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Abstract

The ESCASA algorithm for analytical estimation of proton positions from coarse-
grained geometry developed in our recent work has been implemented in modeling 
protein structures with the highly coarse-grained UNRES model of polypeptide chains 
(2 sites per residue) and nuclear magnetic resonance (NMR) data. A penalty function 
with the shape of intersecting gorges was applied to treat ambiguous distance restraints, 
which automatically selects consistent restraints. Hamiltonian replica exchange molec-
ular dynamics was used to carry out the conformational search. The method was 
tested with both unambiguous and ambiguous restraints producing good-quality mod-
els with GDT TS from 7.4 units higher to 14.4 units lower than those obtained with 
the CYANA or MELD software for protein-structure determination from NMR data at 
the all-atom resolution. The method can thus be applied in modeling the structures of 
flexible proteins, for which extensive conformational search enabled by coarse graining 
is more important than high modeling accuracy.
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†Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
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NMR-data assisted modeling of protein structures with the UNRES coarse-grained force field.
The positions of the protons are estimated from coarse-grained geometry by the ESCASA
algorithm. Ambiguous restraints are handled through the introduction of a penalty function
which has the form of intersecting gorges and takes nearly the same value regardless of
whether one only or more components of an ambiguous restraint are satisfied.
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INTRODUCTION

Depending on the size of a system, time scale, and the required accuracy, different modeling

approaches are used to simulate macromolecules: from quantum mechanics (QM)1,2 through

all-atom approaches3,4 to coarse-graining (CG) methods.5–10 Due to the fact that most of the

biologically important molecules are too large to handle for the atomistically-detailed simula-

tion methods, coarse-grained models and force fields have become useful in these studies.9–12

In the coarse-grained models, a single interaction site encompasses several atoms, whole

ligand molecule or a polymer unit or even large structural parts of a macromolecule.13–15

Therefore, the numbers of interaction sites and degrees of freedom are substantially reduced,

this resulting in a significant reduction of simulation time. Consequently, the coarse-grained

approaches enable us to extend the time- and size-scale of simulations by several orders of

magnitude16. Moreover, the energy landscapes of the coarse-grained models are smoother

that those of the all-atom models, thereby helping the conformational search to avoid lo-

cal energy minima (kinetic traps)9. On the other hand, coarse graining inevitably results

in some loss of accuracy, which can be compensated by the introduction of database or

experimental information from such technique as the Nuclear Magnetic Resonance (NMR)

spectroscopy17,18.

NMR spectroscopy has been used for protein-structure determination since 198019. It is

one of the principal techniques used to determine 3D structures of biomolecules at the atomic

precision and to analyze their dynamics in solution under nearly-physiological conditions.

The NMR spectroscopy usually provides the information of proton-proton distances, which

largely define the spatial structure of a protein, as well as chemical shifts and coupling

constants that can be used to determine the local structure20. The distance and local-

structure information is converted into the distance- and dihedral-angle restraints, which are

added to the energy function as penalty terms20. It should be noted that, due to errors in

peak assignment, some of the NMR distance restraints are wrong, which results in restraining

the distances between the atom pairs that are not at contact. Moreover, ambiguous peak

assignment often happens21–23, which results in ambiguous restraints.

Some coarse-grained force fields (e.g., Rosetta24 and AWSEM25) keep part of the atomic
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details of the polypeptide chain. However, generally, the atoms (usually hydrogens) between

which the distances are to be restrained based on NMR data are not present in coarse-grained

representations; this is the case of the most commonly used MARTINI force field7,26,27 and

of the UNited RESidue (UNRES) force field developed in our laboratory8. One way to in-

troduce atom-based distance restraints is the approach developed by Latek and Kolinski28

for the CABS coarse-grained model of polypeptide chains29, in which all-atom structures are

rebuilt from the CG representation and the atom-based restraints are subsequently evalu-

ated. However, while this approach was straightforward to implement with CABS, which

uses Monte Carlo dynamics as a conformational-search method, it would be difficult to use

with the CG models designed for molecular-dynamics simulations (e.g., MARTINI and UN-

RES), which require the forces due to the restraints and not only the penalty-function value.

Therefore, recently, we developed an analytical approach for the estimation of proton coordi-

nates in proteins from the CG geometry (ESCASA)30, with which the analytical derivatives

of the estimated proton positions in the coarse-grained coordinates and, consequently, the

analytical forces due to the atom-based restraints are available. The present version of the

method enables us to estimate the coordinates of the backbone and the Hβ protons.

In this paper, we report the implementation of ESCASA with the UNRES model8 and

tests of the resulting method of NMR-data-assisted modeling of protein structures with

13 proteins for which both X-ray and NMR structures, along with the restraint sets, are

available31 with different secondary structure (α, β, and α + β), chain length (from 76 to

202 amino-acid residues) and different oligomerization state. We have also included the

80-residue de novo designed α+β protein Foldit3 (PDB code: 6msp)32, which was an NMR-

data-assisted target in the 13th Community Wide Experiment on the Critical Assessment of

Techniques for Protein Structure Prediction (CASP13)33. For this protein, we used both the

refined NMR restraints deposited in the Protein Data Bank (PDB)34 and highly ambiguous

(up to over 100 alternative assignments per peak) and contradictory “raw” restraints that

were released during the CASP13 experiment. Two NMR-assisted targets, N1077 and N1088,

with highly-ambiguous restraints, were also released in CASP1423, of which the models of

N1088 were evaluated, while the structure of N1077 was not available by the conclusion of

CASP14. In CASP14 we used a preliminary version of the methodology described in this
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work, obtaining top-ranked models23,35 However, because the structure of neither of these

two targets has been released yet we did not include these proteins in the present study.

To handle contradictory restraints and ambiguous assignments, we used a penalty func-

tion developed in our earlier work36,37, which produces only a small gradient when a re-

straints is grossly violated and attains minimum value when only one restraint of the am-

biguous set is satisfied. We used the Hamiltonian Replica Exchange Molecular Dynamics

(HREMD)38,39 implemented with UNRES in our earlier work37,40 for conformational search,

with restraint weights varying between replicas. For comparison, we processed the same data

with CYANA41, a standard software for the determination of protein structure from NMR

data. We demonstrate that our approach is able to produce correct structures even from

highly ambiguous restraint sets.

METHODOLOGY

UNRES model of polypeptide chains

In UNRES8,42–45, a highly reduced representation of the polypeptide chain is assumed with

only kinds of two interaction sites: united side chains (SC) and united peptide groups

(p). The α-carbon (Cα) atoms serve to define backbone geometry, but are not interac-

tion sites. United side chains are attached to the α-carbons by virtual bonds and the united

peptide groups are located halfway between the adjacent Cαs. The backbone geometry

of the polypeptide chain is defined by the Cα · · ·Cα · · ·Cα virtual-bond angles θ and the

Cα · · ·Cα · · ·Cα · · ·Cα virtual-bond-dihedral angles γ, whereas the local geometry of the ith

side-chain center is defined by the zenith angle αi and the azimuth angle βi (Figure 1).

The UNRES energy function is based on the physics of interactions and originates from

the potential of mean force (PMF) of polypeptide chains in water44. It consists of pairwise

site-site terms, local terms, and correlation terms corresponding to the coupling between

the backbone-local and backbone-electrostatic interactions, which are essential to reproduce

regular secondary structures8,44,45. In this study we used the latest variant of UNRES, with

energy terms derived by using our recently developed scale-consistent formalism44 and pa-
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rameterized by means of the maximum-likelihood approach with 9 small training proteins

with different structures45. The UNRES energy function depends on temperature, which

is a direct consequence of its origin from the PMF; consequently, it contains not only the

potential-energy but also the entropy component corresponding to the averaging over the

degrees of freedom that are lost when passing from the all-atom to the coarse-grained rep-

resentation43.

Restraints and penalty function

We used the interproton distances available from NMR data as restraints in data-assisted

modeling. As mentioned, the proton positions are not directly available from the UNRES

geometry. To estimate the positions of the backbone-α (Hα), backbone-amide (HN) and

sidechain-β (Hβ) protons, we use our recently developed ESCASA algorithm30. This algo-

rithm calculates proton positions in the local-coordinate system of the respective Cα · · ·Cα · · ·Cα

frame, using approximate analytical formulas. The coordinates of a given Hα or Hβ proton

depend on the respective backbone-virtual-bond angle θ, while those of a given HN pro-

ton depend on the backbone-virtual-bond-dihedral-angle γ whose axis is the Cα · · ·Cα axis

of the peptide group that contains that proton and the two adjacent virtual-bond angles

θ (see Figure 1 for the definition of these angles). The method gives an average error in

the proton-proton distance of 0.25 Å, compared to 0.21 Å obtained when proton positions

are reconstructed by using the PULCHRA algorithm for the conversion of the Cα trace

into all-atom backbone46. Consistent with averaging the signals of equivalent protons in

NMR measurements, the position of the “average” Qα protons are calculated for the glycine

residues and the position of the “average” Qβ proton is calculated for those residues, which

have 2 or 3 Hβ protons.

We estimated the positions of the Hγ and higher-index side-chain protons by assuming

that the average positions of these protons are on the Cα · · · SC virtual-bond axes at the

distance from the Cα atom is proportional to the distance of the projection of this proton

on the Cα · · · SC virtual-bond axis given extended side-chain conformation, as given by eq.

(1).
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rHX = RCα + xHXRCα
···SC (1)

xHX =
rCα

···HX
ext

◦RCα
···SCext

d2Cα
···SCext

(2)

where rCα
···HX is the estimated position of side-chain proton X, RCα is the position of Cα,

RCα
···SC is the vector pointing from Cα to side-chain center, rCα

···HX
ext

is the vector pointing

from Cα to the proton in the extended side chain, RCα
···SCext

is the vector pointing from

Cα to the side-chain center in the extended conformation, and dCα
···SCext

is the virtual-bond

length of the extended side chain.

To handle ambiguous restraints, we used the penalty function developed in our earlier

work37, which is defined by eq. (3) and has the form of intersecting gorges (Figure 2).

V dist
NMR({d}; dl, du, A) = −

1

α
ln

{

namb
∑

i=1

exp [−αVcont(di; dl, du, A)]

}

(3)

where {d} is the set of distances potentially corresponding to a given ambiguous restraint, α

is an arbitrary parameter, and Vcont(di; dl, du, A) (the contact-distance-restraint function) is

a flat-bottom penalty function modified from that introduced in our earlier work36,47, which

is defined by eq. (4). With α large enough, VNMR({d}; dl, du, A) takes a value of nearly 0

independent of whether only one or all restraints of the ambiguous set are satisfied, thus

naturally eliminating the restraints of an ambiguous set, which are incompatible with the

structure. In this work we set α = 20.

Vcont(d, dl, du, A) =



























A
(d−dl)

4

σ4+(d−dl)4
[1 + κ ln cosh(d− dl)] for d < dl

0 for dl ≤ d ≤ du

A
(d−du)4

σ4+(d−du)4
[1 + κ ln cosh(d− du)] for d > du

(4)

where d is a proton-proton distance estimated from an UNRES structure, dl and du are

the lower and upper distance boundaries, respectively, which are taken from NMR data, σ

is the thickness of the transition region between zero and maximum restraint height, A is

the height of the restraint well, and κ is the slope of the restraint at large distances. In

this work we assumed σ = 0.5 Å and A = 1.0 kcal/mol. The original penalty function
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from our earlier work36,47 corresponds to κ = 0 and quickly approaches the asymptote

A, contributing virtually no force when d ≫ du. Thus, the penalty terms do not force

incompatible restraints (which usually correspond to wrongly predicted contacts), preventing

a simulation from producing non-protein-like structures. With a small κ > 0, the right

asymptote is A+ κ(d− du), which provides a small gradient at large distances, thus mildly

guiding the search towards satisfying the restraint but not forcing it if incompatible with

other restraints. In this work we used κ = 0.01 kcal/mol.

Plots illustrating Vcont [eq. (4)] for a doubly-degenerated distance restraint and VNMR

[eq. (3)] are shown in Figure 2.

The backbone-angular restraints were also used. As in our earlier earlier work37, we con-

verted the lower and upper boundaries of the backbone φ and ψ angles, which were provided

in the NMR restraint sets into those in the backbone-virtual-bond and backbone-virtual-

bond-dihedral angles (θ and γ, respectively), by using the formulas derived by Nishikawa et

al.48. The respective restraint function is given by eq. (5).

V
θγ
NMR = wθg(θ, θl, θu) + wγg(γ, γl, γu) (5)

with

g(x, xl, xu) =



























1
4
δ4 for δ < xl−xu

2

0 for xl−xu

2
< δ < xu−xx

2

1
4
δ4 for δ > xu−xl

2

(6)

δ =

(

x−
xl + xu

2

)

mod 2π (7)

where θl, θu, γl, and γu are the lower and upper boundaries on the virtual-bond angles θ

and virtual-bond-dihedral angles γ, respectively (which are calculated from the boundaries

on the φ and ψ backbone dihedral angles). In this study we set wθ = 1 kcal/mol and wγ = 5

kcal/mol, respectively.
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Hamiltonian Replica Exchange Molecular Dynamics with NMR-data-

assisted UNRES

The Replica-Exchange (RE) method49 and its multiplexed variant (MRE)50 are enhanced-

sampling techniques, which enable a system to overcome kinetic traps by running several

canonical Monte Carlo or molecular dynamics simulations at different temperatures and

exchanging the temperatures between replicas. When modified energy functions are used for

different replicas (e.g., with different restraint strength or different van der Waals repulsive

term), the method becomes Hamiltonian Replica Exchange (HRE)38,39. When canonical

MD is used as a search techniques, the three methods are abbreviated as REMD, MREMD,

and HREMD, respectively. All these methods have been implemented with UNRES in our

earlier work40,42,51. In this work we adapted HREMD to work with NMR-based restraints.

In the HREMD variant implemented in this work, M canonical MD trajectories are run

simultaneously at different temperatures and with different weights of the NMR-restraint

terms: M = MT ×MH , where MT is the number of temperatures and MH is the number of

different weights of the restraint terms. For a given replica (with bi-index ij for temperature

and restraint weight, respectively), the pseudo-energy function, Vij , is thus expressed by eq.

(8).

Vij(Xij ;Ti;wj) = UUNRES(Xij ;Ti) + V
θγ
NMR + wjV

dist
NMR(Xij) (8)

where Xij is the vector of the coarse-grained coordinates of the conformation of replica

ij, Ti and wj are the absolute temperature and weight of the NMR restraints for that

replica, UUNRES is the UNRES energy function (that depends on temperature43), V θγ
NMR is

the penalty function corresponding to angular restraints [eq. (5)] and V dist
NMR is the NMR

distance-restraint function [eq. (3)]. It should be noted that the angular penalty function

has the same weight in all replicas, because these restraints restrict the local chain structure

to the desired regions. The replicas constitute a two-dimensional (Ti, Vj) grid. The replicas

evolve independently for a given number of steps (10,000 in this work), after which an

exchange of temperatures or restraint weights is attempted with its neighboring replica in

one or two dimensions (up, down or diagonal on the grid, the direction being selected at
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random). The exchange is accepted based on the probability ω expressed by eq. (9):

ω (Xij → Xkl) = min[1, exp(−∆)], (k, l) ∈ {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}

∆ =

[

Vkl(Xkl;Tk;wl)

RTk
−
Vij(Xkl;Ti;wj)

RTi

]

−

[

Vkl(Xij;Tk;wl)

RTk
−
Vij(Xij;Ti;wj)

RTi

]

(9)

where R is the universal gas constant. Exchanging the restraint weights between replicas

enables the structures that satisfy only part of the restraints but sit in deep energy minima

to relax when a high restraint weight is replaced with a smaller one and, consequently, to

transform to structures that satisfy more restraints.

To determine the effect of including NMR-based restraints on the quality of the result-

ing models of the structures of the proteins under study, we also carried out unrestrained

MREMD simulations, in which the replicas pertain only to different temperatures.

Test proteins and NMR restraints

We used 13 proteins from the benchmark set created by the G.T. Montelione group31,

for which both X-ray and NMR structures were determined. This set will be referred

to as the Montelione/NEF Benchmark Data Set. The information about these proteins,

which includes their PDB IDs, numbers of residues, structure types, oligomerization sta-

tus, and the numbers of distance and angle restraints is collected in Table 1. It can be

seen from the Table that these proteins represent all basic structural classes (α, β, α + β),

have a wide span of chain length (from 76 to 202 residues), and four of them are dimers.

The respective experimental NMR restraints were taken from the repository available from

https://montelionelab.chem.rpi.edu/databases/nmrdata. These restraints are refined

and only those of 6nbn are weakly ambiguous (Table 1).

To test the ability of our method to handle ambiguous restraints, we used the de novo de-

signed protein Foldit332 (PDB: 6msp), which corresponds to two of the data-assisted CASP13

targets N1008 and n1008, respectively. For this protein, we used four NMR restraint sets: two

variants of refined restraints deposited in the PDB at the 6msp entry32, denoted as 6msp-v1

and 6msp-v2, respectively, and two raw sets which were provided to the CASP13 participants

at https://predictioncenter.org/download_area/CASP13/extra_experiments by G.T.

10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Montelione, under the N1008 and n1008 target entries. The N1008 restraints pertain only to

backbone-amide and side-chain protons further to Hβ, while the restraints for n1008 pertain

to all backbone and most of the side-chain protons33. The refined 6msp-v1 and 6msp-v2

data sets contain only a few ambiguous peak assignments (1.6 and 1.95 per peak on average,

respectively), while those for N1008 and n1008 are highly ambiguous, containing 4.32 and

7.95 assignments per peak on average, respectively, the number of alternative assignments

often exceeding 100 (Table 2).

The positions of the NOE peaks for the Foldit3 protein corresponding to all alternative

assignments are shown, together with the proton-proton contact-distance maps calculated

from the experimental 6msp structure, in Figure 3A-D. It can be seen that the refined NMR

distance restraints trace the contact pattern very well (panels A and B of the Figure), while

the multiply-assigned peaks cover almost the whole domain for N1008 and n1008 (panels C

and D of the Figure). For n1008, the number of possible assignments per peak exceeds 100

for some of the peaks, as illustrated in Figure 4. Moreover, it can be seen from Table 2 that

about 48 % of restraints for n1008 and about 57 % of restraints for N1008 are violated by

the 6msp structure. We consider a restraint satisfied if, for any of the alternative proton-

pair assignments corresponding to this restraint, the proton-proton distance calculated from

the structure is not greater than the upper distance boundary. The violations of the upper

distance boundaries are quite severe, namely 3.57 Å and 4.21 Å on average for N1008 and

n1008, respectively. These violations are averaged over the violated restraints and each

violation is the minimum over all alternative proton pair assignments. For the refined 6msp-

v1 and 6msp-v2 restraints the number of non-satisfied restraints is much lower (about 14 %

and about 17 %, respectively) and the violations of the upper boundaries are below 1 Å(Table

1).

UNRES-based simulation protocol

We used the four-stage protocol developed in our earlier work for protein-structure mod-

eling35,52. In the first stage, HREMD simulations with the UNRES force field with

geometry restraints from NMR (see sections “Restraints and penalty function” and

“Test proteins and NMR restraints”), as well as control MREMD simulations, were carried
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out. In the second stage, the results of the simulations were processed with the binless

Weighted-Histogram Analysis Method (WHAM)43,53 to compute the conformational weights

to calculate the statistical weight (probability) of each structure of the last section of HREMD

simulation. The probabilities were calculated at three temperatures: 260, 280 and 300 K.

In the third stage, the conformational ensemble was dissected into 5 clusters for each tem-

perature (15 clusters in summary) by means of Ward’s minimum variance method and the

clusters were ranked based on the collective probability of all conformations of a given clus-

ter. For NMR-restrained simulations, the conformation of the cluster with the lowest value

of the NMR-penalty function (i.e., satisfying the NMR restraints best) was selected as a

cluster representative43, while for the unrestrained simulations the cluster representative

was selected as the conformation closest to the cluster-averaged conformations (cf. Ref. 43).

Finally, in the fourth stage, the obtained conformations were converted to all-atom struc-

tures using the PULCHRA46 and SCWRL54 algorithms and subsequently refined using the

Assisted Model Building with Energy Refinement, version 2014 (AMBER14) package3 with

the ff14SB force field and Generalized Born Surface Area (GBSA) implicit-solvent model.

The refinement was carried out with 500 steps of energy minimization, followed by a short

(0.3 ps) canonical MD simulation, and finished with an additional 500-step minimization.

Such refined all-atom structures were taken for further analysis.

The replicas of the UNRES/HREMD simulations of the first stage consisted constituted

a 2-dimensional grid of 12 temperatures (262, 267, 274, 279, 285, 290, 295, 301, 308, 333, 355,

and 370 K, respectively) and 8 distance-restraint weights [eq. (8)] (wNMR = 0, 0.0634678,

0.18963, 0.295432, 0.444649, 0.653766, 0.824766, and 1, respectively), this giving a total of

72 replicas. For 2kzn and 2kcu, for which the conformational search was more demanding,

we used 24 temperature replicas, from 260 to 500 K, this giving a total of 144 replicas in

HREMD simulations. The final statistical weights of the conformations were calculated for

wNMR = 1. The temperatures and the weights were selected to maximize the number of walks

in the weight space, by using a variant of the Hansmann algorithm55, adapted to the weight

space35. The unrestrained UNRES/MREMD simulations were carried out with the same set

of 12 temperatures as above, 4 trajectories run at each temperature (48 replicas total). For

both the HREMD simulations and the control REMD simulations, each trajectory consisted
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of 20,000,000 steps with a 4.89 fs step length and the replicas were exchanged every 10,000

steps. The trajectories were run in the Langevin scheme implemented in UNRES in our

earlier work16, with the viscosity of water scaled by a factor of 0.01 as in our earlier work16.

The Velocity-Verlet method with the Adaptive Multiple Time Step (A-MTS) algorithm56 was

used to integrate the equations of motion. All runs were started from randomly-generated

conformations.

To compare the obtained models with the respective experimental structures, we used the

α-carbon Root-Mean-Square Deviation (Cα-RMSD or RMSD) and the Global Distance Test

Total Score (GDT TS)57,58, which is an average of the percentage of Cα atoms in the model,

which are at a distance not exceeding 1, 2, 4, and 8 Å, respectively, from the corresponding Cα

atoms in the reference (experimental) structure at the optimal superposition. The GDT TS

is the primary measure used in CASP to compare the structures of the models of proteins

or their domains with the respective experimental structures. For the 13 proteins from

the Montelione/NEF Benchmark Data Set31, we used the X-ray structures as reference

structures, while for the Foldit3 protein32 we used the average 6msp structure.

Simulations with CYANA

To compare our results with one of the currently leading method in protein structure de-

termination based on NMR data, we have used CYANA 2.1 software41. CYANA calculates

structures using simulated annealing41 with a highly efficient torsion angle space molecular

dynamics algorithm59. For each system we ran 4,000 MD steps with CYANA, collecting a

total of 50 snapshots. The 15 conformers that satisfied the NMR restraints best were selected

for further analysis.

RESULTS AND DISCUSSION

Unambiguous and weakly ambiguous restraints

The results of the determination of the structures of the 13 proteins of the Montelione/NEF

Benchmark Data Set (Table 1) are summarized, in form of GDT TS and Cα-RMSD bar
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plots, in Figure 5A and 5B, respectively, for the best and the first models, respectively. The

respective numerical values are collected in Table S1 of the Supplementary Material. For each

protein, the first model corresponds to the cluster with the greatest summary probability of

its constituent conformations, while best model is the one with the highest GDT TS. It should

be noted, though, that because the explicit comparison with the experimental structure is

not involved in the selection of this model, it is not the highest GDT TS model obtained in

the simulations of a given protein. It can be seen that the experimental structures of these

proteins satisfy 47 % – 100 % of restraints (Table 1); however, even for sets with the least

percentage of satisfied restraints the mean restraint violations are lower than 1 Å.

As shown in Figure 5, the GDT TS values of the best CYANA models are generally

greater than 80; however, for 3 larger proteins: 2kzn (147 residues), 2kcu (166 residues)

and 2kw5 (202 residues) the GDT TS values of the best models are only 59.7, 64.1 and

66.0, respectively, even if flexible ends and loops are excluded. Inspection of the respective

PDB structures shows that the N-terminal α-helix of the 2kcu structure has two alternative

positions. The discrepancy between the NMR and the X-ray structures of the two other

proteins is likely to be caused by crystal packing. This conclusion is supported by the fact

that the experimental X-ray structures corresponding to 2kzn and 2kw5 (3e0o and 3mer,

respectively) satisfy less than 50 % of NMR restraints (Table 1).

As can be seen from Figure 5 and Table S1, the quality of the CYANA models is usu-

ally, but not always higher than that of the UNRES models. The GDT TS values of the

best and the first models obtained from restrained simulations with UNRES are by 6.34

and 6.45 units, respectively, smaller on average than those of the corresponding CYANA

models. However, the first UNRES model of 2ko1 has GDT TS by 7.37 units higher than its

CYANA counterpart. In view of the high degree of coarse graining of UNRES (only 2 centers

per residue), the results are very good and suggest that our approach can be used in the

modeling tasks in which extensive conformational search enabled by coarse graining is more

important than high accuracy [e.g., modeling the conformational ensembles of the intrinsi-

cally disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs)].

We also note that the GDT TS values of the UNRES models correlate well with those of

the corresponding CYANA models (Figure 6), the correlation coefficients being 0.8154 and
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0.8024 for the best and for the first models, respectively.

The results of unrestrained control simulations are collected in Table S3 of the Supple-

mentary Material. As can be seen from this Table, the models obtained in unrestrained

simulations are very far from the corresponding experimental structure, except for the best

model of 2juw, which has GDT TS of 45.90. It should be noted that even in this case,

addition of NMR restraints dramatically improves the model quality (Table S1). Thus, for

these proteins, including NMR restraints is necessary to obtain good-quality models.

The percentages of satisfied distance restraints for the first and the best models obtained

in UNRES and CYANA calculations are shown, as bar plots, in Figure 7. As shown, the

structures obtained with CYANA satisfy the experimental restraints better, consistent with

the fact that CYANA uses all-atom representation of polypeptide chains, in which proton

positions are explicit in the model, while the positions of protons are only estimated from

the UNRES structures.

Highly ambiguous restraints

To test the ability of our method to handle ambiguous restraints in comparison with other

approaches, we used the de novo designed protein Foldit332. With the two refined sets of

NMR data available for this protein at the 6msp entry (6msp-v1 and 6msp-v2), CYANA has

produced good-quality structures with Cα-RMSD from 0.98 to 1.63 Å and GDT TS from

87.81 to 93.75 (Figure 8 and Table S2). The quality of the CYANA models obtained with

the 6msp-v2 set is slightly lower. Due to its highly reduced representation of polypeptide

chains, UNRES produced lower-quality but still good models with Cα-RMSD of from 1.31

to 1.81 and GDT TS from 78.75 to 87.19, respectively.

The results turn to the favor of our UNRES-based approach when un-refined restraints

with high ambiguity and a significant amount of wrong information, corresponding to the

CASP13 data-assisted targets n1008 and N1008 are used in modeling. The respective bar

plots are shown in Figure 8 and the GDT TS and RMSD values are collected in Table S2.

The GDT TS of the CYANA and UNRES first models are 23.75 and 80.00 for the n1008

restraints, and 27.19 and 72.81 for the N1008 restraints, respectively, while those of the best

models are 26.25 and 80.00 for the n1008 and 33.75 and 75.94 for the n1008 and N1008
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restraints, respectively. This is the result of using the V dist
NMR penalty function [eq. (3)] to

handle ambiguous restraints, the component of which is the modified flat-bottom Lorenz-

like penalty function [eq. (4)], which results in a small gradient when some of the restraints

are incompatible with the other ones and can, thus, be ignored in building the candidate

models. The results are significantly improved with respect to the quality of our UNRES

models of the two targets obtained in CASP13,37, in which we used a “näıve” estimation

of proton positions, with the upper-bounds of the proton-proton distances approximated by

the distances between the pertinent UNRES centers (Cα for the backbone and SC center for

the side-chain protons) plus 2 Å, obtaining the GDT TS values of the best n1008 and N1008

models of only 52.27 and 44.16, respectively.

The best models (with the highest GDT TS values) of the de novo designed protein

Foldit3 obtained with UNRES and CYANA, using NMR restraints of different quality, are

shown, together with the experimental structure, in Figure 9. It can be seen that the CYANA

models obtained with the n1008 (Fig. 9A) and N1008 (Fig. 9B) restraints are different

from the experimental structure and consist mainly of unstructured sections, whereas those

obtained using the 6msp-v1 (Fig. 9C) or 6msp-v2 (Fig. 9D) restraints are of high quality.

In contrast to this, all UNRES models, regardless of the quality of the NMR restraints for

the Foldit3 protein, exhibit the same fold as that of the experimental structure (Fig. 9F-I).

This observation suggest that the UNRES-based approach is very robust, even though it

does not result in high-resolution structures. As for the proteins of the Montelione/NEF set,

including NMR restraints is necessary to obtain good-quality model. The best model of the

de novo designed protein Foldit3 obtained in unrestrained UNRES simulations has GDT TS

of 58.75 and the first model is not native-like (Table S3).

Recently, Mondal and Pérez60 used the MELD protocol coupled with the all-atom AM-

BER force field to model, among others, the n1008 and N1008 CASP13 targets. They

obtained GDT TS and RMSD values of 82.14/1.60 Å, 77.27/1.77 Å, for n1008 and N1008,

respectively, where the first number in a pair is Cα RMSD and the second number is GDT -

TS, compared to 80.00/1.66 Å and 75.94/2.12 Å obtained with UNRES. The higher GDT TS

and lower RMSD values obtained with MELD presumably result not only from the low res-

olution of the UNRES model but also from extensive all-atom refinement of the MELD
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models60. It should also be noted that MELD performs iterative elimination of violated

restraints, while the penalty function given by eq. (3) performs this task implicitly, without

having to interrupt the simulations.

After UNRES simulations with contradictory and ambiguous restraints, we can also prune

the original set of ambiguous restraints by keeping only those which correspond to the

interproton contacts determined from the UNRES model after its conversion to all-atom

geometry. We set a distance cut-off of the upper interproton-distance boundary plus 2 Å to

select the sets of consistent restraints out of the raw n1008 and N1008 restraints and used

the obtained restraints in CYANA runs. With these restraints, we obtained the GDT TS

values of the best CYANA models of 85.31 and 71.56, for n1008 and N1008, respectively.

The GDT TS of the best CYANA models obtained with the refined 6msp-v1 and 6msp-v2

restraint sets are 93.75 and 91.25, respectively (Table S2).

Although CYANA produces poor structures in simulations with both n1008 and N1008

restraints (Fig. 9), while our UNRES-based approach with the penalty function designed

to handle ambiguous/inaccurate restraints produced good-quality structures, the UNRES

structures satisfy a smaller percentage of NMR restraints than the CYANA structures do for

both n1008 but not for N1008 (Figure 10). A plausible explanation of this fact is that about

a half and more than a half of the n1008 and N1008 restraints, respectively, are violated

by the experimental 6msp structure (Table 2), this suggesting that many of the restraints

are inconsistent. The inconsistent restraints are effectively ignored by the Lorenz-like Vcont

penalty function but they contribute to the penalty function used in CYANA, hence the

algorithm used there tries to satisfy also those restraints, this resulting in the deterioration

of the quality of the models.

CONCLUSIONS

We have developed a multiscale approach to NMR-data-assisted modeling of protein struc-

tures, in which the main part of the conformational search is carried out at the coarse-grained

level, with explicit NMR-based restraints imposed at simulation time. We have implemented

with UNRES the ESCASA algorithm for calculating the approximate positions of the back-
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bone and Hβ protons from the coarse-grained geometry30, extended in this work to other

side-chain protons. To handle inaccurate and ambiguous restraints, we have implemented the

“intersecting-gorge-like” function [eq. (3) and Figure 2]37, which is based on the flat-bottom

Lorentz-like penalty function introduced in our earlier work36,47 modified in this work to

provide a mild slope at large distances [eq. (4)].

We have tested our approach with both unambiguous restraints (the Montelione/NEF

Benchmark Data Set31; Table 1) and the less accurate “raw” restraints, some of which

corresponded to over 100 possible assignments (the 2 sets of restraints resulting from the

NMR experiments with the the de novo designed Foldit3 protein32, Table 2). The GDT TS

values (computed with respect to the corresponding crystal structures) of the data-assisted

first-choice UNRES models of the 13 proteins of the first set range from 44.37 to 87.69, while

those obtained with the standard CYANA software41 range from 57.84 to 91.21, the GDT -

TS values of the CYANA models being higher by 6.45 on average. For the best (highest

GDT TS) models the ranges of GDT TS are from 48.06 to 92.91 for UNRES and from 59.68

to 92.77 for CYANA, respectively, the GDT TS values of the CYANA models being higher

by 6.34 on average (Figure 5 and Table S1). Remarkably, for some of the benchmark proteins

the GDT TS of the models obtained with the UNRES-based approach are higher than those

from CYANA (Figure 5 and Table S1). The obtained results are very good in view of the

fact that UNRES is a highly reduced model, with only 2 interaction sites per residue.

For the Foldit3 protein and ambiguous data sets, CYANA failed to produce reasonable

models, while our UNRES-based approach produced models that were similar to the models

of this protein obtained with refined restraints, with GDT TS from the average NMR struc-

ture deposited in the PDB from 72.81 to 80.00 (Figures 8 and 9 and Table S2). The MELD

algorithm60, which was used by Mondal and Pérez to treat these data sets produced higher

GDT TS values. However, the difference is only about 2.5 GDT TS units. Moreover, the

final structures obtained with MELD were subjected to extensive refinement at the all-atom

level, while only cursory refinement with the AMBER force field and implicit solvent was

carried out for UNRES model.

The above results suggest that NMR data can be used as restraints in data-assisted

modeling with UNRES and other heavily coarse-grained protein models, which can be of
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importance if the structures of large proteins are to be determined. Clearly, to make our

approach reach the quality of all-atom approaches for NMR-data-assisted modeling, an al-

gorithm for the refinement of UNRES models at the all-atom level is necessary. This work

is currently underway in our laboratory. On the other hand, our UNRES-based approach

in its present form seems to be appropriate when extensive conformational search (enabled

by the highly simplified UNRES model) is more important than model accuracy, e.g., in

NMR-data-assisted determination of the conformational ensembles of the IDPs or the IDRs.

Another advantage of our approach is its ability to handle ambiguous restraints without

having to iteratively filter the experimental data.

DATA AVAILABILITY

The source code of the version of UNRES with the NMR-assisted-simulation feature, which

uses the algorithm for handling ambiguous and contradictory restrains and the ESCASA

algorithm for analytical estimation of proton positions from Cα-trace geometry, and ES-

CASA parameters are available from the Downloads section of the UNRES package page

(https://unres.pl/downloads, files unres-src-HCD-5D nmr-May-5-2021.tar.gz and PARAM-

May-5-2021.tar.gz, respectively).
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P. Krupa, A. Lipska, A. Liwo, et al., J. Mol. Graph. Model. 108, 108008 (2021).

[36] E. A. Lubecka and A. Liwo, J. Comput. Chem. 40, 2164 (2019).
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Figure 1: UNRES model of polypeptide chains. The interaction sites are united peptide

groups located between the consecutive α-carbon atoms (light-blue spheres) and united side

chains attached to the α-carbon atoms (spheroids with different colors and dimensions).

The backbone geometry of the simplified polypeptide chain is defined by the Cα · · ·Cα · · ·Cα

virtual-bond angles θ (θi has the vertex at Cα
i ) and the Cα · · ·Cα · · ·Cα · · ·Cα virtual-bond-

dihedral angles γ (γi has the axis passing trough Cα
i and Cα

i+1). The local geometry of the

ith side-chain center is defined by the polar angle αi (the angle between the bisector of the

respective angle θi and the Cα
i · · · SCi vector) and the azimuth angle βi (the angle of counter-

clockwise rotation of the Cα
i · · · SCi vector about the bisector from the Cα

i−1 · · ·C
α
i · · ·C

α
i+1

plane, starting from Cα
i−1). For illustration, the bonds of the all-atom chains, except for

those to the hydrogen atoms connected with the carbon atoms, are superposed on the coarse-

grained picture. Reproduced with permission from Zaborowski et al., J. Chem. Inf. Model.,

55, 2050 (2015). Copyright 2015 American Chemical Society.

Figure 2: (A) Illustration of the V dist
NMR penalty function to handle ambiguous restraints

defined by eq. (3) for a doubly-degenerate distance restraint, which has the shape of inter-

secting gorges. As shown in the plot, satisfying only one of the restraints of the degenerate

set results in nearly as low a value of the penalty function as satisfying both restraints. (B)

Plot of the flat-bottom Lorenz-like Vcont distance-restraint function with a small slope at

large distances.

Figure 3: Illustration of the four NMR distance restraints sets for the de novo designed

Foldit3 protein used in this work: 6msp-v1 (A), 6msp-v2 (B), N1008 (C) and n1008 (D), of

which those shown in panels A and B are unambiguous and were taken from the 6msp PDB

entry, while those shown in panels C and D are ambiguous and correspond to the N1008

and n1008 CASP13 targets33. The multi-colored crosses in the lower diagonal represent the

restraints, all components of an ambiguous restraint having the same color, while the green

circles in the lower diagonal represent the proton-proton contacts in the 6msp experimental

structure32.
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Figure 4: Bar plot of the number of assignments per peak for the CASP14 n1008 target (de

novo designed Foldit3 protein). The peaks have been sorted by the number of assignments in

the descending order. The red horizontal line corresponds to average number of assignments

per peak.

Figure 5: Bar plots of (A) the GDT TS and (B) Cα-RMSD for the experimental NMR

structures (gray), CYANA best models (green), CYANA first models (light green), UNRES

best models (blue), and UNRES first models (light blue) of the 13 proteins selected from the

Montelione/NEF Benchmark Data Set31. The X-ray structures were the reference structures

in the computation of GDT TS and Cα-RMSD. Flexible ends and flexible loops were excluded

from comparison.

Figure 6: Correlation of the GDT TS values of the best (purple) and first (green)

CYANA and UNRES models. The slopes and intercepts in the equation GDT TSUNRES =

aGDT TSCYANA + b are a = 1.12(0.16), b = −16.(13.) for the best-model GDT TS and

a = 1.10(0.17), b = −16.(12.) for average GDT TS, where the numbers in parentheses are

the standard deviations of the parameters. The correlation coefficients are 0.9030 and 0.8958

for the best- and first-model GDT TS, respectively.

Figure 7: Bar plots of the percentages of satisfied distance restraints of the NMR experi-

mental structures (gray), CYANA best models (green), CYANA first models (light green),

UNRES best models (blue) and UNRES first models (light blue) of the 13 proteins selected

from the set of 41 proteins for which both X-ray and NMR structures are available31.

Figure 8: Bar plots of (A) the GDT TS and (B) Cα-RMSD for the best models (darker

colors) and first models (lighter colors) of the CYANA (green) and UNRES (blue) models of

the de novo designed Foldit3 protein32 obtained with the 6msp-v1, 6msp-v2 (unambiguous),

n1008 and N1008 (ambiguous) restraint sets. The mean 6msp structure was the reference

structure in the computation of GDT TS and RMSD.
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Figure 9: Cartoon diagrams of the best models of de novo designed Foldit3 protein, obtained

with different NMR distance restraints sets: n1008 (A and F), N1008 (B and G), 6msp-v2

(C and H) and 6msp-v1 (D and I), obtained with CYANA (A-D) and with the UNRES-

based approach developed in this work (F-I). The experimental 6msp structure is shown in

the middle panel (E), the chain colored from blue to red from the N- to the C-terminus,

respectively.

Figure 10: Bar plots of the percentage of satisfied 6msp-v1, 6msp-v2 (unambiguous) and

n1008 and N1008 (ambiguous) distance restraints of the de novo designed Foldit3 protein by

the experimental 6msp structure (gray), the CYANA best models (green), the CYANA first

models (light green), the UNRES best models (blue), and the UNRES first models (light

blue) obtained with these restraints.
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Figure 1
E.A. Lubecka, A. Liwo
J. Comput. Chem.
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E.A. Lubecka, A. Liwo
J. Comput. Chem.
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Figure 4
E.A. Lubecka, A. Liwo
J. Comput. Chem.
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Figure 9
E.A. Lubecka, A. Liwo
J. Comput. Chem.
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Table 1: Characteristics of the 13 proteins of the Montelione/NEF Benchmark Data Set31

and of the corresponding experimental NMR distance restraints. The X-ray structures were

used as reference structures in the computation of percentages of satisfied distance restraints.

PDB code Structure Number of Satisfied Average

NMR crystal type residues peaks assignments peaksa [%] differenceb

2jr2∗ 2ota∗ α 76 1508 1508 79.51 0.49

2juw∗ 2qti α 80 1484 1484 76.62 0.63

2ko1∗ 3ibw ∗ α+β 88 5263 5263 68.63 0.66

1pqx 2ffm α+β 91 1544 1544 99.42 0.04

2kpu 3lyw β 96 841 841 85.26 0.62

2kko∗ 3gw2 α+β 108 2612 2612 79.67 0.56

6nbn 6og0 α 123 1645 1915 87.11 0.53

2kzn 3e0o α+β 147 624 624 47.60 0.80

2k2e 3cpk α+β 158 1125 1125 88.62 0.60

2kcu 3e0h α+β 166 1209 1209 100.00 0.00

2k07 3evx α+β 175 3627 3627 99.01 0.25

2luz 4fpw α+β 182 2714 2714 85.37 0.52

2kw5 3mer α+β 202 1121 1121 46.57 0.80

∗ Dimers;

a Restraints for which at least one assignment is valid (the measured interproton distance in

the crystal structure is less or equal than the respective upper boundary);

b Average difference between the upper-boundary values and the respective interproton dis-

tances of the 6msp structures for the violated restraints. For ambiguous restraints, the

smallest differences were considered.
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Table 2: Characteristics of the 6msp-v1, 6msp-v2 (unambiguous), n1008 and N1008 (am-

biguous) NMR distance restraints sets of the de novo designed Foldit3 protein32. The mean

6msp structure was used as the reference structure in the computation of percentages of

satisfied distance restraints.

NMR set n1008 N1008 6msp-v2 6msp-v1

Number of assignments 26626 2128 2444 1766

Number of peaks 3351 493 1256 1666

Assignments/peak 7.95 4.32 1.95 1.06

Not satisfied peaksa [%] 48.46 57.09 16.72 14.23

Satisfied peaksb [%] 51.54 42.91 83.28 85.77

Average difference [Å]c 4.21 3.57 0.92 0.78
aPeaks for which none of the assignments is valid (the measured inter-proton distances in

the experimental structure are greater than the respective upper boundaries);

bPeaks for which at least one assignment is valid (the measured inter-proton distances in the

experimental structures are less than or equal to the respective upper boundaries);

cAverage differences between the upper-boundary values and the respective interproton dis-

tances for the violated restraints. For ambiguous restraints, the smallest differences are

considered.
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