
Citation: Kaliński, K.J.; Galewski,

M.A.; Stawicka-Morawska, N.;

Mazur, M.; Parus, A. Adjusting the

Stiffness of Supports during Milling

of a Large-Size Workpiece Using the

Salp Swarm Algorithm. Sensors 2022,

22, 5099. https://doi.org/10.3390/

s22145099

Academic Editor: Sławomir Duda

Received: 15 June 2022

Accepted: 5 July 2022

Published: 7 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Adjusting the Stiffness of Supports during Milling of a
Large-Size Workpiece Using the Salp Swarm Algorithm
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Abstract: This paper concerns the problem of vibration reduction during milling. For this purpose, it
is proposed that the standard supports of the workpiece be replaced with adjustable stiffness supports.
This affects the modal parameters of the whole system, i.e., object and its supports, which is essential
from the point of view of the relative tool–workpiece vibrations. To reduce the vibration level during
milling, it is necessary to appropriately set the support stiffness coefficients, which are obtained from
numerous milling process simulations. The simulations utilize the model of the workpiece with
adjustable supports in the convention of a Finite Element Model (FEM) and a dynamic model of the
milling process. The FEM parameters are tuned based on modal tests of the actual workpiece. For
assessing simulation results, the proper indicator of vibration level must be selected, which is also
discussed in the paper. However, simulating the milling process is time consuming and the total
number of simulations needed to search the entire available range of support stiffness coefficients
is large. To overcome this issue, the artificial intelligence salp swarm algorithm is used. Finally, for
the best combination of stiffness coefficients, the vibration reduction is obtained and a significant
reduction in search time for determining the support settings makes the approach proposed in the
paper attractive from the point of view of practical applications.

Keywords: large-size workpiece machining; milling vibrations; stiffness adjustment; salp
swarm algorithm

1. Introduction
1.1. Problems in Milling of Large-Size Details

One of the main causes of the problems occurring during machining of large-size
details are relative vibrations between the tool and the workpiece [1], which lead to deterio-
rated quality of the machined surface, increased tool wear, or even a destruction of the tool
or the workpiece [2,3]. The problems of thermal dynamics, which may result in increased
machining error or the occurrence of unfavorable residual stresses [4,5] are also important.
They are characteristic for high-speed machining of hard-to-cut workpieces [6]. However,
they play a smaller role in the issues of milling in the scope of moderate cutting speeds of
large-size workpieces made of conventional materials (e.g., steel and cast iron).

In manufacturing practice, in order to reduce the level of vibrations and avoid the
abovementioned problems, usually “safe” parameters of machining are selected, for ex-
ample, lower spindle rotation and feed speeds or small depth of cutting. This prevents
undesired phenomena but, on the other hand, may limit machining process efficiency.
There are various methods proposed to reduce, counteract, or circumvent vibrations during
machining, developed mostly for small workpieces and in the context of chatter vibration
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reduction. However, it must be noted that there is an increasing demand for the pro-
duction of large parts, and the current scientific research results fall behind the expected
requirements in this field [7]. Additionally, due to the specifics of the milling process of
the large-size workpiece, the vibration-related research should not be associated only with
the chatter vibration phenomenon, which has also been noted, for example, in [7]. For
the purposes of this paper, it was assumed that the category of the large-size workpiece
includes items for which at least one linear dimension (i.e., length or width or height) is
greater than 900 mm.

1.2. Vibration Reduction Methods

The developed vibration reduction methods may be briefly classified as out-of-process
or in-process, and those that passively or actively modify the system’s behavior [1]. These
methods, especially those dedicated to chatter reduction, are widely reviewed in [1,8–10].

For example, in [11], it was shown that different spindle speeds result in changes
in the damping of system during turning, which results in different levels of stability
limits. Moreover, active damping increases the limits of the system stability, especially in
the low stability areas. In [12], the chatter vibration reduction solution during milling is
presented, which is based on biaxial active actuator application designed by combining
an inertial actuator and accelerometer working in a closed loop. The authors of [13,14]
developed a noncontact electromagnetic actuator with two degrees of freedom integrated
into the spindle system with differential driving mode to obtain a linear output of actuator
force. The idea of active vibration reduction through active control of the spindle and
tool position is also proposed in [15]. An intelligent tool holder is proposed in [16] and
a tool with a built-in damper in [17]. A method of input shaping control technique to
reduce vibrations in machining is proposed in [18], but its application is restricted by the
dynamic properties of the feed drive, which, in the case of high-frequency vibrations, reduce
operating performance. These methods are concentrated on reducing vibrations via active
control of the cutting tool, tool holder, or the spindle with the tool. In [19], an active table is
presented that enables vibration reduction owing to the movements of the whole workpiece
mounted on top of the table. Many of these methods need sophisticated measurement
equipment and actuators, which are not cost effective. Some types of actuators, for example,
piezoelectric, are very sensitive to tensile or shear forces. Therefore, special design of
actuator supports and housing are needed to allow its movement in the desired direction
while simultaneously assuring high stiffness in other directions. Therefore, methods
concerning active tables may be very difficult to apply in the case of large-size workpieces
due to high mass and inertia of the workpiece and the table itself.

Examples of semiactive methods include a tunable vibration absorber (TVA) [20] and
a tuned mass damper (TMD) [21]. To determine the optimal spring stiffness and absorber
position values of TVA, an optimal algorithm was developed based on the mode summation
approach. In [21], it was shown that a two-DOF TMD (receiving translation and rotation
motion) demonstrates better efficiency than single-DOF (SDOF) and two SDOF TMDs with
equal mass. To minimize low frequency vibrations, a contactless multilayer electromagnetic
spring with tunable negative stiffness is proposed in [22]. The electromagnetic force between
the magnets and coils generates negative stiffness, which can be tuned online by controlling
the current. In [23], the authors present an algorithm for tuning a semiactive clamping table
for the purpose of chatter suppression in turbine blade recontouring. The damping of the table
is provided by the adjustable eddy current damping modules. The use of electrorheological
and magnetorheological fluids to simultaneously control the stiffness and damping of the
vibration reduction devices has also been investigated and reported in [24].

The group of in-process solutions concerns, for example, various methods based on
vibration suppression through spindle speed variation. In [25], a speed variation command
is activated after detecting chatter occurrence. In [26], an adaptive speed modulation
is proposed to suppress chatter, and in [27] an optimal–linear spindle speed control is
proposed to avoid development of chatter vibrations. The drawback of these methods is
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the limited capability of spindle control systems to quickly change spindle speed and to
perform this without stopping the feed. The other group of methods concerns matching the
spindle speed to the selected dynamic properties of the cutting process, especially to optimal
phase shift between inner and outer modulation [28], to the dominant natural frequencies
of the vibrating system [29], or to minimize the vibration level of a workpiece [30]. These
methods are easier to implement than all of the previous methods but may limit the overall
efficiency of the milling process, for example, in the case when the spindle speed is optimal
for vibration reduction but is much lower than the potential spindle speed that could be
obtained by the milling center.

Based on this review, the authors believe that there is still a need for development of
methods that do not interfere with the milling machine structure, do not need complicated
in-process monitoring, or do not require closed loop control, but, despite this, are capable of
vibration reduction while maintaining milling process efficiency. This can be achieved, for
example, by introducing the possibility for modifying elements of the dynamic properties
of the tool–workpiece–support machine system.

1.3. Proposed Approach

From the point of view of vibration level during machining, the dynamic properties
of the workpiece together with its supporting elements are essential [31–33] because they
determine the workpiece’s susceptibility to vibrations. For example, properties such
as resonant frequencies (if excited, chatter phenomena may easily occur) and damping
coefficients (high damping prevents vibrations) are important. Although the properties
of the detail itself cannot be modified, the parameters of the supports, for example, the
stiffness, can be changed. This opens the opportunity to shape dynamic properties of the
workpiece in a desired manner, for example, in order to reduce the level of vibration of the
tool–workpiece during milling. For example, the authors of [34] propose the optimized
sequence of tightening the anchor bolts for a given configuration of the machine bed and
anchor system to ensure the correct stiffness of the machine tool foundation for machining
large-size workpieces. Moreover, according to [35], surface quality during the face-milling
process may be improved by optimizing the mounting pattern of the workpiece on the
machine table base. This is possible because adjusting the support stiffness affects the
modal parameters of the object, especially its dominant frequencies and modes of natural
vibrations. This idea was also already proposed, for example, by the authors of [36,37] and
is fundamental for the method proposed in this paper, as it consists of an application of
special workpiece supports with adjustable stiffness. However, it must be noted that in
previous works this concept was described only for small-size workpieces mounted in a
single, variable stiffness holder. This is also a distinctly different approach than applied
previously by authors, for example, in [27,30,38]. In the current paper, a different, original
approach to solving the problem of reducing the vibration level of the tool–workpiece
during milling is proposed. It consists in setting the stiffness coefficients of supports
fastening the workpiece on the machine tool in such a way as to minimize the value of
the previously defined vibration level indicator. To find the best set of support stiffness
coefficient settings, a series of computer simulations of the milling process are performed.
The simulations use a Finite Element Model (FEM) of the workpiece together with the
supports and a dynamic model of the milling process. The parameters of the FEM are
fine-tuned based on modal tests of the actual workpiece. Since the simulation of the milling
process is time consuming, and the total number of simulations needed to search the entire
available range of support stiffness coefficients is large, the modern and fast-converging
Artificial Intelligence (AI) Salp Swarm Algorithm (SSA) [39] was used to significantly
shorten the overall search time for the best combination of stiffness coefficients.

1.4. Metaheuristic Optimization Methods

The Salp Swarm Algorithm belongs to the wide and continuously growing group of
metaheuristic AI algorithms. Metaheuristic algorithms can be categorized as evolutionary
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algorithms, human-based algorithms, swarm intelligence algorithms, and chemistry and
physics algorithms [40]. Most of swarm algorithms are nature-inspired and usually they
solve optimization problems by mimicking behaviors of various species of animals, for
example, birds (in general) [41] or some particular bird species such as pigeons [42] or
cuckoos [43], ants [44], grasshoppers [45], bees [46], bats [47], wolves [48], fish [49], krill [50],
among many others. The main advantages of swarm optimizers are general simplicity,
relatively easy implementation, and no information required for the objective function
gradient. They are usually fast converging and can bypass local optima. Many are already
applied in mechanical engineering problems [51], including milling [52,53] and turning
operations [54,55].

1.5. Paper Organization and Research Program

The paper is organized as follows: first, the model of the milling process dynamics
is described, which is used for simulations; then, the general procedure for adjusting the
stiffness of supports is introduced and the salp swarm algorithm is presented, as this
is the optimization method chosen to efficiently perform the search for the best set of
stiffness coefficients, which is the main goal of the study. Next, the research and simulation
example is presented that includes a description of the actual exemplary workpiece, its
dynamic properties, and the properties of the adjustable stiffness supports. The selection
of an appropriate indicator for comparing simulation results is also discussed. Then, the
simulation results and application of the search procedure for finding the best set of stiffness
coefficients are presented, and conclusions are drawn.

2. Dynamics of the Face-Milling Process

The subject considered is the process of face milling of a flexible workpiece with a
multiedge-milling cutter (Figure 1). The dynamics of the machining process were analyzed
using a hybrid model, described in detail in [30,33,56], with the following assumptions:

1. The tool fixed in the holder, rotating with the desired spindle speed n, and the
workpiece mounted on the table, moving with the desired feed speed υf, are the
only features taken into account. The influence of the remaining parts of the milling
machine on the dynamics of the machining process can be neglected [7,30].

2. The flexibility of the workpiece, which characterizes the machining of large-size
flexible elements on multiaxis machining centers, was taken into account [7,30].

3. For modeling the dynamics of the cutting process, Coupling Elements (CEs) were
adopted, which were located at the conventional contact points of the tool edges with
the workpiece [56,57]. The momentary positions of the tips of the cooperating edges
of the rotating tool were assumed as these points.

4. Only cutting forces Fyl1, Fyl2, Fyl3, acting at the instantaneous point of contact of the
selected tool edge with the workpiece (i.e., CE no. l), are taken into account. They
work appropriately in the direction of cutting speed vc, cutting layer thickness hl, and
layer width bl. Milling medium-cut materials (e.g., cast iron) with small allowances
(depth of cutting ap = 0.2 mm, feed per edge fz = 0.17 mm) causes that the cutting force
components acting on one edge do not exceed 200 N

5. These cutting forces depend proportionally on the instantaneous thickness of the
cutting layer hl and the instantaneous width of the cutting layer bl [56,58]. Cutting
speed vc values not exceeding 500 m/min allow the use of a mechanistic proportional
model in the description of cutting dynamics [56].

6. The passage of the current edge along the cutting layer causes a proportional feed-
back, and the passage of the previous edge additionally causes a delayed feedback.
Because of this, it is possible to consider the effect of multiple trace regeneration in
the calculation model.
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Figure 1. Scheme of the face-milling process of the flexible surface of the workpiece showing the
modal subsystem created on the basis of the validated FEM of the workpiece. κr—edge angle,
γ0—edge rake angle, and α0—edge clearance angle.

When considering a face-milling process where a variable is observed in time, the
hl(t) thickness and the bl(t) width of the cutting layer of the tool cutting edge no. l, we
obtained [30]:

hl(t) = hDl(t) + ∆hl(t − τl)− ∆hl(t), (1)

bl(t) = bD − ∆bl(t), (2)

where hl(t)—cutting layer thickness at time-instant t; hDl(t)—nominal cutting layer thick-
ness at time-instant t; hDl(t) = fz sin κr cos ϕl(t) for fz � D [38]; ∆hl( )—dynamic change
in cutting layer thickness; bl(t)—cutting layer width at time-instant t; bD—nominal cutting
layer width; bD =

ap
sin κr

[38]; ∆b(t)—dynamic change in cutting layer width at time-instant
t; τl—time between the same position of edge no. l-1 and edge no. l; ϕl(t)—immersion
angle of edge no. l; and D—pitch diameter of the cutting tool edges.

As a result of modeling the dynamics of the milling process, a system was obtained,
consisting of (Figure 1):

1. A structural subsystem, i.e., a rigid body called the Rigid Finite Element (RFE) no.
r (central principal axes of inertia are xr1, xr2, xr3), that represents a milling tool
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connected to a tool holder by means of the Elastic Damping Element (EDE) no.
k1 [56,57]. Its behavior is described in a domain of six generalized coordinates q.

2. A modal subsystem, i.e., a stationary Finite Element Model (FEM) of a flexible work-
piece supported by a finite number of Elastic Damping Elements (EDEs) no k2. At
first, the subsystem is idealized as a set of tetrahedronal 10-node Finite Elements (FEs).
The model obtained has a large number of degrees of freedom. Thus, it has been
transformed to mod modal coordinates, whose number is much smaller [30].

3. A connecting subsystem, i.e., a set of Coupling Elements (CEs), the positions of which
correspond to the instantaneous positions of the tips of the tool edges and change
with respect to time [30,56].

The momentary position of the cutter edge no. l is described by the immersion angle
ϕl = ϕl(t). It corresponds to the temporary position of CE no. l, and the axes yl1, yl2, yl3
are the coupling axes of this CE [30,57]. During the machining process, not all edges are
cutting the material at any given time. The cutting edges are called “active”.

In [30], it was shown that the equation of dynamics of the hybrid model obtained for
the face-milling process has the form:

[
M 0
0 I

]{ ..
q
..
a

}
+

[
L 0
0 2ZcΩc
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+
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∑
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,

(3)

where:
M, L, K—matrices of inertia, damping and stiffness of the structural subsystem;

Ωc, Ψc, Zc —matrices of angular natural frequencies, normal modes and dimension-
less damping coefficients of the modal subsystem; q—vector of generalized coordinates
of the structural subsystem; a—vector of modal coordinates of the modal subsystem;
~

Wl(t)—transformation matrix between the generalized displacements vector of the modal
subsystem and the displacements in the coordinate system yl1, yl2, yl3 of CE no. l; Tl(t)—
transformation matrix of the generalized displacement vector of the structural subsystem
q from the xr1, xr2, xr3 coordinate system of RFE no. r, to the coordinate system yl1, yl2,
yl3 of CE no. l; F0

l (t)—vector of cutting forces of CE no. l, resulting from desired cutting
geometry and kinematics; DPl(t)—matrix of proportional feedback interactions of CE
no. l; DOl(t)—matrix of time-delayed feedback interactions of CE no. l; ∆wl—vector of
deflections of CE no. l, τl—time delay between the same position of CE no. l and of CE no.
l-1, number of “active” CEs; the symbol t means the current moment of time, while t − τl—the
earlier moment, when the previous cutting tool edge was in the same geometrical place.

3. Adjusting the Stiffness of Supports—General Procedure and Search
Method Selection

As described in the Introduction, in order to reduce vibration level during machin-
ing, mounting large-size details on a number of supports with adjustable stiffness is
proposed (Figure 2).
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In order to minimize the vibration level, an appropriate set of support settings must
be determined. The general procedure for finding these settings is:

1. Identification of stiffness values for different settings for each of the adjustable stiffness
supports, for example, by performing static tests at the material testing machine;

2. Preparing the modal model of the workpiece itself and assessing its compliance
with the actual object using modal parameters identification methods (for example,
ERA—Eigenvalue Realization Algorithm or p-LSCFD—poly-reference-Least Square
Complex Frequency Domain methods [31,56,58]);

3. Selecting cutting process parameters, i.e., depth of cutting, feed speed, spindle speed;
4. Performing a series of simulations of milling process for given sets of support

stiffness settings;
5. Assessing the simulation results by comparing a chosen process quality indicator, for

example, average tool–workpiece displacement or Root Mean Square (RMS) of the
displacements in the time domain;

6. Choosing the set of support settings that assure the best milling conditions.

As it can be seen, the procedure implies the performance of milling process simula-
tions for different support settings. In the case of using a few supports for mounting the
workpiece, and even limiting the number of possible settings for each support to a few
values, the number of combinations becomes very large and the whole procedure may be
very time consuming. This sets a challenge on how to efficiently search for the best set of
support settings that assure vibration minimization.

The solution to this problem is application of an effective optimization technique.
A wide and still growing group of such algorithms are AI algorithms and, particularly,
Swarm Intelligence algorithms. Swarm intelligence is defined as the collective behavior
of decentralized, self-organized natural or artificial systems. Algorithms of this class are
nature-inspired, metaheuristic algorithms that usually solve optimization problems by
mimicking physical or biological phenomena, especially behaviors of various species of
animals. In general, swarm optimization algorithms are relatively simple to implement,
do not require information about the objective function gradient (contrary to many classic
optimization algorithms), are usually fast converging, and can bypass local optima. The
most notable feature of these methods is that they search for the optimum by moving
individual search agents in the search space. There is also no centralized controller or
supervisor of the whole swarm. Each agent follows usually quite simple rules and can
perform elementary operations. Although one agent is unable to solve the problem alone,
owing to the mutual interactions with other agents and with the environment (problem
being solved), the whole swarm is able to “intelligently” find the solution. An example of
successful application of the swarm intelligence method for Finite Element Model (FEM)
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updating, which is based on the Particle Swarm Optimization algorithm used for (non-
adjustable) support stiffness coefficient estimation, is presented in [31].

Amongst swarm intelligence algorithms, the recent Salp Swarm Algorithm (SSA) [59]
offers many advantages that make it appealing for solving the problem of efficient search
for the best set of support stiffness. Although the SSA is a relatively new algorithm (pub-
lished in 2017), it has already gained recognition because of its simplicity and properties.
Some applications, mostly related to energy distribution and production systems, include,
for example, optimization of wind turbine location [59], optimization of power system oper-
ations [60], estimation of the parameters of photovoltaic panels [61], and prediction of wind
power [62]. Some other examples include UAV path planning [63], design of PID-fuzzy
control against an earthquake for a seismic-exited structural system [64], and prediction
of pressure burst in pipelines [65]. In all these tasks SSA showed very good performance,
efficiency, and competitiveness, outperforming other well-established approaches [39,66].
According to [67], the main advantages of SSA are good convergence acceleration, efficient
global performance and excellent solutions, suitability for many optimization tasks, good
handling of wide search space, adaptability, robustness, scalability, and reasonable execu-
tion time. The only important disadvantages noted are possible premature convergence
and probability distribution change occurring between algorithm iterations. Because of
these advantages, SSA was selected as an algorithm that can help solve the problem of
efficiently implementing the search for the best set of support stiffness coefficients.

4. Salp Swarm Algorithm

Salps are small, barrel-shaped, gelatinous organisms that move by pumping water
through their bodies. They are common in oceans around the world. Salps may live alone
but often form long, stringy colonies. As necessary for every living creature, salps need to
search for food. These two behaviors, i.e., food chasing and swarming in chainlike forms,
were inspiration for the Salp Swarm Algorithm which is a metaheuristic AI algorithm [39].

In the algorithm, a salp represents an individual search agent. During initialization,
agents are randomly placed in the search space and one of them is selected as a chain leader,
which moves towards the food, i.e., best solution found so far (Equation (4)):

x1
i =

{
Fcurrent best + c1((ub − lb)c2 + lb) for c3 ≥ 0.5
Fcurrent best − c1((ub − lb)c2 + lb) for c3 < 0.5

(4)

where:
x—the vector describing the agent’s position; i—the current iteration number; 1 in the

upper index in x1
i denotes the first (leader) salp; ub—the upper bound; lb—the lower bound

of the search space.
According to (4), the leader position is updated only with respect to the best solution

found so far (Fcurrent). However, movement of this agent (the leader) is distorted by c1, c2
and c3 coefficients. Coefficients c2 and c3 are random values with uniform distribution in
the range <0, 1>. The c1 factor is calculated in each iteration as:

c1 = 2e−( 4i
I )

2
, (5)

where i is the current iteration number and I is the maximum number of iterations.
The c1 coefficient is a very important parameter of SSA as it balances exploration and

exploitation. In the initial iterations, the value of c1 is close to 2 so the part of Equation (5)
in parentheses dominates, but as the algorithm progresses, its influence is reduced and the
leader starts to move in gradually smaller steps around the best solution found so far by the
whole swarm. The c1 coefficient is a very important parameter in this algorithm because it
weights its exploration and exploitation behaviors. It is also a practical advantage of SSA
that there is only one adaptively decreasing hyperparameter (namely c1) that is calculated
using Formula (6) and predefined by SSA authors so there is no need to search for its
optimal value, as in the case of many other swarm intelligence algorithms. Apart the leader,
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all other agents move in the direction of the proceeding salp (for example, the one with the
lower index on the list of agents) according to:

xj
i =

1
2

(
xj

i + xj−1
i

)
for j ≥ 2, (6)

where j is the salp number.
This imitates chain-forming and leader-following behaviors (Figure 3). In the consec-

utive iterations, the leader is moved randomly around the current best solution (4) in a
gradually decreasing range (due to (5)) while other salps, by following their predecessors,
progressively shrink the chain (6). This is symbolically marked by arrows in Figure 3.
Such agent position update rules help in refining the solution and, additionally, help the
algorithm escape from local optima and prevent premature convergence.
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5. Research and Simulation Example
5.1. Introduction

The procedure presented in the section entitled “Adjusting the Stiffness of Supports—
Justification and General Procedure” is explained based on the practical example of
the workpiece presented in Figure 4a. The workpiece main body size is approximately
1000 × 550 × 260 mm. It is made of EN-GJS-400-15 cast iron and weights approximately
175 kg. More details on the workpiece dynamic properties and on the characteristics of its
supports are described in the subsequent sections.
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5.2. Support Characteristics

Following the procedure described in the section “Adjusting the Stiffness of Supports—
The General Procedure and Search Method Selection”, the values of the stiffness coefficients
for the various settings of the adjustable stiffness supports must be identified first. Using
a ZwickRoell Z020 testing machine, the values of the stiffness coefficients were obtained
for the three supports: S1, S2, and S3. For each of the supports and for their five different
settings (from 20 mm—the stiffest support, through 30, 40, 50 mm, to 60 mm—the least stiff
support), the values of the stiffness coefficients were determined. Then, the linear approxi-
mation with the use of the determined values was performed and the static characteristics of
the supports, presented in Table 1, were obtained. These approximate characteristics were
used during the search for the best set of settings that involves simulations of the milling
process. During the simulations, the model of the workpiece placed on the adjustable
supports was used.

Table 1. Stiffness coefficients k of supports with adjustable stiffness for different support settings s.

Support
Number

s [mm]
Linear Approximation

Characteristics20 30 40 50 60
k [N/mm]

S1 15,515.24 13,353.17 10,492.44 7981.53 6218.45 k = −239.65 s + 20298
S2 14,678.93 12,685.56 9879.97 8113.67 6030.11 k = −218.70 s + 19025
S3 9669.46 8050.94 7064.00 5573.94 4683.09 k = −124.50 s + 11988

5.3. Workpiece Model

The schematics of the workpiece and its Finite Element Model (FEM) are presented in
Figure 4. The FEM of the free-body workpiece was tuned according to the results of the
modal test using the approach described in [31]. During the modal tests, the object was
excited using The Modal Shop 2100E shaker (maximum force 440 N) (The Modal Shop Inc.,
Cincinnati, OH, USA), generating a burst random signal. The applied force was measured
using a PCB 208C02 force sensor (±440 N) (PCB Piezotronics Inc., Depew, NY, USA). Object
responses were measured using 16 DJB A/120/V accelerometers (±75 g) (DJB Instruments,
Suffolk, UK). Acceleration signals were acquired via NI PXI-4496 and force signal via NI
PXI-6221 DAQ cards (National Instruments Corp., Austin, TX, USA).

In [31], the relationship between the angular natural frequencies Ω f and normal modes
Ψ f of free-body workpiece vibrations, and the corresponding parameters Ωc and Ψc of
the modal model of the workpiece mounted on the machine table with the use of ip rigid
supports, which constitute additional constraints, was demonstrated. It was assumed that
the modal coordinates in the number of mod take into account:

1. All rigid body modes of the free–free state system;
2. A set of the first few elastic modes of the free–free state system, the number of which

should be not lower than the number of flexible modes of the constrained system to
be computed;

3. All Guyan modes [68] of a free–free state system for all combinations of Degrees of
Freedom (DOF) of the supports.

As a result, the matrix Ψc of mod normal modes of natural vibrations of a coupled
(constrained) system is described by the formula:

Ψc = Ψ f TΨ, (7)

and the matrix of angular frequencies of natural vibrations of the coupled system Ωc results
from the dependence:

Ω2
c = TT

ΨKΨTΨ, (8)

where:
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TΨ—matrix of eigenvectors of the following matrix:

KΨ = Ω2
f + ΨT

f WTKsWΨ f ; (9)

Ks—the stiffness matrix of the free system supports, which are constraints; W—modal
coupling matrix, whose values for the constrained DOF (connected to the support) should
be 1 and 0 otherwise.

The computed angular frequencies of natural vibrations ωa
c,i, i = 1, . . . , mod can be

directly compared with corresponding angular frequencies ωe
c,i, i = 1, . . . , mod measured

during the modal tests, obtained from the experiments. To compare the ith computed
vector Ψa

c,i with the jth experimental vector Ψe
c,j of normal modes, the Modal Assurance

Criterion (MAC) can be used [69]:

MAC
(

Ψa
c,i, Ψe

c,j

)
=

(
ΨaT

c,i ·Ψe
c,j

)2(
ΨaT

c,i ·Ψa
c,i

)
·
(

ΨeT
c,j ·Ψe

c,j

) . (10)

MAC values close to 1 for the normal modes indicate a linear dependence of mode
shapes. Even if the MAC factor is generally considered not to be a perfect tool for measuring
the correlation between mode shapes [69], it was used for fast correlation assurance and
was assumed sufficient.

Owing to the modal tests, the six vibration modes of the workpiece were identified
using the p-LSCFD method [31,56]. The FEM model presented in Figure 4b was appro-
priately fixed with ip = 12 finite elements representing springs (each with six degrees of
freedom) to obtain satisfactory correlation of natural frequencies and modes [31]. Appro-
priate values of the measured and calculated frequencies of the natural vibrations of the
workpiece mounted on the milling machine are compared in Table 2. The values of the
Modal Assurance Criterion (MAC) are presented in Table 3.

Table 2. Comparison of the measured and calculated frequencies of the natural vibrations of the
workpiece mounted on the milling machine.

ωe
c,i

2π [Hz] 185.0 211.3 242.4 - - 435.7 585.0 631.2

ωa
c,i

2π [Hz] 184.6 211.4 242.2 295.5 434.3 434.4 571.5 630.2

Table 3. Modal Assurance Criterion (MAC) values between FEM modes (Ψa
c,i) and modes identified

during the modal test (Ψe
c,j), the highest values in bold.

Ψe
c,1 Ψe

c,2 Ψe
c,3 Ψe

c,4 Ψe
c,5 Ψe

c,6 Ψe
c,7 Ψe

c,8

Ψa
c,1 0.96 0.05 0.08 - - 0.01 0.09 0

Ψa
c,2 0.01 0.98 0.24 - - 0 0.01 0.03

Ψa
c,3 0.08 0.18 0.95 - - 0.03 0.05 0.01

Ψa
c,4 0.2 0 0 - - 0 0.03 0

Ψa
c,5 0.13 0.08 0.03 - - 0.01 0.18 0

Ψa
c,6 0.08 0 0 - - 0.94 0.06 0.01

Ψa
c,7 0.05 0.03 0.03 - - 0.05 0.87 0.01

Ψa
c,8 0 0.03 0 - - 0.01 0.01 0.94

The validation of the computational model of the workpiece mounted on the milling
machine allowed, first of all, to identify the parameters of the modal model of the free-body
workpiece, i.e., the angular natural frequencies Ω f and normal modes Ψ f matrix.

This prepared model of the workpiece was used during simulations of the milling
process that were performed for various settings of the adjustable supports.
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5.4. Milling Process Simulations

First, the simulation of the face milling of a surface indicated in Figure 4a for a
workpiece fixed with three non-adjustable, high stiffness supports was performed us-
ing: ∅63 mm cutter with six edges, tool rotation speed n = 1112 rev/min, feed speed
υf = 1112 mm/min, and depth of cutting ap = 0.2 mm. These parameters were selected
according to the standard parameters used during milling of the actual workpiece by the
cooperating industry (PHS Hydrotor Inc., Tuchola, Poland). The result of this simulation is
presented in Figure 5. The meaning of the vibration level indicators presented in the figure
is described in Section 5.5.
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adjustable supports.

During the search for the best set of adjustable support settings, clamping elements
were removed from the computational model of the workpiece. Then, Elastic Damping
Elements (EDEs) with known stiffness coefficients, which are computational models of three
supports with adjustable stiffness, were added at specific points to the modal model of the
free-body workpiece obtained in the way presented above, with the properties described
by the matrices Ω f and Ψ f ,. The stiffness coefficients of all the remaining supports in the
model were set to zero. Hence, the new stiffness matrix Ks of these EDEs was known.
Based on the dependencies (7) and (8), the matrices Ωc and Ψc were again determined for
the modal model of the workpiece bound by the constraints.

Milling simulations based on the abovementioned computation model (3) were per-
formed using proprietary software. To assess the vibration level for a given set of support
settings, one simulation run was needed. For the workpiece considered in this paper, from
20 to 65 s were required, depending on the type of computer used for the simulations. (Intel
Core i7 10th and 11th generation and Core i5 3rd, 4th, and 8th generation were used). This
means that the search for the best set of settings, which requires performing a high number
of simulations, may be very time consuming.

5.5. Selection of an Indicator for Comparing Simulation Results

In order to select the set of adjustable stiffness support settings, it was necessary
to choose an indicator that would allow for comparisons between individual simulation
results. Various indicators were considered:

1. Av—average (mean) value of the displacements—takes into account mainly “static”
displacement of the workpiece. The amplitude of vibration around the average value
is not represented by this indicator; however, it may be associated with the accuracy
of geometrical requirements for the workpiece.

2. RMS—Root Mean Square value of the displacements—the general indicator of vibra-
tions; however, it is strongly influenced by the mean value if it is non-zero.

3. RMSAv—Root Mean Square value of the displacements but calculated for the signal
after subtracting its mean value. This indicator is mathematically equivalent to the
standard deviation of the observed displacements. It does not take into consideration
the mean value. The advantage of this indicator is that it represents relative tool–
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workpiece vibrations (and not “static” displacement of the workpiece). Thus, it may
be related to machined-surface quality.

To assess characteristics of each of these indicators, a set of 729 simulations were
performed. The number of simulations result directly from the assumed number of nine
different settings for each support (20, 25, 30, 35, . . . , 60 mm). Figure 6 presents the
consolidated results for the Av and RMSAv indicators. For each indicator, calculations
were performed only for the time period of the machining when there were no transient
processes (i.e., tool entry and exit at the beginning and at the finish of milling). An example
of one simulation result is presented in Figure 7. The yellow line presents the Av indicator
value. The line is drawn only for the time range during which the indicator was calculated.
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After the performance of preliminary simulations, it was observed that average and
RMSAv indicators tend to show the opposite location of the best set of support settings,
the stiffest setting is preferred by the first one and less stiff regions by the other, as they
concentrate only on the one aspect of milling results (“geometrical” accuracy vs. relative
vibrations level) (compare Figure 6a,b). This led to the conclusion that probably the most
appropriate solution was to develop an indicator that accounts for both “geometrical”
accuracy and relative vibrations. According to this, the indicator F = Average + RMSAv was
proposed. However, further comparison of the results showed that the lowest observed
value for Average was 0.002026 mm (for S1 = 20 mm, S2 = 20 mm, S3 = 20 mm), and the
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lowest value for RMSAv is 0.000656 mm (for S1 = 45 mm, S2 = 55 mm, S3 = 55 mm) (red
points in Figure 6a,b). This means that RMSAv has roughly one third the influence of the
Average on the total F value. In order to balance this, an indicator:

Fw = Average/weight + RMSAv (11)

with weight = 3 was selected. This weight value was chosen as the most appropriate one
to assess results of simulations during search for the best set of support settings. The
consolidated result of simulations for the F1 and F3 indicator are presented in Figure 8a,b.
The more modest impact of average vibration level on the overall indicator value can be
noticed. More uniform colors mean that indicator values are more leveled in almost the whole
range of settings. This confirms that the F3 indicator is well balanced. A particular example of
simulation results and differences in Av, F1 and F3 values is also presented in Figure 7.
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randomness of the results due to random initial positions of the agents and random values 
of c1, c2, and c3 coefficients in the algorithm. The search space was limited to <20 … 60> 

Figure 8. Consolidated simulation results for the (a) F1 = Average + RMSAv and (b) F3 = Average/3 +
RMSAv indicator; darker dots represent better (lower) indicator values, and red marks represent the
best (lowest) result.

5.6. Search for the Best Set of Settings Using the Salp Swarm Algorithm

As mentioned earlier, the preliminary simulations were time consuming: 93 = 729
individual simulations were performed. Despite such a large number of simulations, it did
not guarantee that the best set of support settings obtained was the best in the global scale,
because it may lie between the settings considered in this set. Choosing a higher mesh
density for the support settings would dramatically increase the number of simulations.
For example, a change from 5 to 2 mm would raise this number to 213 = 9261 and extend the
overall simulation time almost 13 times. It became obvious that an effective optimization
technique was needed to obtain the best solution in a reasonable time. Because of the
previously mentioned advantages, the SSA was chosen to perform this task.

6. Results and Discussion

Several support setting selection runs were performed using SSA. The goal was
to evaluate if it is possible to obtain solutions similar to the solution known from the
preliminary simulations (or better) in much shorter time (i.e., with the lower number
of individual simulations). Various combinations of the number of agents and search
steps were considered. For each combination, five SSA passes were performed to limit
the potential randomness of the results due to random initial positions of the agents and
random values of c1, c2, and c3 coefficients in the algorithm. The search space was limited
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to <20 . . . 60> mm for each dimension, which covers all of the possible settings for each
support. Table 4 presents the summary of the results. For comparison, the result for a
deterministic search for the 5 mm step of support settings, and its subset for the 10 mm
step (<20, 30, . . . , 60> mm) are included in the table. The latter set shows the same results
as for the 5 mm step, only by coincidence, because the best solution was found for the
setting: S1 = 20 mm, S2 = 20 mm, and S3 = 50 mm. In general, a lower resolution of the
search space reduces the chance of finding the actual best solution, as it may lie between
the values considered.

Table 4. Deterministic and SSA search results for the F3 = Average/3+RMSAv indicator.

1. No. of
Search Steps

2. No. of
Agents

3. No. of
Simulations

4. No. of
Passes

5. Best
Result [µm]

6. Best
Result Error

[%]

7. Worst
Result Error

[%]

8. Average
Error [%]

9. Best
Setting

S1, S2, S3
[mm]

3 non-adjustable supports 1 1.62536
Deterministic—

5 mm step 729 1 1.44857 0.04 20.00, 20.00,
50.00

Deterministic—
10 mm step 125 1 1.44857 0.04 20.00, 20.00,

50.00

9 13 117 5 1.44835 0.02 4.21 2.03 20.00, 20.00,
45.83

13 9 117 5 1.44832 0.02 1.27 0.86 20.26, 20.03,
51.47

8 15 120 5 1.45544 0.51 3.64 1.56 22.81, 21.84,
48.12

15 8 120 5 1.45606 0.55 3.38 1.85 23.34, 22.85,
46.81

7 18 126 5 1.44851 0.03 5.07 2.16 20.00, 20.00,
45.67

18 7 126 5 1.45387 0.40 5.35 2.46 23.38, 20.48,
44.66

10 20 200 5 1.45900 0.76 1.46 1.00 23.34, 20.30,
38.82

20 10 200 5 1.44803 0.00 1.42 0.60 20.00, 20.00,
50.59

Best 1.44803 0.00 1.27 0.60 20.00, 20.00,
50.59

Average 1.45218 0.29 3.23 1.57

As can be observed in Table 4, in all of the cases where SSA was applied, the best
solution found (for a given set of passes) is very close to the best solution found during
all of the tests (less than 1% of error—column 6 in Table 4), and the average error for
each set is below 2.5% (column 8). Even for the worst case, the error was below 5.5%
(column 7). Additionally, the best result found is better than the result of preliminary
simulations for fixed support settings steps. Figure 9 presents one selected SSA pass which
resulted in the best solution according to the F3 indicator. The characteristic sight, which is
a visual effect of the shrinking salp chain, may be observed. Figure 10 presents the progress
of this pass, i.e., the lowest value of the F3 indicator found so far and an average value of
this indicator for all of the agents in each step. This is a typical convergence curve that
can be observed with various optimization algorithms. Results of simulations of relative
tool–workpiece displacements for the best set of support settings, obtained from the SSA, is
presented in Figure 11. It can be compared with Figure 7, which was the best result obtained
for the Av indicator in the deterministic search. Lower levels of vibrations, not only in terms
of the F3 indicator values but also in the vibration maxima and general signal envelope, can
be observed.
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Figure 11. Simulation results (relative tool–workpiece displacements) for support setting:
S1 = 20 mm, S2 = 20 mm, S3 = 50.59 mm.

According to Table 4, the results from 200 SSA simulation passes have very low
average error, below 1%, and below 2.5% for 120 simulation passes. Running a pass more
than once helps to obtain better results and assures consistency in the results. For example,
in most cases, after five passes, the best solution error dropped below 0.6% (column 6). Of
course, performing multiple passes raises the total number of simulations, but even for
five passes with 120 simulations, the total number of simulations is still lower than for a
deterministic, blind-search of 729 setting combinations.

To bring additional context to the quality of the results, it must be noted that the
highest value of the F3 indicator was 0.476 mm, which is 328 times higher than the minimal
value obtained, F3 = 0.00144803 mm. However, this value was calculated for a case where,
due to an adverse combination of support settings, vibrations were very high (see the
brightest dots in Figure 8b). To limit the considered range of F3 to reasonable values,
these border cases should be omitted. If we reject 3% of such cases (i.e., 22 out of 729 from
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preliminary simulations), then the maximum becomes F3 = 0.00461 mm, which is 318% of the
minimum value presented above. This underlines that the results obtained were very close to
the best possible in all of the presented cases, and even the worst result was not far from it.

Additionally, a close analysis of all of the simulations results revealed that in the
presented case the search space contains many local extrema and, at the same time, regions
where the Fw indicator sensitivity to support parameter changes is low. For example, small
changes in the indicator value can be observed for the setting S1 ≈ 20 mm, S2 ≈ 20 mm,
S3 = <45 . . . 55> mm. Despite this, in all of the passes SSA provided results close to the
best one, with error below 5.5%.

The best set of support settings is S1 = 20 mm, S2 = 20 mm, S3 = 50.59 mm. For
this case, indicator values are as follows: Av = 0.002073 mm, RMS = 0.002207 mm,
RMSAv = 0.000757 mm, F1 = 0.00283 mm, and F3 = 0.001448 mm. It must be noted that
this was obtained on the basis of minimization of the F3 indicator only, so all of the other
indicator values may not be optimal. However, all of the results, both for the deterministic
set of simulations and for the SSA search, showed that a proper setting of the support
stiffness may result in vibration reduction. Especially, for the best case RMSAv was reduced
by about 50% and F3 by about 10%.

7. Conclusions

The procedure described in the paper consists of the following steps: a modal test of
the real workpiece; identification of the modal model of the workpiece for the purpose
of milling process simulations; modification of the workpiece; development of a FEM
model by replacing non-adjustable supports with adjustable stiffness supports; and, finally,
searching for the best set of settings of these supports by performing a series of milling
simulations for various support settings.

Owing to the results presented, it can be concluded that:

• Introducing adjustable stiffness supports for the workpiece may result in a reduction in
vibration that occurs during the milling process. For example, the RMSAv value, which
may represent relative tool–workpiece vibrations that influence machined-surface
quality, was reduced by around 50%. However, efficient determination of the set of
appropriate settings may be challenging, especially due to the need for performing a
large number of time-consuming simulations. To overcome this issue, the salp swarm
algorithm was applied.

• The salp swarm algorithm is a very efficient, fast-converging algorithm that deals
very well with multidimensional problems having a complex search space. This
is important for solving problems where the number of algorithm steps must be
limited, for example, in cases when each step involves time-consuming calculations or
simulations, which was the case presented in this paper.

• Application of the SSA algorithm leads to a significant time reduction needed for
searching the space of decision variables, in terms of searching for the best combination
of the stiffness coefficients for supports fastening a large-size workpiece on a milling
machine. This makes the approach proposed in the paper attractive from the point
of view of practical applications in manufacturing companies, where the problem
of meeting the condition of minimizing the vibration level of the tool–workpiece
has a significant technical importance (meeting the requirements for geometrical
accuracy and quality of the processed surface) and economic importance (reduction in
production time and required financial outlays).

In the perspective of further research, the most urgent planned task is to empirically
confirm the correctness of the simulated results of vibration reduction in face-milling
processes under industrial conditions. Then, the presented method can be extended to
online control of the stiffness of the supports. Thus, the focus would be on redesigning
the existing workpiece fixation supports, allowing the fixture stiffness coefficients to be
continuously adjusted during machining. Another promising, and probably easier to
implement, direction of research and development is a search for ways to reduce vibrations
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of the tool–workpiece during large-size machining with the use of control in a semiactive
system, based on vibration dampers with variable parameters.
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56. Kaliński, K.J. A Surveillance of Dynamic Processes in Mechanical Systems; The GUT Publishing House: Gdańsk, Poland, 2012. (In Polish)
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