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Abstract: Background: The infinite shear viscosity model of Carreau fluid characterizes the attitude
of fluid flow at a very high/very low shear rate. This model has the capacity for interpretation of
fluid at both extreme levels, and an inclined magnetic dipole in fluid mechanics has its valuable
applications such as magnetic drug engineering, cold treatments to destroy tumors, drug targeting, bio
preservation, cryosurgery, astrophysics, reaction kinetics, geophysics, machinery efficiency, sensors,
material selection and cosmology. Novelty: This study investigates and interprets the infinite shear
rate of Carreau nanofluid over the geometry of a cylindrical channel. The velocity is assumed to
be investigated through imposing an inclined magnetic field onto cylindrical geometry. Activation
energy is utilized because it helps with chemical reactions and mass transport. Furthermore, the
effects of thermophoresis, the binary chemical process and the Brownian movement of nanoparticles
are included in this attempt. Formulation: The mathematics of the assumed Carreau model is
derived from Cauchy stress tensor, and partial differential equations (PDEs) are obtained. Similarity
transformation variables converted these PDEs into a system of ordinary differential equations
(ODEs). Passing this system under the bvp4c scheme, we reached at numerical results of this research
attempt. Findings: Graphical debate and statistical analysis are launched on the basis of the obtained
computed numerical results. The infinite shear rate aspect of Carreau nanofluid gives a lower velocity.
The inclined magnetic dipole effect shows a lower velocity but high energy. A positive variation in
activation energy amplifies the concentration field.

Keywords: infinite shear rate; Carreau nanofluid; cylindrical channel; activation energy; inclined
magnetic dipole effect

1. Introduction

Imposing a magnetic field during the flow of fluid at an acute angle is called an
inclined magnetic field. Discussing the magnetic effect related to fluid mechanisms is
called as magnetohydrodynamics (MHD). MHD covers the key aspects of fluid flow
during motion and has valuable applications such as magnetic drug engineering, MHD
generators, cryosurgery, cooling of metallic sheets, cold treatments to destroy tumors,
astrophysics, geothermal energy differentiation, reaction kinetics geophysics, mensuration
flow in blood vessels, machinery efficiency, paper production, sensors, drug targeting,
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fiberglass manufacturing, bio preservation, material selection and cosmology. By placing a
magnetic field over a flowing fluid, the Lorentz force is generated by the interaction of inter-
mutual particles. Such important key and vital applications have induced researchers to put
their focus into MHD. MHD flow with different fluidics models [1–7] has been encountered
along with multiple features such as Carreau diffusion, activation energy, thermophoresis,
inclined magnetic field, convection transportation of energy, etc., by different scholars.
Khan et al. [1] studied the impact of convective boundary conditions on Carreau nanofluid
moving while subjected to a stretching/shrinking cylinder and noticed that the velocity
profile diminishes owing to a magnification in the magnetic parameter. Ayub et al. [2]
employed a Keller box scheme to achieve the numerical solution of a magneto- Cross
nanofluid accompanied by blood as a base fluid and found that electrically conducting
fluid generates a force termed the Lorentz force, which is responsible for a decrement in the
fluid’s velocity. Chen et al. [3] achieved the analytical solution of MHD fluid flow between
two coaxial cylinders and came up with the conclusion that the velocity of fluid diminishes
owing to a magnification in Grashoff number. Alsaedi et al. [4] employed MATLAB
built in a bvp4c scheme to achieve the numerical solution of a magneto hybrid nanofluid
flow between two coaxial cylinders and noticed that a positive change in magnetic field
strength diminishes the performance of hybrid nanofluids. Wahab et al. [5] scrutinized
the influence of an inclined magnetic field on a Cross nanofluid moving over a slippery
surface and observed that magnification in the magnetic field parameters depreciates
the velocity of the fluid flow. The impact of investigating the influence of higher-order
chemical reactions and magnetic field effects on Cross nanofluid movement subjected
to a stretching wedge was scrutinized in detail by Shah et al. [6]. They noticed that a
positive change in Lorentz force generates a resistive force, which is responsible for a
decrement in velocity phenomenon. Lim et al. [7] scrutinized the effect of thermal radiation
and chemical reaction on magnetically driven Carreau fluid movement subjected to an
expanding cylinder and found that a positive variation in thermal radiation parameters
enhances the heat transfer rate of the fluid. Shaw et al. [8] recently discussed how the
hydromagnetic flow of Cross-hybrid nanofluid influenced quadratic thermal radiation.
It was found that hybrid nanofluid is more effective than other nanofluid models. Cross
nanomaterials and MHD entropy, along with cubic autocatalytic chemical reaction, analysis
has been made by Nayak et al. [9]. Soret and Dufour numbers and their physical impacts
on MHD nanofluid over the geometry of a finned cavity including a rotating circular
cylinder are discussed by Aly et al. [10]. Nanoparticles of Fe3O4/Cu/Ag-CH3OH in
MHD stagnation point flow have been utilized over a heated surface and partial slip,
activation energy facts which the study of Nandi et al. [11] has also engaged with. Recent
studies [12,13] related to the hydromagnetic transport of Casson nanofluid and thermo-
solutal convection of a nanofluid have been published with superb results.

Carreau nanofluid has the capability to judge the attitude of nanofluid at extreme levels.
When external force is imposed on a fluid, shear stress is generated in it and deformation
takes place. If the magnitude of the applied force is very high, a very high shear rate results,
and it is the same when a very low force is exerted on a fluid; a very low shear rate is
produced. There was no such mathematical model for depicting the characteristics of a
fluid when a very low and very high shear rate is produced in the fluid. Carreau fluid
is a competent, authorized mathematical model that describes the characteristics of fluid
mechanics at extreme levels. This unique quality of Carreau fluid distinguishes it from
other fluid models. Khan et al. [14] conducted a numerical analysis of steady Carreau fluid
flowing over a wedge. In this attempt, they incorporated infinite shear rate as a factor along
the Carreau fluid and obtained its effect on several physical variables. Further, they [15]
obtained multiple solutions of the Carreau fluid model. The heat transportation aspect of
Carreau fluid, containing an infinite shear-rate viscosity term, has been investigated by
Ayub et al. [16]. Sardar et al. [17] conducted work on heat transportation with a mixed
convection mechanism, taking Carreau nanofluids under the effect of infinite shear-rate
viscosity. Ali et al. [18] published valuable work related to the concentration and thermal
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aspects in the Carreau viscosity model via a wedge, and the latest study related to melting
and the entropy generation of infinite shear-rate viscosity of the Carreau model over a
Riga plate with erratic thickness was performed by Wang et al. [19]. Mosaferi et al. [20]
presented their study related to an aligned magnetic field on the 2DOF VIV suppression
of heat transportation and its comprehensive characteristics. Many other scholars [21–23]
conducted their investigations over cylindrical geometry with different effects, such as
turbulent cylinder-stirred flow, tunable filtering and demultiplexing with a hollow cylinder
and heat-transfer augmentation in a tube mixture of ethylene glycol as a base fluid.

Rapid heat transportation was a wish of many scholars because there is energy con-
sumption at the industrial and engineering sides. To solve this issue, investigators have
looked for a rapid heat-transfer fluid, and they have presented that, for that purpose, we
have to increase the thermal conductivity of fluid. Later on, a judgment was passed that
conductivity is increased by using nanoparticles in the base fluid. Nano-sized particles are
very small in size, approximately less than 100 nm, and are referred to as nanoparticles.
These particles boost the heat transportation in a base fluid. Many scholars have presented
their work about nanofluid. The latest article published by Waqas et al. [24] is related to
activation energy, magnetic fields and mixed radiative-convective couple-stress, with a
mathematical model of stratified nanofluid flows along with utilizing the important feature
of motile microorganisms. Muhammad et al. [25] worked recently on doubly stratified
bioconvective transport augmentation with the factors of gyrotactic motile microorgan-
isms with a mathematical model of nanofluid. Furthermore, he [26] made another study
which relates to the thermodynamics performance of hybrid nanofluids and a thermo-
hydraulic system. Song et al. [27] expressed his valuable study of the unsteady flow of
magneto-Williamson nanofluid with several factors about cylinder geometry.

The process by two or more substances are engaged with each other and as a result
they are transformed into two or more different substances is called a chemical process. A
process of conversion of two or more substances into two or more different substances that
takes two steps to complete is called a binary chemical process. They play vital roles in our
daily life. Without chemical processes, there is no concept of life, and without them, we
cannot investigate any changes in the physical world. Through chemical processes, we can
come to understand properties of matter, how the natural world works, solve crimes and
explain mysteries and determine which planets and moons are likely to be able to sustain
life. Considering its importance in daily life, it also helpful in fluid mechanics to judge
mass transportation. Kumar et al. [28] gave a numerical review of recent advancements
in nanofluids considering thermal systems. Dina et al. [29] also worked on nanofluids
and depicted the enhancement of the transportation of heat, and limit cycle analysis,
consistency preserving discretization and cubic autocatalytic chemical reactions were
utilized. Other investigators [30,31] have revealed their research on models of membranes
containing nanofluids and performance evaluations of nanofluids in solar and thermal
photovoltaic systems.

The minimum energy required to produce a reaction is called activation energy. Swante
Arrhenius presented the idea of activation energy in 1889. The proper amount of adequate
energy supplied by the reactants for the manifestation of a chemical reaction is known as
activation energy. It can be thought of as the highest potential issue or energy that divides
both the least number of materials and the highest potential energy devices. Exothermic
and endothermic-type reactions are examples of activation energy. Activation energy has
various engineering and industrial applications such as enzymes and the fermentation of
sugar with the utilization of yeast. Research across the world has tried to investigate the
effect of activation energy on fluid flow subjected to various media such as cones, wedges,
stretching sheets, etc. Madhukesh et al. [32] investigated the impact of activation energy
on a hybrid nanomaterial past a circular cylinder in order to observe the effects, such as
the saddle and nodal points, and found that the heat transfer rate amplifies by the virtue
of a magnification in the fractional volume of nanoparticles. Zhang et al. [33] studied
the influence of motile microorganisms and activation energy on Williamson nanofluid
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movement subjected to an extendable cylinder and noted that the positive variation in the
activation energy parameter amplifies the concentration field. Mahdy et al. [34] scrutinized
the effect of heat-source sink, thermal conductivity and activation energy on dusty Carreau
fluid flow along a cylinder and came to the conclusion that a positive variation in the
thermal conductivity and reaction rate constant amplifies the temperature field. The impact
of Soret/Dufour effects and activation energy on Casson nanofluid movement subjected
to a deformable cylinder was investigated in detail by Shaheen et al. [35]. They noted
that that an amplification in Soret number and activation energy provides an eminent
effect on the concentration field. Colak [36] employed an artificial intelligence approach
to investigate the impact of activation energy and temperature-dependent viscosity on
Maxwell fluid flow along a cylinder and noticed that the concentration field is amplified
owing to a magnification in the activation energy phenomenon. For more information on
non-Newtonianism fluids, please see the studies [37–46].

The literature review is listed to form the basis of the current study. There are several
studies related to Carreau fluid, but a study on an infinite shear Carreau fluid model
on cylindrical geometry has not been discussed yet. This investigation was launched to
investigate the binary chemical process and inclined magnetic effect with infinite shear
rate model of Carreau nanofluid with cylindrical geometry. Nanofluid heat transportation
is also investigated with the help of variable thermal conductivity. The article is novel
in the sense that the effect of activation energy and MHD in the case of Cross nanofluid
flowing towards an expandable cylinder has not been investigated yet in the available
literature. This paper is an extension of the work reported by Khan et al. [1], with the
inclusion of additional effects such as activation energy, a Cross nanofluid model in the
place of a Carreau nanofluid model and magnetohydrodynamics (MHD).

The paper is further organized into several sections. Section 2 discusses the novelty of
the physical model, Section 3 discusses the validity of the study in pictorial form, Section 4
elaborates on the comprehensive analysis of the outcomes of attached parameters and
Section 5 presents the final and concluding remarks. Chart 1 defines the fluid problem and
the mathematical modeling of the current problem.
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2. Novelty of Physical Model

In this segment, the geometry of the problem is presented by facts and Figure 1. It is
assumed that the fluid is flowing through a horizontal cylinder, which has the capability of
stretching and contracting. a(t) = a0(1− βt)1/2 is the radius of the considered cylinder with
a0, β which are the positive constant and the parameters of stretchiness and contraction
under certain conditions on β. It is further assumed that the fluid is flowing in a permeable
horizontal cylinder with a velocity of u = 4

a2
o(1−βt)

νx at r = a(t). Flow is two-dimensional
laminar boundary layer flow of Carreau fluid, and it is unsteady as well. Inclined magnetic
effect is placed with inclination angle ω. Equations are launched in cylindrical coordinates
from Navier–Stokes equations. Convective conditions are being enrolled for convection
transport. Variable and temperature-dependent thermal conductivity is also engaged for
rapid heat transportation, which is mathematically shown as K(T) = K∞ − εK∞

(
T∞−T

∆T

)
,

with the parameter of conductivity ε and thermal conductivity away from cylinder k∞. The
geometry is depicted in Figure 1.
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Cauchy stress tensor for the mathematical model of Carreau fluid and its related
mathematical expressions.{

τ + pI = µ(A1
∗); µ = µ∞ − (µ∞ − µ0)

[(
1 + (Γ

.
γ)

n
)−1

]}
, (1)

A1
∗ = Transpose (L) + Transpose (L), (2)(

µ0 − µ

µ− µ∞

)n−1

= (Γ
.
γ) (3)

Carrying further calculations on the Cauchy stress tensor and given all requirements
with finally applying the boundary layer assumptions, we obtained this system of PDEs:

∂(rv)
∂y

= −∂(ru)
∂x

. (4)

[
∂u
∂t

]
+ u

[
∂u
∂x

]
+ v
[

∂u
∂r

]
=
( r

ν

)−1 ∂u
∂r

 1

β∗ + (1− β∗)
(

1 +
(

Γ ∂v
∂z

)n)
+

(
−σ∗B2

ρ f
u

)

+

(
1
ν

)−1 ∂

∂r

 ∂u
∂r

β∗ + (1− β∗)
(

1 +
(

Γ ∂v
∂z

)n)
, (5)
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(
∂T
∂t

)
+ v

(
∂T
∂r

)
+ u

(
∂T
∂x

)
=
(
ρcp
)−1 ∂

∂r

[
K(T) r ∂T

∂y

]
1
r

+

[(
∂C
∂r

)(
DB

∂T
∂r

)
+
(

T∞
DT

)−1(
∂T
∂r

)2
]

τ,
(6)

(
∂C
∂t

)
+ v
(

∂C
∂r

)
+ u

(
∂C
∂x

)
= DB

[
∂2C
∂r2 + 1

r
∂C
∂r

]
+ DT

T∞

[
∂2T
∂r2 + 1

r
∂T
∂r

]
− k2

c(C− C∞)
(

T(T∞)−1
)m

exp
(
− Ea

k(T)

) (7)

Boundary conditions for PDEs:

u = U =
4

a2
o(1− βt)

νx at r = a(t) , v = 0 at r = a(t), (8)

u→ 0 as r → ∞. (9)

1
h f

[
∂T
∂r

K(T)
]
= T − Tf as r = a(t),

1
Km

[
∂C
∂r

]
Dm = C− C f , when r = a(t), (10)

T → T∞ and C → C∞ as r → ∞ (11)

Mentioned parameters appearing in (5)–(11) are

u =
4νx
a2

o
(1− βt)−1 f ′(η) , v = − 2ν

(1− βt)
f (η)
√

η
, η =

( a0

r

)−2
(1− βt)−1. (12)

θ(η)

{
=

T − T∞

Tf − T∞

}
, φ(η)

{
=

C− C∞

C f − C∞

}
(13)

Using the above transformations, the governing Equations (5)–(7) are transmuted into
a set of nonlinear ODEs, given as:

η f
′′′
{(

1− (n− 1)(we1 f ′′ )n)(1− β∗)
(
1 + (we1 f ′′ )n)−2

+ β∗
}
− A(η f ′′ + f ′)

+ 1
2

{
(2− n)

(
We f ′′

)n
+ 2
}

f ′′ +
(
−( f ′)2 + f f ′′ − 1

M−2 Sin2(w) f ′
)

,
(14)

(1 + εθ){θ′ + ηθ′′ } − Pr[Aηθ′ − ( f )(θ′)] + εη(θ′)2

+Prη

{(
1

Nb

)−1
θ′φ′ +

(
1

Nt

)−1
(φ′)2

}
= 0,

(15)

η φ′′ − Sc
(

Aηφ′ − f φ′
)
+

(
Nb
Nt

)−1
ηθ′′ − Scσ(δθ + 1)m exp

[
−Ea

(1 + δθ)

]
= 0. (16)

The corresponding boundary conditions are written as:

f (1) = 0, f ′(1) = 1, f ′(η)→ 0 whenever η → ∞, (17)

θ′(1) = γ1

(
θ(1)− 1
εθ(1) + 1

)
, θ(η)→ 0 when η → ∞. (18)

φ′(1) = −γ2(1− φ(1)), φ(η)→ 0, as η → ∞. (19)

Physical quantities, i.e., Nusselt number and skin friction coefficients, are, respectively,

expressed as Nu =
b(t)qw |r=b(t)
2k(Tw−T∞)

and C f =
τrx|r=b(t)

1
2 ρU2

e
and are derived in dimensionless form as:

Nu = −θ′(1), C f Re
x

b(t)
= f ′′ (1)

[
1

β∗ + (1− β∗)
(
1 + Wen( f ′′ (1))n

]
.
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3. Methodology

The modeled equations are highly nonlinear in nature, and their analytical solutions
are not feasible. The above system of Equations (14)–(16) along with boundary conditions
(17)–(19) can be handled numerically with the utilization of MATLAB built in bvp4c scheme.
Finite difference scheme package is utilized by bvp4c scheme. During this procedure, the
modeled PDEs are converted into first-order ODEs by considering what is suitable along
with boundary conditions and are furthermore solved numerically with bvp4c package in
MATLAB. The maximum residual error and step size are 10−6 and ηmax = 5.

The methodology of current numerical technique is explained step by step in Chart 2.
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5. Comprehensive Analysis of Outcomes of Attached Parameters

This segment of the study was conducted for the comprehensive analysis of the
outcomes of the attached parameters. All physical interpretations regarding associated
parameters are explored in this section. Physical quantities are represented through a
statistical approach. The velocity judgment is made with help of an inclined magnetic field,
and for initiation of the chemical process, the activation energy is assumed. The variable
thermal conductivity responsible for the rapid transportation of heat and mass is being
considered with the aid of Brownian and thermophoresis. Furthermore, infinite shear-rate
viscosity depicts the key characteristics of these assumptions. All the figures are plotted
in both cases through shear thinning/thickening with different values of n, and the value
of n lies in (0, 1). It is a case of shear thinning when 0 < n < 1, and it is a case of shear
thickening when n > 1. Figures 3–6 reveal the consequences of the attached parameters
with the velocity field. Mathematical expression of “We” contains a time relaxation constant
due to velocity field growth, with numerical increment in We both in the cases of thinning
and thickening. The viscosity of a fluid diminishes by the virtue of a magnification in
We. Shear thickening behavior is reported in the case of a positive change in We, which
depreciates the fluid velocity. This fact is shown in Figure 3. Figure 4 displays the effect
of inclined angle ω on the velocity field. Note that a positive change in ω. depreciates the
velocity. The fluid velocity diminishes as a result of a magnification in ω, which lessens the
fluid velocity. Figure 5 depicts the influence of inclination and magnetic effect on velocity
distribution. Electrically conducting fluid in the presence of an electric and magnetic field
generates a force referred to as Lorentz force. This Lorentz force is basically a resistive force.
This Lorentz force acts like a barrier against fluid velocity. When an inclined magnetic
field is imposed on fluid flow, Lorentz force is then automatically generated, and this
Lorentz force is interrelated with speed of fluid. The velocity decreases when both the
magnetic and inclination parameters are numerically augmented. The infinite shear-rate
viscosity parameter causes a decrease in the velocity, and this fact is revealed by Figure 6.
It is noted that shear-rate viscosity diminishes in the case of an incremental change in β∗,
which brings about a decrement in velocity. Figures 7–10 are revealing the consequences
of the parameters being attached with an energy field. The inclination angle reduces
the magnitude of velocity distribution. Figure 7 is the expression of this fact. Brownian
parameter increments cause an exchange of tiny particles, and due to this reason, the
temperature increases. The molecules of the fluid collide more randomly, shift kinetic
energy to each other and enhance the thermal conductivity phenomenon much better in
the presence of the Brownian diffusion phenomenon. That is why a positive variation in
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Nb improves the thermal conductivity and amplifies the temperature field. The Brownian
parameter and its connection with temperature are shown in Figure 8. Figure 9 is included
for showing the impact of the magnetic parameter effects on the distribution of temperature.
The magnetic field causes Lorentz force, and this causes lower temperature. Viscosity is
inversely related to the temperature. A positive variation in M depreciates the viscosity
phenomenon, which reduces the velocity and amplifies the temperature, on the other
hand. As a result, the temperature field escalates. Thermal conductivity is in direct relation
with temperature, and its consequences on the energy field are exhibited in Figure 10.
The ability of any material to conduct heat is called thermal conductivity. A material’s
ability to transfer heat increases with the consideration of nanoparticles in the base fluid.
Molecules collide more frequently due to a change in thermal conductivity, which increases
the kinetic energy of the fluid’s molecules and the temperature field. Figures 11–13 reveal
the consequences of the attached parameters with the mass transportation field. Mass
diffusivity is related to the Schmidt number, and due to this fact, the mass transportation
becomes lower. The Schmidt number’s role is the same for mass transportation as the
Prandtl number is for heat transportation. The Schmidt number is the ratio of momentum
diffusivity to mass diffusivity. A positive variation in Sc magnifies the concentration of
nanofluid, which provides a resistance-free motion to the mass transport and depreciates
the concentration field. The Brownian motion parameter also results in a reduction of mass
transportation. The temperature of the fluid is magnified by virtue of an amplification
in Nb, which otherwise diminishes the concentration of fluid molecules and depreciates
the concentration field. Note that a positive change in A encourages the fluid viscosity
phenomenon, which amplifies the temperature and diminishes the concentration field
phenomenon. Similarly, the unsteadiness parameter gives the same result as Sc and Nb.
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Figure 13. Variations in species concentration profiles owing to changes in A.

Figures 14–19 discuss the impact of various dimensionless parameters on the surface
drag coefficient. From the figures, it is crystal clear that a positive change in We, Pr
diminishes the surface drag coefficient, but surface drag phenomenon escalates as a result
of magnifications in Sc, A, M and σ. From Figure 14, it is quite evident that a positive
variation in the Weissenberg number We depreciates the skin friction phenomenon. The
Weissenberg number is directly related with the relaxation time. Relaxation time is the
time needed by the fluid in order to regain its original shape. During this time, the fluid
is allowed to relax, and its viscosity increases. Paint is an example of the Weissenberg
phenomenon. The skin friction coefficient, also called drag friction, is the drag created by
the friction of the fluid opposite to the object surface over which the fluid is moving. It
is quite established that a positive variation in We amplifies the fluid viscosity, which is
responsible for a decrement in the fluid velocity and skin friction phenomenon. Figure 15
provides the statistical analysis of the power law index against the surface drag coefficient.
The viscosity of the fluid solely depends on power law index n. The fluid behavior is shear
thinning in the case of n < 1, Newtonian for n = 1 and shear thickening for n > 1. It is well
established that the viscosity of fluid decreases by virtue of magnification in n. Velocity is
directly related with viscosity. The velocity of fluid topples the sheet velocity in the case of
amplification n, which magnifies the skin friction phenomenon.
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Figure 15. Revealing the consequences of n with the related skin friction coefficient.
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Figure 16. Revealing the consequences of Pr with the related skin friction coefficient.
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Figure 18. Revealing the consequences of M with the related skin friction coefficient.
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Figure 19. Revealing the consequences of Nb related to the Nusselt number.

Figure 16 displays the impact of the Prandtl number Pr on the drag coefficient. The
Prandtl number is the dimensionless quantity expressing the ratio of momentum diffusivity
to the thermal diffusivity. Momentum diffusivity is the dynamic viscosity to fluid density
ratio, and thermal diffusivity expresses the ratio of thermal conduction to density and
specific heat. Viscosity is inversely related to temperature. A decrement in temperature
depreciates thermal diffusivity and moreover strengthens the fluid viscosity and momen-
tum diffusion phenomenon. That is why a positive variation in Pr magnifies the fluid
velocity and surface drag phenomenon. The effect of unsteady parameter A on the surface
drag coefficient is highlighted in Figure 17. Velocity is inversely related to the surface
drag phenomenon. Note that the fluid velocity decreases as a result of a magnification in
A. The fluid is almost impossible to move due to an increment in A, which depreciates
the fluid velocity and amplifies the surface drag phenomenon because the velocity of the
fluid flow is inversely linked with the drag phenomenon. Figure 18 is designed to explore
the effect of magnetic parameter M on the surface drag coefficient. Electrical conducting
fluid when passing through electric and magnetic fields produces a force called Lorentz
force. Lorentz force is basically a resistive force. Lorentz force acts like a barrier in the
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case of fluid flow across the medium. This Lorentz force slows the fluid motion. This
is called the MHD phenomenon, which has distinguished applications such as in MHD
generators, metal batteries, cooling of nuclear reactors, etc. It is observed that the flow
velocity diminishes in the presence of Lorentz forces, which brings about a reduction in
fluid velocity and moreover amplifies the drag friction phenomenon. Figure 19 is designed
to study the effect of Nb on the heat transfer Nusselt number. The parameter Nb indicates
the Brownian motion of the molecules. Molecules collide more randomly as a result of
an amplification in Nb. The molecules shift kinetic energy to each other and amplify the
temperature inside the fluid. It is well established that the thermal conduction of the fluid
also increases due to a positive change in Nb, which escalates the fluid temperature and
heat transfer Nusselt number.

6. Conclusions of Debate

This study dealt with the infinite shear rate of Carreau nanofluid over the geometry
of a cylindrical channel. Velocity analysis was conducted through imposing an inclined
magnetic field on cylindrical geometry. The key results are listed as:

• Infinite shear rate aspect of Carreau nanofluid gives lower velocity.
• Inclined magnetic dipole effect shows lower velocity but high energy.
• Unsteadiness parameter is related to time factor due to this magnitude of

velocity decreasing.
• Relaxation time of fluid increasing by the virtue of magnification in We, which dimin-

ishes the velocity field.
• A positive variation in magnetic parameters diminishes the surface drag phenomenon.
• Amplification in thermal conductivity magnifies Nb and the temperature field.
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Nomenclature

h f Wall heat transfer coefficient Sc = ν
DB

Schmidt number
km Wall mass transfer coefficient ρ f Density of fluid
τ Ratio of (ρC)p to (ρC) f Cp Specific heat
C∞ Ambient concentration (ρc)p Operative heat capability
Tw Surface temperature u, v Velocity components
ρ Density of fluid σ = Kc

2

α Reaction rate parameter
DT Thermophoresis diffusion coefficient Nt Thermophoresis parameter
U Stretching velocity Rex Local Reynolds number
α Thermal diffusivity I Identity tensor
υ Kinematic viscosity n Power law index

A =
a0

2 β
4v Unsteadiness parameter A1 First Rivlin–Ericksen tensor

DB Brownian diffusion coefficient B Magnetic parameter

Sc Schmidt number M =
√

σ∗Bo2

ρa Magnetic parameter

We = Γ8νxr
a4

o
Local Weissenberg number δ = Ts−T∞

T∞
Temperature constant

σ = Kc
2

α Reaction rate parameter Pr = µcp
α Prandtl number

Nb Brownian motion parameter E = Ea
kT∞

Activation energy
x Distance along the axial direction β Expansion or contraction strength
r Distance along the radial direction f ′ Dimensionless velocity
θ′ Dimensionless temperature a(t) Radius of cylinder

φ′ Dimensionless concentration γ1 =
h f a(t)
2k∞

Thermal Biot number

γ2 = km a(t)
2Dm

Concentration Biot number t Time
We Local Weissenberg number V Velocity field
ε Thermal conductivity parameter C Concentration field
C f Skin friction coefficient τ Cauchy stress tensor
h f Wall heat transfer coefficient p Pressure
qm Wall mass flux µ Apparent viscosity
qw Wall heat flux µ0 Zero shear rate viscosity
τrx Wall shear stress µ∞ Infinite shear rate viscosity

Tw Surface temperature
•
r Shear rate

Nb =
τDB(C f−C∞)

ν Brownian motion parameter Γ Time material constant

Nt =
τDT(Tf−C∞)

νT∞
Thermophoresis parameter η Local similarity variable

K(T) Variable thermal conductivity
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