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A Jeffreys heat conduction problem for coupled semispaces subjected to the action of an interfacial 

heat source was defined. An analytical solution of the problem was derived for a polynomial 

specific power of the heat source using the Laplace transform approach. The asymptotic and 

parametric analysis was performed for different ratios of thermal conductivities 𝐾1,2, thermal 

diffusivities 𝑘1,2, thermal relaxation times 𝜏1,2 and coefficients 𝛼1,2 indicating the relative 

contribution of Fourier heat conduction. It was found that Jeffreys heat conduction results in 

continuous variation of the contact temperature, whilst its particular case — Cattaneo heat 

conduction — is accompanied by a step change of the contact temperature at the initial time. 

Another finding is that the initial heat partition occurs due to the ratio of 𝐾1√𝛼1 𝑘1⁄  and 𝐾2√𝛼2 𝑘2⁄

under Jeffreys heat conduction and due to the different ratio of 𝐾1 √𝑘1𝜏1⁄  and 𝐾2 √𝑘2𝜏2⁄  under

Cattaneo heat conduction. The solution applicability was demonstrated on the simulation example 

of ultrashort laser pulse welding. The type of heat conduction was revealed to have qualitative and 

quantitative impacts on the contact temperature and heat fluxes. 
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Notation 

𝑐v volumetric heat capacity, J/(m3 °C) 

𝑘 thermal diffusivity, 𝑘 = 𝐾 𝑐v⁄ , m2/s 

𝑞 heat flux, W/m2 

𝑞̅ heat flux vector, W/m2 

𝑞0 maximum value of specific power 𝑞s, W/m2 

𝑞s specific power of heat source, W/m2 

𝑠 Laplace transform parameter 

𝑡 time variable, s 

𝑡s heating duration, s 

𝑥 spatial coordinate, m 

𝐼0(∙) modified Bessel function of first kind and zero order 

𝐾 thermal conductivity, W/(m °C) 

𝑄 dimensionless heat flux, 𝑄 = 𝑞 𝑞0⁄  

𝑄s dimensionless specific power of heat source, 𝑄s = 𝑞s 𝑞0⁄  

𝑇 temperature, °C 

𝑇0 initial temperature, °C 

𝛼 relative contribution of Fourier heat conduction 

𝛿(∙) Dirac delta function 

𝜂 dimensionless time variable, 𝜂 = 𝑡 𝜏1⁄  

𝜗 dimensionless temperature, 𝜗 = 𝐾1(𝑇 − 𝑇0) (𝑞0√𝑘1𝜏1)⁄  

𝜉 dimensionless spatial coordinate, 𝜉 = 𝑥 √𝑘1𝜏1⁄  

𝜏 thermal relaxation time, s 

𝜒 thermal diffusivity ratio, 𝜒 = 𝑘2 𝑘1⁄  

Γ(∙) gamma function 

Γ(∙,∙) upper incomplete gamma function 

Θ thermal relaxation time ratio, Θ = 𝜏2 𝜏1⁄  

Λ thermal conductivity ratio, Λ = 𝐾2 𝐾1⁄  

ℒ[∙] Laplace transform operator 

∇ operator nabla 

∎̃ Laplace transform image 

∎1 related to semispace 1 

∎2 related to semispace 2 

∎1,2 related to semispaces 1 and 2 

∎c related to contact region 𝑥 = 0 

∎C related to Cattaneo heat conduction 

∎F related to Fourier heat conduction 
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1. Introduction 

 Heat conduction is one of the basic mechanisms of transfer of heat energy between bodies 

being in mechanical contact. The problems of contact heat conduction represent an important class 

of heat transfer problems often met in different branches of science, engineering and technology. 

Analysis of heat conduction in coupled bodies presents serious difficulties compared to that for a 

single body due to the necessity of taking account of the properties of both bodies and contact 

conditions. 

The classical law of heat flux introduced by Fourier [1] states that heat flux 𝑞̅F in a 

conductive medium is proportional in its magnitude to the gradient of temperature 𝑇 and has the 

opposite direction, i.e. 

𝑞̅F = −𝐾F∇𝑇 

(1) 

Here ∇ is the operator nabla; 𝐾F is the Fourier thermal conductivity. The statement of heat energy 

conservation and Eq.(1) lead to the parabolic heat conduction equation (diffusion equation) in the 

form 

𝜕𝑇

𝜕𝑡
= 𝑘F∇

2𝑇 

(2) 

where 𝑡 is the time variable; 𝑘F is the Fourier thermal diffusivity. Eq.(2) has served as the basis for 

a great number of contact heat conduction studies. Some of the earliest studies were published in 

the first half of the 20th century, e.g. Carslaw [2], Mersman [3] and Schaaf [4]. 

 In accordance with the Fourier heat flux law of Eq.(1), heat propagates in a medium at 

infinite speed. If the temperature at some point undergoes a sudden change, there will be an 

instantaneous temperature response at any finite distance from this point. This, however, contradicts 

the experiments revealing finiteness of the heat propagation speed for liquid helium (Peshkov [5]) 

and dielectric crystals (Ackerman et al. [6]) at low temperatures. 

Based on the studies by Maxwell [7], Landau [8], Cattaneo [9], Vernotte [10] and others, an 

alternative concept was proposed introducing the heat flux inertia effect and stating that heat is 

transmitted by waves at finite speeds. The corresponding heat flux equation is represented in the 

form 

𝜏
𝜕𝑞̅C
𝜕𝑡

+ 𝑞̅C = −𝐾C∇𝑇 

(3) 

where 𝜏 is the thermal relaxation time. The statement of heat energy conservation and Eq.(3) imply 

the hyperbolic heat conduction equation (damped wave equation) as follows: 
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𝜏
𝜕2𝑇

𝜕𝑡2
+
𝜕𝑇

𝜕𝑡
= 𝑘C∇

2𝑇 

(4) 

Following Joseph and Preziosi [11], Eq.(4) is referred to as ‘Cattaneo heat conduction equation’ in 

the present study, without meaning to downplay the contributions of the other scientists. The related 

quantities have subscript ‘C’. 

  Cattaneo heat conduction in coupled bodies has been studied for different boundary and 

initial conditions, as reviewed next. Kazimi and Erdman [12] investigated the influence of initial 

temperature difference of coupled semispaces on their contact temperature behaviour. Frankel et al. 

[13] investigated temperatures and heat fluxes in a system of layers affected by volumetric heat 

sources. Tzou [14] performed harmonic analysis of the reflection and refraction of thermal waves 

from the interface between dissimilar materials. Lor and Chu [15, 16] investigated the influence of a 

pulsed external heat source on temperatures and heat fluxes in two layers coupled with a radiation 

contact condition. Duhamel [17] investigated heat conduction in heterogeneous media using a finite 

integral transform technique. Khadrawi et al. [18] investigated temperatures in two layers in 

imperfect thermal contact subjected to a rapid temperature change at an external surface. Tsai and 

Hung [19] investigated the thermal behaviour of a bi-layered sphere due to a rapid temperature 

change at the external surface. Dai and Niu [20, 21] developed finite difference schemes for 

studying temperatures in two coupled layers with temperature-dependent properties exposed to a 

volumetric heat source. Ordóñez-Miranda and Alvarado-Gil [22] investigated thermal waves in 

coupled layer and semispace excited by a modulated external heat source. Nosko [23] investigated 

contact temperature and heat fluxes in coupled semispaces subjected to an interfacial heat source. 

 The experimental results related to the detection of second sound and ballistic transport in 

solids at low temperatures (Ackerman and Guyer [24], McNelly et al. [25]) and extremely fast 

heating of solids by laser pulses at room temperature (Li et al. [26], Jiang [27], Banerjee et al. [28]) 

call for non-Fourier models generalising the parabolic and hyperbolic types of heat conduction. A 

mathematically simple approach is to assume that the Fourier heat flux 𝑞̅F obeys Eq.(1) as 

𝑞̅F = −𝐾F∇𝑇 = −𝛼𝐾∇𝑇 

whilst the Cattaneo heat flux 𝑞̅C obeys Eq.(3) as 

𝜏
𝜕𝑞̅C
𝜕𝑡

+ 𝑞̅C = −𝐾C∇𝑇 = −(1 − 𝛼)𝐾∇𝑇 

and, in addition, the total heat flux 𝑞̅ is the sum of 𝑞̅F and 𝑞̅C, i.e. 𝑞̅ = 𝑞̅F + 𝑞̅C. Here 𝐾 = 𝐾F + 𝐾C 

is the total thermal conductivity and 𝛼 = 𝐾F (𝐾F + 𝐾C)⁄  is the coefficient indicating the relative 

contribution of Fourier heat conduction. Then the relationship between the total heat flux 𝑞̅ and 

temperature 𝑇 is described by the Jeffreys heat flux equation in the form (Tamma and Zhou [29]) 
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𝜏
𝜕𝑞̅

𝜕𝑡
+ 𝑞̅ = −𝐾∇𝑇 − 𝛼𝜏𝐾

𝜕(∇𝑇)

𝜕𝑡
 

(5) 

 Combination of Eq.(5) and the statement of heat energy conservation 

𝑐v
𝜕𝑇

𝜕𝑡
+ ∇ ∙ 𝑞̅ = 0 

leads to the heat conduction equation 

𝜏
𝜕2𝑇

𝜕𝑡2
+
𝜕𝑇

𝜕𝑡
= 𝑘∇2𝑇 + 𝛼𝜏𝑘

𝜕(∇2𝑇)

𝜕𝑡
 

(6) 

where 𝑐v is the volumetric heat capacity; 𝑘 = 𝐾 𝑐v⁄  is the total thermal diffusivity. Apparently, the 

particular cases of Eq.(6) include Fourier heat conduction of Eq.(2) at 𝐾C = 0 and Cattaneo heat 

conduction of Eq.(4) at 𝐾F = 0. 

It is important to note that the one-dimensional representation of Eq.(6) is practically 

equivalent to the Guyer-Krumhansl equation 

𝜏
𝜕2𝑇

𝜕𝑡2
+
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
+ 𝑙2

𝜕3𝑇

𝜕𝑥2𝜕𝑡
 

developed from the linearised phonon Boltzmann equation [30], under the condition that the 

dissipation parameter 𝑙2 related to the mean free path equals 𝛼𝜏𝑘. The Guyer-Krumhansl equation 

is consistent with the kinetic theory and second law of thermodynamics if the parameters 𝑘, 𝜏 and 𝑙2 

take positive values (Fehér and Kovács [31], Ramos et al. [32]), which, in fact, does not impose 

extra limitations on the parameters 𝑘, 𝜏 and 𝛼 incorporated in Eq.(6). Moreover, the experimental 

studies by Both et al. [33] and Ván et al. [34] claim that the Guyer-Krumhansl equation allows more 

accurate temperature simulations compared to Fourier heat conduction of Eq.(2) for the case of 

heterogeneous materials like rocks and foams at room temperature. 

 Another important remark is that Eq.(6) can be considered as the first-order approximation 

of a dual-phase-lag model by Tzou [35] formulated with respect to 𝑇 as 

𝜏
𝜕2𝑇

𝜕𝑡2
+
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
+ 𝑘𝜏𝑇

𝜕3𝑇

𝜕𝑥2𝜕𝑡
 

under the condition that the temperature gradient phase lag 𝜏𝑇 equals 𝛼𝜏. The dual-phase-lag model 

gained popularity in the heat conduction literature, despite the criticism of violating basic physical 

principles (Fabrizio and Lazzari [36], Rukolaine [37], Awad [38]). 

The contact heat conduction problems based on the dual-phase-lag and Jeffreys models have 

been reported. Ho et al. [39] performed a numerical study of heat conduction in a system of layers 

using a lattice Boltzmann method. Al-Nimr et al. [40] investigated temperature responses in two 

layers due to harmonic excitation in the form of a volumetric heat source in one of the layers or 
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temperature variation at an external surface. Al-Huniti and Al-Nimr [41] investigated the 

thermoelastic behaviour of two layers subjected to a rapid temperature change at an external surface 

using the Laplace transform technique along with a numerical procedure based on a Riemann-sum 

approximation. A similar approach was applied by Lee and Tsai [42] who investigated the pulsed 

volumetric heating of a layer and a semispace in imperfect thermal contact and Ramadan [43] who 

investigated the pulsed heating of a multi-layer system by an external heat flux. Ramadan and Al-

Nimr [44] performed numerical simulations of the thermal behaviour of two layers in imperfect 

thermal contact with different initial temperatures. Akbarzadeh and Pasini [45] investigated the 

thermal response of a system of layers in imperfect thermal contact to temperature variations at the 

external surfaces using the Laplace transform and fast inverse Laplace transform techniques. Yeoh 

et al. [46] applied a finite difference method with high-order total variation diminishing schemes to 

simulate temperatures in a multi-layer system. Xue et al. [47, 48] investigated heat conduction in 

two layers in imperfect thermal contact using an original differential-algebraic equation time 

integration framework. 

 Analysis shows that the studies mentioned above do not cover the Jeffreys heat conduction 

problem for two coupled bodies heated by an interfacial heat source. This problem may arise in 

practically important applications, such as laser processing of materials (Ma et al. [49]), simulations 

of heat transfer in biological tissues (Xu et al. [50]), simulations of microscopic frictional processes 

(Nosko [51]) and other applications involving instantaneous interactions of mechanical, 

electromagnetic or chemical nature. Moreover, the majority of the studies employ numerical or 

semi-analytical methods to find temperature and heat flux solutions and, therefore, these solutions 

are unsuitable for accurate asymptotic and parametric analysis. The purpose of the present study 

was to find an analytical solution of the Jeffreys heat conduction problem for coupled semispaces 

subjected to the action of an interfacial heat source of variable specific power and analyse the 

solution in terms of asymptotic behaviour, parametric sensitivity and potential applications. 

 

2. Problem definition and governing equations 

 A schematic of the studied contact heat conduction problem is presented in Fig.1. Consider 

the semispaces 1 and 2 which occupy the respective domains 𝑥 > 0 and 𝑥 < 0. Assume that 

temperatures 𝑇1,2(𝑥, 𝑡) in the semispaces satisfy Eq.(6), implying the following heat conduction 

equations: 

𝜏1
𝜕2𝑇1
𝜕𝑡2

+
𝜕𝑇1
𝜕𝑡

= 𝑘1
𝜕2𝑇1
𝜕𝑥2

+ 𝛼1𝜏1𝑘1
𝜕3𝑇1
𝜕𝑥2𝜕𝑡

, 𝑥 > 0, 𝑡 > 0; 

𝜏2
𝜕2𝑇2
𝜕𝑡2

+
𝜕𝑇2
𝜕𝑡

= 𝑘2
𝜕2𝑇2
𝜕𝑥2

+ 𝛼2𝜏2𝑘2
𝜕3𝑇2
𝜕𝑥2𝜕𝑡

, 𝑥 < 0, 𝑡 > 0 
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(7) 

where 𝑘1,2 are the thermal diffusivities; 𝜏1,2 are the thermal relaxation times; 𝛼1,2 are the 

coefficients indicating the relative contribution of Fourier heat conduction. 

 At the initial time 𝑡 = 0, the temperatures 𝑇1,2 are uniformly distributed and equal between 

each other, i.e.  

𝑇1|𝑡=0 = 𝑇2|𝑡=0 = 𝑇0 

(8) 

and their derivatives with respect to the time variable 𝑡 equal zero: 

𝜕𝑇1
𝜕𝑡
|
𝑡=0

=
𝜕𝑇2
𝜕𝑡
|
𝑡=0

= 0 

(9) 

where 𝑇0 is the initial temperature. 

Temperature continuity is assumed in the contact region 𝑥 = 0 between the semispaces: 

𝑇1|𝑥=0 = 𝑇2|𝑥=0 = 𝑇c 

(10) 

Here 𝑇c(𝑡) denotes the contact temperature. 

Heat fluxes 𝑞1,2(𝑥, 𝑡) in the semispaces are coupled via the interfacial heat source acting 

with variable specific power 𝑞s(𝑡) in the form of a polynomial 

𝑞1|𝑥=0 − 𝑞2|𝑥=0 = 𝑞s = 𝑞0∑𝑝𝑖𝑡
𝑖

𝑛

𝑖=0

 

(11) 

where 𝑞0 is the maximum value of 𝑞s in the considered time interval from zero to 𝑡s; 𝑛 is the degree 

of the polynomial; 𝑝𝑖 is the 𝑖-th coefficient of the polynomial. The contact heat fluxes are further 

denoted by 𝑞c1,2(𝑡) = 𝑞1,2|𝑥=0. 

The relationship between 𝑞1,2 and 𝑇1,2 is defined by Eq.(5) as follows: 

𝜏1
𝜕𝑞1
𝜕𝑡

+ 𝑞1 = −𝐾1
𝜕𝑇1
𝜕𝑥

− 𝛼1𝜏1𝐾1
𝜕2𝑇1
𝜕𝑥𝜕𝑡

; 

𝜏2
𝜕𝑞2
𝜕𝑡

+ 𝑞2 = −𝐾2
𝜕𝑇2
𝜕𝑥

− 𝛼2𝜏2𝐾2
𝜕2𝑇2
𝜕𝑥𝜕𝑡

 

(12) 

where 𝐾1,2 are the thermal conductivities. 

The problem definition becomes complete by specifying the conditions of zero disturbance 

at infinite distance from the contact region: 

𝜕𝑇1
𝜕𝑥
|
𝑥→+∞

=
𝜕𝑇2
𝜕𝑥
|
𝑥→−∞

= 0 
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(13) 

 The problem of Eqs.(7)–(13) should be represented in the dimensionless form to decrease 

the number of parameters and simplify analysis. Dimensionless spatial coordinate 𝜉, time variable 

𝜂, temperatures 𝜗1,2, contact temperature 𝜗c, heat fluxes 𝑄1,2, contact heat fluxes 𝑄c1,2 and heat 

source specific power 𝑄s are introduced as follows: 

𝜉 =
𝑥

√𝑘1𝜏1
, 𝜂 =

𝑡

𝜏1
, 

𝜗1,2 = 
𝐾1(𝑇1,2 − 𝑇0)

𝑞0√𝑘1𝜏1
, 𝜗c = 

𝐾1(𝑇c − 𝑇0)

𝑞0√𝑘1𝜏1
, 

  𝑄1,2 =
𝑞1,2
𝑞0

, 𝑄c1,2 =
𝑞c1,2
𝑞0

, 𝑄s =
𝑞s
𝑞0

 

The dimensionless parameters include the coefficients 𝛼1,2 and thermal conductivity ratio Λ, 

thermal diffusivity ratio 𝜒, thermal relaxation time ratio Θ given by 

 Λ =
𝐾2
𝐾1
, 𝜒 =

𝑘2
𝑘1
, Θ =

𝜏2
𝜏1

 

and polynomial coefficients 

𝜇𝑖 = 𝑝𝑖𝜏1
𝑖 , 𝑖 = 0, … , 𝑛 

 Finally, the dimensionless variables and parameters above lead to the problem definition 

incorporating the heat conduction equations 

𝜕2𝜗1
𝜕𝜂2

+
𝜕𝜗1
𝜕𝜂

=
𝜕2𝜗1
𝜕𝜉2

+ 𝛼1
𝜕3𝜗1
𝜕𝜉2𝜕𝜂

; 

Θ
𝜕2𝜗2
𝜕𝜂2

+
𝜕𝜗2
𝜕𝜂

= 𝜒
𝜕2𝜗2
𝜕𝜉2

+ 𝛼2𝜒Θ
𝜕3𝜗2
𝜕𝜉2𝜕𝜂

 

(14) 

initial conditions 

𝜗1|𝜂=0 = 𝜗2|𝜂=0 = 0; 

𝜕𝜗1
𝜕𝜂
|
𝜂=0

=
𝜕𝜗2
𝜕𝜂
|
𝜂=0

= 0  

(15) 

temperature continuity condition 

𝜗1|𝜉=0 = 𝜗2|𝜉=0 = 𝜗c 

(16) 

heat source condition 

𝑄1|𝜉=0 − 𝑄2|𝜉=0 = 𝑄s =∑𝜇𝑖𝜂
𝑖

𝑛

𝑖=0
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(17) 

keeping in mind that 

𝜕𝑄1
𝜕𝜂

+ 𝑄1 = −
𝜕𝜗1
𝜕𝜉

− 𝛼1
𝜕2𝜗1
𝜕𝜉𝜕𝜂

; 

Θ
𝜕𝑄2
𝜕𝜂

+ 𝑄2 = −Λ
𝜕𝜗2
𝜕𝜉

− 𝛼2ΛΘ
𝜕2𝜗2
𝜕𝜉𝜕𝜂

 

(18) 

and conditions of zero disturbance at infinity 

𝜕𝜗1
𝜕𝜉
|
𝜉→+∞

=
𝜕𝜗2
𝜕𝜉
|
𝜉→−∞

= 0 

(19) 

 The problem of Eqs.(14)–(19) is solved and analysed in the following sections. 

 

3. Problem solution using the Laplace transform approach 

 Apply the Laplace transform 𝑔̃(𝑠) = ℒ[𝑔(𝜂)] with respect to the time variable 𝜂 (Doetsch 

[52]). Here 𝑠 is the transform parameter. The temperature images 𝜗̃1,2(𝜉, 𝑠) are then found from 

Eq.(14) with account of zero initial conditions of Eq.(15) as follows: 

(𝛼1𝑠 + 1)
𝜕2𝜗̃1
𝜕𝜉2

− 𝑠(𝑠 + 1)𝜗̃1 = 0; 

𝜒(𝛼2Θ𝑠 + 1)
𝜕2𝜗̃2
𝜕𝜉2

− 𝑠(Θ𝑠 + 1)𝜗̃2 = 0 

(20) 

The solution of Eq.(20) that satisfies the temperature continuity condition of Eq.(16) and 

zero disturbance conditions of Eq.(19) is found in the form 

𝜗̃1 = 𝜗̃c exp{−𝜉√
𝑠(𝑠 + 1)

𝛼1𝑠 + 1
} ; 

𝜗̃2 = 𝜗̃c exp{
𝜉

√𝜒
√
𝑠(Θ𝑠 + 1)

𝛼2Θ𝑠 + 1
} 

(21) 

where 𝜗̃c(𝑠) is a yet unknown image of the contact temperature 𝜗c(𝜂). 

 The heat flux images 𝑄̃1,2(𝜉, 𝑠) are determined from Eq.(18) and represented as 

𝑄̃1 = −
𝛼1𝑠 + 1

𝑠 + 1

𝜕𝜗̃1
𝜕𝜉

; 
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𝑄̃2 = −Λ
𝛼2Θs + 1

Θ𝑠 + 1

𝜕𝜗̃2
𝜕𝜉

 

(22) 

Further, substitute Eq.(21) and Eq.(22) into Eq.(17) in the space of images and obtain the 

contact temperature image 

𝜗̃c =
√𝜒√Θ𝑠 + 1√𝑠 + 1

√𝜒√𝛼1𝑠 + 1√Θ𝑠 + 1 + Λ√𝛼2Θ𝑠 + 1√𝑠 + 1
∑

𝑖! 𝜇𝑖
𝑠3/2+𝑖

𝑛

𝑖=0

=
√𝜒

𝛼1𝜒 − 𝛼2Λ2
(√𝛼1𝜒

(𝑠 + Θ−1)√𝑠 + 1√𝑠 + 𝛼1
−1

(𝑠 − 𝑎1)(𝑠 − 𝑎2)

− Λ√𝛼2
(𝑠 + 1)√𝑠 + Θ−1√𝑠 + 𝛼2

−1Θ−1

(𝑠 − 𝑎1)(𝑠 − 𝑎2)
)∑

𝑖! 𝜇𝑖
𝑠3/2+𝑖

𝑛

𝑖=0

 

(23) 

where 

𝑎1,2 = −
𝛼1𝜒 − 𝛼2Λ

2Θ + 𝜒Θ − Λ2

2Θ(𝛼1𝜒 − 𝛼2Λ2)
±
√(𝛼1𝜒 − 𝛼2Λ2Θ + 𝜒Θ − Λ2)2 − 4Θ(𝛼1𝜒 − 𝛼2Λ2)(𝜒 − Λ2)

2Θ(𝛼1𝜒 − 𝛼2Λ2)
 

 The contact heat flux images 𝑄̃c1,2(𝑠) can be expressed based on Eqs.(21)–(23) as 

𝑄̃c1 =
√𝛼1𝜒

𝛼1𝜒 − 𝛼2Λ2
(√𝛼1𝜒

(𝑠 + Θ−1)(𝑠 + 𝛼1
−1)

(𝑠 − 𝑎1)(𝑠 − 𝑎2)

− Λ√𝛼2
√𝑠 + 1√𝑠 + Θ−1√𝑠 + 𝛼1

−1√𝑠 + 𝛼2
−1Θ−1

(𝑠 − 𝑎1)(𝑠 − 𝑎2)
)∑

𝑖! 𝜇𝑖
𝑠1+𝑖

𝑛

𝑖=0

; 

𝑄̃c2 =
Λ√𝛼2

𝛼1𝜒 − 𝛼2Λ2
(Λ√𝛼2

(𝑠 + 1)(𝑠 + 𝛼2
−1Θ−1)

(𝑠 − 𝑎1)(𝑠 − 𝑎2)

− √𝛼1𝜒
√𝑠 + 1√𝑠 + Θ−1√𝑠 + 𝛼1

−1√𝑠 + 𝛼2
−1Θ−1

(𝑠 − 𝑎1)(𝑠 − 𝑎2)
)∑

𝑖! 𝜇𝑖
𝑠1+𝑖

𝑛

𝑖=0

 

(24) 

 The property of linearity and known Laplace transforms (Carslaw and Jaeger [53]) yield that 

ℒ−1 [
1

√𝑠 + 𝑏√𝑠 + 𝑐
] = 𝜙(𝜂, 𝑏, 𝑐) = exp {−

𝑏 + 𝑐

2
𝜂} 𝐼0 (

𝑏 − 𝑐

2
𝜂) ; 

ℒ−1 [
(𝑠 + 𝑏)(𝑠 + 𝑐)

(𝑠 − 𝑎1)(𝑠 − 𝑎2)𝑠1+𝑖
] = 𝜚(𝜂, 𝑖, 𝑏, 𝑐)

=
(𝑎1 + 𝑏)(𝑎1 + 𝑐)

𝑎1
1+𝑖(𝑎1 − 𝑎2)

exp{𝑎1𝜂} (1 −
Γ(1 + 𝑖, 𝑎1𝜂)

𝑖!
)

+
(𝑎2 + 𝑏)(𝑎2 + 𝑐)

𝑎2
1+𝑖(𝑎2 − 𝑎1)

exp{𝑎2𝜂} (1 −
Γ(1 + 𝑖, 𝑎2𝜂)

𝑖!
) +

𝜂𝑖

𝑖!
; 
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ℒ−1 [
(𝑠 + 𝑏)(𝑠 + 𝑐)(𝑠 + 𝑑)

(𝑠 − 𝑎1)(𝑠 − 𝑎2)𝑠3 2⁄ +𝑖
] = 𝜆(𝜂, 𝑖, 𝑏, 𝑐, 𝑑)

=
(𝑎1 + 𝑏)(𝑎1 + 𝑐)(𝑎1 + 𝑑)

𝑎1
3 2⁄ +𝑖(𝑎1 − 𝑎2)

exp{𝑎1𝜂} (1 −
Γ(3 2⁄ + 𝑖, 𝑎1𝜂)

Γ(3 2⁄ + 𝑖)
)

+
(𝑎2 + 𝑏)(𝑎2 + 𝑐)(𝑎2 + 𝑑)

𝑎2
3 2⁄ +𝑖(𝑎2 − 𝑎1)

exp{𝑎2𝜂} (1 −
Γ(3 2⁄ + 𝑖, 𝑎2𝜂)

Γ(3 2⁄ + 𝑖)
)

+
𝑎1 + 𝑎2 + 𝑏 + 𝑐 + 𝑑

Γ(3 2⁄ + 𝑖)
𝜂𝑖+1 2⁄ +

1 2⁄ + 𝑖

Γ(3 2⁄ + 𝑖)
𝜂𝑖−1 2⁄ ; 

ℒ−1 [
(𝑠 + 𝑏)(𝑠 + 𝑐)(𝑠 + 𝑑)(𝑠 + 𝑓)

(𝑠 − 𝑎1)(𝑠 − 𝑎2)𝑠1+𝑖
] = 𝜅(𝜂, 𝑖, 𝑏, 𝑐, 𝑑, 𝑓)

=
(𝑎1 + 𝑏)(𝑎1 + 𝑐)(𝑎1 + 𝑑)(𝑎1 + 𝑓)

𝑎1
1+𝑖(𝑎1 − 𝑎2)

exp{𝑎1𝜂} (1 −
Γ(𝑖, 𝑎1𝜂)

Γ(𝑖)
)

+
(𝑎2 + 𝑏)(𝑎2 + 𝑐)(𝑎2 + 𝑑)(𝑎2 + 𝑓)

𝑎2
1+𝑖(𝑎2 − 𝑎1)

exp{𝑎2𝜂} (1 −
Γ(𝑖, 𝑎2𝜂)

Γ(𝑖)
) +

𝑏𝑐𝑑𝑓

𝑖! 𝑎1𝑎2
𝜂𝑖

+ (𝑎1 + 𝑎2 + 𝑏 + 𝑐 + 𝑑 + 𝑓){

𝛿(𝜂),       𝑖 = 0;       

𝜂𝑖−1

(𝑖 − 1)!
, 𝑖 = 1,2, …

+

{
 
 

 
 𝛿

′(𝜂),       𝑖 = 0;       
𝛿(𝜂),       𝑖 = 1;       

𝜂𝑖−2

(𝑖 − 2)!
, 𝑖 = 2,3, …

 

(25) 

where 𝑏, 𝑐, 𝑑 and 𝑓 are positive real numbers; 𝐼0 is the modified Bessel function of the first kind 

and zero order; Γ(∙) is the gamma function; Γ(∙,∙) is the upper incomplete gamma function; 𝛿(∙) is 

the Dirac delta function. 

The convolution theorem and the transforms given by Eq.(25) allow representing the 

original of Eq.(23) in the form 

𝜗c =
√𝜒

𝛼1𝜒 − 𝛼2Λ2
∑(𝑖! 𝜇𝑖)

𝑛

𝑖=0

∫ (√𝛼1𝜒 𝜙(𝜂 − 𝜍, 1, 𝛼1
−1)𝜆(𝜍, 𝑖, 1, 𝛼1

−1, Θ−1)
𝜂

0

− Λ√𝛼2 𝜙(𝜂 − 𝜍, Θ
−1, 𝛼2

−1Θ−1)𝜆(𝜍, 𝑖, Θ−1, 𝛼2
−1Θ−1, 1)) 𝑑𝜍 

(26) 

and the originals of Eq.(24) in the form 

𝑄c1 =
√𝛼1𝜒

𝛼1𝜒 − 𝛼2Λ2
∑(𝑖! 𝜇𝑖)

𝑛

𝑖=0

(√𝛼1𝜒 𝜚(𝜂, 𝑖, Θ
−1, 𝛼1

−1)

− Λ√𝛼2∫ 𝜙(𝜂
𝜂

0

− 𝜍, 1, Θ−1)∫ 𝜙(𝜍 − 𝜖, 𝛼1
−1, 𝛼2

−1Θ−1)𝜅(𝜖, 𝑖, 1, Θ−1, 𝛼1
−1, 𝛼2

−1Θ−1)
𝜍

0

𝑑𝜖𝑑𝜍) ; 
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𝑄c2 =
Λ√𝛼2

𝛼1𝜒 − 𝛼2Λ2
∑(𝑖! 𝜇𝑖)

𝑛

𝑖=0

(Λ√𝛼2 𝜚(𝜂, 𝑖, 1, 𝛼2
−1Θ−1)

− √𝛼1𝜒∫ 𝜙(𝜂
𝜂

0

− 𝜍, 1, Θ−1)∫ 𝜙(𝜍 − 𝜖, 𝛼1
−1, 𝛼2

−1Θ−1)𝜅(𝜖, 𝑖, 1, Θ−1, 𝛼1
−1, 𝛼2

−1Θ−1)
𝜍

0

𝑑𝜖𝑑𝜍) 

(27) 

 Thereby, the contact temperature 𝜗c and heat fluxes 𝑄c1,2 can be determined using 

respective Eq.(26) and Eq.(27). Note that finding the analytical expressions of the temperature 

distributions 𝜗1,2 requires inversion of Eq.(21) which is cumbersome. The relevant mathematical 

approaches are discussed in Awad et al. [54]. 

 

4. Solution validation 

 The solution given by Eq.(26) and Eq.(27) is validated by its comparisons to the known 

analytical expressions and numerically calculated values. Fig.2 shows an example of such a 

comparison for the contact temperature 𝜗c and heat flux 𝑄c1. In the case of 𝛼1 = 𝛼2 = 1, the 

Fourier heat flux law of Eq.(1) takes place, and the solution coincides with the expressions for 

parabolic heat conduction in coupled semispaces (Carslaw and Jaeger [53]). In the opposite case, at 

𝛼1 = 𝛼2 = 0, the heat flux and temperature are related due to the Cattaneo heat flux law of Eq.(3), 

and the solution degenerates to that derived by Nosko [23] for the problem of hyperbolic heat 

conduction in coupled semispaces. In the general case, when the heat conduction is governed by the 

Jeffreys heat flux law of Eq.(5), i.e. the coefficients 𝛼1,2 take arbitrary values in between zero and 

unit, the validation is performed using a numerical algorithm. 

 The algorithm is developed based on the implicit Backward Time Centered Space method 

(BTCS). The validation of the algorithm itself includes comparisons of the numerical results to 

those obtained by other finite difference approximations, e.g. the Crank-Nicolson implicit method 

(CN). Fig.3 shows a small portion of the validation procedure on the example of calculation of the 

spatial temperature distributions 𝜗1,2. A perfect match is seen between the values obtained by BTCS 

and CN and between these values and the mentioned analytical expressions for the Fourier and 

Cattaneo types of heat conduction. It is also seen that the algorithm allows accurate simulation of 

the thermal waves with sharp fronts intrinsic to Cattaneo heat conduction of Eq.(4) (Özişik and 

Tzou [55]). An accuracy of 6 significant digits is achieved at the number of spatial and time 

discretisation steps of order 103. 
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5. Asymptotic analysis 

 The asymptotic behaviour of the contact temperature 𝜗c and heat flux 𝑄c1 is analysed for the 

heat source of constant specific power 𝑄s = 1, i.e. 𝑛 = 0 and 𝜇0 = 1 are specified in Eq.(17). Since 

the image functions given by Eq.(23) and Eq.(24) are substantially simpler compared to the original 

functions given by Eq.(26) and Eq.(27), it is reasonable to make use of the relationship between the 

limit behaviour of an original function and that of the corresponding image function (Doetsch [52]). 

First consider the case of small time variable 𝜂. The limit expressions of Eq.(23) and Eq.(24) 

at real-valued 𝑠 → ∞ read 

𝜗̃c ≅
√𝜒

(√𝜒𝛼1 + Λ√𝛼2)𝑠√𝑠
 

(28) 

and 

𝑄̃c1 ≅
√𝜒𝛼1

(√𝜒𝛼1 + Λ√𝛼2)𝑠
 

(29) 

 Of particular interest is Cattaneo heat conduction that takes place at 𝛼1 = 𝛼2 = 0. 

Simplification of Eq.(21) and Eq.(22) and their substitution into Eq.(17) in the space of images lead 

to the image functions 

𝜗̃c =
√𝜒Θ√𝑠 + 1√𝑠 + Θ−1

𝑠√𝑠(Λ√𝑠 + 1 + √𝜒Θ√𝑠 + Θ−1)
; 

𝑄̃c1 =
√𝜒Θ√𝑠 + Θ−1

𝑠(Λ√𝑠 + 1 + √𝜒Θ√𝑠 + Θ−1)
 

which at real-valued 𝑠 → ∞ are asymptotically equivalent to 

𝜗̃c ≅ 𝑄̃c1 ≅
√𝜒Θ

(Λ + √𝜒Θ)𝑠
 

(30) 

Finally, inversion of Eqs.(28)–(30) results in the limit expressions for 𝜂 → 0 as follows: 

𝜗c ≅

{
 
 

 
 

2√𝜒

√𝜋(√𝜒𝛼1 + Λ√𝛼2)
√𝜂, 𝛼1 ≠ 0 or 𝛼2 ≠ 0;

√𝜒Θ

Λ + √𝜒Θ
,                                          𝛼1 = 𝛼2 = 0

 

(31) 

and 
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𝑄c1 ≅

{
 
 

 
 √𝜒𝛼1

√𝜒𝛼1 + Λ√𝛼2
, 𝛼1 ≠ 0 or 𝛼2 ≠ 0;

√𝜒Θ

Λ + √𝜒Θ
,                          𝛼1 = 𝛼2 = 0

 

(32) 

It is remarkable that under Cattaneo heat conduction at 𝛼1 = 𝛼2 = 0, the initial rise of 𝜗c is equal to 

that of 𝑄c1. 

Represent Eq.(31) and Eq.(32) in the dimensional form 

𝑇c − 𝑇0 ≅

{
 
 

 
 2𝑞0√𝑡

√𝜋(𝐾1√𝛼1 𝑘1⁄ + 𝐾2√𝛼2 𝑘2⁄ )
, 𝛼1 ≠ 0 or 𝛼2 ≠ 0;

𝑞0

𝐾1 √𝑘1𝜏1⁄ + 𝐾2 √𝑘2𝜏2⁄
,                            𝛼1 = 𝛼2 = 0

 

(33) 

and 

𝑞c1 ≅

{
 
 

 
 𝐾1√𝛼1 𝑘1⁄

𝐾1√𝛼1 𝑘1⁄ + 𝐾2√𝛼2 𝑘2⁄
𝑞0, 𝛼1 ≠ 0 or 𝛼2 ≠ 0;

𝐾1 √𝑘1𝜏1⁄

𝐾1 √𝑘1𝜏1⁄ + 𝐾2 √𝑘2𝜏2⁄
𝑞0,                  𝛼1 = 𝛼2 = 0

 

(34) 

In accordance with Eq.(33) and Eq.(34), under Jeffreys heat conduction at 𝛼1 ≠ 0 or 𝛼2 ≠

0, the relative contact temperature (𝑇c − 𝑇0) increases continuously as √𝑡, whilst the generated heat 

is partitioned between the semispaces due to the ratio of 𝐾1√𝛼1 𝑘1⁄  and 𝐾2√𝛼2 𝑘2⁄ . Note that the 

expressions of 𝑇c and 𝑞c1 are independent of 𝜏1 and 𝜏2. Thereby, the Fourier component of heat 

conduction predominates over the Cattaneo component as regards the qualitative behaviour of 𝑇c 

and 𝑞c1, which is in line with the discussions by Tamma and Zhou [29]. 

Cattaneo heat conduction at 𝛼1 = 𝛼2 = 0 is characterised by a step change of 𝑇c that 

depends on the parameters 𝐾1,2, 𝑘1,2 and 𝜏1,2. Fig.4 illustrates the dimensionless dependence of the 

initial rise of 𝜗c on the parameter Λ and product 𝜒Θ due to Eq.(31). It is seen that 𝜗c decreases with 

an increase in Λ, whereas it increases with an increase in 𝜒Θ. The partition of the generated heat 

occurs due to the ratio of  𝐾1 √𝑘1𝜏1⁄  and 𝐾2 √𝑘2𝜏2⁄ . These results agree with those obtained by 

Nosko [23]. 

Bring into consideration the ‘mixed’ heat conduction when one of the semispaces conducts 

heat due to the Fourier heat flux law of Eq.(1), whilst the other one conducts heat due to the 

Cattaneo heat flux law of Eq.(3), i.e. it holds that 𝛼1 = 1 and 𝛼2 = 0 or, inversely, 𝛼1 = 0 and 

𝛼2 = 1. As yields from Eq.(34), under the mixed heat conduction, the total generated heat passes to 
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the Fourier heat conduction semispace at the initial time. Thereby, a Cattaneo heat conduction 

material coupled with a Fourier heat conduction material exhibits perfect insulating property for 

ultrashort interfacial heating. 

Now it is turn to consider the case of large time variable 𝜂. The limit expressions of Eq.(23) 

and Eq.(24) at real-valued 𝑠 → 0 take the form 

𝜗̃c ≅
√𝜒

(Λ + √𝜒)𝑠√𝑠
; 

𝑄̃c1 ≅
√𝜒

(Λ + √𝜒)𝑠
 

which correspond to the limit expressions of the corresponding original functions at 𝜂 → ∞ as 

follows: 

𝜗c ≅
2√𝜒

√𝜋(Λ + √𝜒)
√𝜂; 

𝑄c1 ≅
√𝜒

Λ + √𝜒
 

(35) 

The dimensional form of Eq.(35) reads 

𝑇c ≅
2𝑞0√𝑡

√𝜋(𝐾1 √𝑘1⁄ + 𝐾2 √𝑘2⁄ )
; 

𝑞c1 ≅
𝐾1 √𝑘1⁄

𝐾1 √𝑘1⁄ + 𝐾2 √𝑘2⁄
 𝑞0 

(36) 

 The asymptotic expressions of Eq.(36) suggest that the influence of the parameters 𝛼1,2 and 

𝜏1,2 weakens with increasing time variable 𝑡, and the behaviour of 𝑇c and 𝑞c1,2 becomes equivalent 

to that solely governed by Fourier heat conduction as 𝑡 → ∞. 

 Table 1 summarises the expressions of the heat partition coefficient 𝑞c1 𝑞0⁄  given by Eq.(34) 

and Eq.(36). Note that for 𝛼1 = 𝛼2 ≠ 0, i.e. for equal relative contributions of Fourier heat 

conduction in the semispaces, the initial rise of 𝑞c1 (at 𝑡 → 0) coincides with its limit value at 𝑡 →

∞. 

 

6. Parametric analysis 

 The expressions of Eq.(26) for the contact temperature 𝜗c and Eq.(27) for the contact heat 

fluxes 𝑄c1,2 incorporate the parameters 𝛼1,2, Λ, 𝜒 and Θ. The influence of each of the parameters is 

analysed in this section for different types of heat conduction. For simplicity, the specific power is 

assumed to be constant and equal to 𝑄s = 1. 
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Fig.5 illustrates the influence of the thermal conductivity ratio Λ = 𝐾2 𝐾1⁄ . It is seen that 

both 𝜗c and 𝑄c1 decrease with an increase in Λ. This result is explained by the fact that an increase 

in Λ implies an increase in 𝐾2, i.e. an increased ability of the semispace 2 to remove heat from the 

contact region. Jeffreys heat conduction (e.g. 𝛼1 = 𝛼2 = 1 2⁄ ) leads to 𝜗c which is above the value 

for Fourier heat conduction (𝛼1 = 𝛼2 = 1) and below the value for Cattaneo heat conduction (𝛼1 =

𝛼2 = 0). With increasing 𝜂, regardless of the heat conduction type, 𝜗c tends to the asymptotic 

expression of Eq.(35) that corresponds to Fourier heat conduction. 

Fig.6 shows the influence of the thermal diffusivity ratio 𝜒 = 𝑘2 𝑘1⁄ . An increase in 𝜒, i.e. 

an increase in 𝑘2, leads to the thermal process intensification in the semispace 2 which is 

accompanied by an increase in both 𝜗c and 𝑄c1. It is remarkable that in Fig.5 and Fig.6, 𝑄c1 (and, 

accordingly, 𝑄c2) is constant with time, which is due to equal relative contributions of Fourier heat 

conduction in the semispaces at 𝛼1 = 𝛼2 and equal thermal relaxation times 𝜏1,2 at Θ = 1. 

Further, Fig.7 presents the influence of the thermal relaxation time ratio Θ = 𝜏2 𝜏1⁄ . As Θ ≠

1, i.e. 𝜏1 ≠ 𝜏2, the character of 𝑄c1 (and, accordingly, 𝑄c2) becomes variable. An increase in Θ, i.e. 

an increase in 𝜏2, yields an increase in both 𝜗c and 𝑄c1. This looks natural since the increase in 𝜏2 

implies a slower thermal wave propagation in the semispace 2 and, therefore, a less intensive heat 

removal from the contact region. With increasing 𝜂, 𝑄c1 tends to its limit value of Eq.(35) which is 

independent of Θ and 𝛼1,2. 

 Finally, Fig.8 shows the sensitivity of the behaviour of 𝜗c and 𝑄c1 to variation of the 

coefficients 𝛼1,2. The curves of 𝜗c corresponding to Jeffreys heat conduction (e.g. 𝛼1 = 𝛼2 = 1 2⁄ ) 

and the mixed heat conduction (𝛼1 = 1 and 𝛼2 = 0 or, inversely, 𝛼1 = 0 and 𝛼2 = 1) lie above the 

curve for Fourier heat conduction and below that for Cattaneo heat conduction. As regards 𝑄c1, 

under the mixed heat conduction, the initial rise of 𝑄c1 equals unit at 𝛼1 = 1 and 𝛼2 = 0, whereas it 

equals zero in the opposite case, as 𝛼1 = 0 and 𝛼2 = 1. This result agrees with those obtained in 

Section 5 and summarised in Table 1. 

Of particular interest is the thermal behaviour under the condition of Λ = 𝜒 = Θ = 1 and 

𝛼1 = 𝛼2. The semispaces exhibit the same thermal properties, which leads to the spatial 

distributions of 𝜗1,2 that are symmetrical with respect to the contact plane 𝜉 = 0 for all considered 

types of heat conduction. The generated heat is partitioned equally between the semispaces, i.e. 

𝑄c1 = |𝑄c2| = 1 2⁄ , as shown in Figs.5–8. 

 

7. Solution application 

 Apply the obtained solution given by Eq.(26) and Eq.(27) to the simulation problem of 

ultrashort laser pulse welding. The properties of the welded pieces 1 and 2 are as follows: thermal 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


17 
 

conductivities 𝐾1 = 10 W/(m °C) and 𝐾2 = 1 W/(m °C); thermal diffusivities 𝑘1 = 10
−5 m2/s and 

𝑘2 = 10−6 m2/s; thermal relaxation times 𝜏1 = 1 ps and 𝜏2 = 10 ps. By order of magnitude, the 

properties of the piece 1 are typical for metals, whilst those of the piece 2 are typical for dielectric 

materials (Guillemet and Bardon [56]). The initial temperature of the pieces equals 𝑇0 = 20 °C. The 

contact region between the pieces is heated by a laser with variable specific power 𝑞s in the time 

interval from zero to 𝑡s = 1 ps.  Two regimes of heating, namely, linear and quadratic, are 

considered, as illustrated in Fig.9. The linear regime is described by the specific power 𝑞s =

𝑞0(1 − 𝑡 𝑡s⁄ ), i.e. 𝑛 = 1, 𝑝0 = 1 and 𝑝1 = −𝑡s
−1 are specified in Eq.(11), which represents a ramp-

down pulse shaping used to improve the welding characteristics (Zhang et al. [57]). As regards the 

quadratic regime, here the specific power is given by the function 𝑞s = 4𝑞0 𝑡 𝑡s⁄ (1 − 𝑡 𝑡s⁄ ), i.e. 

𝑛 = 2, 𝑝0 = 0, 𝑝1 = 4 𝑡s⁄  and 𝑝2 = −4 𝑡s
2⁄  are specified in Eq.(11). This function looks to be a 

good approximation of a single ultrashort laser pulse (Ullsperger et al. [58]). The maximum value 

of the specific power 𝑞s is set equal to 𝑞0 = 10
12 W/m2 for both regimes. 

 The linear regime is characterised by a step change of 𝑞s at the initial time (see Fig.9). This 

step change results in a qualitatively different behaviour of the contact temperature 𝑇c depending on 

the heat conduction type, as shown in Fig.10. Under Fourier heat conduction, the maximum value 

of 𝑇c is 148 °C at exactly 0.5 ps. Under Jeffreys heat conduction at 𝛼1 = 𝛼2 = 1 2⁄ , 𝑇c reaches its 

maximum of 181°C at 0.43 ps. Cattaneo heat conduction results in a step increase in 𝑇c to the value 

of 307 °C at the initial time and subsequent decrease in 𝑇c. A qualitatively different behaviour can 

be also noticed for the contact heat flux 𝑞c1 under the mixed heat conduction at 𝛼1 = 0 and 𝛼2 = 1. 

 In contrast to the linear regime considered above, the quadratic regime provides continuous 

and symmetric variation of 𝑞s (see Fig.9). The behaviour of 𝑇c and 𝑞c1 is not affected qualitatively 

by the heat conduction type. Both relative contact temperature (𝑇c − 𝑇0) and 𝑞c1 start increasing 

from zero at the initial time, as shown in Fig.11. There is, however, a significant difference in the 

maximum value of 𝑇c. It varies from 208 °C at 0.74 ps for Fourier heat conduction to 352 °C at 0.55 

ps for Cattaneo heat conduction.  

It is noteworthy that under Fourier heat conduction, the contact heat flux 𝑞c1 obeys the 

following equation (Carslaw and Jaeger [53]): 

𝑞c1 =
𝐾1 √𝑘1⁄

𝐾1 √𝑘1⁄ + 𝐾2 √𝑘2⁄
𝑞s 

Accordingly, 𝑞c1 turns zero at the final time 𝑡 = 𝑡s for both regimes. On the other hand, under 

Jeffreys heat conduction or its non-Fourier particular case, 𝑞c1 takes a non-zero value at the final 

time (see Fig.10 and Fig.11), which suggests a residual heat transfer through the contact region. 
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 As mentioned in Section 1, for geometrically one-dimensional space, Jeffreys heat 

conduction due to Eq.(6) is equivalent to the Guyer-Krumhansl equation as the dissipation 

parameter 𝑙2 = 𝛼𝜏𝑘. This implies that the temperature solutions based on Eq.(6) can be potentially 

applied to investigating the Guyer-Krumhansl heat conduction problems by adjusting the coefficient 

𝛼 which is not bounded above by unit anymore. For example, Fig.10 and Fig.11 show the curves 

‘Guyer-Krumhansl’ determined by Eq.(26) and Eq.(27) at 𝛼1 = 𝛼2 = 2. It is seen that the Guyer-

Krumhansl curve 𝑇c lies noticeably lower compared to that for Fourier heat conduction, whilst the 

difference in the respective curves of 𝑞c1 is small. Note that the presented Guyer-Krumhansl curves 

correspond to the contact conditions of Eqs.(10)–(12) based on the Jeffreys heat flux law of Eq.(5) 

and, therefore, do not simulate pure Guyer-Krumhansl heat conduction. A more detailed analysis of 

the relationship between the Jeffreys and Guyer-Krumhansl types of heat conduction may be the 

subject of further studies. 

 Thereby, the simulations above illustrate the applicability of the solution given by Eq.(26) 

and Eq.(27). The obtained results highlight the importance of choosing the adequate type of heat 

conduction. 

 

8. Conclusions 

The problem of Jeffreys heat conduction in coupled semispaces subjected to the action of an 

interfacial heat source was defined. The analytical expressions of the contact temperature 𝑇c and 

heat fluxes 𝑞c1,2 were derived in the dimensionless form of Eq.(26) and Eq.(27) for a polynomial 

specific power of the heat source using the Laplace transform approach. They were validated by 

comparisons to the known analytical expressions and numerically calculated values. The asymptotic 

behaviour of the contact temperature 𝑇c and heat flux 𝑞c1 was analysed for Jeffreys, Cattaneo, 

Fourier and mixed types of heat conduction. The parametric analysis was performed for different 

ratios of thermal conductivities 𝐾1,2, thermal diffusivities 𝑘1,2, thermal relaxation times 𝜏1,2 and 

coefficients 𝛼1,2 indicating the relative contribution of Fourier heat conduction. The solution was 

shown to be applicable on the simulation example of ultrashort laser pulse welding. The key 

findings can be formulated as follows: 

• Jeffreys heat conduction results in continuous variation of the contact temperature 𝑇c, whilst its 

particular case — Cattaneo heat conduction — is accompanied by a step change of 𝑇c at the 

initial time, as described by Eq.(33). 

• The initial heat partition occurs due to the ratio of 𝐾1√𝛼1 𝑘1⁄  and 𝐾2√𝛼2 𝑘2⁄  under Jeffreys 

heat conduction and due to the different ratio of 𝐾1 √𝑘1𝜏1⁄  and 𝐾2 √𝑘2𝜏2⁄  under Cattaneo heat 

conduction, as described by Eq.(34). 
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• Under the contact of a Fourier heat conduction material and a Cattaneo heat conduction 

material, the total generated heat passes to the Fourier heat conduction material at the initial 

time. 

• The influence of the heat conduction type on the contact temperature 𝑇c and heat fluxes 𝑞c1,2 is 

crucial in the start interval of time. The behaviour of 𝑇c and 𝑞c1,2 tends to that solely governed 

by Fourier heat conduction with time. 
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Table 1. Asymptotic expressions of the heat partition coefficient 𝑞c1 𝑞0⁄  

Heat conduction type Asymptotic at 𝑡 → 0 Asymptotic at 𝑡 → ∞ 

Fourier at 𝛼1 = 𝛼2 = 1 𝐾1 √𝑘1⁄

𝐾1 √𝑘1⁄ + 𝐾2 √𝑘2⁄
 

𝐾1 √𝑘1⁄

𝐾1 √𝑘1⁄ + 𝐾2 √𝑘2⁄
 

Jeffreys at 𝛼1 ≠ 0 or 𝛼2 ≠ 0 𝐾1√𝛼1 𝑘1⁄

𝐾1√𝛼1 𝑘1⁄ + 𝐾2√𝛼2 𝑘2⁄
 

Jeffreys at 𝛼1 = 𝛼2 ≠ 0 𝐾1 √𝑘1⁄

𝐾1 √𝑘1⁄ + 𝐾2 √𝑘2⁄
 

Cattaneo at 𝛼1 = 𝛼2 = 0 𝐾1 √𝑘1𝜏1⁄

𝐾1 √𝑘1𝜏1⁄ + 𝐾2 √𝑘2𝜏2⁄
 

Mixed at 𝛼1 = 1 and 𝛼2 = 0 1 

Mixed at 𝛼1 = 0 and 𝛼2 = 1 0 
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Fig.1. Schematic of the contact heat conduction problem 
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Fig.2. Validation of the analytical solution of Eq.(26) and Eq.(27) at 𝑄s = 1, Λ = 2, 𝜒 = 3, Θ = 4 
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Fig.3. Validation of the numerical algorithm at 𝑄s = 1, Λ = 2, 𝜒 = 3, Θ = 4, 𝜂 = 1 
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Fig.4. Initial rise of the contact temperature 𝜗c under Cattaneo heat conduction at 𝛼1 = 𝛼2 = 0 and 

𝑄s = 1 
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Fig.5. Influence of the thermal conductivity ratio Λ on the contact temperature 𝜗c and heat flux 𝑄c1 

at 𝜒 = Θ = 1 and 𝑄s = 1 
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Fig.6. Influence of the thermal diffusivity ratio 𝜒 on the contact temperature 𝜗c and heat flux 𝑄c1 at 

Λ = Θ = 1 and 𝑄s = 1 
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Fig.7. Influence of the thermal relaxation time ratio Θ on the contact temperature 𝜗c and heat flux 

𝑄c1 at Λ = 𝜒 = 1 and 𝑄s = 1 
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Fig.8. Influence of the coefficients 𝛼1,2 on the contact temperature 𝜗c and heat flux 𝑄c1 at Λ = 𝜒 =

Θ = 1 and 𝑄s = 1 
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Fig.9. Time dependency of the specific power 𝑞s 
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Fig.10. Contact temperature 𝑇c and heat flux 𝑞c1 under different types of heat conduction and linear 

specific power 𝑞s = 𝑞0(1 − 𝑡 𝑡s⁄ ) 
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Fig.11. Contact temperature 𝑇c and heat flux 𝑞c1 under different types of heat conduction and 

quadratic specific power 𝑞s = 4𝑞0 𝑡 𝑡s⁄ (1 − 𝑡 𝑡s⁄ ) 
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