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Abstract Fractional calculus plays an important role in the development of control strategies, the
study of the dynamical transmission of diseases, and some other real-life problems nowadays. The
time-fractional HIV/AIDS model is examined using a novel method in this paper. Based on the
Atangana-concept Baleanu’s of a derivative in the Caputo sense, the current modified fractional
derivative operator uses singular and non-local kernels. This new modified fractional operator is
given a numerical approximation and applied to the HIV/AIDS model. In the presence of this novel
operator, we present some significant analysis for the HIV/AIDS epidemic model. The uniqueness
and stability criteria of the model have been demonstrated using the Picard successive approxima-
tion approach and Banach’s fixed point theory. The Laplace Adomian decomposition method
(LADM) was used to obtain the numerical solution for the modified Atangana-Baleanu Caputo
derivative model. The convergence analysis is verified for the proposed scheme. Finally, numerical
results and simulations are derived with the proposed scheme for HIV/AIDS model. On the dynam-

ics of HIV/AIDS transmission, the effects of many biological parameters are examined.
© 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

To establish public health strategies, mathematical models
may be a useful tool [1,2]. Although it is unlikely that a math-
ematical model will be able to provide long-term predictions
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about the number of AIDS cases that are correct, one such
model, based on interactions that contribute to disease trans-
mission, could eventually allow researchers to answer many
relevant questions [3]. The dynamics of HIV/AIDS transmis-
sion as a result have given rise to several mathematical models
in recent years see, for example [4,5] and references mentioned
therein.

The human immunodeficiency virus (HIV), one of the most
contagious and lethal viruses, kills millions of people each year
[6]. As a part of a larger problem of co-infection between HIV/
AIDS (acquired immunodeficiency syndrome) and tuberculo-
sis, Silva and Torres proposed the deterministic SICA model
in 2015 [7]. Later, it has been widely utilized to study HIV/
AIDS in various contexts and configurations, utilizing stochas-
ticity [8], and fractional-order derivatives [9], and modified to
various HIV/AIDS epidemics, like those in Morocco and Cape
Verde [10,11]. We recommend the reader to [12] for a survey
on SICA models for HIV transmission that demonstrates
how they offer a useful framework for interventions and tactics
to stop the spread of the HIV/AIDS epidemic.

Because of the dynamics of HIV epidemics, researchers
have consistently discussed HIV fractional order models
[13,14]. The fractional order model, which uses fractional cal-
culus and integrates and transects differentiation, can aid in
understanding real-world problems more effectively than clas-
sical derivatives [15-20]. Riemann Liouville first proposed the
concept of a fractional derivative based on the power law.
Atangana et al. [21,22] suggest the new fractional derivative
using the exponential kernel. Trigonometric and exponential
function-related issues with non-singular kernel fractional
derivatives [23-26] illustrate several relevant strategies for the
models of an epidemic. A numerical method for solving the
nonlinear fractional differential equation has recently been
introduced [27,28]. Antiretroviral therapy is included in the
fractional order model of HIV/AIDS that has been researched
in [29]. The analysis of the HIV/AIDS model under ABC frac-
tional order derivative is proposed in [30].

We may encounter some problems with the initialization
for nonsingular kernels. As in [31] for all equations in the
form:

/X H(x,t)z(1)dt =

if H(a,a) # 0, then k(a) = 0, where H(x,t) and k(x) are con-
tinuous. Due to this condition, the corresponding differential
equations with nonsingular kernels experience some unusual
constraints. Refer to [31] on page 3 for more information
about this significant problem that has not yet been resolved.
The aforementioned problem for the operator introduced in
[15] was recently resolved by [32,33]. To address the aforemen-
tioned issues with nonsingular operators, in [34] authors mod-
ified the operator with a Mittag—Leffler kernel and established
that the associated FDEs based on this new operator is simple
to initialize and show that there are multiple fractional differ-
ential problems that the ABC derivative cannot solve but that
can be solved by the MABC derivative. The MABC derivative
has the integrable singularity at the origin. In [35] the authors
presented a revolutionary finite difference-based numerical
technique for the MABC derivative, which makes it simple
to initialize the associated fractional differential equations.
The MABC derivative with Mittag—Leffler kernels was used

k(x),a # x # b, (1)

by researchers to create modified fractional difference opera-
tors [36].

This article is structured as follows: section two presents the
fundamental definitions and findings for the fractional opera-
tor and the Laplace transform. Section three covers the forma-
tion of fractional order models, and proved lemmas for the
proposed model. Section four provides an iterative method
for solving the aforementioned model using the LADM, and
also discusses stability conditions using the Banach fixed point
theory and the Picard successive approximation method. In
section five, discussion and numerical simulations for various
fractional-order values are carried out and graphically pre-
sented. Convergence is covered in section six, and then in sec-
tion seven, we provide our conclusion.

2. Basic concepts

In this part, some basic definitions and conclusions from frac-
tional calculus are given.

Definition 1. [37].

Let x€ H'([0,7]),T>0, and v (0,1). The Riemann-
Liouville time-fractional derivative of order vis defined as

REDyx(1) = ﬁ % /0 (1) (o), )

the Riemann-Liouville derivative’s Laplace transform is given
by
E{RLD}'x(t)} =s"L{x(1)} — D;”lx(t)|1:0.

Definition 2. [37].
Let x € H'([0, 7)), T > 0, and v € (0, 1). The usual Caputo
time-fractional derivative of order v is expressed as

= ﬁ /01 (t— 1) "x1(1)dr,0 < v < 1. (3)
the Caputo derivative Laplace transform is
L{D)x(0)} = s"L{x(1)} — 5" x(0).

Definition 3. [15].

Let x € H'([0, 7)), T > 0, and v € (0, 1). The CF derivative
of a function x( is defined by

D'x(1)

r—1)
CFD\ _ v( ) 4
1 —v dr ( 1—v de “)
Caputo-Fabrizio derivative’s Laplace transform is
. 2 1 —
E{(FD\ }_sﬁ{x } x(0 )7 v/( v) <1
(I=v)s+v s

Definition 4. [22].
Let x € H'([0,7)),T >0, and v € (0,1). The ABC frac-
tional derivative of a function x(¢) is presented as

(-1 )

where E,(y) is the Mittag—Lefﬂer kernel function of order v
which is presented as follows

00 yk
E y):;m- (6)

AB(‘D\

l—v dr
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and AB(v) is normalization function and AB(0) = AB(1) = 1.
The Laplace transform is obtained by:
, AB®W) s L{x()} — s 'x(0) |v/(1—v)
ABCD‘, _ 1.
E{ ’Y(l)} (1—v) s 4= ’ s <

Definition 5. [34].
Let x € L'(0, T), the MABC derivative of order 0 < v < 1,
is defined by

. AB(v v
15 Die(n) = 2 [x(0) — E.(-0,)x(0)
t
i [ =0T Bl =)0 ()
0
where p, = * and
vV
AB(v)=1— —_—.

M) =1-v+ 55 )
The Laplace transform of MABC derivative is as follows:
E{MABCD\ } s L{x(1); s} — 5" x(0) B

1 —v) s+, s
<1 9)

3. Fractional order HIV/AIDS model

In this section, we propose a memory-affected MABC model for
HIV/AIDS. The HIV/AIDS epidemic model presented in [11] is
a classical derivative to be taken into consideration. Four sub-
compartments make up the HIV/AIDS epidemic model. Here,
susceptible people are designated as S(¢), infectious HIV-
positive individuals as [(f), and HIV-positive people in the
chronic stage of their disease who are taking ART and have a
viral load that is still low as C, and people with HIV who have
AIDS-related clinical symptoms as 4. ffirepresents the HIV con-
tact rate, and Ais a unit of measure for population acquisition of
susceptible people. In comparison to HIV-infected people with-
out signs of AIDS, people who have AIDS, they considered to
be more contagious. This is taken into consideration by the mod-
ification parameter 1, > 1. However, 5. < 1 translates the par-
tial recovery of the immunological system in HIV-infected people
who are properly using ART. Everybody dies naturally at the
constant rate . HIV-positive people without AIDS symptoms,
HIV treatment for those displaying AIDS symptoms is done at
a 7y rate, and [/ transition to the category of people infected with
HIV and receiving ART treatment C at a rate of ¢. At a rate w,
people in class C move on to class I. Further, we presume that a
person with HIV exhibiting AIDS signs Awho begins medication
goes to HIV-positive person group 7 and only if the treatment is
continued moves to the chronic class C. HIV-positive people
who do not receive ART develop to AIDS class A at a rate of
pdespite not having any symptoms of the disease. Notably,
AIDS-related deaths occur at a rate of donly in HIV-positive
people who have AIDS symptoms 4. The MABC system, which
explains the earlier presumptions, is as follows:

MABEDS = A= B(I(1) +1cC(1) + 14 A(1 ))S( )= uS(1),
MABCDIT = B(I(1) + 0 C(1) +n,4A(0))S(1) = &1(1) +7A(1) + 0 C(1),
JWABCDitC:d)I( )_ izc(l‘)7
MABCDY A = pI(1) — & A(2).

(10)

subject to initial conditions are
S0)=Sy=N,=20,100=1, =N, 20,C(0)=Cyp=N;
> 0,4(0) = 49 = N4 = 0.

3.1. Analysis of the Proposed Model

Here, we demonstrate that there is a nonzero solution to the
homogeneous fractional initial value problem. We’ll employ
the following formulas:

» st R
LE(ht) = o |5 < L (11)
1 h
L(# Eu(ht")) = e < (12)

Lemma 1. [34,37] Consider the fractional initial value
problem

MABCDIS(1) = 7.S,1 > 0, 5(0) = S,
MABC g, I(t) = ALt > 0,1(0) = I,
MABC DrC (1) =2C,t>0, C(0) = Cy,
MABC Db 4 ()7)/1 t>0,4(0) = Ao,
where 0 < o < 1.

(1) For A= @, the solution is given by

o !0,
S(t) = S, w,I(1—0) ?
0 0{1,1:0.

— 10
(1) =1 u, T(1—or) ? ’
0 =n{ 70

[ AN
Clt)=Cyf #0707
1) °{1,z_0.

1 #0
A =4 p T (1=0) ’
1) 0{1,1:0.

2) For /. # B(“ , the solution is given by

£ (uri%r)
S(1) = Sy 1A 0
1,6=0
i)
() =14 —15, 170
1,1=0
i (jrttr)
C(r) =G 1lr‘ 170
1,t=0
)
A(t) = Ay 1flf,j 170
1,1=0
where }, = 2(31&;4).
Proof.

(1) Given that

/0' (1 = k) Eyu(—p, (1 — 1))k *drc

= F(l - a)Ea(_ua[“% (13)
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for t > 0, we obtain

VABCDES(1) = 15 (S(1) = Eu(~pa")So
—Hy [()[ (t - K)M_lEa,x(fluac(t - K)u)
S —o
X (— Ff(?ﬁ) K )a’x),
AR DRI0) = B (1(s) — E(— i)

1—o
—ty Jy (t = 1) Eyu(—p, (1 — 1))
X <fﬁ;€“>d}c),
YABCDRC(1) = 7 (C(1) = Ex(=p,1)Co
—ty Jy (t = 1) Eyu(—p, (1 — 1))
X (—”urfﬁ;c*“)d;c),
MABC DR A(1) = §2 (A(1) — Eu(—p,1%) Ao

—tty Jo (1 = 1) Eyu(—p (1 = ©))
X (— ﬁ K‘“) dx).

S(6) = E,(—p,1%)So + Eu(—1,1")So),
1(t) — Ey(—p, 1) o + E(—p,1*) o),

C(1) — Ex(—p,1")Co + Ey(—p,1") Co),
A(t) = Ey(—p,t*) Ao + Ey(—pt,1*) Ao)-

which makes the proof complete.
(2) Using Eqgs. (11) and (12) for ¢ > 0,

MABC 1o Q. _ Bw) 1 Sps* ! _ o—1
£{ D3S;s} =17 o \ T, < R Sos )

MABC o . __ Bl 1 Ips* 521 —1
LMD s} =17 w1 X o — Dos™ ),

S T
MABC yor . 1 Cos” _ -1
L{MABCDECy 5} = 2 W ( " If, Cos )
To
MABC y2 4. _ a1
E{ DOA7 S} Tl V“Jr,u ( i ”“ Aos )
e

— B() R 52!

T— P01y, e pr

B(x) Ty 527!

1o 01711 VX*U:%’

e, b e
i o 0
07 Tm A"*ﬂill—’;x
— B(") st
- AO - Tz s* ’
hz
—_ 5 S 571
e
PR o—1
=4 0l s

it completes the proof.
Lemma 2. [34,37] Consider the FDE

MABCDrS(1) 4 1.8 = Jy(1),1 > 0, 5(0) = S,
MABC D I(1) + 2= Jo(1),t>0,1(0) = I,
MABCDIC(1) + 7.C = J3(1),1 > 0, C(0) = Gy,
MABC D2 A (1) + 3.8 = J4(1),1 > 0, A(0) =

For0<a< 1, and A - %, the solution of the above frac-
tional initial value problem is given by

S(z):{it#o’

SOat:07
fo = {1120,
1071207 (14)
C(t) = C,t#0,
C07Z:07
s~ [Ar70
Ay, t = 0.
where

$=So22E, (~220 ) + 12 (0 + 12 (1~ 22) (P Eu (- 20) )1,
I= 02 E (=) + 20+ (1= 2) (P B~ 27) )
C=C PR E(—r) + 52050 + T’(w—%)(r”‘Em(—j{t“)

A:A(,%“)Ez(—’ﬁ a) I (1) 4 12

by

and £, = B(x) + A(1 — a).
Proof.
Using Egs. (11) and (12) one can easily verify that

)

ﬁ(S S) SoB@)s* '+ (1=0)(s*+ p,)L(1: 5)

Lys*+ Ao
( ) IoB(w)s* ™'+ (1— 2"+ 1) L(J2; 5)
A CoB(x)s*~ 'f(vﬁa))(t Y+ 1) L35 s) (15)
£(C ) Lys*+ Ao ’
L:( ) AgB(@)s* '+ (1—a)(s* + 1) L£(Ja; ) )

Lys*+ Ao

By Eq. (9) we have

1— o STy

§),

LMBCDES 4 iS; S):M%+ }[j(S‘ 5),
5)

cOmmepir g A s) = o T G g,

o 4ty

ﬁ(MABCDmC+ /1C S) 3(7) YE( )7 Y171C0+ }VE(C'7 5)7

o SEE

LOMBCDIA + s 5) = 2 TS G p ().
(16)

Direct computations will result in


http://mostwiedzy.pl

AN\ MOST

Numerical and quantitative analysis of HIV/AIDS model with modified Atangana-Baleanu in Caputo sense derivative

35

L(MBCDES + 1.S; 5)

L(MBEDIT 4 1T s)

]JHWL ((f\+)oc)
x\w ((fs +Aoc)
(Zs +/Lo¢>

LOMBCDEC + . 4;

L(MBCDIA 4 ).C;

(1 o) V"ﬂt

:W<(f X +Mx)£(S y) _ B(a)s""SO),
S — B(fx)sa(—llﬂ)7
C;s) — B(D()Sx—lco)7

;) — B(oc)s“’le).
(17)

Eq. (15) is substituted in Eq. (17) to obtain the following

result:

L
L

MABCD%S+AS S)
MABCDAT 4 .1, 5)

MABCDIC 4 .C; 5)

—~ o~ o~ o~

MABC pyz DA ) — 1
DOA—.—)»A,S)—W

and the proof is complete.
Remark

If J; € C[0, T] where i = 1,2,3,4, then

= W (B(o)s™

L{MABCDESY — L{A — B(I(1) + neC(t) +n,4A(1))S(1)
L{ABCDAIY = LLBI(1) + neC(2) + 1, A(1))S(1) —

L{MCDCY = L{pI(1r) -
L{MBCDIA} = £{pI(1) —

éZC(I)}v
élA([)}7

S*L{S(1)}—S(0)s*!
1—o 54V,
s*L{I(1)}—1(0)s*

I—a 54y
S*L{C(1)}—C(0)s*!
1—o 24y
S“L{A(D)}-A(0)s*"
1—a SV, -

= L{¢I(1) = &C(0)},

With the initial conditions, we get

= LLA = BU(0) +ncC(1) +n44(1))S(2)
= LLBU(1) + ncC(1) + 1, A1) S(1) = &I(1) + pA(1) + 0C(0)},

L{pI(1) = &A1)}

&I(1) +7A(1) + 0C(1)},

S =L (SoB() + (1 — 2).J1(0)),
1= i (IoB(e) + (1 — 2)J>(0)),

C= #(CoB(2) + (1 — 2)J5(0)),
A= E(40B(@) + (1 = 2)J4(0)).

Adding more conditions

.Sy = J1(0),
i1y = J5(0),
2.Co = J5(0),
2 Ay = J4(0),

e (B S0 + (1= ) (5" + 1) L(J1: )~ B(a)s™™ o),
Uy + (1 — a)(s* + ) L(J; s)—B(a)s*Iy),

= ot (B Co + (1= (5" + 1)L 5)—B(2)s™' Cy),
(B(a)s Ay + (1 — 2)(s* + 1) L(Js: )= B(2)s* o).

then S = So, I = I, € = Cy, and 4 = A,, the solution given in
Eq. (14) is continuous. The above given condition is required

in order to ensure that a solution exists.

4. Iterative Scheme and Stability Analysis

We get the following system by applying the Laplace trans-

form to both sides of model (10):

L{S(1)} =S+ [U00) A — B(I(0) + e Cl0) + 1, A(1))S(0) — S0},

L{)} =2+ [ £LB(1(0) + e Clt) + g AW)S() = S0 +7A(1) + 0C(0)}],

L{C()} =S+ [Upr i) -

LLA()} =+ [P £{pH(r) — m(z)}].

(18)

(19)

(20)
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Consider that the solutions S(#),1(t) , C(z), and A(f)in the
form of infinite series are presented by

S(t) = Z Z [ Z q7A(t) =
q=0 q=0 q=0 q=0

we resolve nonlinear terms as follows:
= G, S()C(1) =Y H,, S(A(1) =
q=0 q=0 q=0

where G,, H,, and L, are further decomposed as follows:

Gy = (ql+1) a |:Z’“/S( )Z’V]/([):|

=0 J=0 =0
q q
Hy =l i [ZA’&(r)Zﬂcjm (23)
J=0 J=0 =0
Li=mnd {Z PSi(1 Z)»
=0

Substituting (21) and (22) into (20), we obtain
L‘{;S,,} So 4+ |z ;);\1) E{A B( ZG[[ + nC;H

g= =

+’7AZLq) - IJZSq}} )
=0 =0

K{ZL{} In+ (1— a)s+u { ZGII+’/’CZH¢/

q=0

‘H’IAZLq) - éBZlq + VZAII + wZCq} )
q=0 q=0 q=0 =0

£{Zcﬂi} CO+ a ;S:H)E{‘bz[q@ch}]

q=0 =0 9=0
efoa) s el 5 -5

=0 q=0

(24)

The following iterative procedure is produced by matching the
two sides of (24):

ﬁ{SO} = Tl7
L{S} = U L{A — B(Go + neHo + n4Lo) — 1So},
L{S:} = St £{A — B(Gr +neHy +nuLi) — uSi},

L{Sy1} = z;(;\j‘ L{A = B(Gy +ncHy +n4Ly) — 1S}, q >

(25)

L{L} =%,
L{h} = wE{ﬁ Go + e Hy + 1,4Lo) — &Iy + 74y + oG},
£{n}y =4 7)(‘ U tv) £{B(Gr + neHy + L) — &I + 74 + oCi},

'C{]z/ﬂ} ;(,‘)\“ L{ﬁ G +VI<H +’1A 11) 53]4+VA4+(UC,I}, q = 1
(26)

L{Co} =
L{C\} = 1 7); ) L{¢pIy — &G},
L{G} =S £l — &0,

(27)
['{C‘Frl} . ;201(3?‘% £{¢I éZC‘I}’ 4q =1
L{Ao} =
E{A }_ 1 1)2: +\,)£{p10 _ Cle}
L{ds} = CFET L{ph — &A1},
(28)

L{Ag} = lg’za—&;‘iﬁ{pl —&A,), 9=

When we consider the first three terms and take the Laplace
inverse of (25-28) we get

SOZNh
Sl:( —otF )3(1)(/\ BN (N> + N3+ 1n,Ns) — ulNy),
2
Sz:( —a+5 )B@) Kl o+ )B(ll)]
(A_ﬁNl(N2+11cN3+11AN4)—ﬂNl)

2
X(ﬁ(Nz +N3 +N4) +,u) — ﬁN] [(1 — o+ l"l(a)) ﬁ}
((N2 +neNs +1yNa) + &Ny + Ny

+oN; + ¢N, — EN3 + pNy — ENy),

Iy =N,

1= (1= a4 ) g (BNy (N + 1N+ n,No)
—& N2+ 9Ns + oN3),

b= [(1 2t ) gt BOA— BNV neNs + V)
—UNY) (N> + N3 + Ny)
+[(1-a+ 1) B(l)] (BN1 (N2 + neNs + 1, Na)
=& N2 + 7Ny + oN;) (BN, — &3)
(12t ) g (682 — N (BN + )
+[(1-a+5) ﬁ]z x (pNs —
Co = N5,
C = (1 %t r(1)) g (9N> — &),

61N4)(ﬁN1 +’Y)7

- [( meTT ) B<x>} (PIBN1 (N2 +neNs + 14 Na)
—&3N, + VN4 + oN;3| — & (N2 — EN5)),
AO - ]\747

4, = (1 o+ ())ﬁ(PNz &Ny,

Ay = [(1 =t £25) 5] RIBNIN: + s + 1N
—&Ny + VN4 + oN;] = & (pN2 — &1 Ny)),

and so on.
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The reaming terms can be calculated in this manner.
Finally, the required solutions can be expressed as follows:

_ _ A
S(t)_N1+(l a+m)) .
X(A = BNi{(Ny + neNs +114Ns) — ulN1)
*~ A 1 2
+(]—O€+m)m—|:(l o+ ( )B(z)j|

X (A — BN (N2 + neNs + 11,Ny) — uNy)

2
X([))(N2+N3+N4)+H)_ﬁNl[(l—OC—Fﬁ)ﬁ]
X((N2 4+ N3 4+ 11,Ny) + E3N2 + yNy
EINy),

+oN;3 + ¢Ny — & N3 + pN,y —

(30)

I(1) =N, + (1 t+5g )) el
X(BN\{(N2 + neN3 +114Ns) — E3N2 + 7Ny + wlN3)
+[(1-a+r )m} B(A — BN\ (N2 + neNs + 1, Na)

2
_ﬂNl)(N2+N3+N4)+[(1 %+ >B(‘a)}
X(BN1 (N2 + neNs + n,4Ns)

—& Ny + 9Ny + oN3) (BN, — &)

+[(1 —oc—i—r’(a)) B(%} (¢N> — &N3) (BN + o)
2
+[(1 - oc—i—#l)) ﬁ} X (pN2 — & Ng) (BN + ),
(31)

) = Ny + (1= 15) 55 (00 —

2
+[(1 —a+ﬁ> m]
X(Q[BN\ (N2 +neNs + 114Ny) —
—& (N> — EN3)),

&N3)

&Ny + PNy + oN;]

(32)
A(1) = Ny + (1 ot r<z>> 7o (PN2 = CiNa)
+(1 ot )i
X(P[BN1 (N2 + neNs +1n4Na) = &Nz + 7Ny + 0N
=& (pNy — & Ny)).
(33)
Theorem 4.1.

Let (B, |.|) be Banach space and K: B— B be a map
satisfying:

K. = K || <T|IX = K|l + 7llx =y,
for all x,y € B, where 0 < I1,0 < n < 1. Then, Kis Picard K-
stable.

Theorem 4.2.

Let K is a self map defined as below:

K[S,()] = Sys1(1) = 5,(0)
L [OSR L{A = B 1cCyt1a4,)S, — 1S},
K[1,(0] = Tt (1) = 1,(0) + £ [U552) £UB(1, 4+ 1, + 144,)S,

=&, 474, + 0Cy}],
K[C,(0)] = Cpar(0) = Cu(0) + £7' [0

xz

&,\

Y) - £{¢I *€2Ctl}]
K[A,(0] = Agia(0) = 4,(0) + £7 [S5522 £{p1, - &4, ,

(34)

Then, the iteration is K-stable in L'(x, y) if the following state-
ments are achieved:

(1 = B(Nt + N2)wi (9)
— PN (Ny + Na)ws (9

= Bnc(Ni + N3)wa(d)
) — uws(9)) <1,
(I+ BNt + No)wi () + Bunc(Ni + N3)wa(9)
+Bn4 (N1 + Na)ws () — 53"’5(19) +9we () + 0w (9)) < 1,
(I + dws(d) — Swo(9)) < 1,
(L4 pwio(d) = &wn(¥)) <
(35)

Proof.
To show that T has a fixed point, we evaluated the follow-
ing for (¢,p) € N X N:

K[St/(t)] - K[Sﬂ(tﬂ = Sz/(t) - Sp(l)
+L! [%E{A — Py +1cCy +1444)S, — ﬂSq}]
o [wiw‘«g{/\ B(I, +1eCyp +144,)S, —us,,}],
K[1,(n)] = K[1,(1)] = 1,() = 1,(1)
L7 O LB, + 1 Cy + 1,4,)S
-c! [ = Jm ['{ﬁ +ncCp+144,)S
K[Cq(t)] - K[Cp(t)] = Cl](l) - Cp(t)
+L7 U g1, - 6,C, )]
—o7 O g, - 6,6},
K[Aq(t)] - K[A,,(t)] = Al](l) - Ap(t)
+£—]|:( 1; *+vy) [,{pl _él q}}

—L B £fpl, — 14, }]

+

g — Sl + Ay + wC‘,}]

p — &l + 4, + (UC,,}],

(36)

By calculating the norm of both sides of the first Equation of
(36) we obtain

1K(S,(1)) = K(S, () || =

Su(1) = Sp(1) + £7 [SE ) L{A = Bly + e Cy+14A4)S, — 1Sy}

7 [0S £{A — Bl + 0eCy + 144,) S, — 15,3

B()s’

(37)
using triangular inequality and simplifying (37), we get
1K(S4(1)) = K(S,(0) | < [[So(0) = S,
o7 (A 2] S, 1, = 1) [+ =L (S, = S,
+||—ﬁS,, ¢, - C,,)H + ||_ﬁCP(Sq - S,,)H + ||_ﬁSP(Aq - AP)H

+||_ﬁAp(Sq - SI’)H + H_N(Sq - SI’)HH'
(38)

Given the relative influence of both solutions, we let
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(S, (1) = S,(0)[| = ||,() Ol =|c,(0 - G0

= || 4,(1) — 4,(1)]. (39)
If we replace this in (38) we obtain the relation shown below:
1K (Sy(1) = K(S,()]| < HS S0
+L [L [ll—ﬁs H+|I—BL,(Sq -5

+H—ﬁS,, Sp) H + H—ﬁC,, [ S,,)|| + H—[)’S,,(S,, - SP)H
+H_ﬁAp(Sq - S/’)H + H_r“(Sq - SP)HH'

(40)
Also the convergent sequence S,,I,, C, and 4, are bounded.

Next, we can obtain four different positive constants,
Ny, N>, N3 and N, for all 7 such that

1S5l < Mo [[4]] < N, |Gl < N, [[4,]] < Nas (g.0)

€ NxN. (41)
Further, considering Egs. (40) and (41), we get
1K (Sy(1) = K(S,(0)[| < (1= BNy + Na)wi (9) = Brc(Ny + N3)wa(0)

—Bia(N1 + Na)ws (9) — pwy (I H Sy —Sp) ||7
(42)

. “ifa
where w,w», w3 and w, are functions of £ {%E}

Similarly, we are able to obtain

”K(If/ H (L4 B(Ny + Ny)wi ()
+If'1c(N1 + Nz)Wz(ﬁ) + B (N1 + Naws(9)
=& ws(9) + ywe(9) + 0w, (9))[|(1, — 1,) |,

[[K(C,(r ) ( )II\(1+¢Ws () = &ws(D))[|(C, = G,
[[K(4,(1)) 0)|| < (1+ ¢ws(9) — Ewe(9))]| (4, — 4,)],

(43)
where

(I = BNy + N2)wi(9) = Bnc(Ny + N3)wa(9)
=Bna(N1 + Na)ws (9) — pws(9)) < 1,
(L4 BNy + N2)wi(9) + Bnc(Ny + N3)wa(9)
+Bn4(N1 + Na)ws (9) — &ws(9) 4 ywe(F) + wwr(9)) < 1,
(T4 pws(9) — Ewe(9)) < 1,
(T+ pwio(¥) — Ewn(9)) < 1
Therefore, K has a fixed point. Considering Eqs. (42) and (43),
we assume:

= (0707070)7

(1 = BNy + Na)wi (9) — Bc(Ny + N3)wa(9)
+ywe () + owy(P)

(1+ ¢ws(9) — Ewo(V)), (1 + pwio(F) — Eywin (9))1.

As a result theorem (4.1) conditions are satisfied. This com-
pletes the proof.

) — Bna(Ni + Na)ws(9) —
— (] + BNy + No)wi(9) + Bre(Ny + N3)wa(9) + i (Ni + Na)ws () — f%WS(ﬂ))

Theorem.4.3.

The iteration method produces a unique special solution to
Eq. (10).

Proof.

Consider the subsequent Hilbert space F: L*(m,n) x (0, T)
it can be described as

f:(mn)x(0,T) — R,//gfdgdf< 0.

Considering the following operator, we have
7(0,0,0,0),IT
A = BU(1) + neC(1) + 0, A(1))S(1) — uS(2),
BU(1) + ncC(1) + 0, A(1))S(2) = &1(2) 4 9A(1) + 0 C(1),
oI(1) — & C(1),
pI(1) — & A(1).

By using

P((Si1 — Si2, 11 — Ina, C3) — Cx2, Ay — Aw), (Ey, By, B3, Ey)).

We have

{A = B((I1 — 1) + nc(Cat = Cs2) + 14 (Aar — A))
(511 - Slz) - H(Sll - Slz)}
SAE + Bl — Da|[|S1 = Szl || E4 ]
+BICs1 — Cal[[S11 — Sl E:1]]
+Bl A — Axll[St — SulllE ] + wllSu = Sl 2],
B((Ir — D) +nc(Car — Cs2) + 14 (Aar — Aa2))
X (511 - 512) - 53(121 - 122)
+9(Ag — Agn) + o(Cs — Cxp)
< Blllar = Iof[[1S1 = Se[[[ B[ + Bl Car — Ca|
[S11 = Sulll[Ex|| + BllAar — Ax|[[|S1 — Sl £l
+&llh1 = Dall| B2l + vl a1 — Aa ||| £2]]
+0[|Csi = Co|||E2l], {¢(L1r — 1) — &(Ca — Cx)}
< |l — Ino|||Es]| + &I Ca1 — Cao ||| Es]l,
{p(ly — o) — &1(Aa — As2)} < pl|la1 — Do ||| Es|
+&1[[Aar — Aa|||| E4]-

For convergence solution, we have

Ce
IS = Sull, IS =Sl < —17

e,
= Lull, 1 = Dl < <

powa(9)),

)

I
1C—=Cal, IC—Cxl < TB
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and

Ce
14— Axnl, |4 - Ax| < 747

where
0 =4(A+ Bll1 — Loll[[S11 = Sizl| + BIICs1 — Cal[| St — Sa|
+BllAa — Ax|l|Su = Sl + pllSi = SeDIE ],
©=4(BllL1 — Lo|[|S11 = Siall + Bl Car — Ca[[[S11 — Szl
+Bll s — Axl[[St — Sia|
+&1L1 — || + 7][4a — Ap||4+0||Csi — Cxo) || 2|,
v=4(o||ly — D + &I Car — Cal I Esl,
A=4(p|ll1 — In|| + &1 || Aar — Awo|) || Eall-

But it is obvious that

(A + Bl = Io||[IS11 = Siall + BIIC31 = Caa[ll|S11 = Sha|
+BlAn — Axll[S1 — S|l + ul|S1 — Sia]) # 0,
(Bllor = La || [|S11 = Sizfl + B C1 = Ca[[[S11 = Sz |
+Bl| A4 — Aa||[|S11 — Sia2|
+&|| 1 — In|| + )| 4s — As||+o] C3 — Cx]) # 0,
(Pl — Inn]| + & | C31 — Ca|) # 0,

(P21 = Il + &1 | Aar — Aal]) # 0,

where || E\ ||, | Ez||, | E5l|, || E4]] # 0. Therefore, we have
IS11 — Sia|| =0, ||Ii — In|| =0, ||C31 — Cx| =0, [[4s — A

Which yields that
St =S, In = I, Cy1 = Cyp, Ay = Ay

We get the required result. Hence,its proved.

5. Numerical simulation and discussion

Here, we examine numerical simulations of the HIV/AIDS
model under MABC. The fractional operator is applied using
the advanced approach for HIV/AIDS. Integral order deriva-
tive just analyzes HIV/AIDS in one place, while fractional
order analyze HIV/AIDS from initial point where an infected
individual carries HIV/AIDS and starts spreading till end. It
actually helps to analyze complete behavior of HIV/AIDS
from start till end. For simulation, the initial conditions and
parameter values are listed below [9,11]:

A=21,=001, 1=z n, = 1.3,57. = 0.015,
¢=1,7=0330=0.09,
p=0.1,d = 1,5(0) = 338923, 1(0) = 61, C(0) = 0, A(0) = 0.

We obtain an approximation of the solution of the fractional
HIV/AIDS model (10) in series form by using ILTM sequen-
tially up to four terms. Using the MABC fractional derivative,
the model’s numerical results for different fractional values are
generated under the steady-state point. The influence of vari-
ables on the dynamics of the fractional-order model can be
observed by looking at the end-time value of the specified
parameter in several numerical ways.

For fractional values of & = 0.75,0.85,0.95, and 1, tables 1-
4 show approximations of all classes of the model (10). To esti-
mate approximations of the solutions for infectious illness
mathematical models, it has been found that the Modified
ABC fractional operator is quite accurate and efficient.

Table 1 Table of S(z) at different values of o.

t oa=0.75 o =0.85 o= 0.95 a=1
0 3.5980 3.5793 3.4794 3.3892
0.2 3.3248 3.4835 3.5840 3.5995
0.4 2.8683 3.0696 3.2825 3.3838
0.6 2.2879 2.4201 2.6185 2.7422
0.8 1.6065 1.5654 1.6096 1.6746
1 0.8377 0.5238 0.2668 0.1811

Table 2 Table of /(¢) at different values of .

t o =0.75 o =0.85 o=0.95 a=1
0 0.4415 0.1612 0.0176 0.0000
0.2 1.7138 1.0094 0.4745 0.2805
0.4 3.0595 2.2206 1.4569 1.1214
0.6 4.5582 3.7602 2.9305 2.5225
0.8 6.1972 5.5971 4.8761 4.4838
1 7.9645 7.7101 7.2807 7.0055

Table 3 Table of C(7) at different values of o.

o=0.75 o =0.85 o= 0.95 a=1
0 0.1293 0.0466 0.0052 0
0.2 0.3878 0.2455 0.1289 0.0828
0.4 0.6434 0.5183 0.3926 0.3309
0.6 0.9205 0.8600 0.7869 0.7444
0.8 1.2185 1.2644 1.3070 1.3232
1 1.5362 1.7272 1.9493 2.0673

Table 4 Table of A(¢) at different values of a.

t o=0.75 o =0.85 o= 0.95 a=1
0 0.0961 0.0466 0.0049 0

0.2 0.3752 0.2969 0.1321 0.0828
0.4 0.6704 0.6545 0.4055 0.3310
0.6 0.9991 1.1089 0.8156 0.7446
0.8 1.3586 1.6512 1.3571 1.3235
1 1.7463 2.2749 2.0263 2.0679

Figs. (1) to (4) illustrate how all four compartments of the
SICA model behave over time for various values of «. From
Figs. 1-4, it is obvious that fractional order significantly affects
the dynamic behavior of each component. We notice that
when the derivative order o decreases from 1, the system’s
memory effect grows. As a result, the infection spreads slowly
and the population’s proportion of HIV- and AIDS-positive
individuals rise over an extended time. The number of suscep-
tible individuals progressively reduces and converges to zero,
as seen in Fig. 1(a). The graph in Fig. 2(a) for infected individ-
uals without a clinical AIDS symptom demonstrates that as
the value o of decreases, the rate of rising likewise decreases.
According to Figs. 3(a) and 4(a), the number of chronic indi-
viduals C(7) and infected individuals with clinical AIDS symp-
toms A(¢) also rises for different values of «. Surface plots of
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% 10° Proposed Method

(a)

Proposed Method

S 04
t 0 o2 @

x10°

S(t)

3o

1

(b)

Fig. 1 Two-dimensional and three-dimensional simulation of S(z).

x10° Proposed Method

a=1.0
=0.95|

0=0.85
8 a=0.75|

(a)

Proposed Method

(b)

Fig. 2 Two-dimensional and three-dimensional simulation of /().

%107 Proposed Method

(a)

all four compartments of the SICA model with respect to time
t and o are shown in Figs. 1(),2(b),3(b), and 4(b).

The graphical results show how effective LADM was in
producing the desired result. It is also noticeable that by
increasing the terms, the method’s effectiveness can be raised
significantly. To examine the impact of the fractional order
model, observations have been made at various fractional val-
ues under the specified parameters. By reducing fractional val-
ues, solutions for all compartments reach the requisite
accuracy and are more dependable. The simulations obviously
demonstrate that we can obtain a better approximation to con-

Proposed Method

(b)

Fig. 3 Two-dimensional and three-dimensional simulation of C(z).

trol the disease by employing fractional derivatives as com-
pared to classical derivatives.

6. Convergence analysis

Solution (30-33) is a series that converges uniformly to the
exact solution. We employ strategies to determine whether ser-
ies (30-33) are converging (see [38]). Using [38], we provide the
following theorem for this method’s convergence under suffi-
cient conditions.
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x10° Proposed Method

(a)

Theorem.6.1.
Let Ybe a Banach Space and ¥ : Y — Ybe a contractive
nonlinear operator then there exit

2.21€ Y. |Y(2) - Y(Z)| <d|Z~Z]|.0<d < 1.

By using the criteria of Banach contraction, ¥ has a unique
point Z such that ¥Z = Z, where Z = (S, 1, C, 4). Adomian
Decomposition Method can be used to write the series shown
in (30-33) as follows:

k—1
Zk = TZ/(,l,Z/(,l = szvk = 172737 T
J=0

assume that Zy € §,(Z), where .(Z) =Zre Y : |Z1 - Z|| < r;
then we have

(1)Z € B(2)
(Z)A!im Z,=Z7
Proof.

(1) We will prove it by mathematical induction for k =1,
we get

120 — 2| = ¥(20) - ¥(2)|| < |1 Zs - Z].

assume that the result will be true for k — 1,then

12— 2| < &)1 2o - 2.

We obtain

12— Z)| = |9¥(Zi 1) — (@) < d| Zi s — 2|
<d)2y - 7],

1Z - ZIl < 20— 2|l < dr <1,

= Z, € B.(2).

(2) Since | Z — Z|| < d*|| Zo — Z|| and
fimd =0,

therefore, we have the

Jim |7 — Z]| =0,

k—o0

Proposed Method

(b)

Fig. 4 Two-dimensional and three-dimensional simulation of A(r).

7. Conclusion

In this paper, we propose a MABC fractional order model of the
HIV/AIDS epidemic. The MABC-fractional derivative is an
extension of the ABC derivative in a wider space. The kernel of
the MABC derivative has an integrable singularity at the origin.
A new set of solutions to the associated fractional differential
equations are obtained when ABC is modified, and the fundamen-
tal function of space is made explicit. Numerous fractional differ-
ential equations that the ABC derivative cannot solve can be
solved by the MABC derivative. For instance, numerous homoge-
neous FDE with the MABC derivative allows a nonzero solution,
and many linear fractional equations enable solutions without
imposing additional conditions. The integral operator related to
the ABC derivative and the MABC derivative is the same.

To provide public health professionals with some useful con-
trol techniques to help eradicate this communicable disease from
the population, we developed a fractional mathematical model.
The current work has shown that a modified Atangana-
Baleanu fractional derivative operator can be used to represent
infectious diseases efficiently. The Banach fixed point theory
has also been used to verify the steady solution stability condi-
tions and existence. For the MABC fractional HIV/AIDS model,
approximate solutions and a graphical presentation utilizing the
iterative Laplace transform technique have been shown. It
should be emphasized that the memory aspects in the MABC
derivative explore the concealed dynamics of infection in mathe-
matical models of viral diseases, which are not realizable with
integer-order derivatives. In the end, mathematical software is
used to support all the theoretical findings through graphical
and tabular representation. When accurate calculations of trans-
mission structures are given in real-time, this model becomes very
reliable. From the perspective of modeling, the new suggested
modification will provide some insight into issues with and with-
out singularity at the origin. By utilizing the MABC derivative,
we will be able to better characterize the dynamics of compli-
cated processes. The scope of applicability for these operators
will be significantly increased in this way.
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