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Within the nonlinear micropolar elasticity we discuss effective dynamic (kinetic) properties of elastic networks with
rigid joints. The model of a hyperelastic micropolar continuum is based on two constitutive relations, i.e., static and
kinetic ones. They introduce a strain energy density and a kinetic energy density, respectively. Here we consider
a three-dimensional elastic network made of three families of elastic fibers connected through massive rigid joints.
Effective elastic properties are inherited from the geometry and material properties of the fibers, whereas the kinetic
(inertia) properties are determined by the both fibers and joints. Formulae for microinertia tensors are given.
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1. INTRODUCTION

The model of micropolar solids was presented in detail in centurial book by Cosserat brothers (Cosserat and Cosserat,
1909). Initially proposed in their theory of elasticity in 1896 (Cosserat and Cosserat, 1896), the model relies on a
continuum that could be treated as a set of material particles that possess independent translational and rotational
degrees of freedom, as in rigid body dynamics. As a result, we have stresses and couple stresses as static counterparts
of translations and rotations. The Cosserat model was discussed by several authors, among others, Eringen (1999),
Nowacki (1986), and Maugin and Metrikine (2010); in Eremeyev et al. (2013) a complete overview of foundations of
the theory and many solutions were presented.

Since several materials used in civil and mechanical engineering applications exhibit an internal microstructure,
nowadays, the growing interest in micropolar model relates to the possibility of a proper description of their complex
inner microstructure, when rotational interactions of material particles play an important role. Among such materials,
it is worth mentioning: granular media—including masonries (Baraldi et al., 2015; de Bellis and Addessi, 2011; Pau
and Trovalusci, 2012; Reccia et al., 2018b; Shi et al., 2021); some classes of composites (Addessi et al., 2013, 2016;
Leonetti et al., 2018; Pingaro et al., 2019) like random (Reccia et al., 2018a; Trovalusci et al., 2017, 2014, 2015)
and regular particles composite (Colatosti et al., 2022; Fantuzzi et al., 2019, 2020); nanotubes (Izadi et al., 2021a,b);
and beam-lattice materials (Berkache et al., 2022; Fleck et al., 2010) including foams and porous media (Lakes,
1987, 1986). For example, considering a beam-lattice material as an effective medium it seems quite natural that this
medium has to inherit some beam properties, such as sensitivity to applied surface and volumetric couples.
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In this work, attention is focused on 3D elastic networks with rigid connections. This typology of material be-
longs to beam-lattice structures, which find several applications in many engineering areas (Pan et al., 2020; Phani and
Hussein, 2017). Periodic networks of interconnected beams or rods, both in two or three dimensions, may have inter-
esting mechanical properties related to their microstructure, such as a higher performance in term of weight/stiffness,
in acoustic and thermal responses, as well as in the capacity of energy absorption, and greater deformation capacity
before fracture/collapse. Moreover, these types of microstructured material may be found at all scales, from nano- and
microscales, up to macroscale. These aspects make their study a very topical issue, their application being suitable
in several engineering areas (dell’Isola et al., 2015; Lakes, 2020). In particular, here a three-dimensional network of
orthogonal deformable flexible fibers connected together by rigid massive joints, such that they remain orthogonal
during deformations, is studied. This kind of material can be found in common applications such as fishnets or metal
fences, and it can be considered as a typical example of a metamaterial exhibiting peculiar mechanical properties
related to its internal structure. For such material, the adoption of the micropolar model is crucial, thanks to the
possibility of properly describing finite deformations of the fibers by means of two independent kinematic variables,
translations and rotations (Eremeyev, 2019). A discrete model is adopted where fibers are therefore modeled by the
adoption of the Cosserat curve (Altenbach et al., 2013). At macroscale, the material is modeled as an equivalent
micropolar medium (Eremeyev, 2018).

The paper is organized as follows. First, in Section 2 we briefly recall the governing equations of three- and
one-dimensional media. Within the micropolar approach we have two kinematical descriptors, that are the fields of
translations and rotations. Particular attention is paid to the kinetic constitutive relations, i.e., to the form of a kinetic
energy function. We define a kinetic energy density as a positive quadratic form dependent on linear and angular
velocities. For comparison, we also consider rigid body motions and the form of kinetic energy for a rigid body. In
Section 3 we introduce a beam-lattice network with rigid massive joints. Here we formulate a semidiscrete model
of the network considering coupled motion of beams and rigid joints. Using a linear approximation as in Eremeyev
(2019), we derive a discrete model of the network. Within this model, we restrict ourselves to translations and rotations
given in a finite set of points related to the centers of mass of the joints. Comparing the discrete model with a similar
discrete approximation of a three-dimensional (3D) micropolar continuum, in Section 4 we introduce the notion of the
equivalent model. We call two models, i.e., of a network and of a 3D medium,equivalentif their discrete counterparts
have the same form. As a result, we can identify the 3D kinetic constitutive relations through inertia properties of the
beams of the joints.

2. GOVERNING EQUATIONS OF MICROPOLAR MEDIA

Let us briefly introduce the basic equations of the micropolar mechanics considering both three-dimensional (3D)
and one-dimensional (1D) solids as well as rigid body dynamics.

2.1 Cosserat (Micropolar) Continuum

Let B be an elastic micropolar solid body. A deformation ofB can be considered as an invertible mapping from a
reference placementκ into a current placementχ(t), wheret is time. For any pointx of B we introduce its position
vectorsX andx and triples of unit orthogonal vectors called directors{Dk} and{dk}; k = 1, 2, 3, defined inκ
andχ, respectively. In other words, the position vector and directors play a role of kinematical descriptors in the
micropolar elasticity, see Eremeyev et al. (2013) and Eringen (1999). As a result, a deformation ofB is given by

x = x(X, t), Q = Q(X, t), (1)

whereQ = Dk ⊗ dk is an orthogonal tensor of microrotation and⊗ is the dyadic product.
Considering hyperelastic materials we introduce a strain energy densityW as a function ofx andQ and their

first gradients

W = W (x,Q,∇x,∇Q), (2)
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where∇ is the three-dimensional nabla operator as defined in Simmonds (1994) and Eremeyev et al. (2018). Applying
to Eq. (2) the principle of material frame indifference by Truesdell and Noll (2004), we getW as a function of two
strain Lagrangian strain measuresE andK,

W = W (E,K), (3)

where

E = F ·QT , F = ∇x, K× I = −(∇Q) ·QT ,

see Pietraszkiewicz and Eremeyev (2009) for more details. Hereinafter “·” and “×” denote the dot and cross products,
respectively;F is the deformation gradient;I is the 3D unit tensor; and superscriptT stands for the transpose of a
second-order tensor.

In order to complete the constitutive description of the micropolar medium we introduce a kinetic energy density
K as a positive quadratic form of linearv and angularω velocities,

K =
1
2
ρv · v +

1
2
ω · j ·ω+ω · j1 · v, (4)

v = ẋ, ω = −
1
2
(Q̇ ·QT )×, (5)

whereρ is a referential mass density, the over-dot denotes the derivative with respect tot, andj andj1 are tensors
of microinertia. In addition we introduce the Gibbsian cross or the vectorial invariant of a second-order tensor as an
operation which maps a tensor into a vector. For a dyad of two vectors it is defined as follows,

(a⊗ b)× = a× b,

and can be extended to any second-order tensor.
Let us note that the form of kinetic energy, i.e. the form of so-called kinetic constitutive relations, plays an

essential role in micropolar dynamics (Eringen, 1999; Eringen and Kafadar, 1976). It is worth mentioning here a
similar situation in the case of thin-walled structures, where rotatory inertia may significantly change oscillations and
wave propagation, see, e.g., Mindlin (1951) and Pietraszkiewicz (2011).

The Lagrangian equation of motion takes the form

∇ ·T+ ρf = ρv̇ + (ω · j1)
·, T =

∂W

∂E
·QT , (6)

∇ ·M+ (FT ·T)× + ρc = v × j1 ·ω+ (j1 · v)
· + (j ·ω)·, M =

∂W

∂K
·QT , (7)

whereT andM are the first Piola–Kirchhoff stress and couple stress tensors, respectively;f andc are the mass force
and couple vectors.

2.2 Cosserat Curve

The Cosserat curve model constitutes a particular case of micropolar media; see Antman (2005), Rubin (2000), and
Eremeyev et al. (2013). Indeed, this model could be treated as 1D micropolar continuum embedded into the 3D
Euclidean space. We again consider deformations of a Cosserat curveC as a mapping from a reference placementκC
into a current placementχC(t). The position and orientation of a material particlez of C are determined through its
position vector and directors defined in both placements. In particular, inκC we define a position vectorXC(s) and
directorsDk(s) given as vector-valued functions of the referential arc-length parameters. ForχC , z has a position
vectorxC(s, t) and directorsdk(s, t) given as a functions ofs andt. So the kinematics ofC is defined through the
position vectorxC(s, t) and the microrotation tensorQC(s, t).

We introduce a strain energy densityWC defined per unit length in the reference placement as a function ofxC

andQC and their derivatives with respect tos,

WC = WC(xC ,QC ,x
′

C ,Q
′

C), (8)
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where the prime stands for the derivative with respect tos. Using the material frame-indifference principle we trans-
form Eq. (8) into the form (Altenbach et al., 2013; Bı̂rsan et al., 2012)

WC = WC(e,k), e = x′

C ·QT
C , k = −

1
2
(Q′

C ·QT
C)×, (9)

with two vector-valued Lagrangian strain measures.
Within the Cosserat curve approach we introduce a linearvC and angularωC velocities given by

vC = ẋC , ωC = −
1
2
(Q̇C ·QT

C)×, (10)

so the kinetic energy density defined per unit length inκC is given by

KC =
1
2
ρCvC · vC +

1
2
ωC · jC ·ωC +ωC · jC1 · vC , (11)

whereρC is a referential linear mass density;jC andjC1 are tensors of inertia.
Lagrangian equations of motion have the form

T′

C + ρCfC = ρC v̇C + (ωC · jC1)
·, TC =

∂WC

∂e
·QT

C , (12)

M′

C + x′

C ×TC + ρCcC = vC × jC1 ·ωC + (vC · jC1)
· + (jC ·ωC)

·, MC =
∂WC

∂k
·QT

C , (13)

whereTC andMC are the first Piola–Kirchhoff stress and couple stress vectors, respectively;fC andcC are the mass
force and couple vectors introduced per unit mass in the reference placement. One can easily find similarities between
these Eqs. (6) and (7). In what follows we assume that the center of mass of a cross section is chosen as a position of
the Cosserat curve, so we havejC1 = 0.

2.3 Rigid Body Dynamics

Finally, in order to describe a rigid joint motion let us briefly consider elements of rigid body dynamics. LetB be
a rigid body loaded by a net forceN and total torqueL. Following Lurie (2001) and Eremeyev et al. (2013) the
kinematics ofB could be described as a translation of an arbitrary pointO of B called the pole and a rotation about
O. Using this description we introduce position vectors of another pointP of B in referenceκB and currentχB

placements as follows
X = X0 + ξ, x(t) = x0(t) + η(t), (14)

whereX0 andx0 are position vectors ofO, whereasξ andη are vectors
−−→
OP directed fromO to P in κB andχB ,

respectively. The latter vectors are related to each other through a rotation tensorQ, so

η(t) = Q(t) · ξ. (15)

As a result, the displacement vector ofP is given by

u(t) ≡ x(t)−X = x0(t)−X0 +Q(t) · ξ− ξ. (16)

From Eq. (16) we get the formulae for linearv and angularω velocities,

v ≡ u̇ = v0 +ω× η, v0 = ẋ0, ω = −
1
2
(Q̇ ·QT )×, (17)

wherev0 is a velocity of the pole.
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The kinetic energy ofB is given by

KB =
1
2

∫∫∫

vB

ρBv · v dv, (18)

whereρB is a mass density ofB andvB is a volume whichB occupies inχB. With Eq. (17) we have

KB =
1
2

∫∫∫

vB

ρB(v0 +ω× η) · (v0 +ω× η) dv

=
1
2

∫∫∫

vB

ρB dvv0 · v0 −
1
2
ω ·

∫∫∫

vB

ρBη× I× η dv ·ω+ω ·

∫∫∫

vB

ρBI× η dv · v0. (19)

Introducing the mass ofB and the tensors of inertia by the formulae

MB =

∫∫∫

vB

ρB dv, J = −

∫∫∫

vB

ρBη× I× η dv, J1 =

∫∫∫

vB

ρBI× η dv, (20)

we transform Eq. (19) into

KB =
1
2
MBv0 · v0 +

1
2
ω · J ·ω+ω · J1 · v0. (21)

In what follows we use the center of mass ofB as a pole, soJ1 = 0. Using Eq. (15) we have

J = q · J0 ·Q
T , J0 =

∫∫∫

VB

ρBξ× I× ξdV, (22)

whereJ0 is the referential tensor of inertia andVB is a domain ofB in κB.
Finally, the equations of motion ofB have the form

MBv̇ 0 = N, (J · ω)· = L. (23)

If we assume that the previously considered 3D and 1D solids are rigid, we immediately come from Eqs. (6) and 
(7) or Eqs. (12) and (13) to Eq. (23). In fact, for the model presented above we face forces and couples as primary 
dynamic measures. Moreover, one can see that, similar to rigid body dynamics, tensors of inertia are presented in all 
micropolar media, in general.

3. ELASTIC NETWORKS

Let us consider a regular elastic network made of three families of flexible fibers connected to each other through rigid 
joints as shown in Fig. 1. For simplicity we assume that all fibers (links) have the same mechanical and geometrical 
properties. This includes forms of strain and kinetic energies WC , KC ; links length ℓ, ρC , jC , J0, MB, etc. We mark 
each joint through indices i, j, and k; i = 1, . . . , m, j = 1, . . . , n, and k = 1, . . . , l. For example, a center of mass of 
the i, j, kth joint we denote as Oi,jk; see Fig. 2.

Lagrangian equations of motion of the considered network consist of partial differential equations (PDEs) for 
elastic links and ordinary differential equations (ODEs) for joints. Following Eremeyev (2019) the latter system of
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FIG. 1: Elastic network with rigid joints and one “elementary cell” of it

equations takes the form

T′

C1,1 + ρCfC1 = ρCv̇C1, s1 ∈ (si1, s
i+1
1 ), i = 1, . . . ,m− 1. (24)

M′

C1,1 + x′

C1,1 ×TC1 + ρCcC1 = (jC1 ·ωC1)
·. (25)

T′

C2,2 + ρCfC2 = ρCv̇C2, s2 ∈ (sj2, s
j+1
2 ), j = 1, . . . , n− 1. (26)

M′

C2,2 + x′

C2,2 ×TC2 + ρCcC2 = (jC2 ·ωC2)
·. (27)

T′

C3,3 + ρCfC3 = ρCv̇C3, s3 ∈ (sk3 , s
k+1
3 ), k = 1, . . . , l − 1. (28)

M′

C3,3 + x′

C3,3 ×TC3 + ρCcC3 = (jC3 ·ωC3)
·. (29)

MBv̇i,j,k = Ni,j,k, (Ji,j,k ·ωi,j,k)
· = Li,j,k. (30)

Hereinafter we introduce a Cartesian coordinate system(x = s1, y = s2, z = s3) and corresponding unit base
vectorsi1, i2, i3 in such a way thats1 is the arc-length parameter of fibers aligned in theith direction andi1 is the
tangent vector to this fiber in the reference placement, respectively. Coordinatess2 ands3 are chosen similarly for
fibers which constitute the second and third families of the network, respectively. In addition we use the notations

(. . .)′,1 =
∂

∂s1
, (. . .)′,2 =

∂

∂s2
, (. . .)′,3 =

∂

∂s3
.

In Eqs. (24)–(30)fC1, cC1, fC2, cC2, fC3, cC3, Ni,j,k, andLi,j,k are corresponding forces and couples.
The cornerstone of the further description of network motions is kinematic compatibility conditions, which de-

scribes mutual deformations of fibers connected via joints. Let us consider a contact pointP of a fiber perfectly
connected to a joint. One can find that the linear velocity ofP is given by the formula

vC = vO + ξ×ωO, (31)

whereas the angular velocity ofP andO are equal:

ωC =ωO. (32)
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In Eq. (31)ξ is a vector
−−→
OP from the center of massO to P . As thei, j, kth joint is connected to six fibers, we have

six ξ-vectors which are denoted as

ξi
−
,j,k, ξi+,j,k, ξi,j

−
,k, ξi,j+,k, ξi,j,k

−

, ξi,j,k+
,

see Fig. 2.
Dynamic compatibility conditions could be derived using the least action principle,

δH = 0, (33)

whereH is the action functional. It could be written in a standard way,

H =

∫ t2

t1

(KN −WN ) dt, (34)

whereKN andWN are kinetic and potential energies of the network given by the relations

KN =
l

∑

k=1

n
∑

j=1

m−1
∑

i=1

∫ s
i+1
1

si1

KC(s1) ds1 +
l

∑

k=1

n−1
∑

j=1

m
∑

i=1

∫ s
j+1
2

s
j
2

KC(s2) ds2

+
l−1
∑

k=1

n
∑

j=1

m
∑

i=1

∫ s
k+1
3

sk3

KC(s3) ds3 +
l

∑

k=1

n
∑

j=1

m
∑

i=1

KB,

(35)

O
ijk

xx

x

x

x

x

ijk

ijk

+

-

i jk

ij k+

-i jk

+

ij k-

FIG. 2: Geometry in the vicinity of ai, j, k-joint
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WN =
l

∑

k=1

n
∑

j=1

m−1
∑

i=1

∫ s
i+1
1

si1

WC(s1) ds1 +
l

∑

k=1

n−1
∑

j=1

m
∑

i=1

∫ s
j+1
2

s
j
2

WC(s2) ds2

+
l−1
∑

k=1

n
∑

j=1

m
∑

i=1

∫ s
k+1
3

sk3

WC(s3) ds3.

(36)

Obviously, joints do not contribute in the potential energy of the network whereas their contribution to the kinetic
energy could be significant.

In Eq. (33) variations of kinematic descriptors also satisfy Eqs. (31) and (32):

δuC = δuO + ξ× δψO, δψC = δψO, (37)

whereδuC , δuO, andδψC , δψO are the virtual translations and vectors of virtual rotations; see Eremeyev et al.
(2013).

Equations (24)–(30) constitute a semidiscrete model of a network. In order to introduce an effective homogenized
medium we extend the approach by Eremeyev (2019) to the case of dynamics.

4. EQUIVALENT CONTINUUM MODEL OF A NETWORK AND ITS EFFECTIVE PROPERTIES

Considering the statics of an elastic network with rigid joints Eremeyev (2019) introduced an equivalent micropolar
medium whose strain energy density inherited elastic properties of the network fibers. By an equivalent model we
mean a continuum medium whose discretization coincides with discretization of the semidiscrete model. As a result,
a strain energy density of the equivalent micropolar model has the form

WE = W̃C(i1 · E · i1, i1 ·K · i1) + W̃C(i2 · E · i2, i2 ·K · i2) + W̃C(i3 ·E · i3, i3 ·K · i3), (38)

whereW̃C is a normalized strain energy of the Cosserat curve; see Eremeyev (2019) for more details.
Here we extend the same approach for derivation of an equivalent kinetic energyKE . First, let us introduce the

effective mass densityρE by the formula
ρEV = 3ρCℓ+MB , (39)

whereV is the volume of the minimal rectangular cuboid which includes the elementary cell. It could be calculated
as follows:V = 3SCℓ + VB, whereSC andVB are the area of the fiber cross section and the volume of the joint,
respectively. Then, we replace integrals in Eq. (35) using the trapezoidal rule as follows:

∫ s
i+1
1

si1

KC(s1) ds1 =
ℓ

2

[

KC(s
i
1) +KC(s

i+1
1 )

]

,

∫ s
j+1
2

s
j
2

KC(s2) ds2 =
ℓ

2

[

KC(s
j
2) +KC(s

j+1
2 )

]

,

∫ s
k+1
3

sk3

KC(s3) ds3 =
ℓ

2

[

KC(s
k
3) +KC(s

k+1
3 )

]

.

As a result,KN becomes a function given at the ends of the fibers.
Let us now consider the kinetic energy densityKC at an end of a fiber. Using Eqs. (31) and (32) we come to the

equation

KC =
1
2
ρC [vO · vO + 2vO · (ξ× I) ·ωO −ωO · (ξ× I× ξ) ·ωO] +

1
2
ωO · jC ·ωO. (40)
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As a result, the kinetic energy of the elementary cell has the form

V KE = 3ℓρC
[

vO · vO + 2
∑′

vO · (ξ′ × I) ·ωO −
∑′

ωO · (ξ′ × I× ξ′) ·ωO

]

+ωO · 3ℓjC ·ωO

+
1
2
MBvO · vO +

1
2
ωO · jC ·ωO. (41)

Here we use summation
∑

′ with respect to all connection points of thei, j, kth joint:
∑′

(. . .) = (. . .)
∣

∣

i
−
,j,k

+ (. . .)
∣

∣

i+,j,k
+ (. . .)

∣

∣

i,j
−
,k
+ (. . .)

∣

∣

i,j+,k
+ (. . .)

∣

∣

i,j,k
−

+ (. . .)
∣

∣

i,j,k+
.

Finally, the effective kinetic energy can be written in a more compact way,

KE =
1
2
ρEvO · vO + vO · j1E ·ωO +

1
2
ωO · jE ·ωO, (42)

where we have introduced two micro-inertia tensors:

V jE = J+ 3ℓjC −
∑′ ρCℓ

2
(ξ′ × I× ξ′), V j1E =

1
2

∑′

(ξ′ × I). (43)

If we neglect the inertia properties of the fibers, i.e., consider massive joints and light fibers, these formulae can be
simplified,

V jE = J−
∑′ ρCℓ

2
(ξ′ × I× ξ′), V j1E =

1
2

∑′

(ξ′ × I), (44)

or even as follows if we also neglect the mass of the fibers:

V jE = J, V j1E = 0. (45)

One can see that mass and inertia properties of joints essentially affect effective kinetic energy density.
Equation (43) or their simplified counterparts Eqs. (44) and (45) can be extended for fibers of different properties 

and even for less regular networks when rigid joints connect to various numbers of fibers.

5. CONCLUSIONS

We have discussed kinetic constitutive equations for an elastic network from the point of view of micropolar 
elasticity. Here we restrict ourselves to elastic networks with rigid massive joints. Considering the network as a 
homogenized micropolar continuum we have shown that elastic properties are determined through the properties of 
network links, whereas dynamic properties, i.e., microinertia tensors, depend on both mass distribution along elastic 
links and joints. In particular, for massive joints microinertia tensors are almost entirely determined through inertia 
properties of joints. Let us note that joints can be nonsymmetric with respect to elastic links connections, which 
results in the appearance of two microinertia tensors in a kinetic energy density of the homogenized micropolar 
medium. This will result in dynamic coupling between translational and rotational degrees of freedom, in general. 
Moreover, this brings into the micropolar theory two microinertia tensors whereas usually they assume j1 = 0 and j 
= jI with scalar mea-sure of rotational inertia j, see; e.g., Eringen (1999). This case corresponds to symmetric 
material particles such as spheres. Dynamic properties introduced through two microinertia tensors can be taken into 
account considering material symmetry as in Eremeyev and Konopińska-Zmysłowska (2020); see also Vilchevskaya 
et al. (2022), where other references on microinertia tensors can be found. Formulae derived here for the 
microinertia tensors complete the description by Eremeyev (2019) of a network undergoing large deformations 
within micropolar elasticity. Further development of this research will be devoted to improving the assessment of the 
dynamic behavior of elastic net-works with rigid junctions. With this purpose, the characteristics of wave 
propagation in media may be exploited. In particular, an effective correlation between the microstructure, and the 
way in which waves propagate in the medium, may be found. This relation may be very useful both to better 
understand the mechanical behavior of such materials, to improve both their design and modeling in order to achieve 
specific required properties.
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