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ABSTRACT: The half-Heusler family consists of many semi-
conducting intermetallic compounds, virtually all of them having a
valence electron count (VEC) of 18. We have studied an electron-
deficient (VEC = 17) phase MgPdSb and its Pd-stuffed variant
MgPd1.25Sb. The cubic F4̅3m crystal structure was confirmed by
the Rietveld refinement of powder X-ray diffraction (XRD) data.
The lattice parameter is a = 6.284 and 6.335 Å for MgPdSb and
MgPd1.25Sb, respectively. The Debye temperature and Sommerfeld
coefficient for MgPdSb are ΘD = 282 K and γ = 3.3 mJ mol−1 K−2,
respectively, and are similar to those obtained for MgPd1.25Sb.
There is neither phase transition nor superconductivity observed
above 1.8 K. The differences between the electronic structures of
Mg-based half-Heusler compounds make them robustly metallic, irrespective of the electron count and the introduction of interstitial
transition metal (Pd) atoms.

■ INTRODUCTION
The large and diverse family of Heusler compounds attracts an
unwavering research interest due to the versatility and
tunability of their physical properties. The Heusler structure
(MnCu2Al type) can be viewed as a simple NaCl-type network
with all of the octahedral voids occupied (see Figure 1a). In
the so-called half-Heusler structure only every other void is
filled, resulting in a noncentrosymmetric network (Figure 1b),
an ordered ternary variant of the zinc blende (ZnS)
structure.1,2

Interesting properties are often found in half-Heusler
compounds, including a relatively high thermoelectric perform-
ance,3−6 topologically nontrivial electronic states,7−10 and
superconductivity.9,11,12

The half-Heusler is the 15th most common structure type
among reported intermetallics.13 Most of half-Heusler phases
have a valence electron count (VEC) of 8, 18, or 28 (per
formula unit), corresponding to a closed-shell configuration
and, very often, semiconducting properties.3,14−17 The
Materials Project database lists 135 unique half-Heusler phases
(see the Supporting Material Table S1 and Figure S1 for more
details): 102 of these compounds have VEC = 8, 18, or 28 and
only 15% (21 compounds) are electron-deficient with VEC =
16 or 17. It is often observed that phases with VEC deviating
from 8, 18, or 28 are stabilized by either interstitial defects (for
electron-deficient compounds, such as TiFe1+xSb) or vacancies
(electron-rich compounds, e.g., Ti1−xNiSb).15,17

The general formula for a half-Heusler compound can be
represented as XYZ. For VEC = 18 and 28, an electropositive
element (early transition metal, rare earth metal, Li, or Mg)
occupies the X position, Y is a late transition metal, and Z is a
p-block metal. Only 16 out of the 135 phases included in the

Received: February 25, 2022
Revised: August 1, 2022
Published: August 15, 2022

Figure 1. Relationships between NaCl (a), full-Heusler (b), half-
Heusler (c), and zinc blende (ZnS) (d) structure types. Heusler
phases are NaCl-type structures with either all (full-Heusler) or every
other octahedral void (half-Heusler) filled by a third atom type. Half-
Heusler cell can also be viewed as a ternary analogue of a zinc blende
structure.
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Materials Project database have a main group element (Li or
Mg) at the X position.

In this article, we describe the synthesis and characterization
of a stable electron-deficient MgPdSb (VEC = 17) half-Heusler
compound, which was first reported by Drews et al.18 We
discuss its physical properties based on chemical bonding
considerations. No significant concentration of interstitial
defects is observed in the parent compound, yet a surplus Pd
can be introduced into the structure. The presence of Mg at
the X site results in a qualitatively different electronic structure,
compared to transition metal-bearing half-Heusler compounds.

■ MATERIALS AND METHODS
A polycrystalline sample of MgPdSb was prepared by a solid-
state reaction of Mg and PdSb, as described in the Supporting
Material, with a 5% Mg surplus to account for its evaporation
loss. The same method was recently used for the synthesis of a
full-Heusler phase MgPd2Sb.19 In addition to the stoichio-
metric MgPdSb, a series of MgPd1+xSb (x = 0.25, 0.50, 0.75)
was synthesized, in which the additional Pd atoms were
expected to fill the remaining octahedral voids.

The crystal structure of the sample was examined by means
of powder X-ray diffraction (pXRD) using a Bruker D2 Phaser
diffractometer equipped with a solid-state LynxEye XE-T
detector and a Cu Kα X-ray source. XRD patterns were
processed by means of the Rietveld refinement method using
the Fullprof software package.20

Heat capacity and electrical resistivity measurements were
performed using a Quantum Design Physical Property
Measurement System (PPMS). The standard two τ time-
relaxation method was used to measure the heat capacity. For
electrical transport measurements, four thin platinum wire
leads were attached to the sample surface using an Epo-Tek
H20E conductive silver epoxy. Measurements were carried out
in the temperature range of T = 1.9−300 K.

Electronic structure calculations were performed by means
of density functional theory (DFT) using the Quantum
Espresso (QE) version 6.7 package21−23 using the Perdew−
Burke−Ernzerhof (PBE) generalized gradient approximation
(GGA)25 of the exchange−correlation (xc) potential. Scalar
relativistic and fully relativistic projector-augmented wave
(PAW)24,25 sets were taken from the PSlib database.26 A QE
input file was produced using the generator tool available in
the Materials Cloud platform.27 The experimental unit cell
parameter was relaxed using the Broyden−Fletcher−Gold-
farb−Shanno (BFGS) algorithm and a 9 × 9 × 9 k-point mesh.
The kinetic energy cutoff for charge density and wave
functions was set to 58 Ry and 522 Ry, respectively. Density
of states integrations within the irreducible wedge of the
primitive Brillouin zone were completed on an 18 × 18 × 18 k-
point mesh. Electron transfer was assessed using the Bader
charge analysis method.28−30 For the accurate analysis of the
charge, the charge density cutoff was increased to 1200 Ry in a
SCF run to yield a denser Fourier-transformed charge density
grid. Visualization of the covalent bonding within the crystal
structure was done by plotting the Density Overlap Regions
Indicator (DORI) introduced by de Silva and Corminboeuf.31

Charge density critical points were analyzed using the
CRITIC2 code.32

The calculation of the electronic structure of the disordered
MgPd1.25Sb compound was performed by means of the
Korringa−Kohn−Rostoker (KKR) multiple scattering DFT
method employing the coherent potential approximation

(CPA) to model the Pd site disorder, as implemented in the
SPR KKR package.33 The PBE GGA xc potential was used, and
the calculations were performed in a fully relativistic, spin-
polarized mode. The structure was modeled with an Fm3̅m
unit cell. The lattice parameter of MgPdSb relaxed using QE
was expanded by 0.8% for MgPd1.25Sb, in agreement with
pXRD results. To model the effect of possible minute amount
of Pd interstitials in the parent MgPdSb compound, the KKR
calculations were also performed on a MgPdPd0.04Sb phase in
which 4% of 4d sites is occupied by Pd.

■ RESULTS AND DISCUSSION
Analysis of the pXRD pattern (Figure 2) showed that a single-
phase sample of MgPdSb with a lattice parameter a =

6.2841(1) Å was obtained after the second annealing step.
Rietveld refinement confirmed the assumed F4̅3m cubic half-
Heusler structure. In the case of the MgPd1+xSb series, only the
sample with the lowest Pd content (x = 0.25) was found to be
single phase. Samples with higher Pd concentration contained
a PdSb impurity (see Figure S3 of the Supporting Material).

Rietveld analysis shows no sign of significant interstitial
concentration on the nominally vacant 4d site, as presented in
a difference Fourier electron density map (see Figure 3;

Figure 2. Powder XRD pattern of MgPdSb (red points) with a
Rietveld fit (black line). The blue line shows a difference between the
observed and model intensity. Green ticks mark the expected
positions of Bragg reflections for the half-Heusler (F4̅3m) phase.

Figure 3. Difference Fourier electron density map calculated for
MgPdSb from the powder XRD data (Fobs) and the Rietveld-refined
model (Fcalc). No significant concentration of interstitial atoms is
observed in the unfilled octahedral voids (marked with blue circles) in
the unit cell. Green circles mark the positions of Pd atoms at the 4c
site.
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observed electron density is shown in Figure S4a). The
refinement of Pd occupancy at the 4d site leads to at most 4%.
Such a small occupancy does not affect the electronic structure
of MgPdSb around the Fermi level (see Figure S5 of the
Supporting Material).

Rietveld refinement on the pXRD pattern of MgPd1.25Sb
(Figure S6 of the Supporting Material) suggests that all
additional Pd atoms occupy the vacant 4d octahedral voids,
while the MgPdSb half-Heusler structure remains intact. This
has an important implication for the electronic structure as will
be shown in the following paragraphs. If, instead, Pd is
assumed to be randomly distributed over all of the octahedral
voids (resulting in a centrosymmetric defective full-Heusler
structure), the refinement yields an unphysically high isotropic
thermal displacement factor for Mg (Biso > 11 Å2, see Table S2
of the Supporting Material).

Results of electronic structure calculations for stoichiometric
MgPdSb are presented in Figure 4. The band structure shows a

metallic character. Three distinct bands cross the Fermi level
(Figure 4a), resulting in a Fermi surface (FS) depicted in
Figure 4c. The overall shape of the FS is similar to the one
found in full-Heusler compounds, such as LiGa2Ir,34

LiPd2Ge,35 and MgPd2Sb.19 The electronic DOS around the
Fermi level is mostly contributed by Pd d and Sb p states
(Figure 4b).

Bader charge analysis yields a charge of +1.53 e at the Mg
atom, in agreement with the low electronegativity of Mg
compared to those of Pd and Sb. Pd and Sb attain a negative
Bader charge of −1.34 e and −0.19 e, respectively. A strong
electron transfer from Mg to Pd and rather weak to Sb might
seem counterintuitive based on the common electronegativity
scales, where Pd is either less electronegative (as in Allred−
Rochow36 and Allen37 scales as well as in the recent definition
of electronegativity by Rahm et al.38) or only slightly more
electronegative than Sb (Pauling scale: χPd = 2.2, χSb = 2.1).
This electron transfer picture is, however, consistent with the
picture of the half-Heusler phase as an “electronically active”
ZnS-type (PdSb)2− sublattice intertwined with a Mg2+ donor
network. The presence of Pd−Sb covalent bonding is visible in
the calculated electron density (Figure S7 of the Supporting

Material). A bond critical point (saddle point of electron
density) is found between Pd and Sb (Figure S8), and the
DORI31 analysis (Figure S9) shows a covalent Pd−Sb bond.

As was discussed by Zeier et al.,5 the half-Heusler phases
usually form with compositions corresponding to VEC = 18.
This was rationalized by a molecular orbital picture taking as
an example the semiconducting ZrNiSn phase (VEC = 4 + 10
+ 4 = 18): with 18 valence electrons, the t2 orbital, resulting
from the interaction between Ni and Zr dxy, dxz, and dyz atomic
orbitals, is completely filled (Figure 5a).

In the case of MgPdSb, the order of crystal orbitals is
different (Figure 5b). Since for Mg the frontier orbital is 3s, the
interactions between Mg and PdSb sublattice are qualitatively
distinct from those of Zr with NiSn, where Zr 4d states overlap
with t2 and e MOs of NiSn. This yields an a1 orbital between
the e doublet and t2 triplet. With 17 valence electrons, the t2
orbital (antibonding Pd d−Sb p interaction) is half filled,
consistent with a finite DOS(EF) contributed by Pd and Sb
(see Figure 4b). In this case, VEC = 18 does not correspond to
a closed-shell configuration, which would be attained for VEC
= 20. However, since the partially filled t2 shell is (weakly)
antibonding, such a high VEC would likely destabilize the half-
Heusler structure.

A hypothetical example of a compound with VEC = 20 with
Mg would be a ZnS-type CdTe with Mg atoms occupying the
interstitial positions of the zinc blende sublattice. This would,
however, require that either Mg or Cd be electroneutral. Such
a counterintuitive electronic configuration shows that the Mg-
and Li-based half-Heusler phases are definitively metallic and
cannot be driven semiconducting by increasing the electron
count.

Inspection of the Materials Project database shows that Mg-
bearing half-Heusler phases with VEC = 18 (e.g., MgAgAs and
MgCuSb, see Figure 6a,b) indeed show a finite DOS(EF). At
the same time, phases with VEC = 17 having an early transition
metal at the A site show a gap slightly above the EF, suggesting

Figure 4. Band structure of MgPdSb (a) along with the atom-
projected DOS (b). Three distinct bands cross the EF as is easily seen
along the Γ−K line, resulting in a Fermi surface (FS) consisting of
three parts, as plotted in panel (c). FS is colored according to the
Fermi velocity from blue to red.

Figure 5. Schematic MO diagram for ZrNiSn (modified from Zeier et
al.5) (a) and MgPdSb (b). Orbital energies are not shown to scale.
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that increasing the electron count to VEC = 18 would make
them semiconducting (see Figure 6c,d).

There are 43 Li-based half-Heusler compounds, 42 of which
have VEC = 8 or 18 (LiAuSb is the only reported compound
with VEC = 17, see Table S1 of the Supporting Material). Due
to the same symmetry of the frontier orbital (2s in Li, 3s in
Mg), the electronic structure of LiAuSb (shown in Figure S10
of the Supporting Material) is qualitatively similar to that of
MgPdSb (Figure 4a). This similarity can be considered an
example of the so-called diagonal relationship (or isodiagon-
ality) of Li and Mg, which is found in many different aspects of
chemistry of the two elements (as well as other element
pairs).39,40

Results of KKR CPA calculations are shown in Figure 7. The
density of states for the Pd-stuffed compound strongly depends
on the way the Pd is distributed over the eight octahedral voids
of the MgSb sublattice. If one assumes that all Pd atoms are
randomly distributed over all of the voids, the band structure
(in the case of a disordered solid represented by the Bloch
spectral function�BSF) is slightly shifted with respect to the
Fermi level to accommodate for additional electrons (Figure
7e,f). The overall shape remains only weakly affected, but the
Pd d band becomes smeared and broadened. If, however, we
assume that the MgPdSb lattice remains intact and the
additional Pd atoms occupy the vacant voids (consistent with
pXRD analysis), the additional Pd d states form strongly
localized, nondispersive bands at 6−7 eV below EF and the
remaining bands are only slightly affected (Figure 7c,d). The
latter model is in line with the discussion of electroneutral Ni0

interstitials in the ZrNi1+xSi phase by Zeier et al.5

The results of KKR CPA calculations are consistent with the
measurements of low-temperature heat capacity of MgPdSb
and MgPd1.25Sb (Figure 8), which were fitted with the
equation Cp/T(T2) = γ + β3 T2 + β5 T4. Both phases show a
very similar value of the electronic (Sommerfeld) heat capacity
coefficient γ = 3.3(1) mJ mol−1 K−2 for pristine MgPdSb and γ
= 3.5(2) mJ mol−1 K−2 for the Pd-stuffed variant. As shown in
Figure 7a−d, the band structure/BSF and DOS at the Fermi

level are almost unaffected by the introduction of additional Pd
atoms. Since the γ coefficient is linearly proportional to the

Figure 6. Band structures of MgCuSb and MgAgAs (panels (a) and (b); VEC = 18), ZrRuSb (panel (c); VEC = 17), and NbRuSb (panel (d);
VEC = 18) taken from the Materials Project database41 (database IDs: mp-3522, mp-3477, mp-31457, mp-505297, respectively) using the pymatgen
library.42 For ZrRuSb and NbRuSb, the Fermi level is indicated as a horizontal line to highlight that the former, electron-poor compound is a metal,
while the latter is a semiconductor.

Figure 7. Bloch spectral functions (a, c, e) and DOS (b, d, f)
calculated for a pristine MgPdSb (a, b), “MgPdPd0.25Sb”�the half-
Heusler (NCS) cell with additional Pd atoms randomly distributed
over the four octahedral voids (c, d), and “MgPd1.25Sb”�the full-
Heusler (centrosymmetric) cell with eight octahedral voids randomly
occupied by Pd with a 62.5% probability.
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electronic density of states (which itself is renormalized by
interactions, including electron−phonon coupling, as described
in the following paragraph), the almost unchanged value of γ
and DOS(EF) suggests that the electron−phonon coupling is
not strongly affected by additional Pd atoms. Phonon
coefficients for the MgPdSb phase (β3 = 0.26(2) mJ mol−1

K−4 and β5 = 1.0(4) μJ mol−1 K−6) are similar for the
MgPd1.25Sb phase (β3 = 0.27(2) mJ mol−1 K−4 and β5 = 2.2(5)
μJ mol−1 K−6). The corresponding values of the Debye
temperatures calculated from β3 are ΘD = 282(7) K and ΘD =
287(7) K for MgPdSb and MgPd1.25Sb, respectively.

The electron−phonon coupling coefficient was estimated for
the stoichiometric MgPdSb by comparing the calculated and
experimental value of the Sommerfeld coefficient γ

= 1ep
expt

calc

This yields λep ≈ 0.03, suggesting very weak coupling between
conduction electrons and lattice vibrations. This is consistent
with no superconducting transition observed down to T = 1.85
K.

It is worth noting that the synthesized polycrystalline pellet
of MgPdSb has a distinct purple hue. While intermetallics are
generally plain silver, a number of compounds with fcc-derived
crystal structures are reported to show some distinct color.43

This stems from their distinctive band structures with narrow d
bands lying ca. 1.7−3.0 eV below the Fermi level. A number of
Heusler and half-Heusler compounds are reported to show a
distinctive color.43,44 In MgPdSb, the narrow Pd d band is
situated ca. 2.5−2.9 eV below the EF (Figure 4a),
corresponding to an excitation wavelength of ca. 480−500
nm. The light reflected from the sample is then depleted of the
green-blue part of the spectrum and appears purplish.

The temperature-dependent resistivity of MgPdSb (Figure
8b) shows a behavior typical for metals. This is in agreement
with the aforementioned results of DFT computations. No sign
of superconducting transition is observed down to T = 1.9 K.
The Pd-stuffed MgPd1.25Sb shows a higher residual resistivity
(RRR = 1.2 vs RRR = 1.6 for MgPdSb), consistent with the
presence of atomic disorder.

■ CONCLUSIONS
We have successfully synthesized an electron-deficient half-
Heusler phase MgPdSb along with its Pd-stuffed modification
MgPd1.25Sb and discussed their electronic structure based on
DFT calculations and molecular orbital theory. The
introduction of additional Pd atoms does not strongly affect
the electronic structure as evidenced by both electronic
structure calculations and heat capacity measurements.

We have shown that Mg-based half-Heusler compounds
show a qualitatively different electronic structure compared to
the more prevalent phases hosting an early transition metal or
lanthanide. The difference stems from the symmetry of the
frontier orbital of Mg. Thus, in contrary to TM- and
lanthanide-based analogues, Mg-based (and by analogy Li-
based) half-Heusler phases remain metallic even at the
“perfect” valence electron count (VEC) of 18 and cannot be
driven semiconducting by altering the electron count alone.
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temperature resistivity (ρ300 K). The Pd-stuffed sample shows a higher
residual resistivity and thus a much lower residual resistivity ratio
RRR = ρ300 K/ρ0.
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