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Abstract
For fracture propagation, a novel DEM-based pore-scale thermal-hydro-mechanical model of two-phase fluid flow with

heat transfer in non-saturated porous materials with low porosity was developed. Numerical computations were performed

for bonded granular specimens, using a DEM fully coupled with CFD (based on a fluid flow network) and heat transfer,

which integrated discrete mechanics with fluid mechanics and heat transfer at the meso-scale. Both the fluid (diffusion and

advection) and bonded particles (conduction) were involved in heat transfer. The numerical findings of the coupled

thermal-hydraulic-mechanical (THM) model were first compared to the analytical solution of the classic 1D heat transport

problem. The numerical and analytical outcomes were in perfect agreement. Advection’s impacts on the cooling of a

bonded particle assembly were next numerically demonstrated for low and high Peclet numbers. Finally, the THM model’s

utility was proved in a thermal contraction test employing a bonded particle assembly during cooling, which resulted in the

creation of a macro-crack. The effects of a macro-crack on the distribution of fluid pressure, density, velocity, and

temperature were studied.

Keywords CFD � DEM � Fracture � Non-isothermal conditions � Porous materials � Thermo-hydro-mechanics �
Two-phase fluid flow

1 Introduction

The majority of physical phenomena in engineering chal-

lenges happen in non-isothermal environments. Further-

more, even if the physical system is initially in

thermodynamic equilibrium, physical processes or chemi-

cal reactions may cause local temperature fluctuations,

resulting in heat transfer. Only in a few circumstances may

the engineering problem under investigation be reduced to

isothermal conditions. As a result, numerous scientific

disciplines and technical applications, such as

environmental science, chemical and food processing,

powder metallurgy, energy management, geomechanics,

and geological engineering, are interested in understanding

heat transfer in particle systems. In the analysis of many

multi-field issues in porous and fractured materials, the

requirement to address the effect of heat transfer becomes

crucial. Diffusion, advection, and radiation are examples of

heat transmission mechanisms. Many nonlinear processes

affect complex coupled thermal–hydraulic–mechanical

(THM) systems, which include heat transfer, fluid flow,

and material deformation.

The most popular technique in THM models is a con-

tinuum approach, which is based on a mathematical

framework linking sets of differential equations to explain

thermodynamic, solid, and fluid mechanics laws, such as

finite element [19, 26, 31, 36, 39, 52], or finite difference

implementations [37]. Even though they are appealing for

macro-scale applications, continuum modelling approaches

based on the finite element method (FEM) or the finite

volume method (FVM) have significant computational and

continuity limitations when applied to discontinuous and
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highly deformable media like packed or fluidized beds and

fractured granular porous materials. Classical approaches

have tremendous numerical challenges generating suitably

fine meshes in porous media with low porosity (less than

around 15%), such as concrete or rocks [1]. When mod-

elling the crack initiation and propagation in porous

materials with low porosity, the problem is amplified dra-

matically (e.g. concrete or rocks). Discrete techniques,

such as the discrete element method (DEM) [13] or the

finite-discrete element method (FDEM) [49, 50], on the

other hand, have proven to be successful in modelling the

behaviour of particulate systems. The capacity to directly

capture and predict fracture and micro-crack evolution

through particulate materials is a benefit of DEM. Yan and

Zheng [50] created a 2D thermo-mechanical model based

on the FDEM (finite-discrete element technique) for

modelling thermal rock cracking, while Yan et al. [49]

created a 2D coupled thermal-hydro-mechanical model for

simulating rock hydraulic fracturing. The ability to antici-

pate coupled THM processes at the meso-scale has recently

been expanded because of DEM’s strength in realistic

simulations of the behaviour of fragmented particle sys-

tems. Various methods were adopted to combine DEM

with fluid flow and heat transfer methodologies, to connect

TH processes with DEM, direct numerical simulations

(DNS) could be used. Different numerical approaches (for

example, FEM and FVM) were applied to solve governing

equations. Deen et al. [14] suggested a method for imple-

menting submerged boundaries that did not require the use

of an effective diameter. THM processes in dense fluid-

particle systems were the subject of the approach. The

proposed approach was confined to invariant geometries,

topologies, and porosities of relatively high values

(porosities greater than those of concrete or rock). DNS-

DEM models, in reality, are limited to systems with fewer

particles than CFD models. The lattice Boltzmann methods

(LBMs) [10, 18, 51] rely heavily on the precise depiction

of solid–fluid interfaces and have the same numerical and

computational restrictions as DNS-DEM models.

To decrease computing costs and overcome numerical

restrictions when utilizing DEM to THM processes in very

dense fluid–particle systems with very low porosity (even

below 5%), the fluid flow and heat transfer models must be

reduced. Recently, most DEM-based THM models sepa-

rated fluid flow within reservoirs (pores, macro-pores, pre-

existing cracks, etc.) from the flow between reservoirs.

According to the assumption, the fluid in the reservoirs is

compressible, but the fluid flowing between the reservoirs

is incompressible. Cundall [11], Hazzard et al. [16], and

Al-Busaidi et al. [2] were the first to introduce and explore

the concept of simplification. In addition to highlighting

fluid characteristics, fluid flow regimes are separated. To

estimate the mass flow rates at the reservoirs’ boundaries,

the fluid flow regime in the reservoirs is stationary or close

to stagnation, while the fluid flow between the reservoirs is

laminar. In most cases, a Poiseuille flow model in pipes or

between two parallel plates is utilized to predict mass flow

rates. The pressure in the pore is calculated using either the

assumed equation of state [2, 16] or the Stokes equation

[7, 32]. All models assume a pure liquid or mixture flowing

in a single-phase barotropic fluid flow (without tracking

phase fractions). Different heat transfer models are com-

bined with coupled DEM–CFD models in this technique.

For each reservoir (cell) volume, Tomac and Gutierrez [46]

computed the energy conservation equation. The selected

energy conservation equation was related to energy trans-

port in an incompressible fluid’s laminar flow. Caulk et al.

[8] proposed a more advanced 3D DEM-based THM model

based on the framework of the pore-scale finite volume

(PFV) scheme, which was first proposed by Chareyre et al.

[9] and later extended by Scholtès et al. [38] for up-scaling

compressible viscous flow and oriented towards saturated

dense grain packing applications in geomechanics.

The purpose of this work is to show a new DEM-based

pore-scale hydro-mechanical model of two-phase fluid flow

in non-saturated porous materials with very low porosity

that is enhanced by heat transfer (e.g. for concrete or

rocks). Both the fluid (diffusion and advection) and the

bonded particles (conduction) were involved in heat

transfer. THM calculations were carried out numerically

using a 3D DEM in conjunction with 2D CFD (based on a

fluid flow network made up of channels) and 2D heat

transfer, which connected discrete mechanics, fluid

mechanics, and heat transfer at the meso-scale. Previously,

a coupled DEM/CFD model based on the fluid flow net-

work without heat transfer (formulated by the authors

[24, 25]) was used to describe hydraulic fracturing in

unsaturated rock masses with one- or two-phase laminar

viscous two-phase fluid flow containing a liquid and gas.

This paper’s DEM-based THM mesoscopic technique

for modelling fluid flow and heat transfer has substantial

advantages over other existing ones in the literature. Some

of the advantages are as follows:

1. the precise tracking of water/gas fractions in pores,

taking into account their variable geometry, size, and

position,

2. an effective algorithm for automatically meshing and

remeshing particle and fluid domains to account for

changes in their geometry and topology,

3. the use of a coarse mesh of solid and fluid domains to

generate a virtual fluid flow network (VPN) and to

solve the energy conservation equation,

4. using FVM to solve the energy conservation equation

in both domains on a very coarse mesh of cells,
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5. to examine supercritical fluid flow, the corrected Peng–

Robinson equation of state [34] was adopted for both

fluid phases (necessary e.g. for studying THM pro-

cesses in hydraulic fracturing problems),

6. calculating varying heat fields in pores and particles,

7. tracking virtual thermal deformation of discrete ele-

ments to precisely compute fluid volume changes over

time, and

8. two-phase flow.

There are no coupled DEM-based thermal-hydro-me-

chanical models of multi-phase supercritical fluid flow in

rocks that can be used to mimic THM processes during

hydraulic fracturing. The numerical findings in the current

paper are first compared to the analytical solution of the

classic 1D heat transfer issue to validate the innovative

fully coupled THM model. The numerical and analytical

results are found to be perfectly in agreement. A numerical

representation of the effects of advection on the cooling of

a bonded granular bar specimen is also provided. Finally,

the THM model’s utility is proved in a thermal contraction

test employing a bonded particle assembly during cooling,

which results in the creation of a macro-crack. The effects

of a macro-crack on fluid pressure, density, velocity, and

temperature are investigated. The findings of this study can

be directly applied to a variety of geothermal applications.

The structure of the current study is outlined below.

Following Sect. 1, a mathematical model of the DEM-

based linked thermal-hydro-mechanical method is provided

in Sect. 2. The calibration of the model is detailed in

Sect. 3. The validation of the THM model is described in

Sect. 4. The influence of advection on the cooling of a

bonded granular assembly is examined in Sect. 5. A

damage process in a bonded granular assembly during a

thermal contraction test is discussed in Sect. 6. Finally, in

Sect. 7, some closing remarks are made. The THM model

has been incorporated by the authors into the YADE DEM

code, which is an opensource software [20, 41].

2 Thermo-hydro-mechanical model

The THM model’s original concept is based on the notion

that in a physical system, two domains coexist: the 3D

discrete (solid) domain and the 2D continuous (fluid)

domain. The solid domain is made up of a single layer of

discrete 3D elements (spheres), whereas the fluid domain

was two-dimensional (Fig. 1a). Discrete elements are

placed so that their centres of gravity are in the middle of

the plane (2D surface). They are projected next onto the

plane to form circles (Fig. 1b). As a result, discrete element

equations of motion are solved in the 3D discrete domain,

whereas fluid flow equations are solved in the 2D fluid

continuous domain (red colour in Fig. 1), and heat transfer

equations are solved in the 2D fluid and solid continuous

domains (red and grey colours in Fig. 1b). Despite the use

of a 3D DEM solver, the entire DEM-based THM model is

two-dimensional.

2.1 DEM for cohesive-frictional materials

DEM calculations were performed with the 3D spherical

explicit discrete element open code YADE [20, 41] that

allows for a small overlap between two contacted bodies

(soft-particle model). Utilizing an explicit time-stepping

scheme, particles in DEM interact with one another during

translational and rotational motions using a contact law and

Newton’s 2nd law of motion [13]. A cohesive bond at the

grain contact is postulated in the model, with brittle failure

beneath the critical normal tensile force. Under normal

compression, shear cohesion failure causes contact slip and

sliding, which follows the Coulomb friction law. The

mechanical response of DEM is presented in Fig. 2. The

DEM equations are below

F~n ¼ KnU N;
�! ð1Þ

F~s ¼ F~s;prev þ KsDX~s; ð2Þ

Kn ¼ Ec
2RARB

RA þ RB
and Ks ¼ vcEc

2RARB

RA þ RB
; ð3Þ

F~s

�

�

�

�� Fs
max � F~n

�

�

�

�� tan lc � 0

ðbefore contact breakageÞ; ð4Þ

F~s

�

�

�

�� F~n

�

�

�

�� tan lc � 0 after contact breakageð Þ;
ð5Þ

Fs
max ¼ CR2 and Fn

min ¼ TR2; ð6Þ

F~
k

damp ¼ F~
k � ad � sgn v~k

p

� �

F~
k
: ð7Þ

where F
!

n-the normal contact force, U-the overlap between

discrete elements, N
!
-the unit normal vector at contact

point, F
!

s-the tangential contact force, F
!

s;prev-the tangen-

tial contact force in the previous iteration, X
!

s-the relative

tangential displacement increment, Kn-the normal contact

stiffness, Ks-the tangential contact stiffness, Ec-the elastic

modulus of the particle contact, vc-the Poisson’s ratio of

particle contact, R-the particle radius, RA and RB contacting

particle radii, lc-the Coulomb inter-particle friction angle,

Fs
max-the critical cohesive contact force, Fn

min-the minimum

tensile force, C-the cohesive contact stress (maximum

shear stress at pressure equal to zero), and T-the tensile

normal contact stress, F
!k

damp-the dampened contact force,

F
!k

and v!k
p-kth-the components of the residual force and

translational particle velocity vp and ad-the positive
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damping coefficient smaller than 1 (sgn(�) that returns the
sign of the kth component of velocity) [12]. Non-viscous

damping was applied [12] to accelerate convergence in

quasi-static simulations (Eq. 7).

The following material constants: Ec, tc, lc, C and T are

required for DEM simulations. In addition, R, q, (mass

density) and ad are needed. The C/T-ratio is crucial to

adequately simulate the failure type of specimens (brittle or

quasi-brittle), the distribution of shear and tensile cracks,

and the ratio between the uniaxial compressive and tensile

strength. The material constants are usually identified by

running a series of DEM simulations and comparing them

with experimental results of simple tests (e.g. uniaxial

compression, triaxial compression, simple shear) [28]. The

damping parameter is always ad = 0.08. For this value, the

loading velocity v does not affect the results [28]. Damage

occurs if a cohesive joint between spheres (Eq. 6) disap-

pears after reaching a critical threshold. If any contact

between spheres after failure re-appears, the cohesion does

not appear more (Eq. 5). Note that material softening is not

considered in the DEM model. Although bonds can break

by shear, the essential micro-scale mechanism for damage

in the pre-failure regime is bond damage in tension. An

arbitrary micro-porosity might be achieved in DEM since

the particles may overlap. The fracture is not allowed to

propagate through aggregate, i.e. the particle breakage is

not taken into account. The model was successfully used by

the authors for describing the behaviour of different engi-

neering materials with a granular structure (mainly of

granular materials [21–23, 48] and concrete materials

[29, 30, 40, 42–44] by taking shear localization and frac-

ture into account).

2.2 Fluid flow model

The general concept of a fluid flow algorithm using DEM

and a channel network is adopted from [2, 11, 16]. In this

concept, fluid flow is simulated by assuming that each

particle contact is an artificial flow channel (between two

parallel plates in 2D or along a duct in 3D) and those

artificial channels connect real reservoirs in the particulate

medium (pores, fractures, and pre-existing cracks) that

store fluid pressures. Thus, the pressure in reservoirs

depends both on the mass transported along channels from/

to other reservoirs and the volume changes of reservoirs.

Since the volume of reservoirs changes due to the material

deformation (described by discrete elements in DEM), the

fluid density must also change (the fluid in reservoirs is

compressible). Thus, the fluid moves in channels while the

reservoirs solely store pressure. The artificial channels

create a fluid flow network. The fluid flow in those artificial

channels is characterized by a simplified laminar flow of an

Fig. 1 Two domains coexisting in one physical system: a coexisting domains before projection and discretization and b solid and fluid domains

after discrete elements projection and discretization (fluid domain is in red colour and solid domain is in grey colour)
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incompressible fluid as opposed to the compressible fluid

model in real reservoirs.

The fluid model in the current paper significantly differs

from the general concept [2, 11, 16]. The reservoirs (pores,

cracks, pre-existing cracks, etc.) store now not only pres-

sures but also phase fractions, fluids densities, energy, and

temperature. The continuity equation is employed to

compute the density of fluid phases stored in reservoirs.

The fluid-phase fractions in reservoirs are computed by

applying the equation of state for each phase assuming that

fluid phases share the same pressure (as in the Euler model

of multi-phase flow). The mass flow rate in artificial

channels of a fluid flow network is now estimated by

solving continuity and momentum equations for the lami-

nar flow of incompressible fluid. The gravity centres of the

3D spheres are located on the XOY plane. The 3D spher-

ical particles are projected onto the 2D mid-plane and next

discretized into the 2D polygons [24]. To get a more

realistic distribution of the unknown variables (pressure,

fluid-phase fractions, and densities), a remeshing procedure

discretizes the overlapping circles, determines the contact

lines, and deletes the overlapping areas [24]. As a result,

each reservoir is discretized into a number of triangles (in

2D problems). Each triangle in the fluid domain is called

the Virtual Pore (VP) (Fig. 3). The artificial channels

connect the gravity centres of triangles (VPs) to create a

fluid flow network called the Virtual Pore Network (VPN).

The displacements of discrete elements in the perpendic-

ular direction OZ and the rotations around the axes OX and

OY are fixed. All forces converted from pressure and shear

stress are applied to the spheres. The forces are computed,

based on the pressure and shear stress for the specimen

thickness (in the OZ direction) equal to the largest diameter

of spheres. All numerical parameters might be used without

the necessity of re-calibration. VPs accumulate pressure

and store both fluid-phase fractions and densities, energy,

and temperature. The mass change in VPs is related to the

density change in a fluid phase that results in pressure

variations. The equation of momentum conservation is

neglected in triangles but the mass is still conserved in the

Fig. 2 Mechanical response of DEM: a tangential contact model, b normal contact model, c loading and unloading path in tangential contact

model and d modified Mohr–Coulomb model [20, 41]
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entire volume of triangles. The numerical algorithm can be

divided into five main stages:

a) estimating the mass flow rate for each phase of fluid

flowing through the cell faces (in channels surround-

ing VP) by employing continuity and momentum

equations,

b) computing the phase fractions and their densities in

VP by employing equations of state and continuity,

c) computing pressure in VP by employing the equation

of state,

d) solving the energy conservation equation in fluid and

solids,

e) updating material properties.

This algorithm is repeated for each VP in VPN and each

solid cell (stage ‘d’) using an explicit formulation.

According to the above algorithm, incompressible laminar

two-phase fluid (liquid/gas) flow under non-isothermal

conditions is assumed in the channels of the fluid flow

network. The liquid and gas initially exist in the material

matrix and pre-existing discontinuities. Two types of

channels are introduced in the Virtual Pore Network [24]

(Fig. 3): (A) the channels between discrete elements of the

material matrix in contact (called the ‘S2S’ channels) and

(B) the channels connecting grid triangles in pores that

touch each other by a common edge (called the ‘T2T’

channels). The channel length is assumed to be equal to the

distance between the gravity centres of adjacent grid tri-

angles. In real 3D problems, the fluid flows around the

Fig. 3 Fluid flow network in material matrix with triangular discretization of pores (in blue): A channel type ‘S2S’ (red colour) and B channel

type ‘T2T’ (red colour) [24]
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spheres in contact. However, in 2D problems, there is no

free space for fluid flow. Therefore, the concept of virtual

S2S channels is introduced [24]. The hydraulic aperture h

of the channels ‘S2S’ is related to the normal stress at the

particle contact by a modified empirical formula of Hök-

mark et al. [35]:

h ¼ b hinf þ h0 � hinfð Þe�1:5�10�7rn

� �

; ð8Þ

where hinf is the hydraulic aperture for the infinite normal

stress, h0-the hydraulic aperture for the zero normal stress,

rn-the effective normal stress at the particle contact and b-
the aperture coefficient. The hydraulic aperture of the

channel type ‘T2T’ is directly related to the geometry of

the adjacent triangles as

h ¼ ce cos 90
� � x

� �

: ð9Þ

where e-the edge length between two adjacent triangles, x-
the angle between the edge with the length e and the centre

line of the channel that connects two adjacent triangles and

c-the reduction factor, necessary to fit the fluid flow

intensity to real complex fluid flow conditions in materials.

The reduction factor c is determined in parametric studies

to keep the maximum Reynolds number Re along the main

flow path always lower than the critical one for laminar

flow.

2.2.1 Mass flow rate in channels

Three flow regimes in the VPN channels are distinguished:

(a) single gas-phase flow with gas-phase fraction ap = 1,

(b) single liquid-phase flow with liquid phase fraction aq-

= 1 and (c) two-phase flow (liquid and gas) with 0\ aq-

\ 1. For single-phase flow in channels (flow regime ‘a’

and ‘b’), the fluid moves in channels through a thin film

region separated by two closely spaced parallel plates

according to a classical lubrication theory [35], based on

the Poiseuille flow law [5]. As a result, the mass flow rate

of the single-phase flow along channels is

Mx ¼ q
h3

12l
Pi � Pj

L
; ð10Þ

where Mx-the mass fluid flow rate (per unit length) across

the film thickness in the x-direction [kg/(m s)], h-the

hydraulic channel aperture (its perpendicular width) [m], q-
the fluid density [kg/m3], t-the time [s], l-the dynamic fluid

(liquid or gas) viscosity [Pa s] and P-the fluid pressure [Pa]

(Pi and Pj are the pressures in the adjacent VPs).

A two-phase flow of two immiscible and incompressible

fluids in a channel (Fig. 4) is assumed to simulate a two-

phase fluid flow (flow regime ‘c’), driven by a pressure

gradient in adjacent VPs. The liquid–gas interface is par-

allel to the channel plates and constant along the channel.

Gravity forces are neglected. The interface between the

fluids, labelled as j = q, p (q-the lower liquid phase and p-

the upper gas phase), is assumed to be flat in the undis-

turbed flow state. Under this assumption, the model allows

for a plane-parallel solution. The interface position is

known and is related to fractions of fluid phases in adjacent

VPs while the volumetric flow rates of fluid phases are

unknown.

Continuity and momentum equations characterize the

flow in each phase. The time and pressure are scaled by

hp=ui and qpu2
i (hp-the height of the upper layer and ui-the

interfacial velocity). The dimensionless continuity and

momentum equations are [3]

divuj ¼ 0; ð11Þ
ouj

ot
þ uj � r
� �

uj ¼ �
qq

rqj

rpj þ
1

Rep

qq

rqj

muj

lq

� uj; ð12Þ

where uj ¼ uj; vj

� �

and pj are the velocity and pressure of

the fluid phase j, qj and lj are the corresponding density

and dynamic viscosity. The Reynolds number is Rep ¼
qpuihp=lp and the density and viscosity ratios are r ¼
qq=qp and m ¼ lq=lp. In the dimensionless formulation,

the lower and upper phases occupy the regions �nd � y� 0

and 0� y� 1, where nd ¼ hq=hp. At the channel walls, the

velocities meet the no-slip boundary condition

uq y ¼ �ndð Þ ¼ 0 and up y ¼ 1ð Þ ¼ 0: ð13Þ

The boundary conditions at the interface y ¼ 0 require

the continuity of velocity components and tangential

stresses [3]

uq y ¼ 0ð Þ ¼ up y ¼ 0ð Þ ð14Þ

and

lq

ouq

oy

�

�

�

�

y¼0

¼ lp

oup

oy

�

�

�

�

y¼0

: ð15Þ

Fig. 4 Two-layer fluid flow in channels ‘S2S’ and ‘T2T’ (h-channel
aperture, L-channel length, ‘q’-liquid and ‘p’-gas) [25]
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The solution details are presented in [25]. Solving

Eqs. 11 and 12 with boundary conditions (Eqs. 13–15), the

mass flow rates Mq;x and Mp;x for both fluid phases are

calculated (as well as the shear stress sf0 at the channel

surfaces for y ¼ �nd and y ¼ 1).

2.2.2 Fluid flow in virtual pores

VPs, in contrast to the channel flow model, assume that the

fluid is compressible. The fluid pressure can reach 70 MPa

in specific situations, such as during the hydraulic frac-

turing process. The gas phase exceeds the critical point and

becomes a supercritical fluid under these conditions. For

both fluid phases in VPs, the Peng–Robinson equation of

state [34] is used to describe fluid behaviour above the

critical point

P ¼ RT

Vq=p � bq=p

� ��
aq=p

V2
q=p þ 2bq=pVq � b2

q=p

� � ; ð16Þ

where P is the pressure [Pa], R denotes the gas constant

(R = 8314, 4598 J/(kmol K)), Vq=p is the molar volume of

liquid (q) and gas (p) fraction [m3/kmol] and T denotes the

temperature [K]. The parameters in Eq. 16 are:

aq=p Tð Þ ¼ aq=p;0 1þ nq=p 1� Tn
i

Tq=p;c

	 
0:5
 !" #2

; ð17Þ

nq=p ¼ 0:37464þ 1:54226xq=p � 0:26992x2
q=p; ð18Þ

aq=p;0 ¼ ac;q=pb Tð Þ; ð19Þ

ac;q=p ¼
0:457247R2T2

q=p;c

Pq=p;c
; ð20Þ

bq=p ¼
0:07780RTq=p;c

Pq=p;c
; ð21Þ

b ¼ 1þ c1 1� T
1
2
r

� �

þ c2 1� T
1
2
r

� �2

þc3 1� T
1
2
r

� �3
� �2

;

ð22Þ

where Tq=p;c is the critical temperature of phase [K], Pq=p;c

denotes the critical pressure of phase [Pa], xq=p is the

acentric factor of phase [–] and Tr denotes the reduced

temperature T
Tc
. When c1 = c2 = c3 = 0, the original model

is obtained. The extra factors help connect vapour pressure

data from highly polar liquids like water and methanol. For

most substances, Eqs. 17–22 provide a good fit for the

vapour pressure, however predicting molar volumes can be

very inaccurate. The forecast of saturated liquid molar

quantities might deviate by l0–40% [27]. Peneloux and

Rauzy [33] proposed an effective correction term

Vcorr
q ¼ Vq þ s; ð23Þ

where s is the small molar volume correction term that is

component dependent; Vq is the molar volume predicted by

Eq. 16 and Vcorr
q refers to the corrected molar volume. The

value of s is negative for higher molecular weight non-

polar and essentially for all polar substances. The molar

volume correction term is considered to be 0.0 m3/kmol

and - 0.0034 m3/kmol for the gas phase and liquid phase

(water), respectively. The Peng–Robinson equation of state

has the advantage of being able to describe the behaviour

of supercritical fluids at extremely high fluid pressures and

temperatures. For each phase, the mass conservation

equation is used. The mass transfer between phases and the

grid velocity is ignored when there is no internal mass

source. The discretized form of the mass conservation

equation for the liquid phase is

anþ1
q;i qnþ1

q;i Vnþ1
i � an

q;iq
n
q;iV

n
i

Dt
þ
X

f

qn
q;f U

n
f a

n
q;f

� �

¼ 0 ð24Þ

with

Vnþ1
i ¼ Vn

i þ dV

dt
Dt; ð25Þ

where f is the face (edge) number, Un
f denotes the volume

flux through the face [m3/s], based on the average velocity

in the channel, an
q;f is the face value of the fluid-phase

volume fraction [–], t is the time step [s], n denotes the time

increment and i is the VP number [–]. The explicit for-

mulation is used instead of an iterative solution of the

transport equation during each time step since the volume

fraction at the current time step is directly computed from

known quantities at the previous time step. Similarly, the

mass conservation equation for a gas phase is introduced.

The product qqUn
f a

n
q;f in Eq. 24 is the mass flow rate Mq;f

of the liquid phase flowing through the face f (edge of a

triangle) of VPi. The density of the liquid phase can be

calculated by solving the mass conservation equation for

both phases

qnþ1
i;q ¼

an
q;iq

n
q;iV

n
i þ Dt

P

f Mq;f

Vn
i þ DViDtð Þanþ1

q;i

: ð26Þ

The density of the gas phase can also be computed in the

same way. It should be noted that the molar volume V (q/p)

is related to the gas density.

Vnþ1
i;p ¼ wp

qnþ1
i;p

; ð27Þ

and to the liquid density

Vnþ1
i;q ¼ wq

qnþ1
i;q

� s: ð28Þ
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Due to the fact that the fluid phases share the same

pressure

RTn
i

Vnþ1
i;p � bp

� �� ap

Vnþ12
i;p þ 2bpVnþ1

i;p � b2
p

� �

¼ RTn
i

Vnþ1
i;q � bq

� �� aq

Vnþ12
i;q þ 2bqVnþ1

i;q � b2
q

� � ; ð29Þ

the fluid-phase fractions are computed. Inserting Eq. 27

for the gas phase and Eq. 28 for the liquid phase into

Eq. 29, a polynomial equation is obtained with respect to

the liquid fraction anþ1
q;i . The gas-phase fraction is com-

puted as anþ1
p;i ¼ 1� anþ1

q;i . Equation 16 is used to calculate

the new pressure Pnþ1
i in VPi. Table 1 lists the material

constants required for THM simulations.

2.3 Heat transfer

Heat must be transferred in both the fluid and solid

domains. When it comes to heat transfer in multi-phase

fluid flow, the temperature is shared, but enthalpy is

transferred. The heat transfer model is simplified in the

same way that the fluid flow model is simplified. As a

result, a homogeneous heat transfer model is assumed in

multi-phase flow (mass transfer between phases is not

supposed to be taken into account). The multi-phase fluid is

homogenized to a single-phase fluid. The effective fluid

properties and velocity are calculated using volume aver-

aging over the phases. The numerical solution uses the

same very coarse mesh of both domains (Fig. 1b) that is

used to create the fluid flow network to solve the governing

equations.

2.3.1 Heat transfer in fluid

In multi-phase fluid flow, we assume homogenous heat

transfer. The fluid is incompressible and homogeneous.

The viscous dissipation of energy is not taken into account.

The energy conservation equation is shared by all phases in

the homogeneous model and is expressed in integral form
Z

V

oqeffE
ot

dV þ
I

qeff v
*

E � dA~¼
I

keffrT � dA~þ r
V

Sh;

ð30Þ

where qeff is the effective density of the fluid [kg/m3], E

denotes the total energy [J], t is the time [s], v
*

is velocity

vector [m/s], T is the temperature [K], keff denotes the

effective thermal fluid conductivity [W/(mK)] and Sh rep-

resents the energy source term. Assuming an incompress-

ible and laminar flow of the homogeneous fluid, the

enthalpy h equation of state is

Table 1 Basic material constants assumed for solid, fluid and gas in

coupled THM-DEM calculations

Material constants for solid Symbol Value Unit

Modulus of elasticity of

contact

EC 3.36 [GPa]

Poisson’s ratio of contact tc 0.3 [–]

Cohesive contact stress C 150 [MPa]

Tensile normal contact

stress

T 30 [MPa]

Inter-particle friction angle lc 18 [�]
Mass density q 2600 [kg/m3]

Specific heat cp 920 [J/(kg�K)]
Heat conduction coefficient k 3.7 [W/(m�K)]
Thermal (linear) expansion

coefficient

aexp 8 9 10–6 [1/K]

Material constants for

water

Dynamic viscosity lq 10.02 9 10–4 [Pa�s]
Specific heat cp,q 4187.0 [J/(kg�K)]
Heat conduction

coefficient

kq 0.6 [W/(m K)]

Reference pressure Pq,0 0.1 [MPa]

Reference temperature Tq,0 278.16 [K]

Critical pressure Pq,c 22.064 [MPa]

Critical temperature Tq,c 647.096 [K]

Acentric factor xq 0.344 [–]

Molecular weight wq 18.01528 [kg/kmol]

Material constants for gas

Dynamic viscosity lp 2.0507 9 10–5 [Pa s]

Molecular weight wp 28.9647 [kg/kmol]

Specific heat cp,p 1006.0 [J/(kg K)]

Heat conduction

coefficient

kp 0.0262 [W/(m K)]

Universal gas constant R 8314.4598 [J/

(kmol K)]

Critical pressure Pp,c 3.786 [MPa]

Critical temperature Tp,c 132.63 [K]

Acentric factor xp 0.035 [–]

Water flow network

constants

Channel aperture hinf 5.75 9 10–7 [m]

Channel aperture h0 3.25 9 10–6 [m]

Aperture coefficient

(Eq. 9)

b 1.2 [–]

Reduction factor (Eq. 10) c 0.0115 [–]

Permeability coefficient j 2.47 9 10–16 [m2]
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h ¼
Z

T

Tref

cp dT; ð31Þ

where T ref is the reference temperature [K] and cp denotes

the specific heat for constant pressure [J/(kg K)]. The

effective fluid properties and velocity are computed by

volume averaging over the phases

qeff ¼
X

2

k¼1

akqk; ð32Þ

v
*

eff
¼ 1

qeff

X

2

k¼1

akqk v
*

k
; ð33Þ

keff ¼
X

2

k¼1

akkk; ð34Þ

leff ¼
X

2

k¼1

aklk: ð35Þ

The specific heat capacity is assumed to be independent

of composition and pressure:

cp ¼
X

i

aicpi ¼ const: ð36Þ

Equation 30 is applied to each fluid cell (triangle) in the

computational domain. The finite volume method is used to

solve Eq. 30. The discretization of Eq. 30 on a given cell

produces

oqE

ot
V þ

X

Nfaces

f

qf v
*

f
Ef � A~f ¼

X

Nfaces

f

keffrTf � A~f þ ShV ; ð37Þ

where Nfaces is the number of faces enclosing the cell, Ef is

the value o E on the face f of the cell, Tf is the value of T

on the face f, qf v
*

f
�A~f denotes the mass flux through the

face f, A
!

f is the area vector of the face f, Aj j ¼ Ax
bi þ Ay

bj
�

�

�

�

�

�

in 2D, rTf denotes the gradient of T at the face f and V is

the cell volume. If the time derivative is discretized using

backward differences, the first-order accurate temporal

discretization is given by

qnþ1Enþ1 � qnEn

Dt
V þ

X

Nfaces

f

qn
f v
* n

f En
f � A~f

¼
X

Nfaces

f

keffrTn
f � A~f þ ShV ; ð38Þ

where n ? 1 is the value at the next time step t ? Dt and n

is the value in the current time t. The energy conservation

equation can be expressed in terms of temperature T by

assuming that total energy E equals enthalpy h and

applying the enthalpy equation of state to Eq. 38

Tnþ1 ¼ Tref þ
cn

p;eff Tn � Trefð Þ
cnþ1

p;eff

þ Dt

Vqncnþ1
p;eff

X

Nfaces

f

keffrTn
f � A~f

� Dt

Vqncnþ1
p;eff

X

Nfaces

f

qn
f v
* n

f cn
p;eff Tn

f � Tref

� �

� A~f þ
Dt

qnþ1cnþ1
p;eff

Sh;

ð39Þ

where Sh is related to the internal enthalpy source of the

diffusive energy [W/m3] of heat transported by diffusion

along the channel ‘‘S2S’’

Sh ¼ �keff
Tn

i � Tn
j

Lk
Ak

1

V
; ð40Þ

where Lk is the length [m] of the channel S2S and Ak is the

area of the channel cross section [m2]. The total energy can

be calculated using the enthalpy equation of state E ¼
cp T � T refð Þ since total energy equals enthalpy. The Green-
Gauss theorem is utilized to generate a scalar value at cell

faces and compute secondary diffusion terms and velocity

derivatives. To obtain the gradient of the scalar T at the cell

centre c0 (Fig. 5), the following discrete form is stated as

rTð Þc0¼
1

V

X

f

Tf A~f ; ð41Þ

where Tf represents the value of T at the cell face centroid.

The face value Tf in Eq. 41 is derived from the arithmetic

average of values at neighbouring cell centres using Green-

Gauss Cell-based gradient assessment

Tf ¼
Tc0 þ Tc1

2
: ð42Þ

The cell grid is assumed to be very coarse, therefore

when the surface f is at the domain boundary or at the

liquid–solid interface, the temperature Tf is analytically

calculated. Several scenarios may be considered: case I: the

temperature Tf ;bc tð Þ on the boundary is known (constant or

Fig. 5 Control volume illustrating discretization of scalar transport

equation

Acta Geotechnica

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


variable) Tf ¼ Tf ;bc tð Þ, case II: the heat flux qf ;bc tð Þ on the

boundary is known (constant or variable)

Tf ¼ Tc0 þ
drqf ;bc tð Þ

keff
, where dr is the distance between the

pore c0 centroid and centre of the face f. For the adiabatic

boundary condition Tf ¼ Tc0, case III: the convective heat

flux on the boundary Tf ¼
dr heTe
keff

�Tc0

dr he
keff

�1

� �, where he is the con-

vective heat transfer coefficient in the surroundings (Te is

the temperature of surroundings), case IV: if the fluid cell

face is adjacent to the solid cell, the interface is assumed as

qf ;pore ¼ qf ;cell, where qf ;pore ¼ hf Tf � Tc0

� �

is the heat flux

in the fluid transferred from the pore cell through the

interface to the solid; qf ;cell ¼ ks
Tc1�Tfð Þ

dr;c
denotes the heat

flux in the solid transferred from the fluid cell through the

interface to solid, dr;c is the distance between the cell

centre c1 and face centre f and ks is the heat transfer

coefficient of the solid and hf is the convective heat

transfer coefficient of the fluid. The convective heat

transfer coefficient hf is calculated using the Nusselt

number Nuk, which may be empirically obtained using the

macroscopic porosity of the particle assembly and Rey-

nolds number (0\Re\ 102) (according to Tavassoli

et al. [45])

Nuk ¼ 7� 10eþ 5e2
� �

1þ 0:1Re0:2k Pr
1=3

k

	 


þ 1:33� 2:19eþ 1:15e2
� �

Re0:7k Pr
1=3

k
; ð43Þ

where e is the porosity, Rek denotes the Reynolds number

and Prk is the Prandtl number. For the Reynolds number

Re[ 102, an empirical formula proposed by Wakao and

Kaguei [47] is used

Nu ¼ 2þ 1:1Re0:6k Pr

1
3

k
: ð44Þ

After that, the convective heat transfer coefficient hik is

calculated

hik ¼
Nukkeff
2ri

: ð45Þ

The diffusive flux Df in Eq. 39 across the face f is given

by

Df ¼ keffrTn
f � A~f : ð46Þ

The parameter Df may be approximated as

Df ¼ keff
T1 � T0ð Þ

ds

A~f � A~f

A~f � es
!

þ keff rT � A~f �rT � es
!A~f � A~f

A~f � es
!

 !

; ð47Þ

where the first term on the right-hand side represents the

primary gradient oriented along the vector es
! and the

second term represents the ‘cross’ diffusion term. In

Eq. 47, the parameter A
!

f is the area normal vector of the

face f directed from the cell c0 to c1, ds is the distance

between cell centroids and es
! is the unit normal vector in

this direction (Fig. 6) and rT is the average of gradients at

two adjacent cells. Discrete values of the scalar are stored

at the cell centres. However, face values are required for

convection terms in Eq. 39 and must be interpolated from

cell centre values. This is accomplished through the use of

an upwind scheme. As a result, the second-order upwind

scheme is used to compute face values. A multidimensional

linear reconstruction method is used to calculate quantities

at cell faces. Thus, the face value uf is computed using the

expression below

uf ¼ uþru � r~; ð48Þ

where u-the cell-centred value in the upstream cell, ru-
the cell-centred gradient of the value in the upstream cell,

r!-the displacement vector from the upstream cell centroid

to the face centroid (Fig. 5).

The gradient in each cell must be determined for this

formula to work. Finally, the gradient must be limited to

prevent the introduction of additional maxima or minima.

As a result, the concept of gradient limiters [4] is

introduced.

2.3.2 Heat transfer in solid

The energy conservation equation has the following inte-

gral form if there is no convective energy transfer, no

internal heat sources, and constant density in solid regions

Fig. 6 Adjacent cells c0 and c1 with fluid velocity vector V (coloured

in blue)
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Fig. 7 DEM-TH (thermo-hydro model) coupling schema (F
!

P;j-force converted from pressure in VP, F
!

S;j-force converted from shear stress in

channels, DVn
i -volume change in VP, Tnþ1

j -temperature in cell j of solid domain, rnþ1
j -sphere radius and n-time increment)

Acta Geotechnica

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


qs r
V

oE

ot
� dV ¼

I

ksrTð Þ � dA~; ð49Þ

where E is the total energy, equal to enthalpy

h ¼
R T

T ref
cpdT , qs denotes the solid density [kg/m3], ks is

the thermal conductivity of solid [W/(mK)], T ref denotes

the reference temperature and cp is the specific heat in

constant pressure. Equation 49 is applied to each cell (tri-

angle) in the solid domain. On a given cell, the dis-

cretization of Eq. 49 produces

Tnþ1 ¼ Tn þ Dt

Vqscp

X

Nfaces

f

ksrTn
f � A~f : ð50Þ

The gradients and face values are computed in the same

way that the fluid gradients and face values are computed

(Sect. 2.3). The total energy is calculated using the

enthalpy equation of the state

E ¼ cp T � Trefð Þ: ð51Þ

2.4 Coupling scheme

The discretization algorithm is based on the Alfa Shapes

theory [6]. The triangular pore mesh deforms extensively

and even affects the geometry topology in specific prob-

lems (e.g. in hydraulic fracturing when the fracture begins

to propagate). Equation 25’s volume changes are trans-

mitted to CFD. When the topological features of the grid

geometry change, the grid is automatically re-meshed [24].

Even though the mesh is coarse, the re-mesh procedure

takes a relatively long computational time. Therefore, an

algorithm that tracks configuration changes of discrete

elements is developed and implemented in the model. The

algorithm tracks displacements, overlaps, and size changes

of discrete elements in each iteration (time increment). The

remeshing procedure runs when the configuration changes

are large enough. The criterion for triggering the re-mesh

procedure is arbitrarily defined but is based on the results

of a parametric study. As a result, the repeated remeshing

procedure is run on average every several hundred or even

several thousand iterations and slightly increases the total

computation time. However, the total number of times the

remeshing procedure is repeated strongly depends on the

problem studied.

The calculation outputs (e.g. pressures, fluid fractions)

are accurately converted from the old mesh to the new

mesh in this scenario, providing that the mass is a topo-

logical invariant [24]. Equation 29 is used to determine the

new fluid-phase fractions by using mass quantities rather

than mass flow rates. In the VPs, Eq. 16 is utilized to

calculate the new pressure after transformation.

The coupling scheme of DEM with CFD and heat

transfer (Fig. 7) involves three sets of discrete equations to

be solved: the fluid flow equations for all VPs in the fluid

domain, the law of motion in DEM for all discrete elements

(e.g. spheres) and heat transfer equations for all grid cells

in the fluid and particle (solid) domain. The two-way

coupling scheme is based on a transfer of pressures, shear

stress forces, and temperatures from CFD to DEM and the

time derivative of VP volumes from DEM to CFD. The

pressure and shear forces from the fluid cause displace-

ments of discrete elements (e.g. spheres) in DEM that

change coordinates and triangle volumes in VPN. Tem-

perature changes the diameters of spheres and, as a result,

the volume of the solid and fluid. The VP volume’s time

derivative, dV/dt, is computed in DEM and then transmit-

ted to CFD (Eq. 25, which includes the term dV/dt, takes

into account the volume change). As a result, pressure and

temperature changes in the fluid are affected by volume

changes in DEM. The forces acting on spheres are then

transformed into fluid pressures in VPs and channels. CFD

calculates the pressures and shear stresses in the ’S2S’

channels as well as the temperature in each time step DtC.

They are transferred from CFD to DEM in each time step

DtD. They are next utilized to compute fluid forces, which

are added to the contact forces F before time integration to

update discrete element displacements. The fluid pressures

in VPs and ‘S2S’ channels are converted into the forces

F
!

P;j acting on spheres

Fig. 8 Bonded granular specimen in DEM used for THM simulations
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F~P;j ¼ �Pin~Ak; ð52Þ

where n! is the unit vector normal to the discretized

sphere’s edge, Pi-the pressure in VP, i-the VP number, j-

the sphere number and Ak-the contact area between the

fluid in VPi and sphere

Ak ¼ 2rjek; ð53Þ

where rj is the maximum sphere radius and ek-the sphere

edge length. The shear stresses are converted into the

forces acting on spheres in ‘S2S’ channels as

F~S;j ¼ sf0;iI~Ak with Ak ¼ 2rjLk; ð54Þ

where I
!

denotes the unit vector parallel to the channel

wall and oriented in the fluid flow direction, sf0;i-the shear

stress in the channel, i-the channel number, j-the sphere

number and Ak-the contact area between the channel fluid

and sphere and Lk-the channel length. The new sphere radii

are computed through a thermal (linear) expansion

coefficient

rnþ1 ¼ rn 1þ aexp Tnþ1
avg � Tn

avg

� �� �

; ð55Þ

where rnþ1-the new radius [m], rn-the previous value of

radius [m], aexp-the thermal (linear) expansion coefficient

[1/K], Tnþ1
avg -the new volume average sphere temperature

[K], Tn
avg-the previous volume average sphere temperature

[K] and n-the time increment [–].

The DEM-based THM model was implemented by the

authors into the open-source software package YADE [41]

which is already parallelized by computer cluster nodes

using the OpenMPI library. Technically, the DEM-based

THM model (called VPNengine) is a native YADE plugin.

However, VPNengine is parallelized with the use of the

OpenMP library (by single computer threads) and only a

few loops are parallelized. Overall, VPNengine only uses

one CPU core, while several loops can use a certain

number of threads. Therefore, the plugin’s performance is

limited. The calculation time of bar specimen thermal

contraction during cooling (Sect. 6, case ‘a’) is about 1 day

using a processor Intel Xeon 2.7 GHz. However, in simu-

lations of short-term processes, e.g. hydraulic fracturing, a

specimen of about 1100 spheres is processed in a very

similar computer runtime. To overcome this limitation, the

authors began developing a 3D DEM-based THM model to

Fig. 9 Pure DEM simulations of uniaxial tension for cohesive granular specimen of Fig. 8: a deformed specimen (sphere displacements were

10-times enlarged), b distribution of normal sphere contacts in non-deformed specimen at failure (broken contacts are in colour) and c particle

displacement vectors before peak and at failure in non-deformed specimen (displacement vectors were 50-times enlarged)
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be parallelized by the cluster computer nodes using the

OpenMPI library. This will greatly increase the efficiency

of the software and enable 2D and 3D simulations to be

performed on samples containing thousands of spheres

within a reasonable computer runtime.

3 Calibration of DEM and CFD

DEM and CFD were separately calibrated, based on

mechanical tests (DEM) and a permeability test [24]

(CFD), respectively. For calibration, a simple bonded

granular specimen in the form of a bar was used (Fig. 8). A

random distribution of spheres was employed with a

20 9 80 mm2 bar specimen approximating artificial por-

ous material with a porosity of roughly p = 10%. The pores

represented the empty area between the spheres. The

sphere diameter ranged from 4 to 8 mm with a mean

diameter of d50 % 6 mm. Along the depth of the specimen,

one layer of spheres was applied.

Fig. 10 Pure CFD simulations concerning permeability test for bonded granular specimen of Fig. 8: a boundary and initial conditions (P-pressure
and q-mass flow rate) and b fluid pressure distribution

Fig. 11 Initial and boundary conditions for bonded granular bar

specimen of Fig. 8 during diffusion simulations (q-fluid mass flow

rate and qh-heat transfer rate)
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3.1 DEM results

Pure DEM was used during uniaxial tension of a bonded

granular bar specimen of Fig. 8. To maintain quasi-static

conditions during uniaxial tension, the smooth bottom and

top of the specimen (Fig. 8) were moved at a constant

opposing vertical velocity of 1 mm/s. Based on early cal-

culations, DEM simulations used a time step of 2 9 10–7 s.

In DEM simulations with spheres, the following material

constants were assumed: Ec = 3.36 GPa and tc = 0.30,

C = 150 MPa and T = 30 MPa (C/T = 5), lc = 18� and

q = 2 600 kg/m3, based on quasi-static uniaxial compres-

sion and splitting tests on shale specimens [24]. The DEM

results were in agreement with the corresponding experi-

mental results [15]. The greatest compressive normal stress

was 47 MPa, while the maximum tensile stress was 8 MPa.

Figure 9 depicts the deformed specimen, broken normal

contact distribution at the failure, and sphere displacement

vectors (before the stress peak and at the failure) during

uniaxial tension. The red and blue colours in Fig. 9c denote

the displacements[ 0.08 mm and\- 0.08 mm, and the

orange and green colours the displacements between 0 and

0.08 mm, and - 0.08 mm to 0 mm.

A nearly horizontal macro-crack appeared at the top

specimen region due to the neighbourhood of the top

boundary (Fig. 9a). In the major macro-crack, six normal

contacts were broken, for a total of twelve contacts broken

in the specimen (Fig. 9b). The sequence of damage was the

following: first red contacts, then orange and finally green

ones. Due to boundary conditions assumed, the sphere

displacements were mostly vertical (Fig. 9c). The mean

Fig. 12 Temperature along vertical centre line of cohesive granular bar specimen of Fig. 8 during cooling after time: a t = 100 s (Fo = 0.0227),

b t = 200 s (Fo = 0.0453), c t = 300 s (Fo = 0.0680) and d) t = 400 s (Fo = 0.0907) (Fo-Fourier number)
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resultant spheres’ displacement was 0.061 mm with a

maximum value of 0.11 mm at boundaries.

The behaviour of the specimen was elastic-brittle due to

a low number of spheres and 2D conditions [28]. The

specimen’s tensile strength was 8.8 MPa for the vertical

displacement/strain of 0.22 mm/0.28% and the elastic

modulus was 3.5 GPa [15, 24]. Before the peak, the mean

tensile normal contact force between spheres was 20.58 N

with a maximum tensile contact force equal to 69.20 N

(= TR2, Eq. 6). The coordination number was 6.53 (ini-

tially) and 4.17 (at the failure).

3.2 CFD results

A basic Darcy permeability test was performed on a bon-

ded granular specimen of Fig. 8 to calibrate the fluid flow

model regarding the macroscopic permeability. Simulated

was single-phase water flow (the specimen was fully sat-

urated). The top edge was subjected to a constant water

pressure of 0.1 MPa, while the bottom edge was subjected

to a constant water pressure of 5 MPa. On the side edges,

zero mass flow rate requirements were imposed (Fig. 10a).

The macroscopic permeability coefficient was determined

using Darcy’s law, assuming that the volumetric flow rate

at horizontal edges was the same at equilibrium

j ¼ Q

A
lq

L

DP
; ð56Þ

where Q is the volumetric flow rate at the equilibrium state

[m3/s], A is the specimen cross section [m2], L denotes the

specimen height and DP is the pressure difference between

the bottom and top edges [Pa]. The simulation was carried

out until the mass flow rate of the fluid along the lower and

the upper boundary stopped changing. The fluid pressure

isolines were almost parallel to each other, which con-

firmed that the fluid flow at the macro-level was one-di-

mensional (Fig. 10b). The volumetric flow rate at the

equilibrium state reached 3.5.31 9 10-5 m3/s. Hence, the

cohesive granular bar specimen had an estimated perme-

ability coefficient of j ¼ 2:47� 10�16 m2.

The basic mechanical, fluid and heat material constants

for the solid, water and gas are summarized in Table 1.

Fig. 13 Cohesive granular bar specimen with random distribution of spheres (Fig. 8) during cooling after t = 400 s: a temperature distribution

and b liquid density distribution
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4 Validation of THM model for 1D heat
transfer problem

The THM model was validated by comparing the numer-

ical findings with the analytical solution for the classic 1D

heat transfer problem (diffusion) in the cohesive granular

bar specimen

oT

ot
¼ aeqv

o2T

ox2
; ð57Þ

where aeqv is the effective thermal diffusivity [m2/s] and t

is the time [s]. The initial and boundary conditions for the

analytical solution of the 1D heat equation are as follows

T x; 0ð Þ ¼ 323:16 K½ � x 2 0; Lh i; ð58Þ
T 0; tð Þ ¼ T L; tð Þ ¼ 293:16 K½ � t� 0 ð59Þ

where L is the length of the bar. Using the Fourier series,

the unsteady solution becomes

T x; tð Þ ¼
X

1

n¼1

Dn sin
npx

L
ea

n2p2 t
L2 ; ð60Þ

where
Fig. 14 Initial and boundary conditions in cohesive granular bar

specimen during diffusion and advection (q-fluid mass flow rate and

qh-heat transfer rate)

Fig. 15 Temperature distribution in cohesive granular bar specimen after cooling time t = 400 s due to diffusion and advection (low Peclet

number): a in entire specimen and b along vertical centreline of bar
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Fig. 16 Cohesive granular bar specimen after cooling time of t = 400 s due to diffusion and advection: a pressure distribution, b density

distribution and c velocity vectors
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Dn ¼ 2

L

Z

L

0

T x; 0ð Þ sin npx

L
dx: ð61Þ

The calculations were performed using a bonded gran-

ular bar specimen with a random distribution of spheres

(Fig. 8). The effective thermal diffusivity aeqv was calcu-

lated for the volume-averaged phase properties

aeqv ¼
keff

cp;effqeff
; ð62Þ

where

keff ¼
1

Vr

X

k

kkVk; cp;eff ¼
1

Vr

X

k

cp;kVk;

qeff ¼
1

Vr

X

k

qkVk

ð63Þ

and Vr-the total volume of the bar specimen [m3], k-the

phase index, Vk-the k-phase volume [m3], kk-the heat

conductivity of the phase k [W/(m K)], cp;k is the specific

heat in constant pressure of the phase k [J/(kg K)] and qk is

the phase density k [kg/m3]. The initial and boundary

conditions are shown in Fig. 11 (the bar specimen was

cooled down by 30 K). The effective thermal diffusivity

and boundary conditions imitated heat transfer by diffusion

only in the equivalent solid bar, made of a fictitious

homogeneous material with effective thermal properties

(Eq. 63). The single-phase flow of water was assumed.

The numerical results of cooling the bar specimen with a

random distribution of spheres (Fig. 8) were compared to

an analytical solution of the one-dimensional diffusion

problem in an equivalent solid bar. In general, all proper-

ties of a fluid flowing under non-isothermal conditions are

more or less temperature-dependent. If the problem

requires consideration of the temperature dependence of

the fluid properties, any relationship can be used in the

DEM-based THM model. The most important property of a

fluid is density. The DEM-based THM model uses the

corrected Peng–Robinson equation of state to calculate the

fluid-phase density. Hence, the density depends on tem-

perature and pressure. In this study, it was assumed for the

sake of simplicity that other fluid properties were inde-

pendent of temperature since most of the simulations pre-

sented were performed for a maximum temperature

difference of 30 K. In that temperature range, the dynamic

viscosity of the fluid slightly changes only. Therefore, we

neglected the temperature dependence of viscosity in the

current paper and the thermal properties of the fluid.

From the phase properties (Table 1), the effective

material properties of the equivalent solid were determined

using Eq. 63: keff = 3.357 W/m K, cp,eff = 929.51 J/kg K,

and qeff = 2422.74 kh/m3. For four different time values

(100 s, 200 s, 300 s, and 400 s) and the corresponding

Fourier numbers Fo, the comparison results in Fig. 12 are

shown.

The numerical results agree with the analytical solution.

After 400 s of cooling, the largest difference between

numerical and analytical values was 0.52 K. Figure 13

Fig. 17 Temperature distribution in cohesive granular bar specimen

after cooling time t = 300 s due to diffusion and advection along

vertical centreline for small and large Peclet numbers

Fig. 18 Initial and boundary conditions in cohesive granular bar

specimen of Fig. 8 in thermal contraction test (q-fluid mass flow rate

and qh-heat transfer rate)
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shows the temperature distribution and liquid density in the

bar after 400 s of cooling. The density ranged from

1000.02 to 1014.28 kg/m3 after 400 s of cooling. In the

estimation of the water density, the Peng–Robinson equa-

tion of state (Eq. 16) with a correction (Eq. 23) generated

Fig. 19 Temperature distribution in cohesive granular bar specimen in thermal contraction test after time t = 17 s: a in entire specimen and

b along vertical centre line

Fig. 20 Final damage (t = 17 s) of fixed cohesive granular bar

specimen in thermal contraction test: a deformed specimen (black

spheres are fixed), b normal contact distribution (broken contacts are

in red) and c sphere displacement vectors (10-times enlarged)

Fig. 21 Grain diameter reduction in bonded granular bar specimen

during thermal contraction test after time t = 17 s (largest diameter

reduction is in black, smallest diameter reduction is in white)
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very little inaccuracy (less than 1.3%). The fluid density

was slightly overestimated. For single-phase fluids and

flow regimes near stagnant flows, the Peng–Robinson

equation of state offers no significant advantages over other

models (e.g. IAPWS for water and steam). The same

findings were obtained by distributing the spheres in an

structured manner.

5 Effect of advection on cooling of bar
specimen

A random distribution of spheres (Fig. 8) was used to

evaluate the effect of advection on the cooling of the

cohesive granular bar specimen. Two simulation types

were carried out: for a low Peclet (Pe) number (case ‘a’)

and a high Peclet Pe number (case ‘b’). The assumption

was that water flowed in a single phase. Heat transfer in the

bar specimen was simulated by diffusion (due to temper-

ature differences) and advection (due to fluid mass move-

ment) using the initial and boundary conditions in Fig. 14.

The bar specimen was cooled down again by 30 K. The

two various pressure differences between the two edges of

the bar specimen were defined: 0.9 MPa (low Peclet

number) and 9.9 MPa (high Peclet number). Table 1 lists

the properties of the liquid (water) and solid. The numer-

ical results are demonstrated in Figs. 15, 16 and 17.

In the case ‘a’ after t = 400 s of cooling, the temperature

difference between diffusion without advection and diffu-

sion with advection reached 1.14 K (Fig. 15). The maxi-

mum Peclet number in the fluid domain was 24. The

advection helped to speed up the cooling process. The fluid

velocity was small; it did not exceed a velocity of

8.92�10–5 m/s. The velocity vectors were almost parallel to

the vertical sides (Fig. 16c), indicating that the fluid flow in

the bar specimen was 1D. From the bottom to the top, the

fluid pressure varied approximately linearly along the bar

Fig. 22 Pressure distribution in macro-crack region during thermal

contraction test after time t = 17 s

Fig. 23 Thermal contraction test in bonded granular bar specimen (after time t = 17 s): a temperature in macro-crack area of bar specimen and

b temperature variations along vertical cross-section of bar specimen (macro-crack area-red colour)
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specimen (Fig. 16a). After 400 s of cooling, the fluid

density ranged from 995.7 to 1012.5 kg/m3 (Fig. 16b). In

the density estimation, the Peng–Robinson equation of

state (Eq. 16) with a correction (Eq. 23) produced an

insignificant error (less than 1.3%) (the fluid density was

again slightly overestimated). In comparison with diffu-

sion-only heat transfer, the temperature change along the

vertical centreline was not symmetric. As a result of a

colder fluid flowing (advection) in the same direction as the

temperature shift, a very minor spatial shift of the tem-

perature (e.g. temperature about 298 K or 303 K) was seen

in the fluid flow direction (Fig. 16b). The temperature of

the bar fluctuated very little along its horizontal cross-

section. The largest temperature difference in the bar’s

middle cross-section was only 0.008 K.

The comparison of the results between cases ‘a’ and ‘b’

with different Peclet numbers is presented after t = 300 s

of cooling of the bar specimen (Fig. 17). An increase in the

pressure difference between the two edges of the bar

specimen significantly increased the Peclet number from

24 to 179. The difference in the maximum temperature in

the specimen reached 2 K between Pe = 24 and Pe = 179.

A higher mass flow rate for Pe = 179 resulted in a signif-

icant right shift of the temperature distribution along the

vertical centreline of the bar.

6 Bar specimen thermal contraction
during cooling

A thermal contraction test during cooling of the cohesive

granular bar specimen with a random distribution of

spheres was performed (Fig. 8). To eliminate advection at

the start of the cooling process and keep the fluid beyond

the phase change conditions, the boundary and initial

conditions of Fig. 18 were used. The flow of two-phase

fluid was studied. The bar specimen was composed of 80%

Fig. 24 Temperature distribution in cohesive granular bar specimen in thermal contraction test after time t = 17 s (decoupled model): a in entire

specimen and b along vertical centreline

Fig. 25 Pressure distribution in cohesive granular bar specimen

during thermal contraction test after time t = 17 s (decoupled model)
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water and 20% air. Two cases were investigated: (a) sphere

displacements and rotations were fixed only at both ends of

the specimen and (b) sphere displacements and rotations

were fixed in all spheres of the specimen. As a result,

temperature variations had an impact on mechanical

properties.

In contrast to earlier simulations, the thermal properties

of the solid and fluid were changed to accelerate the heat

transfer process and its effect on the damage mechanism in

the specimen. As a result, the water and air heat transfer

coefficients indicated in Table 1 were multiplied by 10, and

the solid heat transfer coefficient of 420 W/(m K) (typical

for silver) was adopted. Solids were assumed to have a

thermal (linear) expansion coefficient of 0.00083 1/K.

Table 1 summarizes the material properties of water, air,

and solids. The bar specimen’s initial temperature (solid

and fluid) was rather high (368.16 K), although it was still

below the boiling point. The bar specimen was then cooled

by setting a constant temperature of 278.16 K at both ends

(bottom and top) (the temperature difference was 90 K).

6.1 Case ‘a’

Figure 19 depicts the temperature distribution in the bar

specimen after 17 s. A deformed bar specimen with macro-

crack, broken normal sphere contacts, and sphere dis-

placement vectors after 17 s of cooling is illustrated in

Fig. 19. The distribution of grain diameter changes during

cooling is presented in Fig. 21. Figures 22 and 23 show the

distribution of the fluid pressure and fluid temperature in

the macro-crack zone.

The temperature was the highest (333.44 K) in the

specimen near the macro-crack edge (Fig. 19a). A macro-

crack occurred in the bar specimen due to tension (Fig. 20).

It was created at the bar specimen’s weakest zone near the

top edge in a slightly different location than during pure

uniaxial tension (Fig. 9a). The greatest normal contact

tensile force before breakage was 29.313 N. Five normal

contacts were broken in the macro-crack zone (34 in the

entire bar specimen) (Fig. 20b). There was a noticeable

vertical movement of spheres in the specimen mid-region

(Fig. 20c). The mean diameter of spheres d50 reduced from

6.032 to 5.837 mm (by around 3%) with the smallest

changes in the bar’s mid-region (Fig. 21). In the damaged

location, the fluid pressure dropped to 0.0116 MPa (by

0.0884 MPa below the original pressure) (Fig. 22). Once

the normal contacts broke and the macro-crack began to

expand, the pressure drop was produced by an increase in

fluid volume in the damaged area due to tensile strain.

The increasing width of the macro-crack generated

temperature variations (Fig. 23). Between the particles on

both sides of the macro-crack, the temperature in the

macro-crack area was reduced by as much as 20.9 K. The

particle mobility and deformation had, thus, a significant

impact on fluid pressure and temperature. Heat transfer in

the bar specimen caused fluctuations in fluid pressure,

temperature, and density, which resulted in fluid flow, even

though the pressure differential between the bottom and

upper specimen borders was initially 0 kPa. The fluid’s

velocity, on the other hand, was still very low, measuring

only 0.0057 m/s.

6.2 Case ‘b’

An additional simulation was performed to show a

decoupling effect between the deformation of the cohesive

granular bar specimen and fluid flow and heat transport. In

the DEM–CFD simulations, the same specimen was used

(Fig. 8) with the same initial and boundary conditions

(Fig. 18). A decoupling effect was obtained by an

assumption that the granular assembly was unmovable (the

displacements and rotations of all spheres were fixed).

Thus, the bar cooling did not cause a crack. The temper-

ature distribution in the specimen (Fig. 24) was similar to

the simulation results in Sects. 4 and 5, and completely

different from case ‘a’ (Fig. 19).

Due to temperature differences along the specimen

height, the fluid began to flow. This caused fluid pressure

changes (Fig. 25). After 17 s of cooling, the maximum

fluid pressure dropped in the specimen to about 73.0 kPa

(below the initial conditions of 100 kPa). The maximum

specimen temperature decreased to 328.1 K (case ‘a’),

while in case ‘b’, the maximum temperature reduced to

333.3 K. The temperature difference was due to fluid

volume changes in case ‘a’, while in case ‘b’, the DEM

model was decoupled from the fluid flow and heat transfer

model and thus the changes of sphere diameters did not

occur, and also the changes of fluid volumes.

7 Summary and conclusions

The research proposes a new DEM-based pore-scale ther-

mal-hydro-mechanical model of two-phase fluid flow in

unsaturated porous materials with low porosity that was

coupled with heat transfer. The numerical findings were

compared to the analytical solution of the 1D heat transfer

problem in an analogous bar specimen to validate the

model. The effect of advection was also investigated. In

addition, the thermal contraction of the bar specimen dur-

ing cooling was carefully studied, associated with the

creation of a macro-crack. Based on meso-scale simula-

tions, the following conclusions can be offered:
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• During the 1D heat transfer problem, the largest

temperature difference between numerical and analyt-

ical findings was just 0.52–0.64 K.

• Advection increased the cooling of the specimen. The

highest temperature difference between cooling by

diffusion and cooling by diffusion with advection was

2.26 K after 400 s of cooling with a pressure decrease

of 0.5 MPa at the specimen height. The increase in the

pressure difference between the two edges of the

specimen increased the Peclet number from 24 to 179

and the maximum temperature difference from 1 to 2 K

and caused a significant right shift of the temperature

distribution along the vertical centreline of the

specimen.

• In the thermal contraction of the bar specimen after

cooling, the tensile failure mechanism was comparable

to that of purely mechanical uniaxial tension.

• During specimen thermal contraction, the fluid pressure

in the macro-crack dropped to 0.0116 MPa, which was

88.4% lower than the initial pressure.

• During specimen thermal contraction, the propagating

macro-crack created temperature differences. The tem-

perature difference between particles on both sides of

the macro-crack was 20.9 K.

• Fluid pressure was affected more by particle displace-

ment changes than by temperature changes during bar

thermal contraction.

• Heat transfer in the cooled bar specimen during bar

thermal contraction resulted in pressure and fluid

density discrepancies, causing the fluid to flow at a

very low velocity of less than 0.0057 m/s.
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Intensity and volumetric characterizations of hydraulically driven

fractures by hydro-mechanical simulations. Int J Rock Mech Min

Sci 93:163–178

33. Peneloux A, Rauzy ER, Freze R (1982) A consistent correction

for Redlich–Kwong–Soave volumes. Fluid Phase Equilib 8:7–23

34. Peng DY, Robinson DB (1976) A new two-constant equation of

state. Ind Eng Chem Fundam 15:59–64

35. Reynolds O (1883) An experimental investigation of the cir-

cumstances which determine whether the motion of water shall

be direct or sinous, and of the law of resistances in parallel

channels. Philos Trans R Soc Lond 174:935–982
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