SH (Figure 7) essentially did not show any correlation between the emission rate of 12 13 identified and determined organic compounds and the seasoning/conditioning time. This proves the lack of factors/additives that might be considered as the emission source of terpenes (dried 14 15 fruit or citrus pomaces and residues) or aromatic hydrocarbons (residues of solvents or dyes). Calculating the numerical values of the PCC (Pearson's correlation coefficient) in the case of 16 the results obtained for the samples of materials with the addition of YM for the determined 17 total parameters – TVOCs and sum of terpenes, it was found that these values were respectively 18 -0.666 and -0.676. This confirms the existence of a strong inverse relationship (ranging from -19 0.60 to -0.80) [48, 49] between the investigated total parameters and seasoning/conditioning 20 time. In the case of materials with the addition of AP, the numerical values of the PCC for 21 determined total parameters were -0.769 and -0.712, respectively. It also proves the existence 22 of a strong inverse relationship between the emission rates of identified and determined organic 23 compounds and the seasoning/conditioning time of the candidates for LRM inside an emission 24 chamber. On the other hand, when referring to the research conducted on material with SH 25 addition, a very weak relationship between the seasoning/conditioning time and the determined 26 27 total parameters, as well as in a case of identified and determined individual organic compounds 28 was observed. Moreover, as can be observed in Figure 7, the amount of emission rate of the determined terpenes representatives, and the total amount of VOCs were much lower than in 29 the case of the other investigated candidates for LRM. Estimated values of PCC confirm the 30 presence of a weak correlation (0.330 and -0.122) between seasoning/conditioning time and the 31 32 emission rate of assessed total parameters. This proves that in the case of materials with the addition of SH, both the emission rate of TVOCs and determined terpenes are not directly 33 34 dependent on the seasoning/conditioning time of the sample. Additionally, it can be concluded - 1 that the material filled with 10% of SH is a low-emission material in terms of compounds from - the group of aromatic hydrocarbons and terpenes, and the TVOC parameter might be mainly 2 - related to the emission rate of compounds from the group of aliphatic hydrocarbons resulting 3 - from the linear structure of the applied polymer matrix. 4 - Regarding the results for the synthetic material with the addition of YM, there is a clear 5 - relationship between the emission profiles of the TVOCs and the total amount of identified and 6 - 7 determined terpenes. This may be a consequence of the fact that the YM waste is a mixture of - 8 various organic ingredients (fruit and citrus waste), which may be the source of the emission of - 9 aromatic compounds including terpenes. Considering the percentage of identified and - determined terpenes, it was found that, depending on the seasoning/conditioning time, it 10 - fluctuated in the range from 24.72% to 36.51% (the standard deviation for these results was low 11 - 3.29%). However, in the case of a candidate for LRM with the addition of AP, similar 12 - 13 characteristics of the emission profile for TVOC and the sum of determined terpenes were - observed. Nevertheless, it is not as uniform as for the polymer materials with the addition of 14 - 15 YM wastes. It may be mainly due to the use of only one type of additive (not a mixture of - bioadditives), which are pomace from one type of fruit apples. The percentage emission rate 16 - 17 of terpenes in the total emission rate of VOCs ranged from 5.90 to 20.10% with a standard - deviation of 4.20%. Furthermore, considering the information enclosed in Supplementary 18 - Materials (Supplementary Figures 1-3) regarding the emission profile of individual compounds 19 - from the terpenes group, as well as toluene and furfural, it can be noticed that in most cases 20 - there is a similar relationship in the aspect of seasoning/conditioning time as for the previously 21 - 22 mentioned total parameters. - In order to better illustrate these relationships, Table 2 presents information on the calculated 23 - curves parameters (y = ax + b) determined as a $log_{10}$ of the emission rate in relation to the 24 - 25 seasoning/conditioning time, as well as the calculated numerical values of the PCC parameter. - The use of the logarithmic scale allowed for better visualization of a potential linear relationship 26 - between the emission rate of a given compound and the seasoning/conditioning time of the 27 - 28 tested material inside the chamber. In Table 2, compounds were highlighted for which both the - numerical value of the coefficient of determination (R<sup>2</sup>) and the PCC confirmed a strong or 29 - 30 very strong relationship between the emission rate and the seasoning/conditioning time. - Referring to the data summarized in Table 2, in the case of samples with the addition of YM, 31 - 32 the vast majority of emitted, identified and determined compounds were characterized by a - strong or very strong relationship with the seasoning/conditioning time. A similar relationship 33 - 34 was noted for investigated polymeric materials with AP addition. However, because it is one type of additive (YM was a mixture of stems, anti-acid and digestive herbs – peppermint, 1 pennyroyal, incayuyo, linden, boldo, mint, and lemon vervain), a slightly smaller number of 2 compounds was characterized by a strong or very strong dependence of emissions on the 3 seasoning/conditioning time. However, for samples with the addition of SH, there were no clear 4 relationships between the identified and determined compounds and the seasoning/conditioning 5 time – as in the case of the calculated summary parameters (TVOCs and sum of terpenes). The 6 lack of even medium relationship between the identified compounds and the time of samples 7 8 seasoning/conditioning may indicate that the investigated polymeric material with the addition 9 of SH emits mainly organic compounds other than terpenes or aromatic hydrocarbons. This is associated with the different chemical composition of SH filler compared to AP and YM 10 (sunflower husks may not contain the determined compounds, or they might be present at a 11 very low content level which is difficult to quantify by the applied techniques). According to 12 information published by Lattuati-Derieux et al. [50], Pajaro-Castro et al. [51], Mitchell et al. 13 [52], mainly aliphatic hydrocarbons such as n-dodecane, n-undecane, n-tridecane, n-14 15 tetradecane, n-hexadecane, n-pentadecane, n-heptadecane, as well as nonanal might be emitted to the gaseous phase from raw LDPE matrix. These compounds were identified during the GC-16 FID analysis in the case of determination of retention indexes (analysis of retention times of 17 obtained signals for organic compounds present in the mixture of aliphatic hydrocarbons from 18 C8 to C17) and GC-MS analysis (analysis of obtained spectra for individual compounds and 19 degree of compliance with the NIST mass spectra library agreement above 90%), however they 20 were not subject to quantitative analysis. In addition, such compounds are released into the 21 gaseous phase only under the elevated temperature (above 65°C), or after a sufficiently long 22 time of seasoning/conditioning the polymeric material in the emission chamber. 23 Negative numerical values of the slope factor of the curve and the PCC parameter indicates an 24 inverse relationship – the amount of emissions decreases with the passage of the 25 seasoning/conditioning time. This is a common phenomenon noted in the literature for materials 26 27 analyzed in the process of estimating long-term exposure in environmental test chambers [53, 28 54]. With the passage of the seasoning/conditioning time, the intensity of emissions of organic compounds to the gaseous phase is reduced, especially the more volatile ones, such as aromatic 29 30 hydrocarbons or terpenes. However, after a certain time, this process slows down and the level of emissions is set at a relatively constant level, with slight fluctuations. In the case of discussed 31 investigations, it was noted that after 4 hours from placing the testing material in the chamber, 32 the emission level of the determined compounds reached a constant level. The occurrence of 33 this phenomenon may be the basis for the conclusion that the developed materials with the 34 addition of YM or AP can be considered as reference materials for emissions of determined compounds for long-term studies - calibration of small emission chambers, portable emission cells (field and laboratory emission cells – FLECs) [11, 55] or for performing comparative analyses between scientific centers. Furthermore the application of developed LRM might be considered as an alternative solution for modelling large-scale, time and labor consuming reference rooms – specially designed indoor areas in which several exposure scenarios are considered and wide spectrum of simulations are performed [56]. Due to the addition of AP to the polymer matrix, it can be considered the LRM for the furfural emission. Confirmation that this compound is emitted mainly from products containing the addition of apples are literature reports [54, 55] and confirmation of the presence of this compound during the GC-MS analysis (degree of compliance with the NIST mass spectra library database above 95%). The additional confirmation of this fact is the observation of emissions of significant amounts of its derivative with a degree of compliance above 91% - 5-Hydroxymethyl-2-furaldehyde (CAS. No. 67-47-0). Following the information listed in the literature, mentioned compounds (furfural and its derivative) are generated mainly during the long-term storage, drying or cooking of fruits such as apples [57, 58]. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 # 3.3.2. Dependence between the emission rate of the determined organic compounds and LRM seasoning/conditioning temperature Another critical aspect in the field of emission rate studies considering synthetic materials is assessing the relationship between the seasoning/conditioning temperature and the amount of the analytes emitted into the gaseous phase. Several investigations performed in the scientific centers and published in the literature research results confirms that VOCs emissions from indoor materials is affected significantly by temperature [59-61]. The studies were conducted at temperatures ranging from room temperature to 60°C at defined constant time (30 min). Performing the investigations at a higher temperature is "unreasonable" because, in real conditions (in an indoor environment), indoor materials are not heated above this value (even in the case of the application of a floor heating system). In Figure 8 and Figure 9, the relationship between the emission rate of summary parameters (TVOCs and sum of identified and determined terpenes) calculated for investigated candidates for LRM and different seasoning/conditioning temperature conditions was illustrated. Detailed information about the relationship between the emission rate of representatives' aromatic hydrocarbons and terpenes and seasoning/conditioning temperature was shown as values of determination coefficients and - PPCs in Table 3. The error bars enclosed in Figure 8 and Figure 9 represent the standard 1 - deviation values for the performed measurements (n = 3). 2 - Analyzing the data in Figure 8, it might be observed that the existence of a clear relationship 3 - between the size (intensity) of the emission defined by the calculated summary parameters 4 - (TVOCs and sum of terpenes) and the seasoning/conditioning temperature of polymeric 5 - materials with bioadditives. Considering the values of the R<sup>2</sup> for materials with the addition of 6 - 7 AP and YM (Figure 8) it might be noticed that there is a very strong relationship between - 8 temperature (from 21 to 60°C) and the total amount of organic compounds and terpenes emitted - 9 into the gaseous phase. Confirmation of the presence of a very strong relationship between the - calculated summary parameters and the temperature are estimated values of the PCC for 10 - materials with the addition of AP they were 0.987 (TVOCs) and 0.954 (sum of terpenes), while 11 - for materials with the addition of YM they were 0.936 and 0.934, respectively. This indicates 12 - 13 that the increase in the temperature of seasoning LRM samples with bioadditives (derived from - citrus and fruit wastes) causes a significant increase in the total emission of the total amount of 14 - 15 compounds classified as terpenes and aromatic hydrocarbons (on the example of toluene and - furfural). For LDPE material with SH additives (Figure 9), they were 0.900 and 0.836, 16 - respectively. However, in this case, the total parameters for 21°C were not determined, because 17 - at that time the room temperature was nearly 25°C. In cases where the level of emissions of 18 - 19 compounds was below ILD, in order to estimate the PCC parameter, a numerical value of ILD - 20 was used for further calculation. - Taking into account the information summarized in Table 3, it can be noted that over half of 21 - the determined terpenes emitted from LDPE materials with the addition of AP and YM showed 22 - strong or very strong (R<sup>2</sup> and PCC values above 0.60) dependence on temperature. This type of 23 - dependence proves that the objects being the subject of the research are the sources of the 24 - emission of the determined chemical compounds. In addition, as shown in Table 3, a sample of 25 - LDPE material with AP addition was a clear source of furfural emission, very strongly 26 - dependent (PCC and R<sup>2</sup> above 0.80) on temperature. This is mainly because the addition of 27 - 28 only one type of material - apple pomace - was used as the filler. - In the case of LDPE material with the addition of YM, which consists of a mixture of stems, 29 - peppermint, pennyroyal, incayuyo, linden, boldo, mint, and lemon vervain, there was no strong 30 - or very strong relationship between the seasoning/conditioning temperature and the intensity of 31 - emission of furfural or toluene. On the other hand, a very strong relationship (above 0.80) was 32 - noted for identified and determined terpenes from α-Pinene to (1R)-(+)-Camphor. As in the 33 - 34 previously described case (in 3.3.1 sub-chapter) of the dependence of chemical compound emissions on the seasoning/conditioning time, the LDPE material with the addition of SH did not show a statistically significant correlation between the emission rate and the seasoning/conditioning temperature. The polymer matrix, which was LDPE, is mainly a source of emissions of aliphatic hydrocarbons, which are released into the gaseous phase from such materials at higher temperatures than the maximum temperature of the performed studies (above 65°C). One of the potential causes of this phenomenon that can be taken into account is the fact that presence of SH in the polymer matrix structure might limit the emission of determined chemical compounds to the gaseous phase, due to its potential sorption abilities. According to the research performed by Saleh et al. [62] the specific surface area of sorption materials prepared based on the sunflower husks oscillates from 1.782 to 3.850 m<sup>2</sup>·g<sup>-1</sup> (based on the research performed using the Brunauer–Emmett–Teller specific surface area analysis). For this reason, this kind of biological material was used, e.g. as a biosorbent for removing cationic dyes and various heavy metals, as well as for wastewater decontamination [62]. Nevertheless, confirmation of the occurrence of this type of phenomenon (reduction of the emission of organic compounds as a result of the sorption abilities of SH) in the aspect of described candidates on the LRM requires further, more advanced research. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ## 4. Conclusions and future directions In a described pilot interdisciplinary research the non-commercial laboratory-made candidates for laboratory reference materials were prepared based on the synthetic polymeric matrix into which biocomposites constituting waste from industrial plant processing were introduced. Taking into account obtained results, it might be concluded that designed and developed materials consisting of LDPE matrix and 10% wt. of bioadditives - yerba mate residues and apple pomace might be successfully considered as a candidate for LRM in the case of selected terpenes (especially compounds from 136.23 up to 154.25 of molecular weight) emissions investigation. Additionally, prepared polymeric materials with the apple pomace addition might be introduced in the preliminary studies as an emission laboratory material for furfural. Analyzing the preliminary results, it might be stated that developed materials will allow for an optimal comparison of self-designed and home-made emission chambers and commercially available analytical devices, such as small-scale stationary emission test chambers, field and laboratory emission cells, or in the future perspective home-made passive flux samplers. For samples of materials made of LDPE and with the addition of SH, no clear and statistically significant relationships were found between the emission of the determined compounds and the seasoning/conditioning temperature or time. It was mainly caused by the possibility of - 1 sorption of chemical compounds classified as VOCs by SHs (relatively well-developed specific - 2 surface of this material), as well as presence of oils containing unsaturated fatty acids. - 3 Nevertheless, the lack of a desired positive result in this aspect opened the door to another - 4 research trend related to the ability to reduce the emission of pollutants to the gaseous phase - 5 (indoor environment) by plastic materials by adding an appropriate amount of filler in the form - of SHs. Due to the possibility of losses in the content of the determined chemical compounds, - 7 prepared polymeric material was preserved by vacuum wrapping it in a PE hermetic package. - 8 It is recommended that the material should be stored at reduced temperature (e.g in the - 9 refrigerator, temperature range 2-8) and in airtight or original packaging, to further reduce - 10 potential VOCs emissions before analyses. Emissions of aromatic hydrocarbons and terpenes - will be investigated every 6 months to verify the long-term stability of the developed LRM and - to confirm the choice of packaging and storage conditions used for the selected polymeric - 13 material. - 14 Performed pilot research and obtained preliminary results create promising database containing - information about the structure, material characteristics, and emission parameters of designed - candidates for LRM. Additionally, the emission of individual compounds effects from their - 17 natural occurrence in the bioadditives introduced to the polymer material. It is a "greener" and - environmentally friendly solution in relation to the described in the literature solutions in which - 19 appropriate chemical reagents are used. This aspect might be considered a beneficial small- - 20 scale side effect the possibility of managing and using residues from industrial plant - 21 processing. Another valuable aspect is that prepared candidates for LRM might be applied - directly into almost every small-scale analytical device used as the emission chamber (dynamic - or static gaseous phase analysis) to evaluate its performance. - 24 It is necessary to ensure the quality control of inter-laboratory studies related to the - 25 determination of VOCs emitted from samples that very often have a complex matrix - composition. The ability to adequately compare laboratories that analyze VOCs requires the - 27 availability of standards and reference materials with low uncertainty levels. Primary and - 28 secondary standards are necessary for accurate data correlation, which is a prerequisite for - 29 adequate regulation of toxic organic pollutants [63]. On the other hand, reference materials play - an essential role in all elements of the quality assurance system for measurement results. Quality - 31 control is based on the analysis of reference materials using the analytical method under test - and comparing the results obtained with the reference values. Therefore, it is important to - continuously enrich the range of available reference materials, so that they are as "identical" as 27 31 32 - 1 possible in chemical matrix composition and physical form to the samples tested, and that the - 2 substance determined is as close as possible to its content in the samples tested. - 3 In Europe, the Construction Products Regulation (CPR, 2011/305/EU) is in force, setting out - 4 basic requirements for the design and construction of construction works where emissions of - toxic gases, volatile organic compounds (VOCs), particles are emissions, etc. from building - 6 materials are concerned. At the same time, an increasing number of professional commercial - 7 and non-commercial laboratories are being established to perform emission tests to evaluate - 8 products intended for indoor use. It is, therefore, necessary to ensure the comparability of test - 9 results so that the proficiency of a laboratory can be proven. Participation in inter-laboratory - tests is a means of demonstrating a laboratory's proficiency. At present, the main problem for - such comparisons is the lack of reference materials with known emission factors for the target - substances. Due to the wide variety of VOCs typically emitted from building materials, - furniture and other products used indoors, there is still a lack of suitable reference materials - covering a broader spectrum of compounds. Therefore, there is a strong need to develop new - types of suitable reference materials as tools for obtaining reliable analytical information. - 16 Considering positive aspect of obtained pilot research it might be conclude that prospective - 17 LRM for terpenes and furfural emissions with low-emitting LDPE matrix was developed. - 18 Continuing this field of research, the future studies will be expand to implement to low-emitting - 19 polymer matrix (LDPE or HDPE) another bioadditives such as citrus residues comes from - 20 mandarin, or cocoa husk as well as dried coffee grounds. These types of materials allow for the - 21 management (even if the recycling scale of the project is not too broad) of waste from the - processing or thermal treatment of natural products. In addition, the implementation of specific - 23 types of bioadditives into the polymer matrix in the appropriate weight ratio can create a - precedent for the development of new type of reference material candidates focused on the - 25 controlled and known emission rate of specific chemical compounds of natural origin. ## 5. Acknowledgements - 28 Authors would like to express their gratitude to Krzysztof Klewicz for his contribution in - 29 laboratory studies performing part of a research and for gathering and elaborating an - 30 appropriate database. ## 6. Declaration of Competing Interest - 33 The authors declare that they have no known competing financial interests or personal - relationships that could have appeared to influence the work reported in this paper. 2 ## 7. References - 3 [1] Thompson, M., Ellison, S.L.R., Wood, R., 2002. Harmonized Guidelines For Single- - 4 Laboratory Validation Of Methods Of Analysis (IUPAC Technical Report). Pure Appl. Chem. - 5 74, 835–855. - 6 [3] Rutkowska, M., Namieśnik, J., Konieczka, P., 2020. Production of certified reference - 7 materials homogeneity and stability study based on the determination of total mercury and - 8 methylmercury. Microchem. J. 153, 104338. doi:10.1016/j.microc.2019.104338. - 9 [4] Santos, A.S., Dos Santos, L.O., Dos Santos, I.F., Dos Santos, K.R., Ferreira, S.L.C., 2020. - 10 Application of chemometric tools for homogeneity and stability evaluation during the - 11 preparation of a powdered milk laboratory reference material for inorganic analysis. Anal. - 12 Methods. 12, 1055–1063. doi:10.1039/c9ay02184a. - 13 [5] Even, M., Roloff, A., Lüttgert, N., Beauchamp, J., Stalter, D., Schulte, A., Hutzler, C., Luch, - 14 A., 2021. Exposure Assessment of Toxicologically Relevant Volatile Organic Compounds - 15 Emitted from Polymer-Based Costume Masks. Chem. Res. Toxicol. 34, 132-143. - doi:10.1021/acs.chemrestox.0c00414. - 17 [6] Cox, S.S., Liu, Z., Little, J.C., Howard-Reed, C., Nabinger, S.J., Persily, A., 2010. - 18 Diffusion-controlled reference material for VOC emissions testing: proof of concept. Indoor - 19 Air. 20, 424-433. https://doi.org/10.1111/j.1600-0668.2010.00666.x - 20 [7] Howard-Reed, C., Liu, Z., Benning, J., Cox, S.S., Samarov, D., Leber, D., Hodgson, A.T., - 21 Mason, S., Won, D., Little, J.C., 2011. Diffusion-controlled reference material for volatile - organic compound emissions testing: Pilot inter-laboratory study. Build. Environ. 46 (2011) - 23 1504-1511 - 24 [8] Liang, Y., Xu, Y., 2015. The influence of surface sorption and air flow rate on phthalate - emissions from vinyl flooring: Measurement and modeling. Atmos. Environ. 103, 147-155. - 26 https://doi.org/10.1016/j.atmosenv.2014.12.029. - 27 [9] Nohr, M., Horn, W., Jann, O., Richter, M., Lorenz, W., 2015. Development of a multi-VOC - reference material for quality assurance in materials emission testing. Anal. Bioanal. Chem., - 29 407, 3231–3237. https://doi.org/10.1007/s00216-014-8387-2 - 30 [2] Emons, H., Fajgelj, A., van der Veen, A.M.H., Watters, R., 2006. New definitions on - 31 reference materials. Accred. Qual. Assur., 10, 576-578. DOI 10.1007/s00769-006-0089-9 - 32 [10] Richter, M., Mull, B., Horn, W., Breodner, D., Meolders, N., Renner, M., 2017. - 33 Reproducibly emitting reference material on thermoplastic polyurethane basis for quality - assurance/quality control of emission test chamber measurements. Build. Environ. 122, 230- - 2 236. https://doi.org/10.1016/j.buildenv.2017.06.005 - 3 [11] Marć, M., Zabiegała, B., Namieśnik, J., 2012. Testing and sampling devices for monitoring - 4 volatile and semi-volatile organic compounds in indoor air. Trends Anal. Chem. 32, 76-86. - 5 https://doi.org/10.1016/j.trac.2011.09.006 - 6 [12] Liu, C., Zhang, Y., 2016. Characterizing the equilibrium relationship between DEHP in - 7 PVC flooring and air using a closed-chamber SPME method. Build. Environ. 95, 283-290. - 8 https://doi.org/10.1016/j.buildenv.2015.09.028 - 9 [13] Marć, M. 2017. Problems and challenges associated with estimating the emissions of - 10 organic compounds from indoor materials. Trends Anal. Chem. 97, 297-308. - 11 https://doi.org/10.1016/j.trac.2017.09.022 - 12 [14] Marć, M., Namieśnik, J., Zabiegała, B., 2017. The miniaturised emission chamber system - and home-made passive flux sampler studies of monoaromatic hydrocarbons emissions from - 14 selected commercially-available floor coverings. Build. Environ. 123, 1-13. - 15 https://doi.org/10.1016/j.buildenv.2017.06.035 - 16 [15] Li, M., 2013. Diffusion-controlled emissions of volatile organic compounds (VOCs): - 17 Short-, mid-, and long-term emission profiles, Int. J. Heat Mass Transf. 62, 295–302. - https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.079 - 19 [16] Ertekin, F.B., Seydim, A.C., 2018. Kinetic changes of antioxidant parameters, ascorbic - 20 acid loss, and hydroxymethyl furfural formation during apple chips production. J. Food - 21 Biochem., 42, e12676. doi.org/10.1111/jfbc.12676 - 22 [17] Schawe, J.E.K., 2015. The Gibbs free energy difference between a supercooled melt and - the crystalline phase of polymers. J. Therm. Anal. Calorim., 120, 1417-25. doi:10.1007/s10973- - 24 015-4453-z. - 25 [18] Wunderlich, B., Czornyj, G., 1977. A study of equilibrium melting of polyethylene. - 26 Macromolecules. 10, 906-913, doi:10.1021/ma60059a006. - 27 [19] Schripp, T., Nachtwey, B., Toelke, J., Salthammer, T., Uhde, E., Wensing, M., Bahadi, - 28 M., 2007. A microscale device for measuring emissions from materials for indoor use. Anal. - 29 Bioanal. Chem. 387, 1907–1919. https://doi.org/10.1007/s00216-006-1057-2. - 30 [20] Marć, M., Namieśnik, J., Zabiegała, B., 2015. The home-made in situ passive flux sampler - for the measurement of monoterpene emission flux: preliminary studies. Anal. Bioanal. Chem. - 32 407, 6879–6884. https://doi.org/10.1007/s00216-015-8859-z - 1 [21] Marć, M., Zabiegała, B., 2017. An investigation of selected monoaromatic hydrocarbons - 2 released from the surface of polystyrene lids used in coffee-to-go cups. Microchem. J. 133, - 3 496–505. https://doi.org/10.1016/j.microc.2017.04.015 - 4 [22] Lin, S., Zhang, X., 2016. A rapid and novel method for predicting nicotine alkaloids in - 5 tobacco through electronic nose and partial least-squares regression analysis. Anal. Methods. - 6 8, 1609–1617. https://doi.org/10.1039/C5AY02257F - 7 [23] European Collaborative Action Indoor Air Quality & Its Impact on Man (ECA-IAQ), - 8 Environment and Quality of Life, Report No 19, Total Volatile Organic Compounds (WOC) in - 9 Indoor Air Quality Investigations, Luxembourg, 1997 - 10 [24] Massold, E., Bahr, C., Salthammer, T., Brown, S.K., 2005. Determination of VOC and - 11 TVOC in air using thermal desorption GC-MS—practical implications for test chamber - 12 experiments. Chromatographia. 62, 75–85. doi.org/10.1365/s10337-005-0582-z - 13 [25] Formela, K., Marć, M., Namieśnik, J., Zabiegała, B., 2016. The estimation of total volatile - organic compounds emissions generated from peroxide-cured natural rubber/polycaprolactone - blends. Microchem. J. 127, 30–35. doi.org/10.1016/j.microc.2016.02.001 - 16 [26] Marć, M., Zabiegała, B., Namieśnik, J., 2014. Application of passive sampling technique - in monitoring research on quality of atmospheric air in the area of Tczew, Poland. Int. J. - 18 Environ. Anal. Chem. 94, 151-167. https://doi.org/10.1080/03067319.2013.791979 - 19 [27] Pennequin-Cardinal, A., Plaisance, H., Locoge, N., Ramalho, O., Kirchner, S., Galloo, J- - 20 C., 2005. Performances of the Radiello® diffusive sampler for BTEX measurements: Influence - of environmental conditions and determination of modelled sampling rates. Atmos. Environ. - 22 39, 2535-2544. https://doi.org/10.1016/j.atmosenv.2004.12.035. - 23 [28] Zabiegała, B., Urbanowicz, M., Szymańska, K., Namieśnik, J., 2010. Application of - 24 passive sampling technique for monitoring of BTEX concentration in urban air: field - 25 comparison of different types of passive samplers. J. Chromatogr. Sci. 48, 167–175. - 26 https://doi.org/10.1093/chromsci/48.3.167. - 27 [29] Hejna, A., Sulyman, M., Przybysz, M., Saeb, M. R., Klein, M., Formela, K., 2020. On the - 28 Correlation of Lignocellulosic Filler Composition with the Performance Properties of Poly(ε- - 29 Caprolactone) Based Biocomposites. Waste Biomass Valor. 11, 1467–1479. - 30 https://doi.org/10.1007/s12649-018-0485-5. - 31 [30] Gosz, K., Kosmela, P., Hejna, A., Gajowiec, G., Piszczyk, Ł., 2018. Biopolyols obtained - 32 via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal - properties. Wood Sci. Technol. 52, 599–617. doi:10.1007/s00226-018-0991-4. - 1 [31] Hejna, A., Marć, M., Skórczewska, K., Szulc, J., Korol, J., Formela, K., 2020. Insights into - 2 modification of lignocellulosic fillers with isophorone diisocyanate: structure, thermal stability - and volatile organic compounds emission assessment. Eur. J. Wood Prod. 79, 75–90. - 4 doi:10.1007/s00107-020-01604-y - 5 [32] Ashrafi, J., Semnani, A., S. Langeroodi, H., Shirani, M., 2017. Direct acetylation of - 6 sunflower oil in the presence of boron trioxide catalyst and the adduct usage as the base stock - 7 and lubricant additive. Bull. Chem. Soc. Ethiop. 31, 39-49. - 8 http://dx.doi.org/10.4314/bcse.v31i1.4. - 9 [33] Rohman, A., Che Man, Y.B., 2012. Quantification and Classification of Corn and - Sunflower Oils as Adulterants in Olive Oil Using Chemometrics and FTIR Spectra. Sci. World - 11 J. 2012, 1–6. doi:10.1100/2012/250795. - 12 [34] Kosmela, P., Hejna, A., Formela, K., Haponiuk, J., Piszczyk, Ł., 2017. The Study on - 13 Application of Biopolyols Obtained by Cellulose Biomass Liquefaction Performed with Crude - Glycerol for the Synthesis of Rigid Polyurethane Foams. J. Polym. Environ. 26, 2546–2554. - doi:10.1007/s10924-017-1145-8. - 16 [35] Korol, J., Hejna, A., Wypiór, K., Mijalski, K., Chmielnicka, E., 2021. Wastes from - 17 Agricultural Silage Film Recycling Line as a Potential Polymer Materials. Polymers. 13, 1383. - 18 https://doi.org/10.3390/polym13091383 - 19 [36] Gulmine, J., Janissek, P., Heise, H., Akcelrud, L., 2002. Polyethylene characterization by - 20 FTIR. Polym. Test. 21, 557–563. doi:10.1016/s0142-9418(01)00124-6 - 21 [37] Hejna, A., Barczewski, M., Andrzejewski, J., Kosmela, P., Piasecki, A., Szostak, M., - Kuang, T., 2020. Rotational Molding of Linear Low-Density Polyethylene Composites Filled - 23 with Wheat Bran. Polymers. 12, 1004. https://doi.org/10.3390/polym12051004. - 24 [38] Mittal, V., Luckachan, G. E., Chernev, B., Matsko, N. B., 2014. Bio-polyester-date seed - powder composites: Morphology and component migration. Polym. Eng. Sci. 55, 877–888. - 26 https://doi.org/10.1002/pen.23955 - 27 [39] Benítez, A., Sánchez, J.J., Arnal, M.L., Müller, A.J., Rodríguez, O., Morales, G., 2013. - 28 Abiotic degradation of LDPE and LLDPE formulated with a pro-oxidant additive. Polym. - 29 Degrad. Stabil. 98, 490–501. doi.org/10.1016/j.polymdegradstab.2012.12.011 - 30 [40] Elanmugilan, M., Sreekumar, P.A., Singha, N., De, S.K., Al-Harthi, M., 2014. Natural - 31 weather aging of low density polyethylene: Effect of prodegradant additive. Plast. Rubber - 32 Compos. 43, 347–353. doi.org/10.1179/1743289814Y.0000000104 - 1 [41] Li, D., Zhou, L., Wang, X., He, L., Yang, X., 2019. Effect of Crystallinity of Polyethylene - with Different Densities on Breakdown Strength and Conductance Property. Materials. 12, - 3 1746. doi:10.3390/ma12111746 - 4 [42] Zhou, W., 2011. Thermal and Dielectric Properties of the Aluminum Particle Reinforced - 5 Linear Low-Density Polyethylene Composites. Polym. Eng. Sci. 51, 917–924. - 6 doi:10.1002/pen.21913. - 7 [43] Kargin, V.A., Sogolova, T.I., Shaposhnikova, T.K., 1965. The mechanism of the - 8 nucleation effect of solid particles in crystallizing polymers. Polym. Sci. USSR. 7, 423–428. - 9 [44] Mohammadi, M., Yousefi, A.A., Ehsani, M., 2012. Study of the thermal and mechanical - properties of blown films of high- and low-density polyethylene blends. J. Appl. Polym. Sci. - 11 125, 755-767. doi: https://doi.org/10.1002/app.36246. - 12 [45] Babushok, V.I., Linstrom, P.J., Zenkevich, I.G., 2011. Retention Indices for Frequently - 13 Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data, 40, 043101. - 14 https://doi.org/10.1063/1.3653552 - 15 [46] Jordan, M.J., Margaria, C.A., Shaw, P.E., Goodner, K.L., 2002. Aroma active components - in aqueous Kiwi fruit essence and Kiwi fruit puree by GC-MS and multidimensional GC/GC- - 17 O. J. Agric. Food Chem. 50, 5386-5390. ttps://doi.org/10.1021/jf020297f. - 18 [47] Machiels, D., Van Ruth, S.M., Posthumus, M.A., Istasse, L., 2003. Gas chromatography- - olfactometry analysis of the volatile compounds of two commercial Irish beef meats. Talanta. - 20 60, 755-764. https://doi.org/10.1016/S0039-9140(03)00133-4 - 21 [48] Liang, Y., Abbott, D., Howard, N., Lim, K., Ward, R., Elgendi, M., 2019. How Effective - 22 Is Pulse Arrival Time for Evaluating Blood Pressure? Challenges and Recommendations from - a Study Using the MIMIC Database. J. Clin. Med. 8, 337; doi:10.3390/jcm8030337 - 24 [49] Yee, M.H., Yunos, J.M., Othman, W., Hassan, R., Tee, T.K., Mohamad, M.M., 2015. - 25 Disparity of Learning Styles and Higher Order Thinking Skills among Technical Students, - 26 Procedia Soc. Behav. Sci. 204, 143 152. doi.org/10.1016/j.sbspro.2015.08.127 - 27 [50] Lattuati-Derieux, A., Egasse, C., Thao-Heu, S., Balcar, N., Barabant, G., Lavédrine, B., - 28 2013. What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic - 29 objects in museum collections. J. Cult. Herit. 14, 238–247. - 30 http://dx.doi.org/10.1016/j.culher.2012.06.005. - 31 [51] Pajaro-Castro, N., Caballero-Gallardo, K., Olivero-Verbel, J., 2014. Identification of - volatile organic compounds (VOCs) in plastic products using gas chromatography and mass - spectrometry (GC/MS). Rev. Ambient. Água. 9, 611-619. https://doi.org/10.4136/ambi- - 34 agua.1435. - 1 [52] Mitchell, G., Higgitt, C., Gibson, L.T., 2014. Emissions from polymeric materials: - 2 Characterised by thermal desorption-gas chromatography. Polym. Degrad. Stab. 107, 328-340. - 3 http://dx.doi.org/10.1016/j.polymdegradstab.2013.12.003. - 4 [53] Marlet, C., Lognay, G., 2010. Development and validation by accuracy profile of a method - 5 for the analysis of monoterpenes in indoor air by active sampling and thermal desorption-gas - 6 chromatography-mass spectrometry. Talanta. 82, 1230-1239. - 7 doi:10.1016/j.talanta.2010.06.044. - 8 [54] Batterman, S.A., Zhang, G.Z., Baumann, M., 1998. Analysis and stability of aldehydes - 9 and terpenes in electropolished canisters. Atmos. Environ. 32, 1647-1655. - 10 https://doi.org/10.1016/S1352-2310(97)00417-2. - 11 [55] Salthammer, T., Mentese, S., Marutzky, R., 2010. Formaldehyde in the Indoor - 12 Environment. Chem. Rev. 110, 2536-2572. https://doi.org/10.1021/cr800399g. - 13 [56] Salthammer, T., 2019. Formaldehyde sources, formaldehyde concentrations and air - 14 exchange rates in European housings. Build. Environ. 150, 219-232. - 15 https://doi.org/10.1016/j.buildenv.2018.12.042. - 16 [57] Kuşçu, A., Bulantekin, Ö., 2016. The effects of production methods and storage on the - 17 chemical constituents of apple pekmez. J. Food Sci. Technol. 53, 3083-3092. doi: - 18 10.1007/s13197-016-2281-1. - 19 [58] Kermasha, S., Goetghebeur, M., Dumont, J., Couture, R., 1995. Analyses of phenolic and - furfural compounds in concentrated and non-concentrated apple juices. Food Res. Int. 28, 245- - 21 252. https://doi.org/10.1016/0963-9969(94)00046-B. - 22 [59] Lee, Y-K., Kim, H-J., 2012. The effect of temperature on VOCs and carbonyl compounds - emission from wooden flooring by thermal extractor test method. Build. Environ. 53, 95-99. - 24 https://doi.org/10.1016/j.buildenv.2011.10.016. - 25 [60] Staudt, M., Bourgeois, I., Al Halabi, R., Song, W., Williams, J., 2017. New insights into - 26 the parametrization of temperature and light responses of mono and sesquiterpene emissions - 27 from Aleppo pine and rosemary. Atmos. Environ. 152, 212-221. - 28 https://doi.org/10.1016/j.atmosenv.2016.12.033. - 29 [61] Xiong, J., Yang, T., Tan, J., Li, L., Ge, Y., 2015. Characterization of VOC Emission from - 30 Materials in Vehicular Environment at Varied Temperatures: Correlation Development and - 31 Validation. PLoS ONE. 10, e0140081. https://doi.org/10.1371/journal.pone.0140081. - 32 [62] Saleh, M.E., El-Refaey, A.A., Mahmoud, A.H., 2016. Effectiveness of sunflower seed - husk biochar for removing copper ions from wastewater: a comparative study. Soil & Water - 34 Res. 11, 53-63. https://doi.org/10.17221/274/2014-SWR. - 1 [63] Rhoderick, G.C., Yen, J.H., 2006. Development of a NIST Standard Reference Material - 2 containing thirty volatile organic compounds at 5 nmol/mol in nitrogen. Anal. Chem. 78, 3125- - 3 3132. https://doi.org/10.1021/ac052136r. - 5 **8. Figure captions** - 6 **Figure 1.** General view of an investigated candidates for laboratory reference material (LRM) - 7 prepared based on low-density polyethylene (LDPE) and plant-based wastes: A LDPE with - 8 sunflower husks; B LDPE with yerba mate residues; C LDPE with apple pomace. - 9 **Figure 2.** A general information about the analytical protocol employed for the determination - of investigated representatives of monoaromatic hydrocarbons and terpenes emitted from - 11 candidates for laboratory reference material. - Figure 3. The results of FT-IR analysis of introduced plant-based wastes - Figure 4. The results of FT-IR analysis of LDPE-based candidates for laboratory reference - 14 material. - 15 Figure 5. The general view of thermograms obtained during DSC analysis of prepared - 16 composite materials. - 17 **Figure 6**. Relationship between seasoning/conditioning time of investigated candidates for - 18 LRM with yerba mate residues (A) and apple pomace (B) addition and the estimated specific - emission rate of total VOCs as well as the sum of identified and determined terpenes. - Figure 7. Relationship between seasoning/conditioning time of investigated candidate for LRM - 21 with sunflower husks (SH) addition and the estimated specific emission rate of total VOCs as - well as the sum of identified and determined terpenes. - 23 **Figure 8.** The relationship between the seasoning/conditioning temperature of investigated - candidates for LRM with yerba mate residues (A) and apple pomace (B) addition and the - 25 emission rate of total VOCs as well as the sum of identified and determined terpenes. - Figure 9. The relationship between the seasoning/conditioning temperature of investigated - candidates for LRM with sunflower husks (SH) addition and the emission rate of total VOCs - as well as the sum of identified and determined terpenes. 29 - **9. List of Supplementary Materials** - 31 Supplementary Figure 1. Relationship between seasoning/conditioning time of investigated - 32 candidate for LRM with YM addition and the estimated specific emission rate of toluene, - 33 furfural and identified and determined terpenes. - 1 Supplementary Figure 2. Relationship between seasoning/conditioning time of investigated - 2 candidate for LRM with AP addition and the estimated specific emission rate of toluene, - 3 furfural and identified and determined terpenes - 4 Supplementary Figure 3. Relationship between seasoning/conditioning time of investigated - 5 candidate for LRM with SH addition and the estimated specific emission rate of toluene, - 6 furfural and identified and determined terpenes Table 1. Calculated retention indices of representatives of monoaromatic hydrocarbons and terpenes emitted to gaseous phase from investigated candidates for LRM. | le 1. Calculated retention indices of representatives of monoaromatic hydrocarbons and terpenes emitted to gaseous phase from investigated candidates for LRM. | | | | | | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------|--|--|--| | Chemical compound CAS No. | | Molecular weight | Range of LRI on DB-1 for<br>investigated samples based<br>on GC-FID analysis | Range of LRI based on literature data on similar GC column <sup>(a)</sup> | | | | | | Toluene | 108-88-3 | 92.14 | 765-769 | AP, SH, YM | 762-770 <mark>[46]</mark> | | | | | Furfural | 98-01-1 | 96.08 | 805-810 | AP, YM | 828-832 [47] | | | | | α-Pinene | 80-56-8 | 136.23 | 933-936 | AP, YM | 930–938 | | | | | Camphene | 79-92-5 | 136.23 | 953-956 | YM | 941–953 | | | | | β-Pinene | 127-91-3 | 136.23 | 978-982 | AP, YM | 968–978 | | | | | 3-Carene | 13466-78-9 | 136.23 | 1011-1015 | YM | 1001–1010 | | | | | (R)-(+)-Limonene | 5989-27-5 | 136.23 | 1030-1035 | AP, YM | 1020–1027 | | | | | L-(-)-Fenchone | 7787-20-4 | 152.23 | 1098-1105 | AP, YM | 1059–1087 | | | | | Fenchol | 2217-02-9 | 154.25 | 1113-1118 | AP, YM | 1088–1122 | | | | | (1R)-(+)-Camphor | 464-49-3 | 152.23 | 1120-1127 | YM | 1118–1130 | | | | | (+/-)-B-Citronellol | 106-22-9 | 156.27 | 1212-1218 | YM | 1208–1215 | | | | | (R)-(+)-Pulegone | 89-82-7 | 152.23 | 1223-1230 | AP, YM | 1215–1230 | | | | | (-)-α-Cedrene | 469-61-4 | 204.35 | 1410-1417 | AP, SH, YM | 1399–1416 | | | | | α-Humulene | 6753-98-6 | 204.35 | 1449-1454 | AP. YM | 1443–1455 | | | | | Nerolidol | 3790-78-1 | 222.37 | 1524-1530 | AP, YM | 1516–1533 | | | | | (+)-Cedrol | 77-53-2 | 222.37 | 1597-1602 | AP, YM | 1584–1609 | | | | | (-)-α-Bisabolol | 23089-26-1 | 222.37 | 1658-1668 | AP, SH, YM | 1663–1674 | | | | | (a) Based on data published by Babushok et al. [45] – RI values of essential oil components for GC dimethylsilicone stationary phase | | | | | | | | | Table 2. Calculated numerical values of curve parameters and Person's Correlation Coefficient (PCC) to estimate the relationship between the specific emission rate (ng per gram of sample per hour) of detected organic compounds and the seasoning/conditioning time (in hours) of investigated materials. | | l values of curve p | | | | |---------------------|----------------------------------|---------------|----------------|--------| | | <mark>f candidate for L</mark> l | _ | | | | Emitted compound | A | В | R <sup>2</sup> | PCC* | | Toluene | -0.162 | 1.315 | 0.765 | -0.647 | | Furfural | -0.201 | 1.172 | 0.799 | -0.673 | | α-Pinene | -0.207 | 1.557 | 0.849 | -0.702 | | Camphene | -0.144 | 0.994 | 0.885 | -0.724 | | β-Pinene | -0.167 | 1.594 | 0.807 | -0.669 | | 3-Carene | -0.181 | 0.904 | 0.712 | -0.529 | | (R)-(+)-Limonene | -0.144 | 1.360 | 0.814 | -0.691 | | L-(-)-Fenchone | -0.169 | 1.575 | 0.782 | -0.667 | | Fenchol | -0.176 | 1.802 | 0.743 | -0.653 | | (1R)-(+)-Camphor | -0.167 | 1.157 | 0.712 | -0.609 | | (R)-(+)-Pulegone | -0.186 | 1.435 | 0.867 | -0.700 | | (–)-α-Cedrene | -0.186 | 1.112 | 0.913 | -0.719 | | α-Humulene | -0.165 | 1.110 | 0.737 | -0.585 | | Nerolidol | -0.187 | 1.386 | 0.824 | -0.708 | | (+)-Cedrol | -0.185 | 1.203 | 0.793 | -0.735 | | (–)-α-Bisabolol | -0.207 | 1.103 | 0.835 | -0.693 | | Samples of | f candidate for L | RM with AP ad | dition | | | Emitted compound | A | В | $\mathbb{R}^2$ | PCC | | Furfural | -0.154 | 2.968 | 0.886 | -0.775 | | α-Pinene | -0.133 | 1.574 | 0.869 | -0.773 | | β-Pinene | -0.160 | 1.316 | 0.768 | -0.742 | | (R)-(+)-Limonene | -0.063 | 1.040 | 0.159 | -0.598 | | γ-Terpinene | -0.036 | 0.400 | 0.032 | 0.067 | | L-(-)-Fenchone | -0.167 | 1.251 | 0.778 | -0.775 | | Fenchol | -0.159 | 1.580 | 0.803 | -0.749 | | (1R)-(+)-Camphor | -0.149 | 1.061 | 0.823 | -0.81 | | (+/-)-B-Citronellol | -0.110 | 0.652 | 0.690 | -0.814 | | (R)-(+)-Pulegone | -0.090 | 0.969 | 0.203 | -0.510 | | Alpha-Cedrene | -0.167 | 1.141 | 0.726 | -0.685 | | Alpha-Humulene | -0.175 | 0.935 | 0.856 | -0.695 | | Nerolidol | -0.170 | 1.391 | 0.795 | -0.641 | | (+)-Cedrol | -0.086 | 0.759 | 0.180 | 0.001 | | (–)-α-Bisabolol | -0.123 | 0.969 | 0.428 | -0.610 | | | of candidate for L | | | | | Emitted compound | A | В | R <sup>2</sup> | PCC | | (–)-α-Cedrene | -0.0066 | 0.084 | 0.0044 | -0.498 | | α-Humulene | 0.0065 | 0.065 | 0.0014 | 0.063 | | Nerolidol | -0.0170 | 0.067 | 0.207 | 0.813 | | (+)-Cedrol | -0.0104 | 0.353 | 0.0032 | 0.205 | | (-)-α-Bisabolol | -0.0027 | 0.428 | 0.0002 | -0.004 | y - logarithm (LOG) of emission rate of defined compound; X - seasoning/conditioning time of investigated material; PCC - Pearson's correlation coefficients at a significance level of p < 0.05 <sup>\*</sup>Relationship criteria (based on Liang et al [48] and Yee et al [49): $0.0 \div 0.2$ – very weak (no or negligible); $0.2 \div 0.4$ – weak; $0.4 \div 0.6$ moderate; $0.6 \div 0.8$ strong; above 0.8 - very strong (1.0 perfect relationship). | | Numerical values of | curve parameters y = | =AX+B | | | | | |-----------------------------------------------|---------------------|----------------------|-----------------|-------------------------------------------------------------|--|--|--| | Samples of candidate for LRM with YM addition | | | | | | | | | Emitted compound | A | В | $\mathbb{R}^2$ | PCC** | | | | | Toluene | 0.247 | 6.121 | 0.305 | 0.553 | | | | | Furfural | 0.075 | 6.192 | 0.247 | 0.497<br>0.799<br>0.964<br>0.975<br>0.748<br>0.896<br>0.982 | | | | | α-Pinene | 0.237 | 8.950 | 0.639 | | | | | | Camphene | 0.432 | -9.003 | 0.930 | | | | | | β-Pinene | 1.311 | -22.749 | 0.951 | | | | | | 3-Carene | 0.167 | -0.452 | 0.559 | | | | | | (R)-(+)-Limonene | 2.676 | -58.596 | 0.802 | | | | | | L-(-)-Fenchone | 1.689 | -38.016 | 0.964 | | | | | | Fenchol | 2.148 | -33.425 | 0.911 | 0.955 | | | | | (1R)-(+)-Camphor | 0.150 | 1.942 | 0.830 | 0.911 | | | | | (R)-(+)-Pulegone | 0.079 | 8.049 | 0.286 | 0.534<br>-0.561<br>-0.403<br>-0.173 | | | | | (–)-α-Cedrene | -0.445 | 36.484 | 0.315 | | | | | | α-Humulene | -0.308 | 25.237 | 0.163 | | | | | | Nerolidol | -0.030 | 12.603 | 0.030 | | | | | | (+)-Cedrol | -0.038 | 7.443 | 0.112 | -0.335 | | | | | (–)-α-Bisabolol | -0.140 | 10.198 | 0.297 | -0.545 | | | | | | amples of candidate | e for LRM with AP | addition | | | | | | Emitted compound | A | В | $\mathbb{R}^2$ | PCC | | | | | Furfural | 29.825 | -468,715 | 0,985 | 0,992 | | | | | α-Pinene | 0.653 | 2,786 | 0,738 | 0,859 | | | | | β-Pinene | 0.943 | -14,885 | 0,936 | 0,968 | | | | | (R)-(+)-Limonene | 2.672 | -66,945 | 0,823 | 0,907 | | | | | γ-Terpinene | 0.036 | 1.423 | 0.492 | 0.701 | | | | | L-(-)-Fenchone | 1.196 | -26.400 | 0.959 | 0.979 | | | | | Fenchol | 2.583 | -72.945 | 0.921 | 0.960 | | | | | (1R)-(+)-Camphor | 0.179 | 1.181 | 0.723 | 0.850 | | | | | (+/-)-B-Citronellol | 0.391 | -10.516 | 0.927 | 0.963 | | | | | (R)-(+)-Pulegone | -0.106 | 15.134 | 0.623 | -0.789 | | | | | Alpha-Cedrene | 0.090 | 6.350 | 0.116 | 0.340 | | | | | Alpha-Humulene | 0.331 | -1.661 | 0.685 | 0.828 | | | | | Nerolidol | 0.160 | 6.811 | 0.480 | 0.693 | | | | | (+)-Cedrol | 0.056 | 4.661 | 0.326 | 0.571 | | | | | (–)-α-Bisabolol | 1.375 | 32.502 | 0.059 | 0.243 | | | | | Samples of candidate for LRM with SH addition | | | | | | | | | <b>Emitted compound</b> | A | В | *R <sup>2</sup> | *PCC | | | | | (–)-α-Cedrene | -2.192 | 41.36 | 0.329 | -0.574 | | | | | α-Humulene | -6.832 | 41.59 | 0.329 | -0.574 | | | | | Nerolidol | -0.498 | 41.27 | 0.329 | -0.574 | | | | | (+)-Cedrol | -1.085 | 41.30 | 0.329 | -0.574 | | | | | (–)-α-Bisabolol | -2.593 | 41.38 | 0.329 | -0.574 | | | | y - emission rate of defined compound; X - seasoning/conditioning temperature of investigated material; *PCC* - Pearson's correlation coefficients at a significance level of p < 0.05 <sup>\*</sup> identical values of PCC and R<sup>2</sup> parameters are caused by the fact that in significant cases (in temperature conditions below 45°C) measured compounds were below ILD and for the further calculations the calculated value of ILD was applied <sup>\*\*</sup> Relationship criteria (based on Liang et al [48] and Yee et al [49]): $0.0 \div 0.2$ – very weak (no or negligible); $0.2 \div 0.4$ – weak; $0.4 \div 0.6$ moderate; $0.6 \div 0.8$ strong; above 0.8 - very strong (1.0 perfect relationship). Weighting and samples description; Placing the studied samples into the emission chambers system PREPARATION OF CANDIDATES FOR LABORATORY REFERENCE MATERIAL TO EMISSIOS STUDIES #### SAMPLING THE CHEMICAL COMPOUNDS EMITTED TO THE GASEOUS PHASE FROMINVESTIGATED SYNTHETIC MATERIALS - Seasoning/conditioning of investigated materials under static conditions, without forced flow rate of nitrogen gas through the chambers - the gas outlets from the chambers were sealed with a rubber - Seasoning/conditioning at predefined time intervals: 15 min; 30 min; 60 min; 90 min; 120 min; 240 min; 360 min; 480 min - starting from the moment when the studied samples were placed inside the chambers; - Seasoning/conditioning at defined constant time (30 min) in different temperatures: 21°C; 25°C; 35°C; 45°C: 60°C: - After the defined samples seasoning time, from each of chambers outlets the septum was removed and the stainless steel tube filled with Tenax TA was installed; - At the end, the nitrogen gas flow rate was turn on and the chemical compounds present in gaseous phase inside a chamber were washed out and collected on the applied sorption medium - nitrogen flow rate 35 mL·min-1 for 5 min. #### LIBERATION OF CHEMICAL COMPOUNDS RETAINED ON THE SORPTION MEDIUM - The 1st stage of thermal desorption process: - o Tenax TA tube temp. 290°C; - microtrap temp. 0°C; 0 - desorption time 15 min; - inert gas flow rate (helium) $50 \text{ mL} \cdot \text{min}^{-1}$ - The 2<sup>nd</sup> stage of thermal desorption process: - microtrap desorption temperature 300°C; - microtrap ballistic heating time 5 min - inert gas flow rate (helium) passing through the microtrap directly to the GC column 2.0 mL·min⁻¹ ### SEPARATION, IDENTIFICATION AND FINAL DETERMINATION OF ANALYTES - Gas chromatography technique equipped with flame ionization detector (GC-FID); oven working program: initial temperature - 50°C maintained for 1 min, next increased 15°C·min<sup>-1</sup> up to 120°C, and maintained for 2 min, after this increased with the rate 7°C·min<sup>-1</sup> up to 260°C and held for 5 min. - Gas chromatography technique combined with mass spectrometer (GC-MS); oven working program: initial temperature - 50°C maintained for 1 min, next increased 15°C·min<sup>-1</sup> up to 120°C, and maintained for 2 min, after this increased with the rate 7°C·min-1 up to 260°C and held for 5 min. #### DATA ANALYSIS - Identification and quantitative determination of emitted organic compounds based on reference solutions and obtained calibration curves; - Screening identification of emitted organic compounds based on calculated linear retention indexes - Additional identification of emitted organic compounds based on GC-MS chemical compounds mass spectral library (NIST Mass Spectral Library) ## **Highlights** - Candidates for the emission laboratory reference material (LRM) were proposed; - Apple pomace, sunflower husks, and yerba mate residues were considered as bioadditives; - Relationship between emission of determined compounds and LRM tests time was investigated; - Correlation between emission of determined compounds and LRM tests temperature was assessed; - Developed LRM might be applied in almost every small-scale devices used for the emission tests ## **Declaration of interests** | oxtimes The authors declare that they have no known competing financial interests or personal relationsh | ıips | |----------------------------------------------------------------------------------------------------------|------| | that could have appeared to influence the work reported in this paper. | | | | The authors dec | lare the f | following f | financial | interests/ | 'personal | relationsl | hips which | n may | be consic | lered | |----|-----------------|------------|-------------|-----------|------------|-----------|------------|------------|-------|-----------|-------| | as | potential compe | ting inte | rests: | | | | | | | | |