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Within the nonlinear micropolar elasticity we discuss effective dynamic (kinetic) properties of elastic networks with
rigid joints. The model of a hyperelastic micropolar continuum is based on two constitutive relations, i.e., static and
kinetic ones. They introduce a strain energy density and a kinetic energy density, respectively. Here we consider
a three-dimensional elastic network made of three families of elastic fibers connected through massive rigid joints.
Effective elastic properties are inherited from the geometry and material properties of the fibers, whereas the kinetic
(inertia) properties are determined by the both fibers and joints. Formulae for microinertia tensors are given.
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1. INTRODUCTION

The model of micropolar solids was presented in detail in centurial book by Cosserat brothers (Cosserat and Cosserat,
1909). Initially proposed in their theory of elasticity in 1896 (Cosserat and Cosserat, 1896), the model relies on a
continuum that could be treated as a set of material particles that possess independent translational and rotational
degrees of freedom, as in rigid body dynamics. As a result, we have stresses and couple stresses as static counterparts
of translations and rotations. The Cosserat model was discussed by several authors, among others, Eringen (1999),
Nowacki (1986), and Maugin and Metrikine (2010); in Eremeyev et al. (2013) a complete overview of foundations of

the theory and many solutions were presented.

Since several materials used in civil and mechanical engineering applications exhibit an internal microstructure,
nowadays, the growing interest in micropolar model relates to the possibility of a proper description of their complex
inner microstructure, when rotational interactions of material particles play an important role. Among such materials,
it is worth mentioning: granular media—including masonries (Baraldi et al., 2015; de Bellis and Addessi, 2011; Pau
and Trovalusci, 2012; Reccia et al., 2018b; Shi et al., 2021); some classes of composites (Addessi et al., 2013, 2016;
Leonetti et al., 2018; Pingaro et al., 2019) like random (Reccia et al., 2018a; Trovalusci et al., 2017, 2014, 2015)
and regular particles composite (Colatosti et al., 2022; Fantuzzi et al., 2019, 2020); nanotubes (Izadi et al., 2021a,b);
and beam-lattice materials (Berkache et al., 2022; Fleck et al., 2010) including foams and porous media (Lakes,
1987, 1986). For example, considering a beam-lattice material as an effective medium it seems quite natural that this
medium has to inherit some beam properties, such as sensitivity to applied surface and volumetric couples.
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In this work, attention is focused on 3D elastic networks with rigid connections. This typology of material be-
longs to beam-lattice structures, which find several applications in many engineering areas (Pan et al., 2020; Phani and
Hussein, 2017). Periodic networks of interconnected beams or rods, both in two or three dimensions, may have inter-
esting mechanical properties related to their microstructure, such as a higher performance in term of weight/stiffness,
in acoustic and thermal responses, as well as in the capacity of energy absorption, and greater deformation capacity
before fracture/collapse. Moreover, these types of microstructured material may be found at all scales, from nano- and
microscales, up to macroscale. These aspects make their study a very topical issue, their application being suitable
in several engineering areas (dell'lsola et al., 2015; Lakes, 2020). In particular, here a three-dimensional network of
orthogonal deformable flexible fibers connected together by rigid massive joints, such that they remain orthogonal
during deformations, is studied. This kind of material can be found in common applications such as fishnets or metal
fences, and it can be considered as a typical example of a metamaterial exhibiting peculiar mechanical properties
related to its internal structure. For such material, the adoption of the micropolar model is crucial, thanks to the
possibility of properly describing finite deformations of the fibers by means of two independent kinematic variables,
translations and rotations (Eremeyev, 2019). A discrete model is adopted where fibers are therefore modeled by the
adoption of the Cosserat curve (Altenbach et al., 2013). At macroscale, the material is modeled as an equivalent
micropolar medium (Eremeyeyv, 2018).

The paper is organized as follows. First, in Section 2 we briefly recall the governing equations of three- and
one-dimensional media. Within the micropolar approach we have two kinematical descriptors, that are the fields of
translations and rotations. Particular attention is paid to the kinetic constitutive relations, i.e., to the form of a kinetic
energy function. We define a kinetic energy density as a positive quadratic form dependent on linear and angular
velocities. For comparison, we also consider rigid body motions and the form of kinetic energy for a rigid body. In
Section 3 we introduce a beam-lattice network with rigid massive joints. Here we formulate a semidiscrete model
of the network considering coupled motion of beams and rigid joints. Using a linear approximation as in Eremeyev
(2019), we derive a discrete model of the network. Within this model, we restrict ourselves to translations and rotations
given in a finite set of points related to the centers of mass of the joints. Comparing the discrete model with a similar
discrete approximation of a three-dimensional (3D) micropolar continuum, in Section 4 we introduce the notion of the
equivalent model. We call two models, i.e., of a network and of a 3D medigmiyalenif their discrete counterparts
have the same form. As a result, we can identify the 3D kinetic constitutive relations through inertia properties of the
beams of the joints.

2. GOVERNING EQUATIONS OF MICROPOLAR MEDIA

Let us briefly introduce the basic equations of the micropolar mechanics considering both three-dimensional (3D)
and one-dimensional (1D) solids as well as rigid body dynamics.

2.1 Cosserat (Micropolar) Continuum

Let B be an elastic micropolar solid body. A deformation/®tan be considered as an invertible mapping from a
reference placementinto a current placement(¢), wheret is time. For any point: of 5 we introduce its position
vectorsX andx and triples of unit orthogonal vectors called direct¢B, } and{dx}; £ = 1,2, 3, defined ink

and y, respectively. In other words, the position vector and directors play a role of kinematical descriptors in the
micropolar elasticity, see Eremeyev et al. (2013) and Eringen (1999). As a result, a deform&isrgdfen by

x=x(X,1), Q=Q(X,1), 1)

whereQ = D;, ® d; is an orthogonal tensor of microrotation ards the dyadic product.
Considering hyperelastic materials we introduce a strain energy déisig a function ok andQ and their
first gradients

W=W(x,Q,Vx,VQ), (2)
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whereV is the three-dimensional nabla operator as defined in Simmonds (1994) and Eremeyev et al. (2018). Applying
to Eq. (2) the principle of material frame indifference by Truesdell and Noll (2004), w&/gas a function of two
strain Lagrangian strain measuiéandK,

W =W(E,K), 3)

where
E=F-Q", F=Vx, KxI=-(VQ) -Q7,

see Pietraszkiewicz and Eremeyev (2009) for more details. Hereindfterd'* x” denote the dot and cross products,
respectivelyF is the deformation gradient;is the 3D unit tensor; and superscriptstands for the transpose of a
second-order tensor.

In order to complete the constitutive description of the micropolar medium we introduce a kinetic energy density
K as a positive quadratic form of linearand angulatuv velocities,

1 1
KZEQV'V—FEw'j'w‘i‘w'j]_'V, (4)

vex, w:—%(Q-QT)X, (5)

wherep is a referential mass density, the over-dot denotes the derivative with resgeetnj andj;, are tensors
of microinertia. In addition we introduce the Gibbsian cross or the vectorial invariant of a second-order tensor as an
operation which maps a tensor into a vector. For a dyad of two vectors it is defined as follows,

(a®@b)x =axb,

and can be extended to any second-order tensor.

Let us note that the form of kinetic energy, i.e. the form of so-called kinetic constitutive relations, plays an
essential role in micropolar dynamics (Eringen, 1999; Eringen and Kafadar, 1976). It is worth mentioning here a
similar situation in the case of thin-walled structures, where rotatory inertia may significantly change oscillations and
wave propagation, see, e.g., Mindlin (1951) and Pietraszkiewicz (2011).

The Lagrangian equation of motion takes the form

oW
V- T+pf=pv+ (w-j1), T=—= QF, (6)

OE
ow
VoM (BT T+ pe = v i+ (V) + (@), M=Z2-Q, @

whereT andM are the first Piola—Kirchhoff stress and couple stress tensors, respedtigalyc are the mass force
and couple vectors.

2.2 Cosserat Curve

The Cosserat curve model constitutes a particular case of micropolar media; see Antman (2005), Rubin (2000), and
Eremeyev et al. (2013). Indeed, this model could be treated as 1D micropolar continuum embedded into the 3D
Euclidean space. We again consider deformations of a Cosserat’casve mapping from a reference placement
into a current placementc (). The position and orientation of a material particlef C are determined through its
position vector and directors defined in both placements. In particulag; ime define a position vect® (s) and
directorsDy(s) given as vector-valued functions of the referential arc-length paramefer x ., z has a position
vectorxq (s, t) and directorsl (s, t) given as a functions of andt¢. So the kinematics of is defined through the
position vectox¢ (s, t) and the microrotation tens@c (s, t).

We introduce a strain energy densily> defined per unit length in the reference placement as a functigg of
andQ¢ and their derivatives with respect o

WC = WC(XC;Q07X/C?Q/C)5 (8)
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where the prime stands for the derivative with respeat tdsing the material frame-indifference principle we trans-
form Eq. (8) into the form (Altenbach et al., 2013; Birsan et al., 2012)

Wo=Wolek), e=xc-QF k=—3(Qq Qb ©)

with two vector-valued Lagrangian strain measures.
Within the Cosserat curve approach we introduce a lirgaand angulatw - velocities given by

Vo =Xo, Wg = —:—ZL(QC Q) x, (10)

so the kinetic energy density defined per unit lengtkdnis given by

1 1 . :
K¢ = épCVc-Vc+§wC'JC'LUC+(UC'J01'V07 (11)

wherepc is a referential linear mass densijy; andjc1 are tensors of inertia.
Lagrangian equations of motion have the form

_ OWe
 de

oWe
ok

whereT - andM are the first Piola—Kirchhoff stress and couple stress vectors, respedivelydc are the mass

force and couple vectors introduced per unit mass in the reference placement. One can easily find similarities between

these Egs. (6) and (7). In what follows we assume that the center of mass of a cross section is chosen as a position of
the Cosserat curve, so we hgyq = 0.

T + pofe = pove + (we - je1)'s  Te

¢ +xo X Te+pece = ve X jor- We + (Vo - je1) + (o - we), Mo = Q¢ (13)

2.3 Rigid Body Dynamics

Finally, in order to describe a rigid joint motion let us briefly consider elements of rigid body dynamics. lest

a rigid body loaded by a net fordd and total torqudL.. Following Lurie (2001) and Eremeyev et al. (2013) the
kinematics of3 could be described as a translation of an arbitrary pOiof 5 called the pole and a rotation about
0. Using this description we introduce position vectors of another pBiwnff 5 in referencexp and currenty s
placements as follows

X =Xo+& x(t)=xolt) +n() (14)

whereXy andxg are position vectors ab, wherea<, andn are vector@? directed fromO to P in kg andy g,
respectively. The latter vectors are related to each other through a rotation @ rsmor

n(t) = Q) - & (15)
As a result, the displacement vector@fs given by
u(t) = x(t) - X =xo(t) - Xo+ Q(t) - & - &. (16)
From Eq. (16) we get the formulae for lineaand angulatw velocities,
1.
VEUu=vVvo+WXn, vo=Xo, w:—é(Q-QT)X, (17)

wherevy is a velocity of the pole.
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The kinetic energy of is given by

1
KBZE///QBV-VCZ’U,
.l

wherepp is a mass density df andvg is a volume which3 occupies iny g. With Eq. (17) we have

1
KBZE///DB(Vo-"-(.UXT])-(Vo-F(.UXﬂ)d’l}
o

1 1
:E///pgdvvo~vo—§w~///p3n><Ixndv-erw-///pBIxndv-vo.
vB vB vB

Introducing the mass df and the tensors of inertia by the formulae

MB:///Pde, J:*///anXIxndva le///pBIxndv,

we transform Eq. (19) into

1 1
KB:EMBVO'VO'FECU'J'(U-i-w-Jl'VO-

In what follows we use the center of massbés a pole, sd; = 0. Using Eq. (15) we have

J:q'JO'QTa JOZ///pB£XIX£dVa
VB

wherelJj is the referential tensor of inertia af@ is a domain of3 in k.
Finally, the equations of motion & have the form

Mpvo=N, (J-w) =L.

(18)

(19)

(20)

(21)

(22)

(23)

If we assumehatthe previouslyconsidered3D and 1D solidsarerigid, we immediatelycomefrom Egs. (6) and
(7) or Egs.(12) and(13) to Eq. (23). In fact, for the modelpresentedbovewe faceforcesand couplesasprimary
dynamicmeasuresMoreover,onecanseethat, similar to rigid bodydynamicstensorsof inertiaarepresentedn all

micropolarmedia,in general.

3. ELASTIC NETWORKS

Letusconsideraregularelasticnetworkmadeof threefamiliesof flexible fibersconnectedo eachotherthroughrigid
joints asshownin Fig. 1. For simplicity we assumehatall fibers(links) havethe samemechanicahndgeometrical
propertiesThisincludesformsof strainandkinetic energiedVo, K¢; links length?, pc, jo, Jo, Mg, etc.We mark
eachjoint throughindicesi, j, andk;i=1,...,m,j=1,...,n,andk = 1,...,[. Forexamplea centerof massof

thes, 7, kth joint we denoteasO; ;i; seeFig. 2.

Lagrangianequationsof motion of the considerechetwork consistof partial differential equationg PDESs)for
elasticlinks andordinarydifferential equation ODESs)for joints. Following EremeyeV2019)the latter systemof
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FIG. 1: Elastic network with rigid joints and one “elementary cell” of it

equations takes the form

Ty + pofer = pever, si€ (sh,sith), i=1....m-1 (24)
M1+ Xe11 X To1+ pecer = (o1 - wer)' (25)
T/cz,z + pcfor = pever, $2 € (82, 52+1), ji=1...,n—1 (26)
M2+ Xe22 X To2 + pecez = (joz - We)' (27)
Trss+ pcfos = poves, sz € (sh,s5th), k=1,...,01-1 (28)
M3z + X033 X Tes + poces = (jes - Wes)' (29)
MpVijr=Nijr (Jijr Wijr) = Lijk. (30)

Hereinafter we introduce a Cartesian coordinate system s;,y = s2, z = s3) and corresponding unit base
vectorsiy, iy, i3 in such a way that; is the arc-length parameter of fibers aligned in itiedirection andi; is the
tangent vector to this fiber in the reference placement, respectively. Coordipated sz are chosen similarly for
fibers which constitute the second and third families of the network, respectively. In addition we use the notations

! _i l _i ! _i
(=g Vo= (s

In Egs. (24)—(30fc1, cc1, fo2, cco, fes, cos, Ny j 1, andL; ; i, are corresponding forces and couples.

The cornerstone of the further description of network motions is kinematic compatibility conditions, which de-
scribes mutual deformations of fibers connected via joints. Let us consider a contacPpwira fiber perfectly
connected to a joint. One can find that the linear velocitya$ given by the formula

Vo =vVo +&X wo, (31)
whereas the angular velocity #fandO are equal:

We = Wgo. (32)
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In Eqg. (31)¢is a vector(ﬁ from the center of masS to P. As thei, j, kth joint is connected to six fibers, we have
six &-vectors which are denoted as

&gk &gk &gk ik Gigkos  Gigky

see Fig. 2.
Dynamic compatibility conditions could be derived using the least action principle,

5H =0, (33)

where? is the action functional. It could be written in a standard way,
t2
H= (K:N - WN) dt, (34)

t1

whereXCy andWjy are kinetic and potential energies of the network given by the relations

l s
ICN:Z Z/ Kc 31 d51+zzz Kc 32 d32
k=1j=1 i=1 V51 k=1j=1i=1
-1 n m s§+ (35)
+ ZZ Kc(s3) d53+ZZZKB7

k=1 j=1 i=1

?

FIG. 2: Geometry in the vicinity of &, j, k-joint
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Obviously, joints do not contribute in the potential energy of the network whereas their contribution to the kinetic
energy could be significant.
In Eq. (33) variations of kinematic descriptors also satisfy Egs. (31) and (32):

duc =dup + & x 0y, o = dy, (37)

whereduc, dup, anddp -, 5P, are the virtual translations and vectors of virtual rotations; see Eremeyev et al.
(2013).

Equations (24)—(30) constitute a semidiscrete model of a network. In order to introduce an effective homogenized
medium we extend the approach by Eremeyev (2019) to the case of dynamics.

4. EQUIVALENT CONTINUUM MODEL OF A NETWORK AND ITS EFFECTIVE PROPERTIES

Considering the statics of an elastic network with rigid joints Eremeyev (2019) introduced an equivalent micropolar

medium whose strain energy density inherited elastic properties of the network fibers. By an equivalent model we
mean a continuum medium whose discretization coincides with discretization of the semidiscrete model. As a result,
a strain energy density of the equivalent micropolar model has the form

Wg =Wel(is-E- iy, iy - K -ig) + We(ip - E -ig,ip - K - i) + We(iz - E - g, i3 - K - i3), (38)

whereW¢ is a normalized strain energy of the Cosserat curve; see Eremeyev (2019) for more details.
Here we extend the same approach for derivation of an equivalent kinetic eiderdyirst, let us introduce the
effective mass densityg by the formula
peV = 3pcl + Mg, (39)

whereV is the volume of the minimal rectangular cuboid which includes the elementary cell. It could be calculated
as follows:V = 3S¢/¢ + Vg, whereSs and Vg are the area of the fiber cross section and the volume of the joint,
respectively. Then, we replace integrals in Eq. (35) using the trapezoidal rule as follows:

Sl é
Kc(s1)dsy = > [Kc(sh) + Ko(sit)],
_ t j+1
) Kc(s2)dsy = > Kco(sh) + Ke(s3™)]
2
s§+1 YA kol
Kc S3 d53 = z [Kc(53) +Kc( )] .
s§

As aresult)Cy becomes a function given at the ends of the fibers.
Let us now consider the kinetic energy dendify: at an end of a fiber. Using Eqgs. (31) and (32) we come to the
equation

1 1 .
KCZEPC[VO'VO-FZVO'(EXI)'wO_wO'(EXIXE)"UO]+§‘UO'JC'(UO- (40)
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As aresult, the kinetic energy of the elementary cell has the form
/ /
VKg =3lpc {Vo-Vo-i-ZZVO-(aIXI)-wo—Zwo-(al XIX‘E/)-wo} + wo - 3je - wo

1 1
+§MBVO'V0+§wo-jc-wo. (41)

Here we use summation’ with respect to all connection points of thg, kth joint:

S =t it T Gt G s

Finally, the effective kinetic energy can be written in a more compact way,

1 ) 1 .
KE:épEVO'VO+VO'J1E"UO+§‘UO'JE'(-U07 (42)

where we have introduced two micro-inertia tensors:
. . rpct . 1«
Vie=J+30c -y %(E’XIX &), Vi = EZ (& x 1. (43)

If we neglect the inertia properties of the fibers, i.e., consider massive joints and light fibers, these formulae can be
simplified,

. rpct . 1«
Vip=3-3 P x1x &), Vi =35> (& x1), (44)
or even as follows if we also neglect the mass of the fibers:
Vie=J, Vjg=0. (45)

One can see that mass and inertia properties of joints essentially affect effective kinetic energy density.
Equation(43) or their simplified counterpart&gs.(44) and(45) canbeextendedor fibersof differentproperties
andevenfor lessregularnetworkswhenrigid joints connecto variousnumberf fibers.

5. CONCLUSIONS

We have discussedkinetic constitutive equationsfor an elastic network from the point of view of micropolar
elasticity. Here we restrict ourselvesto elastic networkswith rigid massivejoints. Consideringthe network as a
homogenizednicropolarcontinuumwe haveshownthat elasticpropertiesare determinedhroughthe propertiesof

networklinks, whereaslynamicpropertiesj.e., microinertiatensorsdependon both massdistributionalongelastic
links andjoints. In particular,for massiveoints microinertiatensorsare almostentirely determinedhroughinertia
propertiesof joints. Let us note that joints can be nonsymmetricwith respectto elasticlinks connectionswhich

resultsin the appearancef two microinertiatensorsin a kinetic energydensity of the homogenizednicropolar
medium.This will resultin dynamiccouplingbetweentranslationaland rotationaldegreesf freedom,in general.
Moreover,this bringsinto the micropolartheorytwo microinertiatensorsvhereasusuallythey assumeg; = 0 andj

= 41 with scalarmea-sureof rotationalinertia j, see;e.g., Eringen (1999). This casecorrespondgo symmetric
materialparticlessuchasspheresDynamicpropertiegntroducedthroughtwo microinertiatensorscanbetakeninto

accounfconsideringmaterialsymmetryasin EremeyevandKonopifska-Zmystowsk#2020);seealsoVilchevskaya
et al. (2022), where other referenceson microinertia tensorscan be found. Formulae derived here for the

microinertiatensorscompletethe descriptionby Eremeyev(2019) of a network undergoinglarge deformations
within micropolarelasticity.Furtherdevelopmenbf this researctwill be devotedto improvingtheassessmerf the

dynamic behavior of elastic net-works with rigid junctions. With this purpose,the characteristicsof wave
propagationn mediamay be exploited.In particular,an effective correlationbetweenthe microstructure and the

way in which wavespropagatein the medium, may be found. This relation may be very useful both to better
understandhe mechanicabehaviorof suchmaterialsto improveboththeir designandmodelingin orderto achieve
specific required properties.
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