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from unextendible product bases
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Unextendible product bases (UPBs) provide a versatile tool with various applications across different areas
of quantum information theory. Their comprehensive characterization is thus of great importance and has been
a subject of vital interest for over two decades now. An open question asks about the existence of UPBs, which
are genuinely unextendible, i.e., they are not extendible even with biproduct vectors. In other words, the problem
is to verify whether there exist genuinely entangled subspaces (GESs), subspaces composed solely of genuinely
multiparty entangled states, complementary to UPBs. We solve this problem in the negative for many sizes of
UPBs in different multipartite scenarios. In particular, in the all-important case of equal local dimensions, we
show that there are always forbidden cardinalities for such UPBs, including the minimal ones corresponding to
GESs of the maximal dimensions.
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I. INTRODUCTION

Unextendible product bases (UPBs), that is, incomplete
sets of orthogonal product vectors, such that no other product
vector orthogonal to their span exists, are a very important
notion of quantum information theory [1,2].1 While being
significant from a purely mathematical standpoint, UPBs are
also related to a variety of problems with more practical
implications. For example, they provide examples of sets of
product vectors which cannot be distinguished with local
operations and classical communication, the so-called non-
locality without entanglement phenomenon [7]. Also, by the
very definition, they give rise to constructions of completely
entangled subspaces (CESs) [8–10], that is, subspaces void of
product vectors. Importantly, mixed states supported on such
subspaces, which are necessarily entangled, have positive par-
tial transposition (PPT) across any partition [1] and thus are
indistillable or, in other words, bound entangled (BE) [11,12].

Much effort has thus been put into finding and charac-
terizing UPBs in different bipartite and multipartite setups
(a largely incomplete list of works includes, e.g., [13–19]).
However, all those attempts were not concerned about the type
of entanglement of entangled states in the orthocomplement
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1It makes sense to consider nonorthogonal or generalized UPBs,

that is, UPBs with the orthogonality condition dropped (see, e.g.,
[3,4] and, in particular, [5,6] in the context of the present paper).
However, their mathematical structure is much less elegant and their
overall significance as a universal tool appears to be very limited
compared to their orthogonal counterparts. In fact, this distinction
is mostly disregarded for this reason in the literature and UPBs
are simply assumed to be orthogonal. For conciseness, we avoid a
discussion about this issue in the main text.

of a UPB. In [5] we thus posed a problem whether it is possi-
ble to construct multipartite genuinely unextendible product
bases (GUPBs), that is, UPBs which are unextendible in a
stronger sense, even with a biproduct vector (i.e., a vector
product across a bipartition). This amounts to asking about the
construction of genuinely entangled subspaces (GESs), i.e.,
subspaces composed only of genuinely multiparty entangled
(GME) states [5,20] (see also [8]), from UPBs. While there
has been progress in constructing GESs [21–26], with a very
recent result solving the problem in full generality [6], the
problem of determining the (non)existence of GUPBs has
remained basically unexplored (albeit see [27]) and open.

We address the problem in the present work and derive
a lower bound on the cardinalities of GUPBs in a general
multipartite scenario. The bound is universally applicable in
systems with equal local dimensions, in which case it shows
that for many cardinalities of UPBs, including the minimal
permissible ones, they are always extendible with biproduct
vectors, i.e., GUPBs do not exist in those cases. In turn, GESs
with many dimensionalities, including the maximal ones, can-
not be constructed from UPBs. Our result, besides being a
contribution to the theory of UPBs, has two important imme-
diate implications: It rules out the possibility of constructing
through the usual approach PPT GME BE states with certain
ranks from UPBs and shows that in many cases strongly
nonlocal sets of product vectors cannot be built from, natural
candidates for this task, GUPBs (cf. [28–31]).

II. PRELIMINARIES

We provide here a terse summary of the necessary notions
and results.

We consider n-partite Hilbert spaces with local dimen-
sions di, H = ⊗n

i=1 C
di , and assume n � 3 and di � 3 as

these cases only are relevant. We will write (d1, d2, . . . , dn)
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FIG. 1. A set of product vectors, in particular, a UPB, can be
represented as a complete graph with colored edges with colors
corresponding to sites on which two states are orthogonal. The fig-
ure shows such a graph for the SHIFTS UPB S. Red solid lines
correspond to orthogonality on the first site, gold dotted lines the
second, and green dashed lines the third.

in nondecreasing order to denote the set of local dimensions
and its permutations, e.g., (3,3,4) means that any two of the
subsystems are qutrits and one of them is a ququad. Local
subsystems are denoted by Ai and the whole system is A. A
state |ψ〉A ∈ H is called fully product, or simply product, if it
is a product of single-party states |ψ〉A = |ϕ〉A1 ⊗ · · · ⊗ |ξ 〉An .
If it is not the case, a state is said to be entangled. Some
entangled states are biproduct, that is, they are product across
at least one of the bipartitions of the parties S|S̄, S ∪ S̄ = A,
i.e., |ψ〉A = |ζ 〉S ⊗ |ξ 〉S̄ . If an entangled state is not biproduct
we say that it is genuinely multiparty entangled.

Subspaces composed only of entangled vectors are called
completely entangled [8–10]; among those there are sub-
spaces only with GME vectors and they are named genuinely
entangled [5,6,20–26,32]. The maximal dimension of a
GES is [5,20] D − D/dmin − dmin + 1, with D = �n

i=1di and
dmin = min(d1, d2, . . . , dn).

An unextendible product basis is an incomplete set of prod-
uct vectors with the property that there does not exist a product
vector orthogonal to all of them [1,2]. Obviously, a UPB
defines a CES in its orthocomplement. The simplest example
of a UPB is the following four-element set of vectors from
(C2)⊗3: S = {|0〉|0〉|0〉, |1〉|+〉|−〉, |−〉|1〉|+〉, |+〉|−〉|1〉},
|±〉 = |0〉 ± |1〉. This UPB is known under the name SHIFTS
[1]. A particularly useful tool in the analyses of UPBs (or,
more generally, sets of product vectors) is an orthogonality
graph (see Fig. 1).

In the present paper we ask about the (non)existence of
UPBs, which are not extendible in a stronger sense, namely,
there does not exist a biproduct vector orthogonal to its ele-
ments (S is clearly not such a set). Such UPBs must also be
bipartite UPBs across any cut of the parties [5]. We propose
the following.

Definition 1. A multipartite UPB, which is a UPB for any
bipartition, is called a genuinely unextendible product basis.

Clearly, the orthocomplement of the span of a GUPB is
a GES. The existence of GUPBs would provide then a very
convenient way of constructing GESs and in turn GME mixed
states.

It is known that UPBs do not exist in systems C2 ⊗ Cm,
implying that GUPBs do not exist when at least one of the
subsystems is a qubit, which is why in what follows we as-
sume di � 3. It is also well established that UPBs do not exist
with arbitrary cardinalities. The following summarizes what
is currently known regarding their sizes [13,14,16,19,33].

Fact 1. (i) The theoretical minimum number of elements in
a UPB in Cd1 ⊗ Cd2 (d1, d2 � 3) is (a) d1 + d2, when d1, d2 �
4 are even, or (b) d1 + d2 − 1, in the remaining cases. (ii) The
achievable upper bound on the cardinality of a UPB is d1d2 −
4.

By considering all bipartite cuts of an n-partite system
with di-dimensional subsystems, it follows that the minimal
permissible cardinality of a GUPB is D/dmin + dmin, when
both dmin and D/dmin are even, and D/dmin + dmin − 1 in the
remaining cases. This already implies that maximal GESs
cannot be constructed from UPBs for even dmin and D/dmin

and arbitrary n; the maximal allowed dimensions of GESs
and the minimum cardinalities of UPBs simply do not match.
Moreover, GESs of dimensions 1, 2, and 3 cannot be con-
structed in this way either. We will be further interested in
eliminating cardinalities, which are theoretically possible by
Fact 1.

Our proof is based on the necessary and sufficient con-
dition for extendibility of a set of product vectors due to
DiVincenzo and co-workers [1,2]. We recall it here in the
bipartite formulation since, as noted above, this is relevant for
our purpose.

Fact 2. Let B = {|ϕi〉 ⊗ |ψi〉}k
i=1, k � m + n − 1, be a set

of product vectors from Cm ⊗ Cn. There exists a product
vector orthogonal to all elements of B, i.e., B is extendible,
if and only if there exist a partition of B into disjoint sets B1

and B2 such that the |ϕi〉’s of B1 do not span Cm and the |ψi〉’s
of B2 do not span Cn.

III. MAIN RESULT

Let us now prove the main result of the present work, which
is a general bound on the cardinalities of GUPBs, implying, in
particular, that in systems with equal local dimensions, GESs
of maximal dimensions (and many smaller ones) cannot be
constructed from UPBs.

Proposition 1. There do not exist genuinely unextendible
product bases with cardinalities k satisfying

k � D/dmax +
⌊

D/dmax − 2

n − 1

⌋
, (1)

where D = �n
i=1di and dmax = max(d1, d2, , . . . , dn). The

condition (1) is a nontrivial bound on the cardinality of a
GUPB if and only if

(n − 1)dmax < ndmin, (2)

dmin = min(d1, d2, . . . , dn), and

(d1, d2, d3) �= (2p, 2p, 3p − 1), (3)

(d1, d2, d3) �= (2p − 1, d̃, 3p − 2), (4)

with p = 2, 3, . . . and 2p − 1 � d̃ � 3p − 2. In particular,
in the case of equal local dimensions d , all UPBs with
cardinalities dn−1 + d − 1 and dn−1 + d are not GUPBs. In
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FIG. 2. Orthogonality graph for an 11-element set of mutually
orthogonal product vectors in the three-qutrit case. It follows that
vector v1 must be orthogonal to at least four vectors on one of the
sites, say, A1 (red thick edges; all the remaining irrelevant edges are
light gray). This implies that vectors v2, v3, v4, v5 (light gray shaded
area) span locally on A1 at most two-dimensional subspace. There
remain only seven vectors (dark gray shaded area), which means that
they do not span locally on A2A3 the whole nine-dimensional Hilbert
space. In turn, by Fact 2, there exists a biproduct vector orthogonal
to vi’s. Since 11 is the minimal theoretically allowed cardinality of a
GUPB in this case, our result shows that the maximal GESs cannot be
constructed from UPBs. The same argument holds for a 12-element
set, while it fails for 13 elements, as there will be nine vectors in the
dark gray shaded area.

consequence, GESs of those maximal theoretically possible
with the approach dimensions cannot be constructed from
GUPBs.

Proof. Let B = {|vi〉A}k
i=1, |vi〉A = ⊗n

m=1 |u(i)
m 〉Am , be a set

of k mutually orthogonal product vectors. Since orthogonal-
ity of the vectors from B stems from orthogonality of local
vectors |u(i)

m 〉 on different sites, for any |vi〉, by the pigeonhole
principle, there exist at least

s :=
⌈

k − 1

n

⌉
(5)

vectors orthogonal to this vector on one of the sites. Con-
sider for simplicity one of the vectors, say, |v1〉. Further,
let the s vectors mentioned above, which are orthogonal to
|v1〉, be B1 = {|v2〉, . . . , |vs+1〉} and the corresponding site
of orthogonality (this can be any site when all di’s are
equal) be Ap (see Fig. 2). It follows that the vectors from
B1 do not span locally on Ap the whole Hilbert space, i.e.,
dim span {|u(2)

p 〉, . . . , |u(s+1)
p 〉} < dp. Now, if the remaining

vectors B2 := {|v1〉, |vs+2〉, . . . , |vk〉} do not span locally on
A \ Ap the whole Hilbert space, then, by Fact 2, there exists
a biproduct vector orthogonal to all |vi〉’s from B, which
is given as |u(1)

p 〉 ⊗ |ξ 〉 with an (n − 1)-partite vector |ξ 〉 ⊥
span BA\Ap

2 , where BA\Ap

2 is the set of local vectors on A \ Ap

of the set B2. A sufficient condition for the local rank defi-
ciency of B2 on A \ Ap is simply that the number of states is

TABLE I. Cardinalities of GUPBs excluded by Proposition 1 in
the case of equal local dimensions d . The left end points of all inter-
vals are minimal permissible cardinalities of GUPBs: dn−1 + d − 1
for odd d and dn−1 + d for even d .

n/d 3 4 5 6

3 [11, 12] [20, 23] [29, 36] [42, 53]
4 [29, 35] [68, 84] [129, 166] [222, 287]
5 [83, 100] [260, 319] [629, 780] [1302, 1619]

smaller than the dimension of the local Hilbert space

k − s = k −
⌈

k − 1

n

⌉
� D/dp − 1 =: w, (6)

where D = �n
i=1di. The function f (k) = k − � k−1

n 	 is nonde-
creasing in k [if k−1

n is an integer, then f (k + 1) = f (k)] and
thus we look for the largest k satisfying (6). With this aim
consider the equation

k − s = w. (7)

It holds that

k − 1

n
� s � k − 1

n
+ n − 1

n
. (8)

Plugging k from (7) in the above, we obtain

w − 1

n − 1
� s � w − 1

n − 1
+ 1. (9)

It follows that the optimal value is s = 
w−1
n−1 � + 1. Inserting

this into (7), we obtain the value of the largest k for which (6)
is satisfied,

w +
⌊

w − 1

n − 1

⌋
+ 1, (10)

and in turn the condition

k � D/dp +
⌊

D/dp − 2

n − 1

⌋
. (11)

Since we want to obtain a general bound, we need to consider
the least preferable situation, which occurs for dp = dmax,
from which Eq. (1) follows.

The proof of the remaining two statements is in the
Appendix. �

Table I shows which cardinalities apart from the minimal
theoretical ones are excluded by Proposition 1 in the n-qudit
case for different values of d and n. If any of the vectors
in the set is orthogonal to s + m vectors on one of the sites,
then the excluded maximal cardinality gets larger exactly by
m. This eliminates certain orthogonality graphs for GUPBs.
Moreover, some graphs can be further excluded in the general
case if the s vectors mentioned in the proof are orthogonal to
one of the vectors from a UPB on a site with nonmaximal local
dimension, in which case we utilize the weaker condition (11)
instead of the bound (1).

Notice that the proof does not even assume that the set is
a UPB; it merely refers to a set of fully product orthogonal
vectors. It may be interpreted as an indication of how strong
a property biproduct extendibility is. It will be interesting to
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see in the future if more cardinalities can be excluded without
referring to UPBs. Invoking properties of UPBs, on the other
hand, would make things much harder.

The same technique could be used to bound the cardi-
nalities of UPBs, which are not extendible by triproduct,
quadriproduct, etc., vectors. We omit these derivations here.

We conclude this part of the paper with a few observations.
First, if GUPBs existed the well-known method of construct-
ing new UPBs from old ones by adding flags [34] would not
work in their case. More precisely, suppose we have M UPBs
in

⊗n
l=1 C

dl , Bi = {|ψ (i)
j 〉}ki

j=1, i = 1, 2, . . . , M. Then the set

B = {|i − 1〉|ψ (i)
j 〉, i = 1, 2, . . . , M, j = 1, 2 . . . , ki} is a UPB

in CM ⊗ ⊗n
l=1 C

dl . Clearly, this can never be true for GUPBs
as there always exists a biproduct vector orthogonal to B,
e.g., |0〉 ⊗ |B⊥

1 〉, where |B⊥
1 〉 is any vector from the ortho-

complement of B1. Moreover, the nonexistence of GUPBs in
systems

⊗n
i=1 C

di implies the nonexistence of GUPBs with
the same number of elements but in larger (N-partite with
N > n) systems with local dimensions such that their products
in groups equal di’s. For example, if there is no GUPB with
k elements in H9,3 := (C9)⊗3 then there is no GUPB with
cardinality k in H3,6 := (C3)⊗6 = (C3 ⊗ C3)⊗3. Regretfully,
this fact in combination with our result cannot be used to
eliminate further cardinalities of GUPBs. This is because the
largest cardinality of a GUPB forbidden by Proposition 1 in
the fewer partite system is smaller than the minimal size of
a GUPB in the larger system. For instance, the largest k for
H9,3 is 120, while the minimal permissible size of a GUPB in
H3,6 is 245. On the other hand, it was shown that tensoring
would work and a new n-partite GUPB could be constructed
from two or more n-partite GUPBs in this manner [27].

IV. CONCLUSION

We have demonstrated a lower bound on the cardinalities
of multipartite unextendible product bases, which are at the
same time unextendible with biproduct vectors; we called
them genuinely unextendible product bases. We have derived
a characterization of systems for which this bound eliminates
certain (allowed by the theory of UPBs) sizes of GUPBs. In
the particularly interesting case of equal local dimensions,
our result is universally applicable and shows that maximal
GESs (and many smaller ones) cannot be constructed from
UPBs. This partially solves an open problem posed in [5].
The proof is elementary and only uses the properties of sets
of product vectors, which drives us to conjecture that GUPBs
might not exist at all or at least in some multipartite systems.
We hope our research stimulates further work on (dis)proving
this conjecture.

Our no-go result contributes to a better understanding of
the mathematical structure of UPBs. Nonetheless, it also has
important practical implications. Two main ones are that it
implies that genuinely multiparty entangled bound entangled
states with positive partial transposition of certain ranks can-
not be constructed from UPBs and it shows that strongly
nonlocal UPBs unextendible by biproducts do not exist with
all permissible cardinalities (if at all). Further consequences
are yet to be recognized.
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APPENDIX: PROOF OF PROPOSITION 1 (CONTINUED)

Here we prove the remaining two statements of Proposition
1.

Proof. Condition (1) is nontrivial in a given setup if the
bound it gives on k is not smaller than the minimal size of a
GUPB allowed theoretically, that is, when the inequality

dmin + D/dmin − m � D/dmax +
⌊

D/dmax − 2

n − 1

⌋
(A1)

holds, where m = 0 if both dmin and D/dmin are even and m =
1 otherwise. We can rewrite it as

dmin − D

(
1

dmax

n

n − 1
− 1

dmin

)

� m −
{

D/dmax − 2

n − 1

}
− 2

n − 1
, (A2)

where {x} = x − 
x� is the fractional part of x. It immediately
follows that a necessary condition for Eq. (A2) to hold or,
equivalently, Eq. (1) to be nontrivial is that the expression in
large parentheses on the left-hand side (LHS) is positive, i.e.,
(n − 1)dmax < ndmin, which is Eq. (2).

When all local dimensions are equal, di =: d , i =
1, 2, . . . , n, in which case Eqs. (2)–(4) are visibly satisfied,
we obtain

d − dn−1

n − 1
� m −

{
dn−1 − 2

n − 1

}
− 2

n − 1
. (A3)

Instead of the above general inequality, we can consider its
strongest form with m = 0 and the fractional part set to be
maximal, i.e., n−2

n−1 ,

d − dn−1

n − 1
� − n

n − 1
, (A4)

which quite obviously is true for any n and d . This settles the
case of equal local dimensions.

We now assume that local dimensions are not the same,
dmax > dmin, and Eq. (2) holds. From these two conditions
and Eq. (A2) we may infer that (i) dmin � 4 and (ii) dmin � n.
To see (i), we simply insert dmin = 3 into Eq. (2) and obtain
dmax < 3 + 3/(n − 1). For n � 4 this gives dmax � 3, which
contradicts dmax > dmin, while for n = 3 we get dmax � 4,
that is, (d1, d2, d3) = (3, 3, 4) or (3,4,4), which can be shown
by direct substitution not to satisfy Eq. (A2). To show (ii),
which is actually a value added to the proof, we assume the
opposite, n > dmin, and consider the following inequalities:
(n − 1)(dmax − dmin) � n − 1 � dmin, meaning that with the
assumptions made, Eq. (2) is violated and it must be dmin � n.
Case (i) already covers p = 2 in Eq. (4). We further assume
dmin � 4.

The rest of the proof will be divided into two cases (a)
n � 4 and (b) n = 3, with the first one being much more
straightforward. In both cases the following quantity is of
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central importance:

ξ = D

(
1

dmax

n

n − 1
− 1

dmin

)

= D̄

n − 1
[ndmin − (n − 1)dmax]. (A5)

Here D̄ = D/dmindmax.
Case (a). We have in general

ξ � D̄

n − 1
� dn−2

min

n − 1
, (A6)

meaning that the LHS of Eq. (A2) is bounded as

dmin − ξ � dmin − dn−2
min

n − 1
� −4

3
, (A7)

where the second inequality follows from the fact that the
function in the middle is nonincreasing in both n and dmin and
thus its largest value is achieved for n = 4 and dmin = 4. On
the other hand, the minimal value of the right-hand side (RHS)
of Eq. (A2) is also −4/3, meaning that it is always satisfied
for n � 4.

Case (b). We first deal with the systems from Eqs. (3) and
(4). Note that 3p − 1 and 3p − 2 correspond to the maximal
values of dmax allowed by the necessary condition (2) in the
respective cases. First, by direct substitution, we readily verify
that for systems (d1, d2, d3) = (2p, 2p, 3p − 1) the inequality
(A2) is indeed violated (note that m = 0 then). In the case of
(d1, d2, d3) = (2p − 1, d̃, 3p − 2), p � 3 (the case p = 2 has

already been covered above), we have (now D̄ = d̃)

dmin − ξ = 2p − 1 − d̃

2
� p

2
> 0. (A8)

This means that even when the LHS of Eq. (A2) is minimal
it will always exceed the RHS, which is at most zero (now
m = 1).

We are thus left with two cases of dimensions which need
to be verified: (x) (dmin, dmin � d̃ � dmax, dmax < d (max)

max ) and
(xx) (2p, 2p < d̃ � d (max)

max , d (max)
max ), where d (max)

max is the largest
value of dmax allowed by (2). For these cases Eq. (A6) is too
rough for general conclusions, so we need finer bounds.

Case (x). The following holds:

d (max)
max =

{
3
2 dmin − 1 for even dmin

3
2 dmin − 1

2 for odd dmin.
(A9)

Thus, with the assumption dmax < d (max)
max , we obtain

dmin − ξ �
{

dmin − 2d̃ � −dmin for even dmin

dmin − 3
2 d̃ � − 1

2 dmin for odd dmin.
(A10)

Since the minimal value of the LHS of (A2) is −3/2 (m =
0 and the maximal fractional part) we conclude that systems
(dmin, dmin � d̃ � dmax, dmax < d (max)

max ) satisfy this inequality.
Case (xx). Now

dmin − ξ = 2p − d̃ � −1 (A11)

and

RHS of (A2) = m − 1 � −1, (A12)
implying that systems (2p, 2p < d̃ � d (max)

max , d (max)
max ) satisfy

(A2). This ends the proof. �
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