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A B S T R A C T

We discuss the strong ellipticity (SE) conditions for strain gradient and micromorphic continua considering
them as an enhancement of a simple nonlinearly elastic material called in the following primary material.
Recently both models are widely used for description of material behavior of beam-lattice metamaterials which
may possess various types of material instabilities. We analyze how a possible loss of SE results in the behavior
of enhanced models. We shown that SE conditions for a micromorphic medium is more restrictive than for its
gradient counterpart. On the other hand we see that a violation of SE for a primary material affects solutions
within enhanced models even if the SE conditions are fulfilled for them.

llipticity conditions, MECHANICS RESEARCH COMMUNICATIONS Vol. 124 (2022), 103909, DOI: 10.1016/j.mechrescom.2022.103909

 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
1. Introduction

Nowadays such enhanced models of continuum as the micromorphic
medium and the strain gradient elasticity found various applications
in description of material behavior of composites and metamaterials
with essential difference in mechanical properties [1–5]. In fact, both
models could be obtained as a result of homogenization of strongly
inhomogeneous materials such as beam-lattices or foams [4,6,7]. The
model of micromorphic continuum was proposed in original works
by Mindlin [8] and by Eringen and Suhubi [9], see also [10–12].
For a hyperelastic micromorphic medium there exists a strain energy
density given as a function of strain and microdeformation tensors. The
microdeformations play a role of an additional kinematical descriptor
of the model. On the other hand, within the strain gradient elasticity
a strain energy density depends on strains and higher-order gradients
of placement vector [4,13]. Considering the history of development of
these models it is worth to mention [14–16], where further references
in the field could be found.

So we can see that the both approaches may successfully model
some inhomogeneous materials such as open-cell foams or other beam-
lattice materials. Moreover, considering the kinematics within these
two models, it is easy to see some similarities between them. Indeed,
replacing the microdeformation tensor in the constitutive relations of
the micromorphic continuum by the deformation gradient, we imme-
diately come to the constitutive relation of strain gradient elasticity.
So the form of the strain energy densities within the both models

are similar, in general. On the other hand, the mathematical struc-
ture of equilibrium equations is different for these models. Indeed,
for the strain gradient elasticity we have a system of three scalar
partial differential equations (PDEs) of fourth order, whereas for the
micromorphic medium the corresponding system consists of six PDEs
of second order. In particular, the strong ellipticity condition for both
models are also different. Let us note that the strong ellipticity (SE)
condition plays a role of so-called constitutive inequality in nonlinear
elasticity, i.e. for simple elastic materials in sense of W. Noll [17,18],
which may guarantee some ‘‘natural’’ properties of the static problem
under consideration. For example, violation of the SE condition may
result in a certain material instabilities in solids [19–21].

Since beam-lattice and some other architected materials undergo
large deformations, various kinds of instabilities may occur. These
instabilities could be observed at both micro- and macroscales. So an
effective medium model has to capture these phenomena, in general.
For example, for open-cell foams made of elastomers a local buckling
of cell struts results in a plateau in a stress–strain curve similar to
plasticity, see [22]. Studying some discrete structures and their strain
gradient and micromorphic counterparts, the comparison of these mod-
els was provided through description of material instabilities in [23].
A stability analysis of nonlinear boundary-value problems (BVPs) could
be rather complex, see e.g. [19,20,24] for simple materials or [25]
for micropolar media. In contrast to the complete bifurcation analysis
of BVPs, the SE conditions result in an algebraic problem which is
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more simple, in general, but still could provide some information about
material instabilities [26].

The aim of this paper is to discuss the SE conditions for nonlin-
ear strain gradient and micromorphic media in order to formulate
orresponding constitutive inequalities and underline the difference
etween these models. The paper is organized as follows. In Section 2
e briefly recall the basic relations within the strain gradient elasticity
nd micromorphic continuum. For the both media the SE conditions
re formulated. Section 3 is devoted to an one-dimensional (1D) case, 
.e. to a stretching of an elastic 1D continuum. In this case one can
asily see the difference between models. In particular, we prove that 
he SE condition for the micromorphic continuum is more restrictive
han for a strain gradient bar. Then, in Section 4 we compare both 1D
odels and discuss the difference in related constitutive inequalities.

In what follows we use the direct (index-free) tensor notations as
efined in [19,27,28].

. Nonlinear continua and strong ellipticity

In the following we briefly recall the basic equations of micro-
orphic and strain gradient mechanics for solids undergoing finite 
eformations.

.1. Micromorphic continuum

Let  be an elastic body. Deformation of  could be described as
n invertible mapping from a reference placement 𝜅 into a current 
lacement 𝜒 . For any material particle 𝑧 of  we characterize its 
ositions in 𝜅 and 𝜒 through vectors 𝐗 and 𝐱, respectively. So for a 
tatic deformation we have

 = 𝐱(𝐗).

or the micromorphic media we introduce a second-order tensor of mi-
crodeformations [10] as an additional kinematical descriptor associated
to the same material particle 𝑧

𝐇 = 𝐇(𝐗).

As a result, a strain energy density could be introduced as a function 
of the deformation gradient 𝐅 = ∇𝐱, 𝐇, and ∇𝐇

 = 𝑊 (𝐅, 𝐇, ∇𝐇),

here ∇ is the 3D nabla-operator defined as in [19,27,28]. After 
pplication of the material frame indifference principle [18,19] we 

came to the following form

𝑊 = 𝑊 (𝐂,𝐇 ⋅ 𝐅−1,𝐋), (1)

here 𝐂 = 𝐅 ⋅ 𝐅𝑇 is the Cauchy–Green strain tensor, ‘‘⋅’’ stands for the
ot product, 𝐋 = ∇𝐇 ⋅ 𝐅−1 is a third-order tensor, see, e.g., [29,30] for

more details. Note that for simplicity we keep the same notation for 𝑊 .
The Lagrangian equilibrium equations take the form

∇ ⋅ 𝐏 + 𝜌𝐟 = 𝟎, ∇ ⋅ 𝐒 − 𝜕𝑊
𝜕𝐇

+ 𝜌𝐜 = 𝟎, (2)

where 𝐏 and 𝐒 are the first Piola–Kirchhoff stress and hyper-stress
tensors, respectively, 𝜌 is a referential mass density, and 𝐟 and 𝐜 are
mass force vector and hyper-force tensor. 𝐏 and 𝐒 are expressed through
𝑊 as follows [28]

𝐏 = 𝜕𝑊 , 𝐒 = 𝜕𝑊 . (3)

𝜕𝐅 𝜕∇𝐇
.2. Strain gradient elastic continuum

Within the strain gradient elasticity approach a strain energy den-
ity 𝑉 depends of 𝐅 and its gradient 𝐆 = ∇𝐅 [13,31]:

= 𝑉 (𝐅,𝐆).

pplying again the principle of material frame indifference we came to
he following form of 𝑉 [26,32]

= 𝑉 (𝐂,𝐊), (4)

where 𝐊 = ∇𝐅 ⋅ 𝐅𝑇 is a third-order tensor.
The Lagrangian equations of statics have the form

∇ ⋅ 𝐓 + 𝜌𝐟 = 𝟎, 𝐓 = 𝐏 − ∇ ⋅𝐌, (5)

where 𝐓 is the total stress, 𝐏 is the stress, and 𝐌 is the hyper-stress
tensors, all are of the first Piola–Kirchhoff type. They are defined as
follows

𝐏 = 𝜕𝑉
𝜕𝐅

, 𝐌 = 𝜕𝑉
𝜕𝐆

. (6)

2.3. Strong ellipticity conditions

Let us formulate the strong ellipticity (SE) condition in terms of
strain energy density for the both models. In the case of the mi-
cromorphic continuum the SE condition coincides with the positive
definiteness of the following matrix with tensor-valued elements

Q =

⎛

⎜

⎜

⎜

⎝

𝜕2𝑊
𝜕𝐅2

𝜕2𝑊
𝜕𝐅𝜕∇𝐇

𝜕2𝑊
𝜕∇𝐇𝜕𝐅

𝜕2𝑊
𝜕∇𝐇2

⎞

⎟

⎟

⎟

⎠

, (7)

which could be written as follows [29]

(𝐤⊗ 𝐚) ∶ 𝜕2𝑊
𝜕𝐅2

∶ (𝐤⊗ 𝐚) + (𝐤⊗ 𝐚) ∶ 𝜕2𝑊
𝜕𝐅𝜕∇𝐇

⋮ (𝐤⊗ 𝐀)

+ (𝐤⊗ 𝐀) ⋮ 𝜕2𝑊
𝜕∇𝐇𝜕𝐅

∶ (𝐤⊗ 𝐚)

+ (𝐤⊗ 𝐀) ⋮ 𝜕2𝑊
𝜕∇𝐇2

⋮ (𝐤⊗ 𝐀)

≥ 𝐶1|𝐤|2
(

|𝐚|2 + |𝐀|2
)

,

where 𝐤 and 𝐚 are arbitrary vectors, 𝐀 is an arbitrary second-order
tensor, ‘‘⊗’’ is the dyadic product, ‘‘∶’’ and ‘‘⋮’’ are the double dot
and triple dot products, respectively, |𝐚| and |𝐀| are Euclidean norms
for vectors and second-order tensors, and 𝐶1 is a positive constant
independent on 𝐤, 𝐚, and 𝐀.

For the strain gradient elasticity the SE condition takes the form [26,
33]

(𝐤⊗ 𝐤⊗ 𝐚) ⋮ 𝜕2𝑉
𝜕𝐆2

⋮ (𝐤⊗ 𝐤⊗ 𝐚) ≥ 𝐶2|𝐤|4|𝐚|2, (8)

here again 𝐤 and 𝐚 are arbitrary vectors, and 𝐶2 is a positive constant
independent on 𝐤 and 𝐚.

3. One-dimensional case

In order to illustrate difference between SE conditions let con-
sider one-dimensional (1D) counterparts of considered models. In other
words, we restrict ourselves to so-called ‘‘1D world’’, which is similar
but not the same as a classic problem of for an elastic bar under tension,
as here we have only one dimension. Indeed, now our elastic body 
could be represented as a segment [0, 𝑎] in a reference placement. So a
position of a material particle 𝑧 in 𝜅 is given by one scalar Lagrangian
coordinate 𝑋 ∈ [0, 𝑎]. We assume that  is clamped at 𝑥 = 0, whereas
an external load 𝑝 is applied at 𝑥 = 𝑎. For simplicity we neglect
mass forces. The problem under consideration could be considered as
an uniaxial strain state, whereas an elastic bar stretching corresponds
to uniaxial tension. First, let us consider a hypothetic model with
ellipticity loss within nonlinear elasticity.
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3.1. Simple material

Let us consider 1D model for a nonlinear elastic material known
also as a simple or Cauchy material. In what follows we assume the 
following 1D strain energy density

𝑈 = 𝑈 (𝜀), 𝜀 = 𝑢𝑋 , (9)

here 𝑢 ≡ 𝑥 −𝑋 = 𝑢(𝑋) is a displacement field. For brevity we denote
erivatives with respect to 𝑋 as follows

𝑋 = 𝑑𝑢
𝑑𝑋

, 𝑢𝑋𝑋 = 𝑑2𝑢
𝑑𝑋2

, etc.

Equilibrium equation takes the form

𝜎𝑋 = 0, 𝜎 = 𝑑𝑈
𝑑𝜀

, (10)

with the kinematic and static boundary conditions

𝑢(0) = 0, 𝜎(𝑎) = 𝑝. (11)

Here 𝜎 is a Piola (nominal or engineering) stress.
For the 1D continuum the SE condition takes simple form

𝑑𝜎
𝑑𝜀

≡ 𝑑2𝑈
𝑑𝜀2

> 0. (12)

o within the ellipticity range the tangent elastic modulus is positive,
hereas the strain energy density is convex.

In order to demonstrate the loss of strong ellipticity we consider
he following strain energy density given in the form of Morse poten-
ial [34]

= 1
2
𝐸
[

1 − exp(−𝜀∕𝓁)
]2 , (13)

where 𝐸 is an elastic modulus and 𝓁 is a characteristic size of the
energy well. Typical graphs of 𝑈 and 𝜎 are given in Fig. 1 a) and b),
respectively. Here the graph of 𝑈 has a horizontal asymptote at 𝜀 → ∞,
so 𝜎 tends to zero at 𝜀 → ∞. We have the non-ellipticity range after the
inflexion point at 𝜀 = 𝜀∗ in Fig. 1 a) and for the fading branch of 𝜎 − 𝜀
curve in Fig. 1 b). In this range the strain energy is non-convex and the
tangent elastic modulus is negative. This situation could be treated as
a material instability, see [35].

Eqs. (10) and (11) result in an affine deformation

𝑢 = 𝜀0𝑋,

where 𝜀0 is a solution of 𝜎(𝜀) = 𝑝. Obviously, such solution exists if
𝑝 ≤ 𝑝max as for 𝑝 > 𝑝max this equation does not have any solution.
Moreover, for 𝑝 ∈ (0, 𝑝max) we have two solutions 𝜀 = 𝜀1 and 𝜀 = 𝜀2.
So we see that the loss of the SE condition results in non-uniqueness of
solutions as well as in certain material instabilities.

Let us note that 1D problems with non-convex problems strain en-
ergy density are studied in nonlinear elasticity in order to model phase
transformations, see e.g. [36] and the references therein. Ericksen [37]
considered an elastic bar with two-well potential, see also [38,39]. We
also underline that the SE condition analysis for uniaxial tension within
3D theory is more complex, in general, see e.g. [40]. In particular, the
ellipticity range does not corresponds to the fading branch as observed
for some parameters of Ogden’s model of material [40].

3.2. Strain gradient 1D continuum

For a strain gradient model of  a strain energy density and the
kinematic boundary conditions take the form

𝑉 = 𝑉 (𝜀, 𝜀𝑋 ), (14)

𝑢(0) = 0, 𝑢𝑋 (0) ≡ 𝜀(0) = 0. (15)

One-dimensional equilibrium equation and static boundary conditions
are given by

𝜎𝑋 − 𝜏𝑋𝑋 = 0, 𝜎 = 𝜕𝑉 , 𝜏 = 𝜕𝑉 , (16)

𝜕𝜀 𝜕𝜀𝑋
Fig. 1. Simple material: a) strain energy vs. strain; b) stress vs. strain. For (13)
∗ = ln(2)∕𝓁.

(𝑎) − 𝜏𝑋 (𝑎) = 𝑝, 𝜏(𝑎) = 0, (17)

here 𝜎 and 𝜏 are 1D Piola-type stress and hyper stress (double stress),
espectively.

The 1D SE condition takes the form
𝑑𝜏
𝑑𝜀𝑋

≡ 𝑑2𝑉
𝑑𝜀2𝑋

> 0. (18)

Obviously, Eq. (18) is different from (12) as it does not apply any
onstraint on the dependence on 𝜀.

Let us consider a particular form of (14) given by

𝑉 = 𝑈 (𝜀) + 1
2
𝛼𝜀2𝑋 , (19)

where 𝑈 is defined as for simple material, and 𝛼 is an additional elastic
modulus. In fact, (19) could be treated as a regularization of (9). In this
case (18) transforms into the inequality

𝛼 > 0. (20)

Note, that inequality (20) results in the positive definiteness of 𝑉 . Now
the 1D boundary-value problem has the form

𝜎𝑋 − 𝛼𝜀𝑋𝑋𝑋 = 0, 𝜎 = 𝑑𝑈
𝑑𝜀

, (21)

𝑢(0) = 0, 𝜀(0) = 0, 𝜎(𝑎) − 𝜀𝑋𝑋 (𝑎) = 𝑝, 𝜀𝑋 (𝑎) = 0, (22)

Obviously, (21) and (22)2,3,4 constitute a BVP with respect to 𝜀, which
could be solved as follows. Integrating (21) and taking into account
(22)3, we get a new BVP

𝜎(𝜀) − 𝛼𝜀𝑋𝑋 = 𝑝, (23)

𝜀(0) = 0, 𝜀𝑋 (𝑎) = 0. (24)

http://mostwiedzy.pl
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Using the standard technique for ordinary differential equations (ODEs) 
f second-order [41] we come to the first integral
𝛼
2
𝜀2𝑋 = 𝑈 (𝜀) − 𝑝𝜀 + 𝐶, (25)

where 𝐶 is an integration constant. It should be found from (22)4. Then
the solution is given by the implicit dependence

∫

𝜀

0

𝑑𝜀
√

2 [𝑈 (𝜀) − 𝑝𝜀 + 𝐶]
= ±𝑋. (26)

Finally, 𝑢 has the form 𝑢(𝑋) = ∫ 𝑋
0 𝜀(𝑋) 𝑑𝑋.

.3. Micromorphic approach

Let us now consider an extension of the 1D simple material using
icromorphic approach. For the 1D micromorphic continuum a strain

nergy density is given by

= 𝑊 (𝜀, 𝜂, 𝜂𝑋 ), (27)

here 𝜂 = 𝜂(𝑋) is a scalar microdeformation field. In fact, for 1D case
e have a model with a scalar microstructure as defined by Capriz [42],

uch as for example Nunziato–Cowin poroelasticity [43].
For 1D micromorphic body  the BVP consists of equilibrium equa-

ions

𝑋 = 0, 𝜇𝑋 − 𝜕𝑊
𝜕𝜂

= 0; 𝜎 = 𝜕𝑊
𝜕𝜀

, 𝜇 = 𝜕𝑊
𝜕𝜂𝑋

, (28)

nd the following boundary conditions

(0) = 0, 𝜂(0) = 0; 𝜎(𝑎) = 𝑝, 𝜇(𝑎) = 0. (29)

The SE conditions coincide with the positive definiteness of the
atrix

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜕2𝑊
𝜕𝜀2

𝜕2𝑊
𝜕𝜀𝜕𝜂𝑋

𝜕2𝑊
𝜕𝜂𝑋𝜕𝜀

𝜕2𝑊
𝜕𝜂2𝑋

⎞

⎟

⎟

⎟

⎟

⎠

. (30)

In what follows similar to (19) we restrict ourselves to the micro-
orphic extension of (9)

= 𝑈 (𝜀) +
𝛾
2
𝜂2𝑋 +

𝛽
2
(𝜀 − 𝜂)2, (31)

where 𝛾 and 𝛽 are new elastic moduli. In this case the positive definite-
ness of Q is equivalent to the inequalities

𝛾 > 0, 𝑑2𝑈
𝑑𝜀2

+ 𝛽 > 0. (32)

So the SE conditions are determined by both parts of the strain energy
density, i.e. by nonlinearly elastic and micromorphic parts. Note, that
positive definiteness of 𝑊 requires more strong inequalities: 𝛾 > 0, 𝛽 ≥
0. The case 𝛽 = 0 corresponds to a decoupled problem, so we assume
that 𝛽 > 0. For 𝑈 given by (13) we have that 𝑑2𝑈∕𝑑𝜀2 ≥ −𝐸∕8𝓁2. So
q. (32)2 results in the inequality 𝛽 > 𝛽∗, where 𝛽∗ = 𝐸∕8𝓁2.

The corresponding 1D BVP has the form
[

𝜎0(𝜀) + 𝛽(𝜀 − 𝜂)
]

𝑋 = 0, 𝜎0 =
𝜕𝑈
𝜕𝜀

, (33)

𝛾𝜂𝑋𝑋 + 𝛽(𝜀 − 𝜂) = 0; (34)

𝑢(0) = 0, 𝜂(0) = 0; (35)

𝜎0(𝜀(𝑎)) + 𝛽(𝜀(𝑎) − 𝜂(𝑎)) = 𝑝, 𝜂𝑋 (𝑎) = 0. (36)

rom (33) and (36)1 we get that

0(𝜀) + 𝛽(𝜀 − 𝜂) = 𝑝 (37)

or all 𝑋 ∈ (0, 𝑎]. Extracting 𝜂 from (37) and substituting the result into
34), (35)2, and (36)2 we get again the nonlinear BVP with respect to

𝛾
[

𝑑𝜎0 + 𝛽
]

𝜀𝑋𝑋 +
𝛾 𝑑2𝜎0 𝜀2 − 𝜎0(𝜀) + 𝑝 = 0, (38)
𝛽 𝑑𝜀 𝛽 𝑑𝜀2 𝑋
Fig. 2. To violation of the SE condition (32)2: 𝜎0(𝜀)+𝛽𝜀 vs. strain, non-ellipticity range
is shown in red. Here 𝛽 = 𝛽∕𝐸.

[(

𝑑𝜎0
𝑑𝜀

+ 𝛽
)

𝜀𝑋

]

|

|

|

|𝑋=𝑎
= 0, (39)

[

𝜎0(𝜀) + 𝛽𝜀
] |

|

|

|𝑋=0
= 𝑝. (40)

Obviously, the latter BVP differs essentially from (21) and (22). So
e have not a solution in a form similar to (26). The main difference

onsists of a possible singularity in multiplier 𝑑𝜎0
𝑑𝜀 + 𝛽 before 𝜀𝑋𝑋 ,

i.e when 𝑑𝜎0
𝑑𝜀 + 𝛽 = 0 or, in other words, when (32)2 is violated. In

addition, in this case (39) becomes degenerated and does not constitute
a boundary condition. Moreover, violation of (32)2 result in multiple
solutions of (40) for 𝜖. The dependencies of 𝜎0(𝜀) + 𝛽𝜀 vs. 𝜀 is shown in
Fig. 2 for some values of 𝛽. Here we can see how the non-ellipticity of
the simple material was inherited by the micromorphic model.

4. Comparison of the models through SE conditions

Let us consider these two 1D models in more details. First, we shall
underline some obvious similarities between strain gradient and micro-
morphic approaches. In fact, equating 𝜂 to 𝜀, from (27) we immediately
get (14). So the micromorphic model with the constraint 𝜂 = 𝜀 (or
𝐇 = 𝐅) could be treated as s strain gradient medium, see [44] for
application of Lagrange multipliers technique. Moreover, let us note
that a static solutions could be obtained minimizing the total energy
functionals, i.e. from variational equations

𝛿𝐺 = 0, 𝛿𝑀 = 0,

𝐺 = ∫

𝑎

0
𝑉 𝑑𝑋 − 𝑝𝑢(𝑎), 𝑀 = ∫

𝑎

0
𝑊 𝑑𝑋 − 𝑝𝑢(𝑎) = 0,

where in 𝐺 and 𝑀 the energy densities given by (19) and (31),
respectively.

Using the penalty technique we can treat the term 𝛽(𝜀 − 𝜂)2 with
large enough value of 𝛽 as a penalty function. So a minimizer of 𝑀
should be close to a minimizer of 𝐺 when 𝛽 → ∞.

On the other hand, we also see obvious differences between the
models. Both models are reduced to 1D BVPs for second-order ODEs,
which differ from each other in the form of ODE and in the boundary
conditions. In order to compare possible solutions of (23), (24), and
(38)–(40) we consider their phase portraits. Any solution of (23), (24),
or (38)–(40) could be represented as an integral curve on 𝜀− 𝜀𝑋 -plane.
In what follows we call a simple material model with strain energy 𝑈
the primary material.

Typical phase portraits for (23) and (24) are given in Fig. 3(a) and
(b). Fig. 3(a) corresponds to 𝑝 ∈ (0, 𝑝max), i.e to the case when for the
primary material there are two solutions 𝜀1 and 𝜀2, whereas Fig. 3(b)
relates to 𝑝 > 𝑝 (for the primary material a static solution does not
max
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Fig. 3. Phase portraits for the strain gradient BVP: a) 𝑝 ∈ (0, 𝑝max), two stationary points
at (𝜀1 , 0) and (𝜀2 , 0) are pointed red diamonds; b) 𝑝 > 𝑝max, no stationary points. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

exist). Two red diamonds in Fig. 3(a) describe stationary points of (23)
and (24), that are solutions of 𝜎(𝜀) = 𝑝, see Fig. 1(b). The latter are a
saddle point and a center, respectively. For Fig. 3(b) BVP (23) and (24)
oes not have a stationary point. A solution of (23) and (24) could be

represented as a curve which begins at the vertical line 𝜀 = 0 and ends
at the horizontal line 𝜀𝑋 = 0. Some integral curves are shown. Note that
here we restrict ourselves to the elliptic case with 𝛼 > 0. As (23) and
(24) has a solution for any 𝑝, we can say that (19) is a certain gradient
regularization of a primary material independently on its ellipticity loss.

Under SE conditions phase portraits for the micromorphic model is
given in Figs. 4 and 5. Now the behavior of integral curves is more
complex and depends not only on 𝑝 but also on 𝛽. For 𝑝 ∈ (0, 𝑝max)
we again have saddle and center points (Figs. 4 and 5 a), whereas for
𝑝 > 𝑝max stationary points do not exist. A solution of (38)–(40) could be
represented as an integral curve which starts on the vertical line 𝜀 = 𝜀𝛽 
and ends on the line 𝜀𝑋 = 0. Here 𝜀𝛽 is a solution of (40). Obviously,
𝜀𝛽 → 0 at 𝛽 → ∞. So for relatively small values of 𝛽, i.e. 𝛽 ∼ 𝛽∗, integral
curves are similar only qualitatively as shown in Fig. 3, whereas for
relatively large values of 𝛽, i.e for 𝛽 ≫ 𝛽∗, the shape of integral curves
are quite similar, see Figs. 3 and 5. Here the values 𝛽  ≡ 𝛽∕𝐸 = 0.15 and
𝛽  = 10 are used for Figs. 4 and 5, respectively, whereas 𝛽∗ = 0.125. 
So we can confirm a convergence of solutions of (38)–(40) to their
gradient counterparts followed from (23) and (24) at 𝛽 → ∞ and under 
assumption 𝛼 = 𝛾.

Note that a solution of (38)–(40) exists for any 𝑝, whereas for the
primary material there a solution does not exist for 𝑝 > 𝑝max. So we can
also call Eq. (31) a micromorphic regularization of the primary material.

5. Conclusions

Considering gradient and micromorphic ‘‘regularizations’’ of a pri-
mary nonlinear elastic simple material, we have discussed the strong
ellipticity conditions for these media, that could be related to a certain
material instability. The considered primary material may loss elliptic-
ity which results in non-existence of solutions under some loads. We
can conclude that for a strain gradient material the SE conditions are
more simple and entirely independent on the SE conditions for the
primary material. Under the SE conditions the strain gradient approach
could be considered as a regularization of constitutive equations of a
simple material. Indeed, in this case one avoid a non-existence issue
as existence depends on the higher-order terms. Nevertheless, one can
see that a solution of 1D BVP within gradient approach reflects some
properties of a primary material including its ellipticity.

Instead, for a micromorphic material the SE conditions inherit SE
conditions of the primary material. In other words, a violation of the
SE conditions for the primary material may result in the consequent
violation of the SE conditions for micromorphic materials. But under
the SE conditions we again can solve the non-existence issue.

So considering strain gradient and micromorphic continua as mod-
els of some microstructured materials such as beam-lattice metamateri-
als, we see that the SE conditions for micromorphic materials are more
restrictive and may correspond to material instabilities at different
scales. On the other hand, as we can see above, the both regularizations
could produce similar results, at least for some cases.

Finally, we can conclude that the strong ellipticity plays an impor-
tant role as constitutive inequality with enhanced models of continua.
In particular, violation of SE conditions may signal a certain material
instability. On the other hand, one should be aware of transmission
of results from one model to another one without detailed analysis.
For example, in order to avoid material instability within the strain
gradient elasticity the SE condition should be complemented by addi-
tional inequality as in [26], whereas SE conditions for a micromorphic
medium does not require such a complement.
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Fig. 4. Phase portraits for the micromorphic BVP: ‘‘small’’ 𝛽. (a) 𝑝 ∈ (0, 𝑝max), two stationary points at (𝜀1 , 0) and (𝜀2 , 0) are pointed as red diamonds; b) 𝑝 > 𝑝max, no stationary
points. Integral curves begins on the vertical dashed line 𝜀 = 𝜀𝛽 , 𝛽 = 0.15. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 5. Phase portraits for the micromorphic BVP: ‘‘large’’ 𝛽. (a) 𝑝 ∈ (0, 𝑝max), two stationary points at (𝜀1 , 0) and (𝜀2 , 0) are pointed as red diamonds; b) 𝑝 > 𝑝max, no stationary
points. Integral curves begins on the vertical line 𝜀 = 𝜀𝛽 , which is close to the line 𝜀 = 0, 𝛽 = 10. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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