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Abstract: In an electric vehicle (EV), using more than one energy source often provides a safe ride
without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor
(UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction
in battery size; improved reaction, especially under overload; and an extension of battery life.
Improved results allow the energy to be used efficiently, provide a comfortable ride, and require
fewer energy sources. In this research, energy management between the PV system and the hybrid
energy storage system (HESS), including the battery, and UC are discussed. The energy management
control algorithms called Artificial Neural Network (ANN) and Aquila Optimizer Algorithm (AOA)
are proposed. The proposed combined ANN–AOA approach takes full advantage of UC while
limiting the battery discharge current, since it also mitigates high-speed dynamic battery charging
and discharging currents. The responses’ behaviors are depicted and viewed in the MATLAB
simulation environment to represent load variations and various road conditions. We also discuss the
management among the PV system, battery, and UC to achieve the higher speed of 91 km/h when
compared with existing Modified Harmony Search (MHS) and Genetic Algorithm-based Proportional
Integral Derivative (GA-PID). The outcomes of this study could aid researchers and professionals
from the automotive industry as well as various third parties involved in designing, maintaining,
and evaluating a variety of energy sources and storage systems, especially renewable ones.

Keywords: Artificial Neural Network; Aquila Optimizer Algorithm; battery; hybrid energy storage
system; photo-voltaic system; ultracapacitor

1. Introduction

Due to technological innovations in storage, adjustable speed drives, etc., the appeal
of electric vehicles (EVs) has increased recently [1,2]. The EV has fewer components than
traditional fossil fuel-powered automobiles. It has many benefits, such as being extremely
durable, quiet, and environmentally beneficial, among others [3]. In order to provide a
consistent supply of electricity for a longer distance, more than one electrical energy source
is recommended in EVs. In numerous nations, commercial solar-powered electric vehicles
have been introduced for public usage [4]. They utilize the battery as a storage device to
power an electric vehicle equipped with solar panels. While using multiple energy sources,
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a power electronic conversion is crucial in integrating the sources and supplying the EV
with power in accordance with its needs [5,6]. This pattern is also indicated by recently
proposed promotional initiatives from host agencies. Such a system is presented in [7],
which uses a battery, an ultracapacitor (UC), and an engine turbine as its energy sources.
Although, there are no emissions, the effectiveness is constrained for sophisticated power
electronic systems. In [8], an all-electric vehicle energy infrastructure is described that
utilizes UC as its sole and special energy source.

Overall, UC offers excellent characteristics throughout a range of temperatures [9],
excellent specific energy, relatively low impedance, quick charging using high current, and
ideal characteristics. Furthermore, it may discharge deeply and has a lengthy life span.
However, the issue is that it has a low energy density, which limits its travel distance [10,11].
Experts are working to increase the ultracapacitor’s power density so that it may function
like a battery. However, combining the battery with a supercapacitor in a vehicle, in which
each component executes its respective task based on its unique features, is a more realistic
solution [12,13].

In [14], the authors describe centralized converters for integrating the input sources,
whereas in [15], there is no feasible way to use the bi-directional power flow to recover en-
ergy from regenerative braking. Electricity from the input data is consistently implemented
to the loads using an appropriate switching mechanism by the input sources [16]. Because
the input resources are placed in a feedforward pattern, some transistors do, nevertheless,
face higher voltage strains. In [17], the load can receive the power from the inputs, whether
concurrently or sequentially. According to the given structure [18], recharging the input
source 1 from the source 2 is not allowed. Therefore, the converter must have a variety of
operational characteristics in buck or boost, based on the type of implementations, output
and input, etc. [19,20]. In order to overcome those problems, a novel method called Artifi-
cial Neural Network and Aquila Optimizer Algorithm (ANN–AOA) is proposed in this
paper. The major contribution of this research is as follows:

• The distribution of energy among the PV system, batteries, and UCs is suggested
using an energy management strategy (EMS).

• A hybrid energy storage system (HESS) architecture that stores PV energy utilizing
batteries and UCs is proposed.

• The ANN–AOA technique of managing the DC bus voltage and the buck-boost
converter current is presented. The DC bus voltage can be stabilized by offering a
control technique.

• An evaluation of the various topologies utilized to interface the load with the batteries
and UCs is discussed. Various models are used to describe this analysis, which details
the benefits and drawbacks of every structure.

The paper is organized as follows: Section 1 provides an introduction to the discussed
topic. Section 2 presents a review of related works. Section 3 refers to modeling of available
resources in an energy system. Section 4 describes the proposed method. Section 5 defines
the AOA method. Section 6 presents the results along with discussions on obtained
outcomes. Section 7 concludes this paper.

2. Literature Review

For better solar vehicle traction system performance, Cabranea et al. [21] showed the
modelling and simulation experiments of a battery–super-capacitor HESS. In this research,
the combination of SCs and batteries ensured the power control of the electric traction
network of the PV car to reduce the impact of peak current requirements on the battery
driving conditions. The experiment findings showed that the SC’s incorporation into the
PV car’s energy storage system was successful in reducing battery stressors and removing
peak current flow in the rechargeable battery. This tended to result in an extended battery
life, even though certain voltage and current sensing losses occurred as a result of the
designed sensors’ limited capabilities in the processor.
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With a PV-powered EV outfitted with a battery and SC, Savrun and Atay [22] presented a
multiport bi-directional DC/DC converter. The suggested topology was capable of bi-directional
power flow and offered continuous power to the EV motor while recovering braking energy.
The system incorporated H-bridge converters and quasi-Z-sources with an existing switch. The
recommended design, unfortunately, only offered restricted voltage gain into the HFTs’ turns
proportion and necessitated more circuits in order to add more connections.

Depending on heuristic techniques, Guentri et al. [23] showed how to manage and
control the energy of a solar panel using hybrid battery–SC energy storage. The purpose of
this study was to modify the HES’s voltage regulation architecture to accommodate these
strong control principles. The performance metrics and reliability of these approaches were
also evaluated. Under varying solar irradiation and load circumstances, the effectiveness
and stability of these devices and the battery management technique to synchronize be-
tween the batteries and SC were indeed evaluated, and numerous simulated scenarios
were provided. Peak overshoot and settling time were significantly reduced by the GA
optimization technique, resulting in enhanced efficiency. With the GA-based proportional
integral derivative (PID) controller design, the machine became problematic only after the
threshold of 67%.

A novel multiport DC/DC converter was presented by Sumner et al. [24] for im-
proving the development and performance of battery–SC HESS. The essential concept of
the control method for HESS is that the battery provides the low-frequency power/high
energy component, while the SC serves the high frequency/high amplitude elements of the
load power, which are typically approximated by a load voltage regulator. The inductors’
current fluctuations were further decreased by suggesting the adoption of a phase-shifted
carrier modulation approach, allowing for an additional decrease in inductor capacity.
However, the SC’s permitted voltage range was constrained by the higher transistor count
and the fact that voltage boosting was permitted at the source side.

The implementation and quality assessment of an integrated battery and UC energy
storage for EV was conducted by Kachhwaha et al. [25]. According to the analytical model,
the benefit of this configuration is that it effectively controls the DC link voltage of an electric
vehicle with a hybrid power source while placing the battery under the least amount of
load stress possible, extending the battery lifetime. By putting less strain on the battery, the
suggested HESS active power system provided effective and better control during the EV’s
driving operation. Due to the ultracapacitor’s performance being significantly decreased,
namely, beneath the level of state of charge (SOC), its value was approx. equal to 50%. The
SOC guidelines for batteries have been modified in accordance with industry and user needs.

An effective short-term energy management plan for a micro grid with EV and re-
newable electricity production was established by Al-Dhaifallah et al. [26]. Three different
charging methods, including unsupervised, supervised, and smart charging techniques,
were taken into consideration in order to evaluate the behavior of EVs. In micro grid
modeling power systems, constraints resulting from estimates in PHEVs, loads, pricing,
and energy resource power density are often taken into account. A modified harmony
search (MHS) method was applied to cope with the optimization planning of micro grids
while taking uncertainty into consideration. Even though the MG’s Day-ahead planning
was a crucial issue, it requires serious consideration.

Katuri and Gorantla [27] showed how to apply a math function-based (MFB) controller
with PI and PID to an EV driven by solar energy using ultracapacitors. By designing a novel
control system that included two distinct processors, the EV issue was overcome in this
application. A new control, known as an MFB controller, was developed using four distinct
mathematical operations, depending on the coding, and using a speed value as a baseline.
The MFB was also combined with a conventional controller to create a hybrid controller
(HC), which switched the energy sources to complement the velocity of the motor. The
charging rate and discharge rate were managed based on the solar energy’s accessibility.
These did not deliver effective outcomes such as those of IC engine automobiles and were
not straightforward.
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In order to integrate renewable resources, Suresh et al. [28] used a modular multi-
input bi-directional DC/DC buck-boost converter. The suggested four-port converter was
implemented with a lower component count and a more straightforward control scheme,
which increased the converter’s dependability and efficiency. Additionally, this converter
featured bi-directional power flow capability, which qualified it for use in an electric brake
to charge the battery. Power converters with buck-boost capabilities are used in all EV
power trains to handle the bi-directional power flow between the vehicle drive and the
energy supplies, even though the DC bus power cannot be adjusted for EV applications of
this converter.

3. Modelling of Resources

An intelligent energy system is typically composed of the three subsystems of produc-
tion, storage, and load. Depending on specific factors, such as the availability of renewable
resources, the services to be delivered, and the energy consumption profile, these com-
ponents may vary significantly. These are primarily the crucial variables that have an
important bearing on the design and optimization of the entire system. The combination
of various power sources and the use of high-quality parts also significantly affects the
system’s effectiveness and lifespan and can lower the cost of electricity for customers in
remote places.

3.1. Modelling the PV

Solar cells have a P–N junction, which aids in the conversion of solar energy into
DC electricity. The PV model’s equivalent circuit can be classified into two types: single
diode and double diode. For design and simulation investigations, the single diode model
is preferred. PV power is also primarily determined by high temperatures, production
factors, and geographic regions. The voltage and capacity of a PV system is defined by
interconnecting the PV panels in parallel or series [29]. In order to increase the maximum
power point (MPP), the maximum power point tracking (MPPT) technique is used in the
solar panel [30]. The PV cell’s V-I characteristics are shown in Figure 1.
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Equation (1) depends on the IM and VM, which denote the maximum current and
maximum voltage, respectively:

PMPPT(t) = IMPPT(t)×VMPPT(t) (1)

The current and voltage of MPPT are given in Equations (2) and (3), respectively:

IMPPT(t) = ISC

{
1− C1

[
exp
(

VM
C2 ×VOC

)]}
+ ∆I(t) (2)

VMPPT(t) = VM + µVOC·∆T(t) (3)

where VOC and ISC are stated as open circuit voltage and short circuit current, respectively;
capacitances are represented as C1 and C2; the voltage at maximum level is designated as
VM; and where C1, C2, ∆I(t) and ∆T(t) of (2) and (3) are defined in (4)–(7), correspond-
ingly [31].

C1 =

(
1− IM

ISC

)
× exp

(
− VM

C2 ×VOC

)
(4)

C2 =

(
VM
VOC

− 1
)
×
[

ln
(

1− IM
ISC

)]−1
(5)

∆I(t) = ISC

(
GT(t)
Gre f

− 1

)
+ α1,sc × ∆T(t) (6)

∆T(t) = Tc(t)− Tc,re f (7)

3.2. Modelling the Battery

The modelling of the battery [32] is shown in Figure 2.
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The battery voltage Vbat is given in Equation (8):

Vbat = E− Rbat ∗ Ibat (8)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2022, 15, 8540 6 of 21

The controlled voltage source is given in Equation (9):

E = E0− K
Q

(QD −
∫

idt)
+A.exp (−B

∫
idt) (9)

where E represents the no load voltage (V), E0 signifies the battery constant voltage (V),
Q characterizes the battery capacity (Ah), A designates the exponential zone amplitude
(V), K represents the polarization voltage (V), and B represents the exponential zone time
constant inverse (Ah)−1 [33].

3.3. Model the Ultracapacitor

The UC is referred to as one of the newest inventions for storing energy, particularly
for fixed structures, as shown in Figure 3.
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The design comprises a capacitance CUC in series through a corresponding series
resistance RUC. UC voltage VUC is specified as the role of SC current IUC defined by
Equation (10):

VUC = V1 − RUC × IUC =
QUC
CUC
−RUC × IUC (10)

where QUC is specified as the amount of electricity kept in a cell. The power of UC is given
in Equation (11):

PUC =
QUC
CUC

× IUC − RUC × IUC (11)

The capacity of UC and its resistance load are well-defined, correspondingly, by
Equations (12) and (13):

CUC = Celem
NP
NS

(12)

RUC = Relem
Ns

NP
(13)

The current and voltage of the load are assumed as the utility of the component voltage
and the component current, respectively, and are expressed in Equations (14) and (15):

VUC = Ns·Velem (14)

IUC = NP·Ielem (15)
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3.4. Modelling the PMSM

The modelling of a permanent magnet synchronous motor (PMSM) is based on the
hypotheses that the stator resistances and the self-inductances of all windings are equal [34].
The stator phase voltage equation of a PMSM motor is similar to the armature equation of
DC machines, which can be represented in a matrix form in Equation (16):Va

Vb
Vc

 = R

1 0 0
0 1 0
0 0 1

ia
ib
ic

+

L−M 0 0
0 L−M 0
0 0 L−M

 d
dt

ia
ib
ic

+

Ea
Eb
Ec

 (16)

where Va, Vb and Vc represent the stator phase voltages, Ea, Eb and Ec are the trapezoidal
back emf, ia, ib and ic are the motor input currents, and Ra, Rb and Rc represent the terminal
resistances. The L and M represent the self and mutual inductances, respectively. The
electromagnetic torque of PMSM motor can be estimated by Equation (17):

Te =
P

wm
(17)

where P = Eaia + Ebib + Ecic.
The electromagnetic torque of the PMSM motor in the synchronously rotating frames

can be estimated as in (3).

Te =
3
2

pn

2
[(

dLd
dθe

isd +
dϕrd
dθe
− ϕsq)isd + (

dLq

dθe
isq +

dϕrq

dθe
− ϕsd)isq] (18)

where ϕsq = Lqisq + ϕrq and ϕsd = Ldisd + ϕrd, in which pn is the number of poles; isd, isq,
Ld and Lq represent the d and q axes currents and inductances, respectively; θr represents
the rotor angle; and ϕrd, ϕrq, ϕsd and ϕsq are the rotor and stator flux linkages in d and q
axes, respectively. This electromagnetic torque equation can be simplified by converting it
into a stationary αβ frame, which is expressed as Equation (19):

Te =
3
2

pn

2
[
dϕrα

dθe
isα +

dϕrβ

dθe
isβ] (19)

where ϕrα and ϕrβ are the α and β axes rotor fluxes, respectively. The stator linkages are
estimated from the measured stationary α− β reference frame [35]. The stator flux linkage
and its vector position are given in Equations (20)–(22):

ϕsα = Vsαt− Rs

∫
isαdt + ϕsα(0) (20)

ϕsβ = Vsβt− Rs

∫
isβdt + ϕsβ(0) (21)

θs = tan−1 ϕsβ

ϕsα
(22)

where ϕsα(0) and ϕsβ(0) are the initial stator flux linkage values, which are given in
Equation (23):

ϕsα(0) = 0ϕsβ(0) =
2Kbπ

3√3
(23)

where Kb is the back emf constant, from the above equations, and the flux, torque, and
sector angle are estimated [36].

4. Proposed Method

In this study, an EMS for an EV is developed. Its sources of energy are PV systems,
batteries, and UCs, and its joining and converting components are power electrical circuits.
Behind the MPPT control approach, the solar panel might collect solar energy throughout
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the day to support the battery’s energy costs. The battery would immediately supply
the motor’s energy needs, which call for a DC source. The battery’s voltage drops very
little, since the energy demand is so low when the automobile is in idle mode. The motor
should produce a large current spike whenever the car is moving or ascending a slope.
This current impulse could cause a significant voltage drop in the battery, affecting the
DC outlet’s ability to produce quality power. Additionally, battery life is shortened by a
high current discharge. Therefore, one should connect the battery in conjunction to the UC
and its bi-directional DC/DC converter. The UC is powering up to its applied value while
the vehicle is in gear. A bi-directional DC/DC is regulated as a current source to deliver
the additional load current during current pulses in order to keep the battery power from
surpassing a predetermined level, preventing voltage drops, and extending battery life.
Figure 4 displays the overall block diagram in its original form.
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The MPPT operation to keep the battery charged is carried out via the boost converter.
In the timespan of MPPT, the battery voltage is regarded as stable. Only the output current
and voltage of the solar are taken into account when adjusting the boost converter’s duty
cycle. The motor is currently receiving direct power from the battery. A specific amount
of energy is stored using the upper capacitor and the bi-directional buck-boost converter
in the running phase and is discharged to provide impulse power in the accelerated and
ascending slope modes.

An effective result with fewer and smaller external components is provided by buck-boost
converters. With these few components, voltages can be stepped-up or stepped-down, and
they also provide a shorter working duty cycle and improved efficiency over a wide range of
input and output voltages. The DC/DC converter is employed when connecting a PV system
to control the DC-link voltage and raise the voltage. To connect the UC module, however, a
reversible DC/DC converter is required. There are many different DC/DC converter designs,
such as direct energy conversion and appropriate storage component topologies.
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Numerous benefits can be realized depending on how this energy system is set up.
Initially, the battery could immediately charge the engine without worrying about a voltage
drop, increasing efficiency. Moreover, battery life is prolonged since a significant current
discharge is prevented. Third, if necessary, this device can also gather a lot of response energy
by using a buck-boost converter to charge the top capacitor. Fourth, adding solar panels
increases the capacity of electric vehicles to cruise by absorbing energy from the environment.

4.1. Processing Data by ANNs

In general, a pre-specified number of power measurements of the PV system are used
in an ANN-based approach to automatically discover the global maximum power point
of the PV array. The technology eliminates the need for extra sensors that would have
provided data on the temperature of the PV modules and the operating parameters of
the environment by just requiring the measurement of PV voltages and currents. The
amount of time needed to generate the most power possible from the PV systems is roughly
constant and predetermined. The capability of the ANN to achieve the maximum and its
forecast accuracy increase with the number of power–voltage characteristic scansions. The
algorithm is inexpensive, requires little extra equipment, and is only slightly dependent
on changes in system parameters. The use of ANN models in the field of solar energy is
constantly evolving, especially in relation to PV systems.

Under varied irradiation intensities, the partially shaded PV module receives a consistent
amount of sunlight, while the shaded component receives very little. The partial circumstance
is characterized as the proportion of irradiance on shaded to non-shaded segments, and its
shaded ratio is established by the measuring of shaded portions. If a partial performance level
is recognized, the shading factor is used to completely analyze this situation. Moreover, it is
considered as the first step towards system monitoring and supervision. On the other hand,
assessment and detection are accomplished using ANN agents.

A standard ANN consists of input, hidden, and output layers. The output of the jth
neuron from the hidden layer is calculated in Equation (24):

ϕj(x) = f j

(
∑n

i=1 WjiXi

)
(24)

where f j(.) is the activation function for the jth node in the hidden layer, and Wji is the
weight connecting the jth hidden node with the ith input Xi. In the output layer, the lth
network output is given in Equation (25):

Yk = fk

(
∑n

j=1 Wkj ϕj(X)
)

(25)

where the weight connecting the kth output node with the jth node in the hidden layer is
specified as Wkj, and fk is referred to as the activation function of the kth node in the output
layer. The cost function for the kth sample data is described in Equation (26):

Ek = 0.5((YTk −Yk)
2) (26)

where YTk is the target output, and Yk is the network output. After completing the training
of an ANN, it could be utilized as a classifier to identify the section number for any specified
shading configuration.

4.2. Processing Data with ANN in MATLAB

The robust functioning, rapid tracking, non-linear system endurance, and off-line
training of ANN were all employed in this study. As a result, ANN-based PV MPPT
approaches have lately become popular. NNs are black box machines that collect input and
generate outputs without the need for a mathematical formula. Heating and irradiation
are represented by two neurons in the input layer. Ten neurons with nonlinear activation
functions are represented in the hidden layer; and just one neuron is represented in the
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output layer. As a result, each input neuron communicates with all hidden layer neurons,
but every hidden layer neuron interacts with both the output layer through weights, as
shown in Figure 5.
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These weights are adjusted once the ANN has been trained to recognize the bi-directional
causality among outputs and inputs. In addition to training the NN, the PV system modelling
in MATLAB/Simulink with the Levenberg–Marquardt (LM) back-propagation technique
was used to gather the data relating to the source and load. This algorithm was chosen due
to the fact that when compared to conventional methods it has a faster convergence and
higher accuracy. The output power is measured, along with the voltage related to the MPP for
various combinations of temperature and irradiation. These data were exploited to train the
network. Throughout the training stage, the “newff” function was utilized to stipulate the
count of the layer’s quantity, neurons, and activation function.

5. Aquila Optimizer Algorithm (AOA)

Here, the projected method, namely, the Aquila Optimizer (AO), is explained, formu-
lated, and discussed.
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5.1. Inspiration and Behavior

One of the most well-known raptors in the Northern Hemisphere is the Aquila. This
type of hawk is one of the most widely spreading species. The Aquila is an example of a bird
that is in the family “Accipitridae”. Its typical color is dark brown, with lighter golden-brown
feathers on its neck’s backside. This type of Aquila’s juveniles typically have faint white
markings on their feathers and a white tail. The Aquila catch a variety of prey, primarily
mice, squirrels, eidolons, beavers, raccoons, and other small mammals, using its quickness,
flexibility, strong feet, and long, hooked claws. In the natural environment, the Aquila’s
specific behaviors are visible. They are known to primarily employ four different hunting
techniques, each of which has a number of distinct advantages over the others. Depending
on the circumstances, many Aquila can deftly and swiftly switch among various hunting
techniques. In summary, this hawk is arguably the second-most knowledgeable and skilled
hunter following humans themselves. This fact was the primary source of inspiration for the
suggested AOA. Similar various activities were modeled in a simulation environment.

5.2. Initialization

The population of potential answers, given in Equation (27), is generated randomly
from the upper bound (UB) and lower bound (LB) of the particular problem, which serves
as the starting point for the optimization procedure in the population-based approach
known as AOA. In every cycle, the best so-far-obtained answer is roughly considered to be
the ideal solution.

X =



x1,1 . . . x1,j x1,Dim−1 x1,Dim
x2,1 . . . x2,j . . . x2,Dim
. . . . . . xi,j . . . . . .
...

...
...

...
...

xN−1,1 . . . xN,1−j . . . xN−1,Dim
xN,1 . . . xN,j xN,Dim−1 xN,Dim


(27)

The set of current candidate solutions, represented as X, are described in Equation
(28), where Xi denotes the decision values of the ith solution, N is referred to as the total
number of candidates, and Dim specifies the dimension.

Xij = rand×
(
UBj − LBj

)
+ LBj , i = 1, 2, . . . . . . . , Nj = 1, 2, . . . .., Dim (28)

The random number is denoted as rand, LBj refers to the jth LB, and UBj refers to the
jth UB of the specified issue.

5.3. Mathematical Design

The suggested AOA method models the Aquila’s behavior while hunting by acting
out each stage of the hunt. The following sub-sections describe a suggested mathematical
formula for the AO.

5.3.1. Exploration

In the first method (X1), the Aquila can identify the target region and choose the
optimum hunting location by swooping high in the air. Therefore, the AO broadly explores
from a high transcend to pinpoint the hunt location, where the Aquila’s fast soar with
vertical stoop activity occurs. This pattern is expressed quantitatively in Equation (29):

X1(t+1) = Xbest (t)×
(

1− t
T

)
+ (XM (t)− Xbest (t) ∗ rand) (29)
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where X1(t + 1) denotes the solution of subsequent iteration of t; Xbest (t) refers to the
best-obtained result till the tth iteration;

(
1−t

T

)
is exploited to manage the exploration; and

XM(t) refers the mean position that is computed in Equation (30):

XM (t) =
1
N ∑N

i=1 Xi (t), ∀j = 1, 2 . . . . . . , Dim (30)

5.3.2. Narrowed Exploration

In X2, this activity is statistically described in Equation (31):

X2 = (t + 1) = Xbest(t)× Levy (D) + XR (t) + (y− x) ∗ rand (31)

where Levy (D) refers to the Levy flight distribution function, which is computed through
Equation (32), where XR(t) is declared as a random solution obtained within [1 N] at the
ith iteration.

Levy (D) = s× u× σ

|v|
1
β

(32)

Constant s is set as 0.01, u and v are referred to as random figures among 0 and 1, and
σ is considered by means of Equation (33):

σ =


Γ (1 + β)× sin e

(
πβ

2

)

Γ
(

1 + β

2

)
× β× 2

(
β− 1

2
)

 (33)

where β is equal to to 1.5. In Equation (31), y and x are exploited to offer the spiral shape,
which are expressed in Equations (34) to (38):

y = r× cos(θ) (34)

x = r× sin(θ) (35)

where,
r = r1 ×U × D1 (36)

θ = −ω× D1 × θ1 (37)

θ1 =
3× π

2
(38)

where r1 lies between 1 and 20; U is equal to 0.00565; D1 ranges from 1 to the length of the
search space; andω is equal to 0.005.

5.3.3. Exploitation

In exploitation, this activity is statistically processed as in Equation (39):

X3 (t + 1) = (Xbest (t)− XM (t))× α− rand + (( UB− LB)× rand + LB)× δ (39)

where XM (t) refers to the mean value of the present solution at the tth iteration.

5.3.4. Narrowed Exploitation

In (X4), this activity is statistically processed as in Equation (40):

X4 (t + 1) = QF× Xbest(t)− (G1 × X (t)× rand )− G2 × Levy (D) + rand× G1 (40)
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where G1 refers to the AO movements and is expressed by Equation (42); G2 ranges from
2 to 0 and is described in Equation (43):

QF(t) =
2× rand− 1

t(1−T)2 (41)

G1 = 2× rand− 1 (42)

G2 = 2×
(

1− t
T

)
(43)

where QF(t) is given in (41), which is the function at the tth iteration; t and T refer to the
current and maximum iterations count, correspondingly.

An HESS encourages the use of PV energy generation and realizes the value that it
adds. In order to ensure the system operates reliably, this research looks at ways to increase
the charging station by introducing the objective function. The multi-objective capacity
optimization configuration model’s purpose is to establish the PV power, which is stated in
Equation (44):

f1 = max(PV) =
EHESS

∑T
t=1 PPV(t)

(44)

Figure 6 displays the flowchart of the proposed ANN–AOA method.
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The proposed ANN–AOA method provides better results of PV power, battery SOC,
and UC SOC at the end. Once the input is trained and tested with the ANN–AOA, the
output is checked with the possible results, e.g., PV required to achieve the maximum peak
power and also needed to sustain the SOC of both battery and ultracapacitor in order to
maintain the energy management between the specified sources and the electric vehicle.
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6. Results and Discussion

By utilizing the MATLAB/Simulink system model, results were produced to confirm
the effectiveness of the suggested EMS and control system. The suggested ANN–AOA sys-
tem’s evaluation was carried out using the MATLAB program. The outcomes considering
the battery, UC, and PMSM measurements are described in Table 1. For a constant load
(i.e., PMSM) during a 200 s time period, the HESS value is presented. Torque, battery SOC,
and motor RPM were all considered in the accomplishment of the suggested process. The
Urban Dynamometer Driving Schedule (UDDS) driving cycle was employed to assess the
performance of traction motor, which completely depends on vehicle ratings, such as the
battery and drivetrain values [37].

Table 1. Overall results of the proposed ANN–AOA system.

Rating of Battery

Internal resistance 0.24691 (Ohms)
Volumetric energy density 200–250 (Wh/L)

Exponential zone 216.9492 (V), 1.62 (Ah)
Fully Charged Voltage 235.5932 (V)

Energy Capacity 7.7885 (Ah)
Maximum capacity 8.7231 (Ah)
Discharging current 50, 100 [i1 , i2] (A)

Nominal discharge current 1.62 (A)

Rating of UC

Resistances [R1, R2, R3] 0.2, 90,100 (Ohm)
Initial Voltage 16 (V)

Maximum Voltage 270 (V)
Capacitances [C1, C2, C3] 2.5, 1.5, 4 (F)

Voltage dependent capacitor gain 0.95

Rating of PMSM

Armature inductance 0.000835 (H)
Flux linkage 0.17566

Number of pole pairs 4
Power rating 50 (kW)

Speed 3500 (rpm)
Stator phase resistance 0.18 (Ohm)

Voltage 500 (V)

Ratings of PV

Maximum generated power 305.226 (W)
Light generated current 6.0092 (A)

Diode current 6.3014·e−12 (A)
Ideality element 0.94504
Cells per module 96 (N/cell)

Open circuit voltage 64.2 (V)

The MATLAB simulation architecture of the ANN–AOA-driven HEV is shown in
Figure 7. This includes the UC, Ni-MH battery, HEV, and ANN–AOA as its main compo-
nents. As the primary source, the battery mainly provides the necessary energy to move
the car. The UC is then employed whenever the battery’s SOC is much less than 60%, and
the ANN–AOA regulator is also used to manage it.

This paper provides some practical suggestions for enhancing the MPPT’s functionality.
Even though many MPPT strategies have been used up to this point, significant changes
are always needed for MPPT to operate as efficiently as possible. Our study came to the
conclusion that the suggested ANN–AOA works effectively under a consistent solar intensity.
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According to Figures 8–10, compared to other control schemes, the suggested tech-
nique collected the most power.
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As summarized in Table 2, the suggested ANN–AOA method outperformed the separately
employed ANN and AOA techniques by achieving a maximum output of 92.930 kW. The
highest outputs extracted by the ANN and AOA were 88.209 kW and 90.238 kW, respectively.

Table 2. Analysis of PV power under various methodologies.

Techniques PV Power (kW)

GA-PID [23] 89.259
MHS [26] 90.821

ANN method 90.357
AOA method 92.924

Proposed ANN–AOA method 95.752
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While related with the current framework, this assortment offers minimal effort and
smaller magnitude with supplementary working highlights such as voltage limit and
enhanced speed. Energy density, power density, and productivity increased with the
assistance of the previously stated ESS. Likewise, the comprehensive cost was addition-
ally exceptionally less. The insurance of the battery and its expense was higher, since it
was straightforwardly relative to the cost of advancement and capability. If the vehicles
weight were to increase, the productivity would decrease, which raises the expense. The
charging/releasing cycle was expanded by utilizing UC.

While the parameters were already explained in the previous section, the discharge
characteristics of the NiMH battery’s nominal current is shown in Figure 11. The SOC of a
battery with and without ANN–AOA is shown in Figure 12.
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The battery’s SOC estimate protects the device from unforeseen disruptions and
guards against overcharging and over discharging that could damage the battery’s internal
structure. As seen in Figure 11, it was found that the ANN–AOA regulated the UC’s
charging and discharging features, which led to the development of the battery’s SOC.
Compared to other methods now in use, the ANN–AOA method had a longer lifespan. As
shown in Figure 12, the battery’s SOC was zero after 60 s. At that point, the ANN–AOA
instructs UC to provide the HEV with the required power. The SOC of UC is shown in
Figure 13.
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The evaluation of engine speed with and without use of the ANN–AOA technique is
shown in Figure 14, which depicts the level of speed that the PMSM motor can achieve.
Without an approach, a motor’s velocity is less closely tied to ANN–AOA. The ANN–AOA-
dependent HESS vehicle speed is tied to a rule-based technique that was examined using
two different segments: the Manhattan cycle, and the UDDS cycle.
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The vehicle’s speed, with and without the use of the ANN–AOA method, is shown in
Figure 15.

Energies 2022, 15, x FOR PEER REVIEW 19 of 21 
 

 

The vehicle’s speed, with and without the use of the ANN–AOA method, is shown 
in Figure 15. 

 
Figure 15. Analysis of vehicle speed with ANN and ANN–AOA. 

When combined with HEV and without ANN–AOA, the speed could be more fully 
utilized. As described in Table 3, it is clear that ANN–AOA-based electric vehicles reached 
an extraordinary speed of 91 km/h, which is substantially faster than current techniques. 

Table 3. Evaluation of vehicle speed under various methodologies. 

Approaches Maximum Speed of HEV (km/h) 
ANN–AOA-based HEV 91 

AOA-based HEV 86 
ANN-based HEV 83 

GA-PID [23] 84 
MHS [26] 87 

As the central component of this HESS, the bi-directional DC/DC converter manage-
ment is the subject of this paper’s numerical simulations. There is no emphasis on the 
boost circuit, although the energy from the solar array and its transport to the battery or 
demand is indeed significant in this study as a full system. This portion of the circuit’s test 
findings that are easily understandable and realized are not displayed. 

7. Conclusions 
This study presents a hybrid energy system for an all-electric vehicle. The control 

technique is examined together with a topology for integrating the energy sources, 
namely, a solar panel, battery, and UC. The architecture uses the fewest possible electronic 
converters, reducing loss while enhancing EV efficiency and battery capacity. The sug-
gested control approach is validated by the simulation results. As shown, large current 
battery discharge has been stopped. With the aid of the control methodology, switching 
between the UC charging and discharging states might also be realized seamlessly. While 
contrasted to the GA-PID and MHS algorithms that are already in use, the numerical sim-
ulations in MATLAB demonstrate that the suggested ANN–AOA approach is effective in 
anticipating the energy consumption for the next simultaneous interval and accomplishes 

Figure 15. Analysis of vehicle speed with ANN and ANN–AOA.

When combined with HEV and without ANN–AOA, the speed could be more fully
utilized. As described in Table 3, it is clear that ANN–AOA-based electric vehicles reached
an extraordinary speed of 91 km/h, which is substantially faster than current techniques.

Table 3. Evaluation of vehicle speed under various methodologies.

Approaches Maximum Speed of HEV (km/h)

ANN–AOA-based HEV 91
AOA-based HEV 86
ANN-based HEV 83

GA-PID [23] 84
MHS [26] 87

As the central component of this HESS, the bi-directional DC/DC converter manage-
ment is the subject of this paper’s numerical simulations. There is no emphasis on the boost
circuit, although the energy from the solar array and its transport to the battery or demand
is indeed significant in this study as a full system. This portion of the circuit’s test findings
that are easily understandable and realized are not displayed.

7. Conclusions

This study presents a hybrid energy system for an all-electric vehicle. The control
technique is examined together with a topology for integrating the energy sources, namely, a
solar panel, battery, and UC. The architecture uses the fewest possible electronic converters,
reducing loss while enhancing EV efficiency and battery capacity. The suggested control
approach is validated by the simulation results. As shown, large current battery discharge
has been stopped. With the aid of the control methodology, switching between the UC
charging and discharging states might also be realized seamlessly. While contrasted to
the GA-PID and MHS algorithms that are already in use, the numerical simulations in
MATLAB demonstrate that the suggested ANN–AOA approach is effective in anticipating
the energy consumption for the next simultaneous interval and accomplishes the EV’s
faster speed of 91 km/h. In the future, the architecture of the proposed framework could
be improved by adopting a hybrid optimization-based technique to further increase the
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battery capacity of HEVs. Outcomes of our studies may aid numerous parties, including
those from the automotive industry, as well as researchers and professionals involved in
designing, maintaining, and evaluating a variety of energy sources, especially renewables.
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