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Abstract: Land Use and Land Cover (LULC) monitoring is crucial for global transformation, sus-
tainable land control, urban planning, urban growth prediction, and the establishment of climate
regulations for long-term development. Remote sensing images have become increasingly important
in many environmental planning and land use surveys in recent times. LULC is evaluated in this
research using the Sat 4, Sat 6, and Eurosat datasets. Various spectral feature bands are involved,
but unexpectedly little consideration has been given to these characteristics in deep learning models.
Due to the wide availability of RGB models in computer vision, this research mainly utilized RGB
bands. Once the pre-processing is carried out for the images of the selected dataset, the hybrid feature
extraction is performed using Haralick texture features, an oriented gradient histogram, a local Gabor
binary pattern histogram sequence, and Harris Corner Detection to extract features from the images.
After that, the Improved Mayfly Optimization (IMO) method is used to choose the optimal features.
IMO-based feature selection algorithms have several advantages that include features such as a
high learning rate and computational efficiency. After obtaining the optimal feature selection, the
LULC classes are classified using a multi-class classifier known as the Multiplicative Long Short-Term
Memory (mLSTM) network. The main functionality of the multiplicative LSTM classifier is to recall
appropriate information for a comprehensive duration. In order to accomplish an improved result in
LULC classification, a higher amount of remote sensing data should be processed. So, the simulation
outcomes demonstrated that the proposed IMO-mLSTM efficiently classifies the LULC classes in
terms of classification accuracy, recall, and precision. When compared with ConvNet and Alexnet,
the proposed IMO-mLSTM method accomplished accuracies of 99.99% on Sat 4, 99.98% on Sat 6, and
98.52% on the Eurosat datasets.

Keywords: accuracy; improved mayfly optimization; land use and land cover; multiplicative long
short-term memory; precision

1. Introduction

The classification of LULC using remote sensing imagery has grown in importance in
a number of applications in recent years [1]. The data are especially important for main-
taining sustainable growth and transport systems due to their spatial features [2,3]. One
of the vital information sets for urban planning in describing the complex nature of the
urban environment is LULC categorization maps. Because they offer up-to-date data for
metropolitan environments, remote sensing systems have been increasingly popular for this
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purpose subsequently [4]. The primary methods for generating LULC maps for urban areas
using remote sensing products are image classification techniques [5]. Every urban-related
analysis requires the most recent data since urban surroundings are dynamic. So, in order
to collect spatio-temporal information for the urban environment that is not only connected
to the current condition but also to the previous, sustainable and effective urban plan-
ning organizations require creative concepts and methodologies [6]. The majority of this
data is now taken from any kind of geographical data that already exists and is gathered
through statistics, surveys, mapping, and digitizing from aerial photos [7]. Although, for
big metropolitan contexts, the statistical data is typically coarse at both the spatial and
temporal scales. Additionally, measuring and modeling are expensive and time-consuming,
particularly for urban planning indicators that need to be updated frequently. The develop-
ment of satellite observations and the improvement of computerized automation classifiers
have significantly increased the accuracy and efficacy of vegetation remote sensing classifi-
cation [8]. The dependability of land cover products should be assessed in order to provide
reliable information regarding land cover [9]. The LULC classification seeks to uniformly
classify landforms at different scales. This classification is crucial to the development of
standardized maps that aid in the formulation of plans and decisions. Estimates have been
made using LULC maps’ agricultural output research into identifying urban change [10].

The image classification is conducted using parametric methods [11] such as Maximum
Likelihood (ML) and non-parametric methods such as Random Forests and Support Vector
Machines (SVM) (RF), and thorough per-pixel testing has been performed with Artificial
Neural Networks (ANN) Image classification exercises [12]. The current remote sensing
images have two primary problems: The first includes measuring or assessing smaller areas;
remote sensing is an expensive research method. Secondarily, a special type of training is
required to evaluate the remote sensing images [13]. Therefore, deploying remote sensing
technology over an extended period of time is expensive since device operators must
acquire more training data. Researchers in LULC classification have developed numerous
machine learning strategies to deal with these issues [14]. Existing deep learning techniques
in the classification of LULC have suffered from irrelevant feature selection. Irrelevant
features selected in the model have biased towards misclassification [15]. Some of the
visual features of the images of various classes in LULC are highly similar. Some classes
commonly share the similar features that tend to misclassification [16,17]. The over-fitting
problem occurs in deep learning models due to irrelevant feature selection and more
training of the model. Optimal and adaptive feature selection helps to highly reduce
the overfitting problem in classification [18]. mLSTM has demonstrated an encouraging
outcome in the classification of land use in light of recent advancements in the space sector
and the expansion of satellite image reliability [19]. The best features are then chosen
using the IMO algorithm, which consist of a quick convergence rate and is simple to use in
grassland, barren land, and tress [20]. The main contributions of this research are specified
as follows:

• After collecting the images from Sat 4, Sat 6, and Eurosat datasets, the feature vectors
are extracted from pre-processed images that significantly decrease the semantic space
between the feature subsets, which helps to achieve better classification.

• Next, the feature selection is accomplished using the IMO algorithm to select the
discriminative features, wherein this mechanism significantly decreases the complexity
and computational time.

• The selected features are given to the Multiplicative LSTM (mLSTM) network to
classify the event types. The effectiveness of the mLSTM network is validated by
means of precision, accuracy, and recall.

The structure of this research is specified as follows: Section 2 represents the literature
review based on satellite image classification. Section 3 explains the proposed method
along with the mathematical equations. Section 4 represents the simulation results of
the proposed method and its comparative analysis with existing methods. Finally, the
conclusion is stated in Section 5.
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2. Literature Review

Several techniques have been established by scholars in the field of satellite image
classification. Here, detailed surveys about some significant contributions to conventional
studies are demonstrated.

An LULC classification with U-Net has been proved by Jonathan V. Solórzano et al. [21]
to increase accuracy. The goal was to assess U-nets for Sentinel-1 and 2 images to provide a
thorough LULC classification in a tropical region of southern Mexico. Additionally, this
assessment compares the outcomes of the U-net and Random Forests (RF) algorithms
and evaluates the influence of image input on classification accuracy. Since only spectral
characteristics are used in LULC classification, the U-net concludes both spatial and spectral
features. Additionally, natural forests and crops have different spatial configurations; the
coupling of Synthetic Aperture Radar (SAR) and Multi-Spectral (MS) including U-net aids
in the distinction between the pair.

The Eurosat Dataset with Deep Learning Benchmark for LULC classification was
given by Helber et al. [22]. The proposed deep Convolution Neural Networks (CNN)
offer values for this innovative database with the spectrum portions. Total classification
performance was improved using the proposed approach dataset. The classification scheme
offers the door to a variety of Earth observation technologies. Furthermore, deep CNN has
been used to identify patterns in LULC, as well as improve the geometrical parameters.
The map failed to include a large portion of the office buildings that were affected by
environmental issues.

Deep AlexNet with minimal amount of trainable variables for satellite image classifi-
cation has been proven by Unnikrishnan et al. [23]. The accuracy of spatial and spectral
data was examined using deep learning algorithms in conjunction with CNN. The AlexNet
design was developed with two-band data and a limited portion of filters, and high-level
characteristics from the tested model were able to categorize distinct LC classes in the
database. In remote sensing studies, the proposed structure with fewer training data re-
duced the current four-band CNN to frequency groups and decreases the number of filters.
Large receptive fields present in the network make it difficult to scan for all characteristics,
resulting in low performances.

To improve classification accuracy, Deep Transfer Learning for LULC classification has
been demonstrated in [24]. In this study, transfer learning methods such as Visual Geometry
Group (VGG16) and Wide Residual Networks (WRNs) were used for LULC classification,
utilizing red–green–blue form of the Eurosat data. Additionally, data augmentation has
been exploited to assess and validate the efficiency and computational complexity. The
limited-data problem was overcome through the recommended manner, and maximum
accuracy was accomplished. In spite of utilizing similar data augmentation methods, it
exposed that the Wide ResNet-50 generated improved outcomes when compared with
VGG16. The class predictability was the only variation observed in the accuracy, apart from
that, Wide ResNet-50 provided maximum scores, and its learning patterns were equivalent.

Jayanthi and Vennila [25] presented an adaptable supervised multi-resolution tech-
nique for satellite image categorization using the Landsat dataset. The mechanisms of
satellite image processing are developed to identify the various objects in satellite images.
The suggested versatile supervision is a multi-resolution selection that improves precision
and accuracy by using a technique of exploitation and trial samples. Here, large amounts
of satellite data accurately transferred quickly but still pose a significant difficulty in this
procedure because of moving components, and no sensor has combined the best spectral,
geographical, and temporal resolutions.

LC Dataset with CNN for satellite image classification was provided by
Emparanza et al. [26] to improve precision, accuracy, and recall. The suggested model
was created by an aggregation of two CNN classifiers that specialize in recognizing water
areas. This new methodology has shown to be substantially faster and more effective across
the board. However, in order to achieve higher accuracy for land cover classification, CNN
needs large amounts of training samples, highly dependent land cover features, prediction
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quality, and dataset reliability. Due to those factors, certain small classification errors have
been identified.

For satellite image categorization, Zhang et al. [27] introduced the CNN-Capsule
Network (CapsNet) with the UC Merced and AID dataset. The innovative CapsNet design
employs the capsule to substitute the neuron in the standard network that was suggested
to maintain the geospatial data from the CNN. In addition, the capsule is a vector that
may be used to understand part–whole relationships within an image by representing
internal attributes. While using the fully connected layer after the classification algorithm
reduces the two-dimensional extracted features into a one-dimensional feature map, it
takes considerably too long to identify the subclasses.

Multi-spectral satellite data on land cover categorization based on deep learning
approaches have been proven by He and Wang [28]. A spectral–texture categorization
classifier was developed utilizing wavelet transform’s exceptional texture collection ca-
pabilities to acquire relevant details to enhance the spectral feature set, paired with deep
learning for feature extraction and selection. For the assessment, multi-spectral imaging
satellite data and field measured data were employed. Research findings demonstrate
that the suggested approach outperforms exploratory factor analysis, regression methods,
and neural networks in terms of improving multi-spectral picture classification accuracy.
According to the findings, the various formations of the classed regions generated using the
suggested arrangement are well-formed. However, this approach falls short in characteriz-
ing how changes in land cover relate to a rise or fall in ecosystem function. Furthermore,
the evaluation index fails to capture the scope and rate of change effectively.

From the overall literature works, still, there is a significant need for information about
the environment and natural resources; many maps and digital databases that are already
in existence were not especially created to fulfil the needs of different users. The kind of
classification or legend employed to explain fundamental facts such as land cover and
land use is one of the primary causes, while being typically underappreciated. Many of
the current classifications are either focused on a single project or use a sectoral approach,
and they are generally not comparable with one another. Although there are numerous
categorization systems in use around the globe, no single one is universally recognized
as the best way to categorize land use or cover. In order to overcome this, this research
created a new land cover classification system name called IMO-mLSTM. The suggested
methodology is extensive in that it can easily handle any identifiable land cover found
anywhere in the world and is applicable at any size. Additionally, the system can be
used to evaluate the coherence of current categories, which is clearly described in the
following sections.

3. Proposed Method

In this research, the elements or features that are found on the Earth’s surface are
referred to as land usage and land cover. The Sat 4, Sat 6, and Eurosat are used in this work
for experimental research. After gathering the satellite images, pre-processing is conducted
using normalization and histogram equalization, which are used to enhance image quality.
After normalizing the collected satellite images, feature extraction is carried out to extract
the feature vectors from the images utilizing the HOG, LGBPHS, HCD, and Haralick texture
features. Using the Improved Mayfly Optimization (IMO) algorithm, feature selection is
carried out after the feature vectors are extracted. After extracting the optimal features,
the Multiplicative Long Short-Term Memory (mLSTM) network is exploited for classifying
the LULC classes. The general process of the satellite image classification is depicted in
Figure 1.
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3.1. Image Collection

The statistical investigation is applied using the Sat 4, Sat 6, and Eurosat databases to
distinguish objects in farming environments. Sat 4 contains 500,000 remote sensing data
divided into four categories. Every spatial data image is divided into six LC types. Figure 2
shows an example image from Sat 4 and Sat 6 [23,29].
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of which comprises 2000–3000 images. Commercial establishments, motorways, and resi-
dential complexes are LULC-type data. Figure 3 displays a sample image of the Eurosat
database [22,30].
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3.2. Image Pre-Processing

To increase the image quality, min–max [31] and z-score normalization procedures are
used once the satellite data are collected. Equations (1) and (2) offer general formulas for
normalization procedures.

I_out = (I_in−Min)
newMax− newMin

Max−Min
+ newMin (1)

where, MinandMax are declared as a minimum and maximum intensity standard; the
image following the normalization is stated by I_out, I_in is stated as an actual satellite
image, and the maximum and minimum intensity value is represented as Max −Min,
which ranges from 0 to 255. In z-score normalization, the data are normalized with respect
to their mean (µI_in) and standard deviation (δI_in). For z-score, a normal distribution is
often assumed. The distribution to the left and right of the origin line has not been equal if
the data are unbalanced. Therefore, I_out is specified in Equation (2),

I_out =
I_in− µI_in

δI_in
(2)

This normalizing method relies on a mean and standard deviation of the data that
might change over time. These normalization methods are helpful for maintaining the
linkages between the original input data. Normalization is the finest method for image
enhancement since it improves image quality without losing image information [32].

3.3. Feature Extraction

The excellent discriminative strength and partial invariance to color and grayscale
images are two significant advantages of feature extraction methods. After normalizing
the acquired satellite images, the next are utilized to extract features from the images:
Histogram of Oriented Gradients (HOG), LGBPHS, and Haralick texture features such as
brightness, coherence, frequency, homogeneous, variance, angular second-moment feature,
and Harris Corner Detection (HCD). Since satellite images often cover a significantly bigger
area, they have more extensive scientific uses. Airborne images are more suitable for
smaller-scale applications such as advertising and marketing since they are captured from
a lower height and therefore cover a smaller region. The high-resolution spatial data are
collected from airborne imaging, which is frequently employed in this research. Almost
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any area of the Earth’s surfaces may be imaged in great detail at any time using airborne
platforms, which also make it easier to gather data. These airborne images are converted
into gray scale for further processing.

HOG: The HOG feature descriptor effectively captures the gradient and edge struc-
ture of the objects in satellite images. However, the HOG feature descriptor operates on
localized cells, maintaining object orientation as an exception to photometric and geometric
invariance. This action aids in identifying changes that appear in vast spatial regions. This
classifier effectively preserves the gradient in satellite images, in which the vectors are
not aligned properly. This process aids in the detection of changes in wide spatial areas.
HOG is usually focused on the gradient direction that builds up over images of a small
spatial region, such as a cell. The local 1-D histogram is collected by the HOG descriptor
in each cell. The previous procedure involved gathering the local histogram over a large
geographic area, usually a block of cells, then using the information to normalize every cell
in the block. In this instance, the detection window is positioned high above the grid.

LGBPHS: Using various orientation and scale Gabor filters, the pre-processed satellite
images are first modified to create numerous Gabor Magnitude Pictures (GMPs). Each GMP
is then transformed into a Local GMP (LGMP), which is further divided into rectangular
areas with distinct histograms and sizes. Thus, to create final histogram sequences, the
LGMPs of every LGMO map are summarized. Every Local Gabor Binary Pattern (LGBP)
map is then further divided into non-overlapping rectangle areas to precise specifications,
and histograms are calculated for every region. Finally, the LGBP histograms of every
LGBP map are aggregated to produce the image.

Haralick Texture: In terms of contrast, energy, entropy, homogeneity, correlation, and
angular second moment, the Haralick features are 2nd order statistics, which depict the
overall average degree of correlation between the pixels. This illustrates several measurable
textural properties generated from GLCM, a well-liked and widely used statistical measure
of textures based on the spatial interdependence of gray images. It frequently results in
precise extraction that is resilient in different rotations. The spatial gray-level distribution
is represented in two dimensions by the GLCM. The gray-level histogram is used to obtain
the features after creating the co-occurrence matrices. The resulting feature vector is created
by the calculated features.

Harris Corner Detection (HCD): These HCD features are exploited to divide the back-
ground and foreground data. With each configuration, moving the window along a corner
point would result in a noticeable change in luminance. In the front of the fingerprints,
Harris’ point is significantly more intense than it is in the background. This HCD uses
the gray disparity of images to extract corner points as a modification or expansion of the
Moravec corner detection. A grayscale image I and window w(x, y) are assumed to be
deliberated through movements of u in x-direction and v in y-direction.

3.4. Feature Selection

This procedure is deliberated to be an issue of global combinatorial optimization that
tries to remove unnecessary, noisy, and redundant data and number of features and pro-
duce standard classification accuracy. Once the feature extraction is complete, the process
of feature selection is deliberated using the IMO algorithm. Traditionally, the brute-force
algorithm attempts to provide systematic relation among presented candidates, and outlier
data instances have less relation with other features, but the problem concerned in this
technique was higher computational time during the large datasets. During Sequential
Forward Selection (SFS), features are consecutively included to a vacant candidate set
till the features do not reduce the standard. Contextual Bandit with Adaptive Feature
Extraction is a cluster-based model that is usually applied for unlabeled data or unsuper-
vised classification. In supervised learning, applying Contextual Bandit with Adaptive
Feature Extraction tends to result in the loss of information in network learning. This
research is supervised classification or based on labeled data, so the Contextual Bandit
with Adaptive Feature Extraction of cluster technique is not required for this model. These
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existing feature selection methods do not adaptively select features and tend to select many
irrelevant features for classification. So, an optimization algorithm called Improved Mayfly
Optimization is introduced in this research that learns the features adaptively and selects
the relevant features. Similarly, IMO is less complex compared with the SFS, brute-force
algorithm, and Bandit with Adaptive Feature Extraction. All potential combinations of
attributes selected from the dataset make up the discrete search space. Considering the
low number of features, it could be probable to arrange all the possible feature subsets. In
order to determine its own behavior, the improved mayfly uses more group information
that confirms the group diversity, thus progressing the stability among exploration and
exploitation to improve efficiency.

3.4.1. Mayfly Optimization Algorithm

For the MO approach, mayflies should be separated into male and female entities.
Additionally, because male mayflies are always strong, they will perform better in augmen-
tation. The MO uses equivalent parameters as PSO, adjusting their positions depending
on the current position pi(t) and velocity vi(t) at the current iteration count. To update
their positions, all males and females apply Equation (3). As an alternative, their velocity is
updated in different manners.

pi(t + 1) = pi(t) + vi(t + 1) (3)

The velocity is modified based on current fitness f (xi), and best fitness in previous
actions is stated as f

(
xhi

)
.

IF f (xi) > f
(

xhi

)
, the male mayflies update their current velocities, and their preced-

ing actions are stated in below Equation (4):

vi(t + 1) = g.vi(t) + α1e−βγ2
p
[
xhi
− xi(t)

]
+ α2e−βγ2

g
[
xg − xi(t)

]
(4)

where g is stated as a variable count. α1, α2, and β are exploited as constants. The Cartesian
spacing is defined as γp and γg. The array’s distance is the Cartesian distance that is
represented below in Equation (5):

||xi − xj|| =
√

n

∑
k=1

(
xik − xjk

)2
(5)

Alternatively, IF f (xi) < f
(

xhi

)
, the male mayflies could modernize their quickness

from the current location through a dance coefficient d, which is represented in Equation (6).

vi(t + 1) = g.vi(t) + d.γ1 (6)

where γ1 and γ2 represent the indiscriminate amount in the distribution and are identified
within a range [–1, 1]. As an outcome in the ith female mayfly, IF f (yi) < f (xi), Equation (7)
is stated as:

vi(t + 1) = g.vi(t) + α3e−βγ2
m f [xi(t)− yi(t)] (7)

where α3 is referred to as an alternative constant that is applied to stabilize the rapidity.
Cartesian distance in the middle of them is represented as γm. IF (yi) < f (xi), the female
mayflies adjust their velocities until the previous runout in the course of supplementary
dance coefficients f l, which are expressed as Equation (8).

vi(t) = g.vi(t) + f l.γ2 (8)

Their kids progress arbitrarily from their moms, as seen in Equations (9) and (10), respectively.

o f f spring1 = L×male + (1− L)× f emale (9)

o f f spring1 = L× f emale + (1− L)×male (10)

L is declared as subjective data in Gauss distribution.
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3.4.2. Improved MO Algorithm

According to the previous equations, Candidates vary their velocities randomly in
particular environments. In complex circumstances, efficient systems might be used to
adjust the velocities. The global best candidate is chosen by comparing the present velocities
and additional weighted distance to modify specific velocities. In addition, Equation (11)
determines whether the balanced distance’s halves appear as follows:

vp = αie
−βγ2

j
(

pj − pi
)

(11)

If the distance between the jth and ith individuals is prolonged, it seems that γj
is superior. Consequently, if pj is distant from pi, it updates its velocity with a lesser
magnitude, while pj is near to pi, it updates with a large magnitude. Thus, Equation (11)
should be changed according to the circumstance, as indicated in Equation (12):

vp = αie
− β

γj
(

pj − pi
)

(12)

Table 1 shows the extracted and selected feature vectors after exploiting the IMO
method. While referring to Table 1, from the available datasets, the outcomes (features) are
extracted. Those features are extracted based on a filtered process which depends on the
dataset’s general properties (some measure such as correlation), such as correlation with
the multi-variate regression. IMO-based feature selection techniques remove the redundant
and noisy data to choose a subset of appropriate features by means of Improved Mayfly
Optimization algorithms to improve classification outcomes, which are usually quicker,
more effective, and minimize overfitting.

Table 1. Selected feature vectors.

Datasets Extracted Features MO Selected
Features

IMO Selected
Features

Eurosat 9000× 55 9000× 49 9000× 43
Sat 4 5000× 38 5000× 32 5000× 27
Sat 6 8700× 50 8700× 46 8700× 40

By analyzing Table 1, it clearly shows that the proposed IMO-based feature selection
reduces the number of extracted features from the collected dataset (Eurosat, Sat 4 and
Sat 6) when compared with MO-based feature selection. Table 1 denotes that the proposed
IMO selected 9000 images with 43 lengths of features in the Eurosat dataset; wherein the
Sat 4 dataset, 5000 images with 27 lengths of features were selected, and in the Sat 6 dataset,
8700 images with 40 lengths of features were selected.

3.5. Classification

LSTM is a type of deep learning model for image classification which has been shown
to achieve the highest level of accuracy [33]. An LSTM network can be used to train a deep
neural network to categorize system data. In LSTM, IMO-selected features are used as
inputs, and the number of classes is considered as output. LSTMs perform considerably
better since they are skilled at remembering particular patterns. As they pass through
each layer, the relevant data are saved and the irrelevant data are eliminated in each
and every cell. The default behavior of the multiplicative LSTM classifier is to recollect
relevant data for an extended period. To achieve a better result in LULC classification,
more remote sensing data must be processed. The mLSTM classifier is the preferred
place for LULC classification when this factor is taken into account. The mLSTM classifier,
in particular, is made up of a succession of mLSTM units that contain quasi-periodic
information for extracting long- and short-term relationships. The supervised classification
approach exploited in this research is the mLSTM classifier. The theory behind supervised
classification is that a user can select testing image values that are reflective of some
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classes present in these images and can then inform the data visualization tools to use
certain training data as references for categorizing all other images. Multiplicative LSTM
models appear to gain embedding matching for secondary operational motifs to improve
the quality.

3.5.1. Process of LSTM

The data flow in and out of the internal positions of system is managed by a sequence
of multiplicative gates in the widely used RNN design, which is known as LSTM. There
are a number of marginally distinct LSTM variants employed in the trials. The hidden state
obtains the inputs from the input layer, which is stated as xt, and its previous hidden state
is represented as ht−1, which is formulated in Equation (13)

ĥt = Whxxt + Whhht−1 (13)

The LSTM consists of 3 gating units—one is input gate i, second is output gate o,
and third is forget gate f for recurrent and feed-forward networks, which are expressed in
Equations (14)–(16):

it = σ(Wixxt −Wihht−1) (14)

ot = σ(Woxxt −Wohht−1) (15)

ft = σ(W f xxt −W f hht−1) (16)

Here, the logistic sigmoid function is stated as σ. f decides the quantity of prior
internal state ct−1 that is kept, while i manages the quantity of input to every hidden unit
to internal state vector ct. With the help of f , the network is able to decide if the data
ought to be stored and rewritten during every time interval. Updating the internal state is
performed through Equation (17),

ct = ft � ct−1 + it � tanh
(

ĥt

)
(17)

The amount of every unit’s activation is conserved and determined by the output
gate. It enables the LSTM cell to store data that may become important in the future but is
not necessary for the current output. The concealed state’s final output is represented by
Equation (18).

ht = tanh(ct) � ot (18)

The capacity of the LSTM to regulate how data are stored in every unit was gener-
ally effective.

3.5.2. Multiplicative LSTM

Like any other NN, mLSTM has the potential to have several hidden layers. The
following hyper-parameters are used in MLSTM. They are, initial learning rate (0.001),
Neurons (100), Layers (10), and Epoch (100) with Adam optimizer. The mLSTM, a hybrid
design which integrates the hidden-to-hidden transition of RNNs by the LSTM gating
framework, is suggested for controlling the over-fitting problem. By connecting each gating
unit in the LSTM to the intermediate state mt of the RNN, the conventional RNN and LSTM
designs can be merged to create the following Equations (19)–(23).

mt = (Wmxxt) � (Wmhht−1) (19)

ĥt = Whxxt + Whmmt (20)

it = σ(Wixxt −Wimmt) (21)

ot = σ(Woxxt −Wommt) (22)

ft = σ(W f xxt −W f mmt) (23)
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Set mt and ht dimensions to be the same for all the trials. A network with 1.25 times
as many recurrent weights as LSTM for identical hidden layers is produced by choosing
to share mt over every LSTM unit category. This architecture aims to combine the ex-
tended time lag and overall functioning of LSTMs with the adaptable input-dependent
transitions of RNNs. It might be simpler to control the transitions that arise from the
factorized hidden weight matrix. More adaptable input-dependent transition patterns than
conventional LSTM and RNNs are made possible by the supplementary sigmoid input and
f , which are present in multiplicative LSTM. Figure 4 shows the graphical depiction of
multiplicative LSTM.
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Landscape metrics for LULC classification are a less-explored aspect of spatial analysis
and image classification. This study demonstrates how several shape- and size-associated
landscape measurements may be used as input layers in the categorization process. Pre-
cision, recall, and accuracy are used to assess the suggested model’s performance in this
study. Equations (24)–(26) represent the mathematical formulations of accuracy, recall,
and precision.

Accuracy =
TP + TN

FN + TP + TN + FP
× 100% (24)

Recall =
TP

TP + FN
× 100% (25)

Precision =
TP

TP + FP
× 100% (26)

where TN is stated as true negative, FN is specified as false negative, TP is signified as
true positive, and FP is signified as a false positive.

4. Results and Discussion

In this study, a MATLAB 2020a setting containing 128 GB RAM, i9 Intel core processor,
Windows 10 operating system (64 bit), 2080Ti Graphic Processing Unit (GPU) 22 GB, and
3 TB hard disk is exploited for simulation modeling. The suggested model’s effectiveness
is performed in the presence of a few standard models in this research. This system is a
thorough, standardized a priori classification system created to satisfy certain user needs
and guarantee a high degree of geographic accuracy. The classification uses a collection of
independent diagnostic criteria that are clearly stated, referred to as classifiers, to enable
correlation with pre-existing classifications and legends. As a result, this approach might
be used as a base to reference land cover.
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4.1. Performance on Sat 4 Dataset

This dataset is exploited to assess the projected method’s effectiveness in categorizing
four LC classes. With 70% training and 30% testing of the data, the overall performance is
confirmed for 500,000 satellite data. The proposed method with different classifiers: IMO
with LSTM was evaluated in Tables 2 and 3. Tables 2 and 3 clearly show that the proposed
IMO-mLSTM classifier increases LULC classification accuracy by up to 1% when related to
conventional classifiers. Figure 5 displays the behavior of precision and recall on the Sat 4
dataset. Figure 6 illustrates the behavior of accuracy on the Sat 4 dataset.

Table 2. Performance analysis on Sat 4.

Classes
IMO with LSTM Proposed IMO-mLSTM

Precision (%) Recall (%) Precision (%) Recall (%)

Trees 99.54 99.65 99.99 99.98
Grasslands 99.6 99.87 99.98 99.97
Barren land 99.07 99.12 99.92 99.99

Others 99.61 99.9 99.99 99.98
Overall 99.45 99.635 99.97 99.98

Table 3. Performance analysis of accuracy on Sat 4.

Classes
Accuracy

IMO with LSTM Proposed IMO-mLSTM

Trees 99.57 99.99
Grasslands 98.8 99.98
Barren land 98.9 99.992

Others 99.15 99.993
Overall 99.1 99. 94
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Tables 4 and 5 show the effectiveness of the proposed scheme using other optimizers
such as IMO. According to Tables 4 and 5, the suggested mLSTM classifier with IMO
performed better in LULC categorization. In comparison with IMO-LSTM, the suggested
model (IMO with mLSTM) demonstrated a maximum of 6.017% and a minimum of 1.652%
increase in LULC. Figure 7 presents the behavior of precision and recall on Sat 4. Figure 8
presents the behavior of accuracy on various classes with several algorithms, while Figure 9
shows the visual results of the Sat 4 dataset. Figure 10 shows the confusion matrix for the
Sat 4 dataset.

Table 4. Performance analysis of recall and precision on the Sat 4 dataset.

Classes
IMO with LSTM Proposed IMO with mLSTM

Precision (%) Recall (%) Precision (%) Recall (%)

Trees 93 95 96.61 99.98
Grasslands 94.9 96.1 97.92 99.96
Barren land 94.65 94.92 98.79 99.99

Others 93.7 94 98.69 99.98
Overall 94.06 95.005 97.99 99.98

Table 5. Performance analysis of classification accuracy on the Sat 4 dataset.

Classification Accuracy (%)

Classes LSTM IMO with LSTM Proposed IMO with
mLSTM

Trees 93 97.84 99.99
Grasslands 94.44 95.89 99.98
Barren land 94.5 96.92 99.992

Others 93.92 97.78 99.993
Overall 93.965 97.1 99.984
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4.2. Performance Analysis on the Sat 6 Dataset

The Sat 6 dataset is used to evaluate the developed efficacy while classifying six dif-
ferent types of LCs: grassland, water bodies, buildings, barren ground, roads, and trees.
The effectiveness of 40,500 satellite images is evaluated, with 70% of the data being trained
and 30% being tested. The proposed method (mLSTM-IMO) obtained better results when
compared with other classification methods such as LSTM and IMO methods in terms of
recall, and precision which are shown in Table 6. In comparison with other classification
strategies, the proposed mLSTM classifier performed better accuracy in LULC classification
which is shown in Table 7. The proposed mLSTM classifier achieved 99.94% precision,
99.97% recall, and 99.97% accuracy in this database. Figure 11 shows the performance
analysis of precision and recall on the Sat 6 dataset. Figure 12 shows the classification
accuracy on the Sat 6 dataset, while Figure 13 shows the visual results of the Sat 6 dataset.
Figure 14 shows the confusion matrix for the Sat 6 dataset.

Table 6. Performance analysis of precision and recall on the Sat 6 dataset.

Classes
IMO with LSTM IMO-mLSTM

Precision (%) Recall (%) Precision (%) Recall (%)

Barren land 97.012 98.86 99.94 99.99
Trees 98.34 99.1 99.99 99.99

Grasslands 98.65 98.47 99.85 99.93
Roads 98.12 99.23 99.56 100

Buildings 99.5 99.17 99.47 99.99
Water bodies 98.6 98.33 99.99 100

Overall 99.93 98.35 99.96 99.987

Table 7. Performance analysis of classification accuracy on the Sat 6 dataset.

Classification Accuracy (%)

Classes IMO with LSTM Proposed IMO-mLSTM

Barren land 99.1 99.99
Trees 99.12 99.93

Grasslands 98.15 99.99
Roads 98.44 99.99

Buildings 99.1 99.99
Water bodies 98.99 99.98

Overall 99.06 99.985
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Figure 14. Confusion Matrix for the Sat 4 dataset.

4.3. Performance Analysis on Eurosat

The proposed methodology for identifying 12 LULC classes in the Eurosat database.
The performance of 27,000 satellite data is evaluated in this scenario, with 70% of the data
being trained and 30% being tested. Table 8 compares the suggested performance of the
model to that of existing classifiers and optimizers such as LSTM and Particle Swarm
Optimization (PSO), Human Group Optimizer (HGO), and IMO. As a result, the suggested
mLSTM classifier with the IMO optimizer has an accuracy, recall, and precision of 97.80%,
98.80%, and 97.90%, respectively. The examination clearly shows that the proposed mLSTM
classifier by IMO optimizer displayed enhanced results in LULC classification. Figure 15
shows the performance of precision, recall, and accuracy on Eurosat, while Figure 16 shows
the visual results of the Eurosat dataset. Figure 17 shows the confusion matrix for the
Eurosat dataset.
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Table 8. Performance analysis of the proposed method on Eurosat.

Average Value

Classification Optimizers Precision (%) Recall (%) Accuracy (%)

PSO 87.89 90 88.2
LSTM HGO 90 92.02 90

IMO 91.38 92.91 90.09
PSO 92 93.98 95

mLSTM HGO 94.5 94 96.9
IMO 97.9 98.8 97.8
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4.4. Comparative Analysis

Table 9 shows the results of the comparison study between the proposed and previous
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that are evaluated to categorize images into dissimilar categories. The created method
was associated with prior networks in light of precision, recall, and accuracy in various
literature. In this paper, an enhanced mayfly optimization technique is integrated with the
mLSTM classifier to improve the performance of LULC. The suggested feature selection
approach enables the mLSTM classifier, which achieves higher performance of the classifier
by reducing the “curse of dimensionality”. Figure 18 shows the comparative analysis of
accuracy. In Table 9, the proposed IMO-mLSTM is compared with existing classes named
GoogleNet [22], 2-band AlexNet [23], 2-band ConvNet [23], ResNet-50 [24], AlexNet [29],
and ConvNet [29] in terms of accuracy.

Table 9. Comparative Analysis of Accuracy.

Approach Dataset Accuracy (%)

GoogleNet [22] Eurosat 98.18

2-band AlexNet [23] Sat 4 98.45

2-band ConvNet [23] Sat 4 99.66

ResNet-50 [24] Eurosat 99.17

AlexNet [29]
Sat 4 99.98

Sat 6 99.93

ConvNet [29]
Sat 4 99.86

Sat 6 99.90

Proposed Method (IMO-mLSTM)

Eurosat 98.52

Sat 4 99.99

Sat 6 99.98
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By reaching 99.17% accuracy, the results demonstrate that the ResNet-50 [24] has
outclassed the proposed best outcomes in terms of accuracy performance. While the
proposed IMO-mLSTM converted RGB into a grayscale image, the existing ResNet-50 [24]
used the RGB version of the EuroSAT dataset. As a result, the classification accuracy was
lower than the ResNet-50 that was already in place [24]. If the proposed method were to
train on RGB data (original data), it would be able to outperform ResNet-50 [24].

According to the reference [28], most land cover categorization methods rely heavily on
spectral data while ignoring spatial data. A multi-spectral land cover categorization system
is suggested that incorporates air spectrum data and deep learning. A spectral–texture
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method for conveying the multi-information of features is assembled utilizing second-
generation wavelet transform’s excellent depth information to seize the opportunity to
secure relevant details to complement the spectral feature space. The results demonstrate
that using a Deep Belief Network (DBN) to combine spectral–texture elements of images can
increase classification accuracy and extract the spatial patterns law of multi-spectral remote
data more effectively. Table 10 shows the comparative analysis of various approaches with
Landsat dataset.

Table 10. Comparative analysis of accuracy on the Landsat dataset.

Classification Accuracy (%)

Existing DBN [28] IMO with LSTM Proposed IMO with mLSTM

81 87 91

From Table 10, it can be clearly inferred that the proposed IMO with mLSTM achieves
a better classification accuracy of 91%, which is superior to existing DBN [28] and IMO
with LSTM which attain only 81% and 87%, respectively. Figure 19 shows the comparative
analysis graph for accuracy performance.
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5. Conclusions

This research proposed an effective strategy to classify LULC types using a validated
classification procedures name called multiplicative LSTM (mLSTM). The protocol uses
picture segmentation and essential data to improve initial reflectance-based categorization
and subsequent separation. The findings suggest that accurate classification requires more
than just spectral data gathering. The image features were extracted from the normalized
satellite data in this research. The improved Mayfly Optimization (IMO) technique was
then utilized to select the optimal vectors, which helped to improve the performance of
the classifier. An mLSTM classifier was provided with the optimum selected features as
input. While related to existing LULC classification techniques, the proposed technique
outperformed them on the basis of recall, accuracy, and precision. The simulation results
conclusively demonstrate that the suggested IMO-mLSTM approach attained the classifica-
tion accuracy of 99.99% on Sat 4, 99.98% on Sat 6, and 98.52% on Eurosat datasets. However,
the proposed IMO with mLSTM takes a longer time and requires more memory to train the
data. Therefore, future research will integrate a hybrid optimization-based strategy in the
developed framework for further enhancing LULC classification with less duration.
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