
1 

Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022).  

Part A: Liquid phase microextraction  

Vasil Andruch a,*, Alina Kalyniukova b,*, Justyna Płotka-Wasylka c,*, Natalia Jatkowska  c, Denys Snigur d, 

Serhii Zaruba a, Julia Płatkiewicz e, Agnieszka Zgoła-Grześkowiak e, Justyna Werner e 

a Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik 

University, 041 80 Košice, Slovakia  
b Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Prague-

Suchdol, Czech Republic  
c Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 

G. Narutowicza Street, 80-233 Gdańsk, Poland 
d Department of Analytical and Toxicological Chemistry, Odessa I. I. Mechnikov National University, 

65 082 Odessa, Ukraine 
e Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan 

University of Technology, Berdychowo 4, 60-965 Poznan, Poland  

Corresponding authors:  

Vasil Andruch (vasil.andruch@upjs.sk): Department of Analytical Chemistry, Institute of Chemistry, 

Faculty of Science, P. J. Šafárik University, Košice, Slovakia 

Alina Kalyniukova (diuzheva@fld.czu.cz): Faculty of Forestry and Wood Sciences, Czech University of 

Life Sciences Prague, Prague-Suchdol, Czech Republic 

Justyna Płotka-Wasylka (juswasyl@pg.edu.pl): Department of Analytical Chemistry, Faculty of 

Chemistry, Gdańsk University of Technology, Gdańsk, Poland  

Abstract 

Sustainable development in all branches of human activity has become an unequivocal necessity in the 

last two decades, and green chemistry goes hand in hand with it. Various ways have been proposed in 

analytical chemistry to meet the current requirements of green chemistry. One such approach is the 

research of new reagents and solvents for analytical purposes. Deep eutectic solvents (DESs) began 

being investigated and used in analytical chemistry in the middle of the last decade; since then, we can 

observe a sharp increase in published works in this area. This paper focuses on liquid-liquid 

(micro)extraction (LLME) procedures and describes the applications of DESs for the determination of 

organic and inorganic analytes in various matrices. The use of DESs in sorbent-based procedures will 

be discussed in a separate paper. 
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Nearly 20 years ago the pioneering work of the Abbott group initiated research in a new area, namely 

that of new solvents, which were later termed deep eutectic solvents (DESs) [1, 2]. These solvents have 

several interesting properties, which is why they immediately attracted the attention of researchers, 

as evidenced by the constantly growing number of publications devoted to them (Fig. 1). Several 

physical properties and application areas of DESs are close to those of ionic liquids (ILs), which is why 

some researchers, especially at the beginning of studies on DESs, considered them to be a subclass of 

ILs. However, from the chemical point of view, the starting compounds used and the mechanism of 

their synthesis, we can consider DESs to be a separate and distinct group [3]. A deep eutectic solvent 

is a mixture of two or more compounds – a combination of a hydrogen bond donor (HBD) and a 

hydrogen bond acceptor (HBA) – that has a lower melting point than those of their individual 

components [4]. Some authors are of the opinion that these conditions are insufficient and consider it 

necessary to distinguish between a DES and an ES, and only mixtures whose eutectic point 

temperature is below that of an ideal liquid mixture can be considered as a DES [5, 6].  

Since the number of suitable starting compounds is huge, the physicochemical properties of 

DESs can be tailored by choosing suitable HBAs and HBDs, adjusting their molar ratio or by adding 

water. It is probably this feature that makes DESs such an interesting subject of research. The first 

publications dedicated to the use of DESs in analytical chemistry appeared sometime in the middle of 

the last decade. Some six years ago we published in this journal a mini-review, “Application of deep 

eutectic solvents in analytical chemistry”, in which we briefly discussed the articles that were available 

at the time [7]. Since then, a number of new works devoted to this topic have appeared (Fig. 2). 

Although there are many possibilities for the use of DESs in analytical chemistry, the area of sample 

pretreatment is probably the most studied. We can distinguish two main directions, namely 

procedures based on liquid–liquid (micro)extraction (LLE/LLME) and procedures based on the use of 

sorbents. Given that the number of published works devoted to this subject matter is too large, we 

have divided our review into two separate papers, each of which is focused on one of the main 

directions mentioned above. We hope that this review will interest and motivate readers and will be 

useful for their further research.  
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Fig. 1. Evolution in the number of publications devoted to deep eutectic solvents (based on Scopus; 

accessed on December 2022) [8].  

 

 
 

Fig. 2. Evolution in the number of publications devoted to the topic published during 2017–2022 (based 

on Scopus [8] and data included in Tables 1 and 2).  
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2 Determination of organics  

As was previously mentioned, DESs have been investigated in a wide range of areas, including 

analytical chemistry, as many of them have unique properties and are considered to be green solvents. 

They also have tunable physicochemical properties and a great ability to extract organic and inorganic 

compounds. Therefore, they are often used in sample preparation processes, including LLE/LLME. The 

vast majority of works in this field (77% of the total number of reviewed papers) have dealt with 

organic analysis [9-241], with various drugs, plant bioactive compounds, pesticides and dyes most 

often determined. Other analytes, such as nitrogen-containing organic compounds, phenols, polycyclic 

aromatic hydrocarbons, phthalates, parabens and endocrine-disrupting compounds, have been 

determined less often (Fig. 3). Regarding the samples, the most frequently analysed are various water 

samples, as well as other aqueous samples, such as beverages and juices. Articles focusing on the 

analysis of samples with a complex matrix, such as biological samples or samples of certain foods, are 

also not uncommon, as evidenced in Fig. 4. It should be emphasised that for some samples 

pretreatment is necessary prior to DES extraction. When analysing water samples, no or minimal pre-

treatment, such as centrifugation and/or filtration, is required to remove solid particles. For simple 

aqueous samples, such as beverages and juices, dilution of the sample is also often used to reduce the 

influence of the matrix. More complex matrices, such as food or biological samples, require additional 

pretreatment steps before DES preconcentration. For example, protein precipitation is usually 

required for blood samples. The applications of DES-based liquid–liquid extraction procedures for the 

determination of organic analytes are summarised in Table 1. The vast majority of papers deal with 

various modalities of LLME, and only few papers are focused on single-drop microextraction (SDME) 

or hollow-fibre liquid-phase microextraction (HF-LPME) approaches. As for detection, liquid 

chromatography (LC) is most often used (66%), followed by gas chromatography (GC) with 20% 

representation and spectrophotometry with 14% representation. Instrumental analysis techniques are 

associated with different detectors, as is shown in more detail in Fig. 5. Examples of the determination 

of organic compounds in various matrices using DES-based procedures will be discussed below.  

 
 

Fig. 3. Types of analytes determined using DES-based procedures. Data extracted from Table 1. 
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Fig. 4. Types of samples pretreated using DES-based procedures. Data extracted from Table 1. 

 

 
 

Fig. 5. Types of analytical techniques used. Data extracted from Table 1.  
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solvent is performed by changing the aqueous phase temperature and without the use of a disperser 

solvent. Briefly, the sample solution in a test tube with a conical bottom was placed in a water bath 

(70 °C for 1 min); an appropriate volume of DES was then added, and the solution was shaken manually. 

The elevated temperature enables the dissolution of the DES in the aqueous phase. The decrease in 

DES solubility during the 5 min ice bath cooling step led to the formation of a turbid solution and 

extraction of the target analytes into the DES phase. The developed method was applied for for 

extraction and preconcentration of pesticides from fruit juice and vegetable samples, followed by GC 

with a flame ionization detector (FID), resulting in the limits of detection (LOD) ranging from 0.13 to 

0.31 ng mL−1 [139]. A procedure for simultaneous extraction/preconcentration of diazinon and 

fenitrothion, followed by HPLC with an ultraviolet (UV) detector, was also presented [70]. A water-

immiscible DES consisting of choline chloride and 4-chlorophenol was added to the aqueous sample 

and followed by heating the mixture in a water bath (75 °C) until the solvent was completely dissolved. 

The solution was then cooled in an ice bath, and the resulting cloudy solution was centrifuged. The 

LODs were 0.15–0.3 μg L–1. The method was applied to the analysis of water and fruit juice samples 

[70]. Zhang et al. prepared a hydrophobic DES composed of menthol and myristic acid with a melting 

point only slightly higher than room temperature by choosing a suitable HBA and HBD, as well as their 

appropriate molar ratio [235]. They then applied it for the extraction of triclosan and alkylphenols in 

environmental water samples using a temperature-controlled air-assisted LLME based on the 

solidification of a floating DES. In addition, the greenness of the method was evaluated using the 

analytical Eco-Scale and the Complex Green Analytical Procedure Index [235].  

Procedures based on both in situ DES formation and in situ DES decomposition were reported. 

Li et al. developed an LLME procedure based on in situ formation of a hydrophobic DES that allows 

direct application of solid DES components into samples without their time-consuming preparation 

[83]. The authors investigated several combinations of monoterpenes and fatty acids and selected a 

DES comprising thymol and heptanoic acid (2:1) due to its highest extraction efficiency. The procedure 

can be briefly described as follows. Specified amounts of the individual DES components were added 

separately to a glass centrifuge tube containing the sample solution. After a short shaking, the tube 

was incubated at 52°C for 5 minutes without mixing and then vortexed for 1 min. The collected DES 

phase was diluted and subjected to HPLC-UV analysis. The method, which showed good linearity in the 

range of 15–3000 ng mL−1 with an LOD of 3.0 ng mL−1, was applied for the quantification of 

fluoroquinolone antibiotics (ofloxacin, norfloxacin, ciprofloxacin and enrofloxacin) in real surface 

water samples [83].  

Methods based on DES decomposition during extraction were also presented. 

Niroumandpassand et al. developed a pH-induced solidification of floating organic droplet 

homogenous liquid–liquid extraction (HLLE) procedure for the extraction of pyrethroid insecticides 

from milk samples prior to GC-FID quantification. A DES consisting of menthol and p-aminophenol was 

dissolved in the sample solution to form a homogeneous solution. The addition of several microlitres 

of ammonia solution and sonication caused the DES to decompose, leading to the formation of tiny 

droplets of menthol into which the target analytes were extracted. The extraction phase was solidified 

by cooling in an ice bath; it was then collected and melted at room temperature, and an aliquot was 

analysed. The method’s LODs were found to be 1.1–2.4 ng mL–1 [190]. An air-assisted in situ DES 

decomposition followed by the solidification of floating organic droplets LLME for simultaneous 

determination of three azole antifungal agents in biological samples was presented [33]. The 

dispersion of the extraction solvent in the sample solution as a result of the in situ decomposition of a D
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DES consisting of tetrabutylammonium bromide and 1-dodecanol (1:2) was also supported by air 

mixing. Under optimal conditions, the LODs were in the range of 0.5–2.8 μg L–1 [33].  

Several studies employing two DESs, one hydrophobic and the other hydrophilic, have been 

published. The analytes are first extracted into the hydrophilic DES and then preconcentrated into 

several microlitres of the hydrophobic DES [72, 228]. A microwave-assisted LLE combined with a DES-

based in-syringe DLLME for extraction and preconcentration of seven herbicides from wheat samples 

was developed [91]. The analytes are extracted into 1.2 mL of water-miscible choline chloride–phenol 

DES under microwave irradiation. After extraction, 1.0 mL of supernatant (as a dispersive solvent) was 

mixed with 180 μL of choline chloride–butyric acid DES (as the extraction solvent) and rapidly injected 

into 5 mL of deionized water. The water-insoluble DES was dispersed into the solution and the analytes 

were extracted into the extraction solvent droplets. The demulsifier solvent consisted of 250 μL of 

acetonitrile. The extraction solvent collected on top of the solution was then used for determination 

using a GC-MS system. Low LODs in the range of 1.6–12 ng kg−1 were obtained [91].  

The use of homemade devices sometimes allows the dispersing solvent or the centrifugation 

step to be omitted, thus improving the extraction procedure. Jouyban et al. reported a glass-filter-

based dispersive liquid phase microextraction (DLPME) using a lighter-than-water DES for the 

extraction and preconcentration of different classes of pesticides from fruit juice and vegetable 

samples. A U-shaped tube containing a glass filter was used as the extraction device. The aqueous 

sample solution was placed on top of the glass filter, while the choline chloride–pivalic acid DES was 

placed below the glass filter. The extraction solvent was forced through the glass filter using air flow 

and dispersed in the aqueous solution, allowing the analytes to be extracted into the fine droplets of 

the extraction solvent. The extraction phase was then separated without using centrifugation [141]. 

Later, the authors took a very similar approach for the extraction of pesticides from plasma and urine 

samples of farmers using a DLLME procedure based on the solidification of floating organic droplets. 

The lighter-than-water DES used, which had a melting point near room temperature, was dispersed 

into the solution by passing through the glass filter under nitrogen gas stream, and then the solvent 

droplets were solidified using cool water and collected at the top of the solution. The procedure does 

not require the use of a dispersion solvent, centrifugation or cooling in an ice bath [138]. Nezami et al. 

reported a gas flow-assisted DES-based DLPME procedure for the determination of parabens in 

personal care products. A flow of inert gas was employed to disperse the extraction solvent in the 

sample solution, leading to the accumulation of the DES on the sample surface. The extraction phase 

was then collected in the narrow neck of the homemade extraction device. The LODs were in the range 

of 0.2–0.3 μg L–1. According to the authors, the advantages of the procedure are that it eliminates the 

use of a dispersion solvent as well as the centrifugation step while reducing the consumption of the 

extraction phase; the extraction efficiency was also improved by applying only a thin layer of the 

extraction phase on the surface of the gas bubbles [131]. Mehravar et al. reported a DES-based 

headspace single-drop microextraction (HS-SDME) procedure for GC-MS analysis of polycyclic aromatic 

hydrocarbons in aqueous samples. To increase the stability of the microdroplet at higher stirring rates, 

a microsyringe with a bell-shaped tube was used as a carrier [181].  

Automation is an integral part of current analytical chemistry, as it enables the reduction of 

risk for laboratory workers, eliminates operator errors and thus increases the accuracy of 

determinations as well as productivity. Unfortunately, the automation of liquid–liquid microextraction 

is quite a complex and demanding issue for various reasons, the main one likely being the necessity of 

centrifugation to separate the aqueous and organic phases after extraction [242]. Nevertheless, this 

remains an interesting task, which is why researchers have proposed various solutions. Similar works 
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on the automation of DES-based extraction are thus far rare. Yıldırım et al. reported an automated 

direct immersion single-drop microextraction (DI-SDME) procedure based on the Lab-in-Syringe 

concept. Only 60 µL of hexanoic acid-thymol DES was used for analysis. The samples were mixed with 

a magnetic stir bar placed inside the syringe. The system was coupled online to HPLC with fluorescence 

detection and was applied to the determination of fluoroquinolones in water samples, with LOD values 

in the range of 6–9 ng L–1 [85].  
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Table 1 Examples of DES-based liquid-liquid extraction procedures for the determination of organic analytes 

Analyte Matrix Detection Selected DES / Procedure  LOD Refs 

Acaricides (clofentezine, 
fenpyroximate, pyridaben)  

Fruit juices (apple, orange, sour cherry, grape, 
peach, apricot)  

HPLC-UV methyltrioctylammonium chloride and n-butanol (1:3) /  
DES-based vortex-assisted LPME  

0.5–1 μg L−1  [9] 

Aflatoxin M1  Cheese samples HPLC-FLD  N,N-diethanol ammonium chloride and carvacrol (1:2) /  
combination of solvent extraction with DES-based DLLME  

0.74 ng kg−1 [10] 

Aflatoxin M1  Milk samples UV-Vis betaine chloride and maltose (1:3) /  
DES-based ultrasound-assisted DLLME  

6.1 ng L–1  [11] 

Aflatoxins (G1, B1, G2, B2)  Rice samples  HPLC-FLD  tetramethylammonium chloride and malonic acid (1:2) /  
DES-based UAE  

0.01–
0.06 μg kg−1  

[12] 

Alkyl gallates (propyl gallate, octyl 
gallate)  

Vegetable oils (sunflower oil, corn oil, hazelnut 
oil) 

HPLC-UV choline chloride and ethylene glycol (1:2) /  
DES-based vortex-assisted LLME  

2.1–4.6 µg kg–1  [13] 

Alkylphenols, bisphenols and 
alkylphenol ethoxylates  

Microbial-fermented functional beverages and 
bottled water samples  

UHPLC-MS DL-menthol and octanoic acid (1:1) /  
DES-based vortex-assisted DLLME  

0.10 ng L–1 – 
2.99 μg L−1  

[14] 

Allura Red Tap water, detergent samples, chocolate 
samples 

UV-Vis tetrabutylammonium bromide and decanoic acid (1:5) /  
DES-based (ultrasound-assisted) LPME  

3.92 µg L−1  [15] 

Allura Red AC and tartrazine Food products (powder juice, candies)  UV-Vis tetrabutylammonium bromide and octanoic acid (1:2) /  
DES-based LPME  

0.004–
0.005 mg L−1  

[16] 

Amaranth (E123) Water samples (tap water, lake water) and 
food samples (cherry fruit juice, red tea, 
powdered drink)  

UV-Vis tetrabutylammonium bromide and decanoic acid (1:1) /  
DES-based ultrasound-assisted LPME  

23 µg L−1  [17] 

Amoxicillin and ceftriaxone Hospital sewage HPLC-UV 1-decyl-3-methylimidazolium chloride and n-butanoic acid (1:2) /  
vortex-assisted LPME based on SDES  

0.005–
0.10 µg L−1  

[18] 

Amphetamine and 
methamphetamine 

Human plasma, pharmaceutical wastewater HPLC-UV choline chloride and phenylethanol (1:4) /  
DES-based air-agitated EME  

2.0–5.0 ng mL−1  [19] 

Antiarrhythmic agents 
(propranolol, carvedilol, verapamil, 
amlodipine) 

Urine, plasma, pharmaceutical wastewater  HPLC-UV choline chloride and 1-phenylethanol (1:4) /  
carrier less three-phase HF-LPME  

0.3–0.8 ng mL−1  [20] 

Antibiotics (penicillin G, 
dihydrostreptomycin, enrofloxacin, 
ciprofloxacin) 

Honey samples  HPLC-MS/MS tetrabutylammonium chloride and p-cresol (1:2) /  
LLME based on in situ formation/decomposition of DES with SFOD  

0.55–0.79 ng g-1 [21] 

Antibiotics (oxytetracycline, 
doxycycline, penicillin G, 
chloramphenicol) 

Milk samples HPLC-UV phosphocholine chloride, dichloroacetic acid and dodecanoic acid (1:1:1) /  
HLLE combined with DES-based DLLME  

2.0–2.8 μg L−1  [22] 

Antibiotics (levofloxacin, 
ciprofloxacin)  

Water samples (feed water, tap water, 
wastewater)  

HPLC-UV thymol and hexanoic acid (2:1) /  
DES-based HLLME  

0.018–
0.027 µg mL–1  

[23] 

Antibiotics (levofloxacin, 
ciprofloxacin)  

Water samples (tap water, wastewater, 
seafood market water) 

HPLC-UV tricaprylylmethylammonium chloride and 1-octanol (1:1) /  
vortex-assisted LLME  

0.016–
0.024 μg mL−1  

[24] 

Antibiotic residues (oxytetracycline, 
penicillin G, tilmicosin) 

Sausage samples IMS  phosphocholine chloride, dichloroacetic acid, and dodecanoic acid (1:1:1) /  
HLLE combined with DLLME based on solidification of DES  

1.52–2.73 ng g-1  [25] 

Anti-depressant drugs 
(escitalopram, desipramine, 
imipramine) 

Human plasma and wastewater samples  HPLC-UV choline chloride and phenol (1:4) /  
DES-based air-agitated EME  

3.0–4.5 ng mL−1  [26] 

Anti-seizures (carbamazepine, 
diazepam, chlordiazepoxide) 

Urine samples GC-FID choline chloride and benzyl ethylenediamine (1:2) /  
LLE combined with DES-based DLLME  

3.4–6.9 ng mL-1  [27] 
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Aromatic amines Simulant of kitchenware samples HPLC-UV bis(2-ethylhexyl) phosphoric acid and thymol (1:2) /  
DES-based vortex-assisted DLLME  

1.5–3.0 µg L−1  [28] 

Aromatic amines  Water samples (lake water, river water, 
seawater, melted snow water) 

HPLC-UV trihexyl(tetradecyl)phosphonium chloride and decanol (1:2) /  
DES-based ultrasound-assisted DLLME with solidification of the aqueous phase  

0.07−0.11 ng m
L−1  

[29] 

Aromatic amines  Water samples (lake water, fish-pond water, 
tap water) 

HPLC-UV bis(2-ethylhexyl) phosphate and phenol (1:2) /  
DES-based DLLME  

0.07–0.17 µg L−1  [30] 

Aromatic amines Water samples (tap water, surface water, river 
water, municipal wastewater, leather 
processing unit wastewater)  

GC-MS choline chloride and n-butyric acid (1:2) /  
air-assisted LLME based on SDES  

1.8–6.0 ng L−1  [31] 

Auxins  Water samples (tap water) and fruit juices 
(apple, orange, apple, banana)  

HPLC-UV trioctylmethylammonium chloride and isoamyl alcohol (1:4) /  
DES-based vortex-assisted DLLME  

0.2–0.3 μg L−1  [32] 

Azole antifungal drugs 
(ketoconazole, clotrimazole, 
miconazole) 

Tap water, plasma, urine samples HPLC-UV tetrabutylammonium bromide and 1-dodecanol (1:2) /  
air-assisted LLME using DES decomposition followed by SFOD  

0.5–2.8 μg L−1  [33] 

Benzoylurea insecticides 
(diflubenzuron, triflumuron, 
hexaflumuron, lufenuron, 
chlorfluazuron)  

Olive oil HPLC-UV octyltributylphosphonium bromide and ethylene glycol (1:1) /  
DES-based vortex-assisted LLME  

1.5–7.5 μg L–1  [34] 

Benzoylureas (triflumuron, 
hexaflumuron, flufenoxuron, 
lufenuron) 

Water samples (river water, well water, 
swimming pool water) 

HPLC-UV  tricaprylmethylammonium chloride and 1-dodecanol (1:2.5) /  
DES-based DLLME based on SFOD  

0.11–0.35 μg L–1 [35] 

Benzotriazole and benzothiazole 
derivatives 

Surface water samples (campus ditch water, 
river water, reservoir water)  

UHPLC-MS  choline chloride and phenol (1:2) /  
DES-based USAEME  

0.02−0.5 μg L−1  [36] 

Benzotriazole and benzothiazole 
derivatives  

Tea beverages  UHPLC-MS  choline chloride and 4-chlorophenol (1:3) /  
DES-based ultrasound-assisted LPME  

0.5–4 ng mL−1  [37] 

β-blockers (atenolol, propranolol, 
metoprolol)  

Plasma samples  GC-MS  tetramethylammonium chloride and alpha terpineol (1:2) /  
LLME based on in situ formation of DES  

0.130–
0.205 ng mL−1  

[38] 

Beta-blockers (metoprolol, 
propranolol)  

Water samples (river water, lake water, tap 
water)  

HPLC-UV  azelaic acid and thymol (1:17) /  
vortex-assisted LLME based on in situ formation of DES  

0.1–0.2 µg L−1  [39] 

β-carotene and lycopene Fruit juices (watermelon juice, grapefruit juice, 
tomato juice, guava juice) 

HPLC-UV C9:C10:C11 fatty acids (2:1:1) /  
DES-based acid–base-induced LLME  

0.002–
0.05 μg mL−1  

[40] 

β-lactam antibiotics residues 
(penicillin G, ampicillin, amoxicillin) 

Food samples (chicken meat, honey, egg) HPLC-UV benzyltriethylammonium chloride and decanoic acid (1:3) /  
DES-based ultrasound-assisted DLLME based on SFOD  

1.16–
5.08 µg kg−1  

[41] 

Bicalutamide Water samples (river water, tap water) and 
human plasma  

UV-Vis borneol and capric acid (1:2) (extraction solvent) and tetrabutylammonium 
bromide and acetic acid (1:2) (dispersive solvent) /  
DES-based DLLME  

0.022–
0.048 μg mL−1  

[42] 

Biogenic amines Tuna fish samples HPLC-UV choline chloride and hexanedioic acid (1:1) /  
MAE combined with DLLME based on in situ formation of DES  

0.25–0.50 ng g−1  [43] 

Bisphenol A and 4-nonylphenol Canned tuna and marine fish tissues HPLC-FLD choline chloride and urea (1:2) /  
DES-based extraction  

0.021 and 
0.015 µg g−1  

[44] 

Bisphenols (BPS, BPA, BPB)  Canned fruits  UPLC-MS/MS menthol and undecanol (1:2) /  
DES-based DLLME based on SFOD  

1.5−3.0 ng g−1  [45] 

Bisphenols (BPA, BPB, BPAP, BPZ)  Food-contacted plastics (fresh-keeping film, 
pipette, disposable plastic cup, plastic cup, 
baby bottle nipple) 

HPLC-FLD  trioctylmethylammonium chloride and decanoic acid (1:2) /  
DES-based vortex-assisted LLME  

0.3–0.5 µg L−1  [46] 
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Bisphenols and polycyclic aromatic 
hydrocarbons  

Tea infusions HPLC-UV DL-menthol and dodecanoic acid (3:1) /  
air-assisted LLME based on SDES  

0.16–0.75 μg L−1  [47] 

Brominated flame retardants and 
organochlorine pollutants  

Fish oil samples for animal feed and fish oil 
supplements for human consumption  

GC-MS/MS  choline chloride and phenol (1:2) /  
DES-based vortex-assisted LLME  

0.2–0.7 ng g−1  [48] 

Brown HT (E155) Artificial urine and water samples  UV-Vis tetrabutylammonium bromide and decanoic acid (1:2) /  
DES-based LPME  

0.23 μg mL−1  [49] 

tert-Butylhydroquinone  Edible oils (soybean oil, sunflower seed oil, 
blend oil)  

HPLC-UV choline chloride and ascorbic acid (2:1) /  
DES-based ultrasound-assisted LLME  

0.02 mg kg−1  [50] 

tert-Butylhydroquinone  Edible oils (soybean oil, sunflower seed oil, 
blend oil) 

HPLC-UV choline chloride and ethylene glycol (1:2) /  
DES-based ultrasound-assisted LLME  

0.02 μg mL−1  [51] 

tert-Butylhydroquinone  Edible oils (soybean oil, sunflower oil, blend 
vegetable oil) 

HPLC-UV choline chloride and sesamol (1:3) /  
DES-based vortex-assisted LLME  

0.02 mg kg−1 [52] 

tert-Butylhydroquinone  Soybean oils HPLC-UV choline chloride and sesamol (1:3) /  
DES-based ultrasound-assisted LLME  

0.02 μg mL−1  [53] 

Caffeic acid Coffee, green tea and tomato samples HPLC-UV  serine and lactic acid (1:4) /  
DES-based HF-LPME and 30% MeOH (as acceptor phase) 

0.3 ng mL−1  [54] 

Caffeine  Food samples (dry coffee, chocolate, ice 
cream) and beverage samples (cola, energy 
drink, ıce tea, nescafé, espresso)  

UV-Vis choline chloride and urea (1:2) /  
DES-based (ultrasound-assisted) microextraction  

7.5 µg L−1  [55] 

Calcium dobesilate Water samples (tap water, river water, outlet 
water of sewage treatment plant) and urine  

UV-Vis  methyltrioctylammonium chloride and bromoacetic acid (1:1) /  
DES-based vortex-assisted LLME  

0.05–0.50 μg L−1  [56] 

Carbamazepine Plasma HPLC-UV choline chloride and phenol (1:2) /  
DES-based ultrasound-assisted LPME  

1.17 ng mL−1  [57] 

Carboxylic acids  Aqueous matrices GC-MS  choline chloride and 4-methylphenol (1:2) /  
ultrasound-assisted DLLME  

1.7–8.3 μg L−1  [58] 

Chlorobenzenes  Toilet air freshener and car perfume  GC-MS monoethanolamine and 4-methoxyphenol (1:1) /  
DES-based HLLME  

0.01–0.15 µg L−1  [59] 

Chlorophenols (4-CP, 2,4-DCP, 
2,4,6-TCP)  

Wastewater  HPLC-UV methyltrioctylammonium chloride and octanoic acid (1:2) /  
DES-based DLLME  

0.03–
0.05 µg mL−1  

[60] 

Chlorophenols  Water samples GC-ECD  o-cresol and acetic acid (1:3) /  
DES-based DLLME  

0.015–1.0 µg L−1  [61] 

Cinnamic acid derivatives (caffeic 
acid, p-hydroxycinnamic acid, 
ferulic acid, cinnamic acid) 

Traditional Chinese medicines 
(Chuanxiong Rhizoma, Mai-luo-ning injection) 

HPLC-UV tetrabutylammonium chloride and hexanoic acid (1:3) /  
DES-based HF-LPME  

0.1–0.3 ng mL–1  [62] 

Cortisol and cortisone  Saliva samples  LC-UV trioctylmethylammonium chloride and pentafluorophenol (1:2) /  
DES extraction (ultrasound-assisted)  

1.8–
2.1 pmol mL−1  

[63] 

Coumarins (aesculetin, aesculin, 
fraxetin, fraxin) 

Cortex Fraxini  HPLC-UV  betaine and glycerin (1:3) /  
ultrasound-assisted DES extraction  

0.2–0.7 μg mL−1  [64] 

Curcumin  Food samples (cinnamon tea, anti-parasite 
herbal tea, herbal tea, mixed herbal tea with 
turmeric, turmeric, curry, cinnamon, sesame)  

UV-Vis betaine hydrochloride and glycerol (1:3) /  
DES-based vortex-assisted microextraction  

1.5 μg L−1  [65] 

Curcumin  Tea (herbal tea, black tea, green tea), honey 
(flower honey, pine honey, chestnut honey), 
and spices (thyme, turmeric, cinnamon, curry)  

UV-Vis choline chloride and maltose (1:3) /  
DES-based ELLME  

0.1 ng mL−1  [66] 

Curcuminoids  Curcumae longae Rhizoma and turmeric tea HPLC-UV L-menthol and lactic acid (1:2) /  
solvent terminated DES-based microextraction  

0.1–0.4 ng mL−1 [67] 
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Curcuminoids  Curcumae longae Rhizoma and turmeric tea  HPLC-UV tetrabutylammonium chloride and decanoic acid (1:1) /  
DES-based DLLME based on SFOD  

7.0×10−5 – 
9.0×10−5 mg L−1  

[68] 

Daclatasvir and sofosbuvir Urine samples HPLC-UV tetrabutylammonium chloride and p-aminophenol (1:2) /  
DES-based ultrasound-assisted HLLME  

1.0–1.3 μg L−1  [69] 

Diazinon and fenitrothion Water samples (tap water, well water) and 
fruit juices (apple, pear, orange)  

HPLC-UV choline chloride and 4-chlorophenol (1:2.5) /  
DES-based temperature-controlled LLME  

0.15–0.3 μg L−1  [70] 

Diphenylamine  Fruits (apple, pear, orange)  HPLC-FLD menthol and n-octanoic acid (1:4) /  
DES-based ultrasound-assisted LLME  

0.05 μg L−1  [71] 

Endocrine disrupting compounds 
and hydroxymethylfurfural  

Honey samples GC-MS  [tetrabutylammonium chloride : dichloroacetic acid : ethylene glycol] 
(hydrophilic) and [tetrabutylammonium chloride : dichloroacetic acid : 
decanoic acid] (hydrophobic) /  
HLLE combined with DES-based DLLME  

0.21–0.50 ng g−1  [72] 

Endocrine-disrupting compounds  Polyethylene packed injection solutions GC-MS menthol and decanoic acid (1:2) /  
air-assisted LLME based on SDES  

14–33 ng L–1  [73] 

Endocrine-disrupting compounds Water samples (tap water, river water)  HPLC-UV C9:C10:C12 fatty acids (1:1:1) /  
air-assisted DLLME based on SFOD  

0.96–2.30 µg L−1  [74] 

Endocrine-disrupting chemicals Sewage  HPLC-FLD  octanoic acid and 1-dodecanol (1:3) /  
vortex-assisted DLLME based on SDES  

1.33–2.92 ng L−1  [75] 

Endocrine-disrupting phenols Water, milk and beverage  HPLC-UV tetrabutylammonium chloride and methyl salicylate (1:1) /  
DES-based ultrasound-assisted DLLME  

0.25–1.0 µg L−1  [76] 

Erythrosine  Biological samples (blood, urine) and 
pharmaceutical samples (pharmaceutical 
tablet, syrup)  

UV-Vis tetrabuthylammonium bromide and 1-octanol (1:2) /  
DES-based ultrasound-assisted LLME  

3.75 μg L−1  [77] 

Erythrosine  Drug, water and powdered fruit juice  UV-Vis  tertbutylammonium bromide and decanoic acid (1:2) /  
DES-based LPME  

0.53 µg L−1  [78] 

Flavonoids (quercetin 3-O-
rhamnoside, kaempferol 3-O-
rhamnoside and their aglycones) 

Camellia oleifera flowers HPLC-UV choline chloride and lactic acid (1:2) /  
DES-based UAE  

0.04–0.07 
μg mL−1  

[79] 

Flavonoids (myricetin, morin, rutin, 
luteolin, hyperoside, quercitin, 
apigenin) 

Lycium barbarum L. fruits  HPLC-UV choline chloride and p-toluene sulfonic acid (1:2) /  
DES-based UAE  

0.11–0.89 μg g−1  [80] 

Flavonoids (quercetin, naringenin, 
kaempferol, isorhamnetin)  

Pollen Typhae HPLC-UV choline chloride and 1,2-propanediol (1:4) /  
DES-based UAE  

0.05–
0.14 µg mL−1  

[81] 

Flavonoids (morin, quercetin)  Vegetable and fruit samples (apple, orange, 
pineapple, onion)  

HPLC-UV tetramethylammonium chloride and ethylene glycol (1:3) /  
three-phase solvent bar microextraction based on DES  

0.2–2.6 ng mL–1  [82] 

Fluoroquinolone antibiotics 
(ofloxacin, norfloxacin, 
ciprofloxacin, enrofloxacin)  

Water samples (reservoir water, pond water, 
tap water) 

HPLC-UV  thymol and heptanoic acid (2:1) /  
shaker-assisted LLME based on in situ formation of DES  

3.0 ng mL−1  [83] 

Fluoroquinolones (sparfloxacin, 
gatifloxacin, enrofloxacin, 
ciprofloxacin, lomefloxacin, 
levofloxacin)  

Milk, honey and water samples  MECC-UV methyltrioctylammonium bromide and n-decanoic acid (1:2) /  
DES-based salting out-assisted DLLME combined with back-extraction  

0.010 μg mL−1  [84] 

Fluoroquinolones (levofloxacin 
hemihydrate, moxifloxacin 
hydrochloride, ciprofloxacin 

Water (river water, lake water, wastewater 
treatment plant) 

HPLC-UV thymol and hexanoic acid (1:3) /  
Lab-In-Syringe DES-based DI-SDME  

6–9 ng L−1  [85] 
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hydrochloride, lomefloxacin, 
enrofloxacin) 
Folic acid Wheat flour HPLC-UV trioctylmethylammmonium chloride and isoamyl alcohol (1:4) /  

DES-based vortex-assisted DLLME  
1.0 ng g−1  [86] 

Formaldehyde  Biological samples (duck and pig blood) and 
indoor air samples  

HPLC-UV  trioctylmethylammonium chloride and 4-cyanophenol (1:1) /  
DES-based vortex-assisted LLME  

0.2 μg L−1  [87] 

Free seleno-amino acids Powdered and lyophilized milk samples LC-ICP MS lactic acid and glucose (5:1) /  
DES-based UAE  

7.37–
9.64 µg kg−1  

[88] 

Fungicides (azoxystrobin, 
fludioxonil, epoxiconazole, 
cyprodinil, prochloraz) 

Fruit juices (peach, apple, grape, pear, orange, 
mango, banana), and tea samples (black, 
green, jasmine)  

HPLC-UV L-menthol and decanoic acid (1:1) /  
ultrasound-assisted DLPME based on solidification of DES 

0.75–8.45 μg L−1  [89] 

Ginsenosides  Traditional Chinese medicine (Kang'ai 
injection)  

HPLC-UV choline chloride and 1,4-butanediol (1:1) /  
aqueous two-phase extraction with DES  

0.3–1.5 μg mL−1  [90] 

Herbicides (simazine, prometryn, 
ametryn, metribuzin, sethoxydim, 
oxadiazon, diclofob–methyl) 

Wheat  GC-MS [choline chloride and phenol (1:3)] (first step) and [choline chloride and butyric 
acid (1:2)] (second step) /  
microwave-assisted LLE combined with in syringe DLLME using DES  

1.6–12 ng kg−1  [91] 

Herbicides (bentazone, 
pyrazosulfuron-ethyl, pyribenzoxim, 
fenoxaprop-P-ethyl, anilofos) 

Water samples HPLC-UV thymol and n-butyric acid (1:1) /  
DES-based DLLME  

20–80 μg L−1  [92] 

Icarrin and icarisid II Rat plasma  UPLC-MS/MS L-proline and ethylene glycol (1:4) /  
DES-based extraction  

LOQ: 
0.32−0.43 ng m
L−1  

[93] 

Illicit drugs  Urine samples  HPLC-MS choline chloride and sesamol (1:3) /  
DLLME  

0.042–
0.072 µg L−1  

[94] 

Indigo-carmine Food samples (energy drink, fruit yoghurt, ice 
cream, fruit juice, cake, gelatin candies, 
marshmallows, powdered drinks, biscuit, 
strawberry milk, liquid candy, chilli sauce, fruit 
jelly, red wine) 

UV-Vis  citric acid and glucose (1:3) /  
DES-based vortex-assisted LPME  

3.3 ng mL−1  [95] 

Irgaphos 168 and irganox 1010 Polypropylene packed drinks HPLC-UV choline chloride (0.69 g) and oleic acid (2.8 mL) /  
HLLME based on in situ formation of DES 

0.03–
0.09 ng mL−1  

[96] 

Isoflavones (genistein, daidzein, 
genistin, daidzin) 

Soy-containing food samples (soybeans, flour, 
pasta, breakfast cereals, cutlets, tripe, soy 
drink, soy nuts, soy cubes, dietary 
supplements) 

UHPLC-UV choline chloride and citric acid (1:1) /  
DES-based UAE  

0.06–0.14 μg g−1  [97] 

Lamotrigine  Plasma  UV-Vis choline chloride and 1-phenylethanol (1:4) /  
DES-based USAEME followed by back-extraction  

0.15 μg mL−1  [98] 

Lamotrigine Plasma HPLC-UV choline chloride and ethylene glycol (1:2) /  
DES-based vortex-assisted microextraction  

LOQ: 0.1 μg mL–

1  
[99] 

Lignans (sesamol, sesamin, 
sesamolin) 

Edible oil samples (sesame oil, blend oil)  HPLC-UV choline chloride and p-cresol (1:2) /  
DES-based ultrasound-assisted LLME  

0.3–0.5 mg kg–1  [100] 

Liposoluble constituents  Salvia Miltiorrhiza  HPLC-UV diethanolamine and hexanoic acid (1:1) /  
DES-based LPME  

0.5–0.7 ng mL–1  [101] 

Lobetyolin and atractylenolide III Codonopsis Radix HPLC-UV  methyltrioctylammonium chloride and n-butanol (1:4) /  
DES-based DLLME  

6×10−4 µg mL–1 
(lobetyolin) and 
3×10−3 µg mL–1 

[102] 
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(atractylenolide 
III)  

Main active compounds  Zi-Cao-Cheng-Qi decoction HPLC-UV  tetrabutylammonium chloride and hexanoic acid (1:1) /  
DES-based vortex-assisted DLPME  

0.3–0.9 ng mL−1  [103] 

Malachite green Farmed and ornamental aquarium fish water 
samples  

UV-Vis choline chloride and phenol (1:4) /  
DES-based ultrasound-assisted ELPME  

3.6 μg L−1  [104] 

Malachite Green and Crystal Violet Water (tap water, fish-pond water, lake water) HPLC-UV benzyltriethylammonium chloride and thymol (1:4) /  
DES-based DLLME  

0.03–0.05 µg L−1  [105] 

Malondialdehyde and 
formaldehyde 

Human urine, apple juice and rainwater  HPLC-UV methyltrioctylammonium bromide and decanoic acid (1:2) /  
DES-based vortex-assisted LLME  

2.0–
10.0 ng mL−1  

[106] 

Methadone  Biological samples (blood, urine, saliva)  GC-FID  salol and thymol (1:1) /  
ultrasonic-air-assisted based on solidification of settled DES  

0.3–1.5 µg L−1  [107] 

Methadone  Biological samples (urine, plasma)  GC-FID choline chloride and 5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthalen-2-ol 
(1:2) /  
DES-based air-assisted ELLME  

0.7 µg L−1  [108] 

Methyl red Wastewater samples  UV-Vis choline chloride and phenol (1:3) /  
DES-based vortex-assisted liquid phase extraction  

2.3 µg L−1  [109] 

Methylene blue Water samples (wastewater, river water)  UV-Vis methyltrioctylammonium bromide and decanoic acid (2:1) /  
DES-based shaker-assisted LLME followed by back-extraction  

0.5 ng mL−1  [110] 

Methylparaben  Cosmetic samples (shampoo, shower gel, hair 
cream, moisturizing cream, suntan cream, 
hand cream, anti-acne cream, face care gel, 
liquid soap, face moisturizing gel, gel soap, 
toothpaste, eye area care cream, argan 
extract hair mask, face clay mask, hemp oil 
foot mask, facial cleansing gel, firming body 
lotion, antibacterial liquid soap, hair care 
mask, solid soap, clay hand mask)  

UV-Vis proline, malic acid and water (1:2:3) /  
DES-based sonication-assisted DLLME  

4.5 μg L−1  [111] 

Microcystins  Surface water samples  UHPLC-MS choline chloride and phenol (1:2) /  
DES-based vortex-assisted LLME  

0.14–
0.16 ng mL–1  

[112] 

3-Monochloropropane-1,2-diol  Refined edible oils GC-MS  choline chloride and acetic acid (1:2) /  
DES-based air-assisted LLME  

0.26 ng g–1  [113] 

Morphine and oxymorphone  Exhaled breath condensate samples GC-MS  choline chloride, menthol, and phenylacetic acid /  
microwave enhanced DES-based air-assisted LLME  

1.5−2.1 ng mL−1  [114] 

Mycotoxins  Edible insects (cricket flour, silkworm pupae 
powder, black cricket powder) 

UHPLC-
MS/MS 

choline chloride and urea (1:2) /  
DES-based extraction  

10–110 μg kg−1  [115] 

Natamycin Fruit juices (mango, apricot, pomegranate, 
grape, orange, sour cherry, apple) 

HPLC-UV choline chloride, acetic acid and butanol (1:1:1) /  
DES-based surfactant-assisted salting-out HLLE  

0.78 ng mL−1  [116] 

Neonicotinoid insecticide residues 
(thiamethoxam, clothianidin, 
acetamiprid, thiacloprid)  

Water, soil and egg yolk samples HPLC-UV tetrabutylammonium bromide and decanoic acid (1:3) /  
DES-based DLLME  

0.001–
0.003 μg mL–1  

[117] 

Niacinamide  Pharmaceutical and cosmetic samples UV-VIS sorbitol and glycerol /  
DES-based ultrasound-assisted DLLME  

0.33 ng mL−1  [118] 

Niclosamide Pharmaceutical and wastewater samples UV-Vis  choline chloride and phenol (1:2) /  
DES-based LPME  

0.112 µg L−1  [119] 
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Nitroaromatic pollutants Water samples (well water, surface water, tap 
water) 

HPLC-UV salol and DL-menthol (1:1) /  
effervescent-assisted EME based on solidification of settled DES  

0.03–0.05 μg L–1  [120] 

Nitrophenols (4-NP and 2,4-DNP)  Water samples (tap water, lake water fish-
pond water)  

HPLC-UV tetrabutylammonium bromide, thymol and octanoic acid (1:1:3) /  
DES-based DLLME  

0.2–0.3 μg L–1  [121] 

Non-steroidal anti-inflammatory 
drugs (NSAIDs) (salicylic acid, 
oxaprozin, diclofenac, ibuprofen)  

Water samples (sea water, lake water, tap 
water) and milk samples  

HPLC-UV 1,1,3,3-tetramethylguanidine chloride and thymol (1:2) /  
DES-based ultrasound-assisted DLLME  

0.5–1 μg L–1  [122] 

Nutraceutical compounds 
(chlorogenic acids)  

Spent coffee grounds HPLC-UV/MS  betaine and triethylene glycol (1:2) /  
DES-based UAE  

0.04–
0.10 ng mL–1  

[123] 

Organochlorine pesticides  Cocoa powder GC-ECD  N,N-diethanol ammonium chloride and pivalic acid (2:1) /  
solvent extraction combined with DES-based DLLME  

0.011–
0.031 ng g–1  

[124] 

Organophosphorus pesticides 
(phosalone, chlorpyrifos) 

Fruit juices (red grape, sour cherry)  HPLC-UV choline chloride and phenol (1:2) /  
DES-based ultrasound-assisted LLME  

0.070 and 
0.096 ng mL−1  

[125] 

Oxyprenylated phenylpropanoids 
(ferulic acid, umbelliferone, 
boropinic acid, 7-
isopentenyloxycoumarin, 4′-
geranyloxyferulic acid (GOFA), 
auraptene) 

Vegetable oils (olive, soy, peanuts, corn, 
sunflower)  

UHPLC-UV  phenylacetic acid and betaine (2:1) /  
DES-based DLLME  

0.007–
0.02 µg mL–1  

[126] 

Parabens (methyl paraben, 
ethlyparaben, propylparaben, 
butylparaben) 

Cosmetic oil products (message, body, nail, 
hair, eyelash, sun oils)  

HPLC-UV choline chloride and ethylene glycol (1:2) /  
DES-based vortex-assisted LPME  

0.049–
0.061 µg mL−1  

[127] 

Parabens (methylparaben, 
ethylparaben, propylparaben, 
butylparaben)  

Foods, cosmetics and pharmaceutical 
products 

HPLC-UV DL-menthol and polyethylene glycol 400 (1:1) /  
vortex-assisted DLLME  

0.3–2 ng mL–1  [128] 

Parabens (methylparaben, 
ethylparaben, propylparaben, 
butylparaben) 

Mouthwashes HPLC-UV DL-menthol and decanoic acid (4:1) /  
DES-based vortex-assisted LLME  

4.6–6.1 µg L−1  [129] 

Parabens (methylparaben, 
ethylparaben, propylparaben, 
butylparaben) 

Water (tap water, river water, lake water, 
wastewater)  

HPLC-UV  DL-menthol and decanoic acid (2:1) /  
LLME based on in situ formation of DES  

0.6–0.8 ng mL–1  [130] 

Parabens (methylparaben, 
ethylparaben, propyl paraben, 
butylparaben)  

Personal care products (mouthwash, lidocaine 
gel, aloe vera gel, skin tonic) 

HPLC-UV  thymol and enanthic acid (2:1) /  
gas flow-assisted DLPME  

0.2–0.3 μg L−1  [131] 

Paracetamol  Synthetic urea and pharmaceutical samples  UV-Vis betaine and oxalic acid (1:2) /  
shaker-assisted DES microextraction  

14.9 µg L−1  [132] 

Patent Blue V Syrup and water samples UV-Vis choline chloride and phenol (1:4)  
DES-based ultrasound-assisted ELPME  

0.37 μg L−1  [133] 

Patulin  Fruit juices (apple, orange, peach, apricot, 
grape, kiwi, cherry, mango) 

UV-Vis tetrabutylammonium chloride and 2,3-butanediol (1:3) /  
DES based ultrasound-assisted ELPME  

2.2 μg L−1  [134] 

Patulin  Fruit juices (pear juice, mango juice, cider, 
apple juice, orange juice) and dried fruits 
(apple, fig, prune)  

UV-Vis  L-proline and glycerol (3:1) /  
air-assisted DES-based solidified homogeneous LPME  

3.5 μg L−1  [135] 

Pesticides  Cucumbers  GC-FID choline chloride, acetic acid, and 4-chlorophenol (1:1:1) /  
HLLE combined with DES-based DLLME  

0.42–0.88 ng g–1  [136] 
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Pesticides (fipronil, fipronil-sulfide, 
fipronil-sulfone, boscalid) 

Environmental water and white wine samples  HPLC-UV lactose, glucose, and water (5:1:3) /  
DLLME based on SFOD  

0.8–1.3 μg L−1  [137] 

Pesticides (diazinon, prometryn, 
terbutryn, bifenthrin, 
fenpropathrin, bromopropylate, 
fenamiphos-sulfone, phosalone, 
fenvalerate, deltamethrin) 

Farmer urine and plasma GC-MS menthol and phenylacetic acid (4.68 g:1.36 g) /  
DLLME based on SDES  

2–17 ng L−1 
(urine) and 4–
36 ng L−1 
(plasma)  

[138] 

Pesticides (diazinon, metalaxyl, 
bromopropylate, oxadiazon, 
fenazaquin) 

Fruit juice (grape, apple, sour cherry), and 
vegetable samples (fresh beet, cucumber, 
tomato, potato) 

GC-FID choline chloride and p-chlorophenol /  
DES-based temperature-controlled LPME  

0.13–
0.31 ng mL−1  

[139] 

Pesticides (penconazole, 
cyproconazole, diniconazole, 
propiconazole, hexaconazole, 
triticonazole, difenconazole)  

Fruit juice (orange), and vegetable samples 
(cucumber, tomato)  

GC-FID choline chloride and 4-chlorophenol (1:2) /  
DES-based HS-SDME  

0.82−1.0 µg L−1  [140] 

Pesticides (dichlorvos, diazinon, 
simazine, prometryn, terbutryn, 
bifenthrin, fenpropathrin, 
bromopropylate, phosalone, 
deltamethrin) 

Fruit juices (apple, grape, sour cherry, and 
apricot), and vegetable samples (cucumber, 
beet, potato, tomato)  

GC-MS choline chloride and pivalic acid (1:2) /  
glass-filter-based DLPME using DES  

3–26 ng L–1 
(fruit juices) 
and 10.0–
16.9 ng kg–1 
(vegetable 
samples) 

[141] 

Pesticides (penconazole, 
hexaconazole, diniconazole, 
tebuconazole, diazinon, fenazaquin, 
clodinafop-propargyl, haloxyfop-R-
methyl)  

Fruit and vegetable samples (grape juice, fresh 
apple, onion, cucumber, tomato)  

GC-FID choline chloride and 4-chlorophenol (1:2) /  
DES-based gas-assisted DLPME  

0.24–1.4 μg L−1  [142] 

Pesticides (metalaxyl, penconazole, 
chlorpyrifos, haloxyfop-R-methyl, 
oxadiazon, clodinafop-propargyl, 
diniconazole, fenazaquin, 
fenpropathrin, fenoxaprop-P-ethyl) 

Green tea and herbal distillates  GC-FID dichloroacetic acid, L-menthol and n-butanol (4:1:1) /  
DES-based DLLME  

0.11–0.23 μg L−1  [143] 

Pesticides (diazinon, ametryn, 
chlorpyrifos, penconazole, 
oxadiazon, diniconazole, 
fenazaquin)  

Honey  GC-FID menthol and dichloroacetic acid (1:2) /  
DES-based DLLME  

0.32–1.2 ng g−1  [144] 

Pesticides  Surface water  HPLC-MS/MS choline chloride and acetylsalicylic acid (1:2) /  
DLLME  

0.002−2.3 µg L−1  [145] 

Pesticides (fipronil, triadimenol, 
tebuconazole, hexaconazole, 
diniconazole)  

Traditional Chinese medicine HPLC-UV choline chloride and phenol (1:4) /  
DES-based ultrasound-assisted ELPME  

0.02–
0.2 μg mL−1  

[146] 

Pesticides  Urine samples HPLC-MS choline chloride and sesamol (1:3) /  
DLLME  

LOQ: 0.02–
0.76 µg L−1  

[147] 

Pesticides  Water samples (tap water, seawater, river 
water, underground water)  

GC-µECD polyethylene glycol and thymol (2:1) /  
DES-based DLLME  

0.001–
0.02 µg L−1  

[148] 

Pesticides  Water samples (river water, seawater, tap 
water, groundwater)  

GC-µECD [thymol and myristyl alcohol] (2:1) (extraction solvent) and [alanine, kojic acid, 
and water] (1:2:5) (as disperser solvent) /  
hydrophobic and hydrophilic DES-based DLLME  

0.001–
0.030 µg L−1  

[149] 
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Pesticides (triadimefon, bifenthrin, 
bromopropylate, permethrin) 

Water samples  GC-ECD DL-menthol and citric acid (1:2) /  
DES-based air-assisted LLME  

0.34–3.3 µg L−1  [150] 

Pharmaceuticals and personal care 
products (sulfamethazine, 
sulfamethoxazole, triclocarban, 
carbamazepine) 

Fish oil UHPLC-
MS/MS 

choline chloride and glycerol (1:2) /  
DES-based ultrasound-assisted LPME  

16.7–33.0 ng L–1 [151] 

Phenolic acids (gallic, ferulic, 
syringic acids) 

Vegetable oils (soybean, peanut, blending oils) HPLC-UV  choline chloride and urea (1:2) /  
DES-based vortex-assisted DLLME  

0.010–
0.021 μg g–1  

[152] 

Phenolic antioxidants  Edible oil samples (corn, sunflower, olive, 
canola, grape seed) 

GC-FID  tetrabutylammonium chloride and hydroquinone (1:2) /  
elevated temperature LLE combined with DES-based DLLME  

0.13–
0.42 ng mL–1  

[153] 

Phenolic compounds (3-
hydroxytyrosol, p-coumaric acid, 
apigenin, oleuropein, cinnamic acid, 
gallic acid, (±)catechin hydrate, 
naringenin, caffeic acid, quercetin 
dihydrate)  

Agro-food industrial by-products (olive cake, 
pear waste, onion, tomato waste) 

HPLC-UV lactic acid and glucose (5:1), 15% water /  
DES-based UAE  

0.0006–
0.0891 µg g−1  

[154] 

Phenolic compounds (phenol, p-
chlorophenol, 2,4-dichlorophenol, 
2-nitrophenol, α-naphthol, 
bisphenol A)  

Beverage samples packed in plastics (mango 
juice, sour cherry juice, orange juice, soda, 
mineral water)  

GC-MS 8-hydroxyquinoline and pivalic acid (1:2) /  
stir bar HF-LPME  

9–22 ng L−1  [155] 

Phenolic compounds  Extra-virgin olive oil (EVOO) HPLC-UV/MS betaine and glycerol (1:2) /  
DES-based extraction  

0.1–1.0 μg mL−1  [156] 

Phenolic compounds  Medicinal plants (Larrea cuneifolia) HPLC-UV lactic acid and dextrose (5:1) with 15% of H2O /  
DES-based UAE  

0.004–
0.098 μg mL−1  

[157] 

Phenolics (chlorophenol, 2,3-
dihydroxybenzoic acid, p-cresol, 4-
chlorophenol, 2,4-dichlorophenol, 
and 2,4,6-trichlorophenol) 

Vegetable oil HPLC-UV choline chloride and 1,6-hexanediol (1:2) /  
DES-based DLLME  

0.05–
0.1 µg mL−1  

[158] 

Phenolic compounds (bisphenol-A, 
bisphenol-AF, 
tetrabromobisphenol-A, 4-tert-
octylphenol) 

Water samples (tap water, lake water, river 
water)  

HPLC-UV C8:C9:C12 fatty acids (3:2:1) /  
DES-based gas-assisted LLME  

0.22–0.53 μg L−1  [159] 

Phenolic compounds (phenol, m-
cresol, 2, 4-dichlorophenol, 2, 4, 6-
trichlorophenol)  

Water samples (tap water, lake water, 
wastewater) 

HPLC-UV  α-terpineol and 1-octanoic acid (1:2) /  
DES-based DLLME  

0.15–0.38 μg L−1  [160] 

Phenoxy acid herbicides Paddy field water samples  HPLC-UV choline chloride and 2-chlorophenol (1:2) /  
DES-based ELLME  

1.66 µg L−1  [161] 

Phthalate esters  Food-contacted plastics  GC-FID n-hexyl alcohol and tetrabutylammonium bromide (4:1) /  
DES-based vortex-assisted LLME  

1 µg L−1  [162] 

Phthalate esters  Packed milk samples HPLC-UV menthol and lauric acid (1:1) /  
DES-based vortex-assisted LLME  

1.06–
4.55 ng mL−1  

[163] 

Phthalate esters Soft drinks  UPLC-MS/MS thymol and octanoic acid (2:1) /  
DES-based vortex-assisted DLLME  

- [164] 

Phthalate esters  White wines and grape-based beverages  Nano-LC-UV  choline chloride and acetic acid (1:2) /  
vortex-assisted emulsification DLLME  

2–17 ng mL−1  [165] 
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Phthalates (benzylbutyl phthalate, 
diisobutyl phthalate, diisopentyl 
phthalate, di-n-pentyl phthalate, di-
(2-ethylhexyl) phthalate, di-n-octyl 
phthalate, diisononyl phthalate, 
diisodecyl phthalate) 

Beverages (tea, apple-based beverage, 
pineapple juice) 

HPLC-UV  choline chloride and phenol (1:2) /  
DES-based vortex-assisted emulsification DLLME  

5.1–17.8 µg L–1  [166] 

Phthalic acid esters  Soft drinks bottled in plastics (green tea) and 
cans (tonic, lime, lemon soft drinks), and 
infusions (camomile, pennyroyal mint, linden 
teas)  

HPLC-UV  L-menthol and acetic acid (1:1) /  
DES-based DLLME based on SFOD  

LOQ: 3.5–
51.1 μg L−1 

[167] 

Phthalic acid esters  Water samples (tap water, mineral water) and 
beverages (apple juice drink)  

HPLC-UV menthol and acetic acid (1:1) /  
DES-based DLLME  

1.1–7.6 μg L−1  [168] 

Phytosterols  Animal based butter and oil samples GC-FID  ethyl (methyl) ammonium chloride and pivalic acid /  
LLE combined with air-assisted LLME  

0.73–1.5 ng mL–

1  
[169] 

Phytosterols (lupeol, β-sitosterol, 
stigmasterol, campesterol, 
brassicasterol) 

Cow cream samples GC-MS [tetrabutylammonium bromide and ethylene glycol] and [tetrabutylammonium 
bromide, dichloroacetic acid, and octanoic acid] /  
HLLE combined with DES-based effervescent-assisted DLLME  

0.06–
0.26 μg kg–1  

[170] 

Phytosterols  Cow milk  HPLC-UV choline chloride and p-chlorophenol /  
DES-based DLLME  

0.09–
0.32 ng mL–1  

[171] 

Phytosterols  Cow milk and cream samples GC-FID  ethyl (methyl) ammonium chloride and pivalic acid /  
HLLE combined with DES-based DLLME  

1.6–4.1 μg L–1  [172] 

Phytosterols  Cow milk butter samples GC-FID ethyl (methyl) ammonium chloride and pivalic acid /  
ultrasound and heat-assisted LLE combined with DES-based DLLME  

0.51–1.3 ng g−1  [173] 

Plastic migrants  Plastic migrants from kombuchas UHPLC-MS  thymol and octanoic acid (2:1) /  
DES-based vortex-assisted LLME  

0.07–5.45 µg L−1  [174] 

Plastic migrants Water samples (treated wastewater, runoff 
water, pond water)  

UHPLC-
MS/MS  

thymol and menthol (2:1)  
DES-based LLME  

LOQ: 0.013–
0.425 μg L−1  

[175] 

Polyphenols (resveratrol, 
oxyresveratrol, piceatannol) 

Wine samples  HPLC-UV tributylmethylammonium chloride and decanoic acid (1:3) /  
DES-based DLLME  

1.69–2.53 μg L−1  [176] 

Polycyclic aromatic hydrocarbons Aqueous samples (industrial effluents from the 
production of bitumens)  

GC-MS thymol and camphor (1:1) /  
ultrasound-assisted DLLME  

0.0039–
0.0098 μg L−1  

[177] 

Polycyclic aromatic hydrocarbons  Honey samples GC-MS menthol and decanoic acid (1:2) /  
DES-based DLLME based on SFOD  

14–52 ng kg–1 [178] 

Polycyclic aromatic hydrocarbons Soft drinks  GC-MS/MS camphor and hexanoic acid (1:1) /  
DES-based DLLME  

0.01 μg L−1  [179] 

Polycyclic aromatic hydrocarbons Tea, medicinal herbs and liquid foods HPLC-FLD  choline chloride and hexafluoroisopropanol /  
DES-based LPME  

0.6–4.2 ng L−1 
(liquid foods) 
and 0.05–
0.35 ng g−1 
(solid foods)  

[180] 

Polycyclic aromatic hydrocarbons  Water samples (tap water, well water, river 
water, wastewater)  

GC-MS  choline chloride and oxalic acid (1:2) /  
DES-based HS-SDME  

0.003–
0.012 μg L−1  

[181] 

Polycyclic aromatic hydrocarbons  Water samples (river water, lagoon water, 
lake water, well water)  

HPLC-FLD tetrabutyl ammonium bromide and decanoic acid (1:2) /  
DLLME based on SDES  

0.7–6.6 ng L−1  [182] 

Ponceau 4R Water and cosmetic samples UV-Vis tetrabutylammonium bromide and decanoic acid (1:5) /  
DES-based ultrasound-assisted LPME  

5.97 µg L−1  [183] 
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Preservatives (benzoic acid, sorbic 
acid, methyl paraben, ethyl 
paraben, propyl paraben, butyl 
paraben)  

Beverages  HPLC-UV  tetrabutylammonium bromide and acetic acid (1:2) (as disperser) /  
DLLME based on SFOD  

0.02−0.05 mg L−

1  
[184] 

Primary aromatic amines (total 
PAAs as aniline) 

Food contact materials (polyamide cooking 
utensils, coloured kitchenware samples) 

UV-Vis bis(2-ethylhexyl) phosphate and butylparaben (1:3) /  
DES-based vortex-assisted DLLME followed by back-extraction  

1.5 µg L−1  [185] 

Pyrethroids pesticides 
(transfluthrin, fenpropathrin, 
fenvalerate, ethofenprox, 
bifenthrin) 

Tea beverages (green tea, red tea, oolong tea) 
and fruit juices (apple, red grape, purple 
grape)  

HPLC-UV L-carnitine and hexafluoroisopropanol (1:2) /  
DES-based DLLME  

0.06–
0.17 ng mL−1  

[186] 

Pyrethroid pesticides  Soil samples  UHPLC-MS  ethanolamine and o-cresol (1:1) /  
temperature-responsive DES-based UAE  

0.1–0.6 μg kg–1  [187] 

Pyrethroid pesticides Fruit juices GC-MS choline chloride and butyric acid (1:2) /  
gas-controlled DES-based evaporation-assisted DLLME  

9–21 ng L–1  [188] 

Pyrethroid pesticides 
(deltamethrin, etofenprox, 
fenpropathrin, bifenthrin) 

Juices (litchi, lemon, grapefruit, pear, 
pineapple, grape) and tea beverages (green 
tea, flower tea, oolong tea, black tea)  

HPLC-UV tetraoctylammonium bromide, 1-dodecanol and phenol (1:2:2) /  
DES-based film emulsification LPME  

0.45–1.30 μg L–1  [189] 

Pyrethroid pesticides 
(deltamethrin, cypermethrin, 
bifenthrin, cyhalothrin, permethrin) 

Milk samples GC-FID  menthol and p-aminophenol (1:2) /  
pH-induced HLLME based on SFOD using DES decomposition  

1.1–2.4 ng mL−1  [190] 

Pyrethroids (bifenthrin, β-
cypermethrin, deltamethrin) 

Cereals (corn, wheat, barley, oats) HPLC-UV thymol and octanoic acid (1:4) /  
DES-based DLLME based on SFOD  

2.0–2.7 mg kg–1  [191] 

Quercetin  Vegetable and fruit samples (onion, grape, 
apple, tomato)  

UV-Vis tetrabutylammonium chloride and decanoic acid (1:3) /  
DES-based USAEME  

18.8 μg L–1  [192] 

Quercetin  Wine and food samples (apricot, onion, celery, 
green tea, herbal tea, fig, dill weed, tomato, 
honey, apple juice, orange juice, red wine)  

UV-Vis  tetrabutylammonium chloride and ethyl glycol (1:2) /  
DES-based ultrasound-assisted DLPME  

6.1 μg L–1  [193] 

Raloxifene and ethinylestradiol  Pharmaceutical wastewater HPLC-UV choline chloride and ethylene glycol (1:1) /  
DES-based carrier-mediated HF-LPME  

5.0–10 ng mL−1  [194] 

Red dyes (amaranth, ponceau 4R, 
allura red, azorubine, erythrosine) 

Food samples (beverage, jelly, chocolate 
dragee)  

HPLC-UV benzyltriethylammonium chloride and thymol (1:4) /  
DES-based vortex-assisted DLLME  

0.01–0.08 μg L−1  [195] 

Rhodamine B Chilli oil UPLC-FLD  choline chloride and ethylene glycol (1:3) /  
DES-based extraction  

1.67 µg kg−1  [196] 

Rhodamine B Cosmetic products and water samples (river 
water, seawater, cologne, nail polish cleaner, 
lipstick samples) 

UV-Vis tetrabutylammonium chloride and decanoic acid (1:2) /  
DES-based LPME  

2.2 μg L−1  [197] 

Salbutamol  Exhaled breath condensate samples GC-MS  N,N-diethylethanolammonium chloride, dichloroacetic acid, and octanoic acid 
(1:1:1) /  
DES-based air-assisted LLME  

0.370 μg L−1  [198] 

Sesamol Sesame oil HPLC-UV choline chloride and ethylene glycol (1:2) /  
DES-based ultrasound-assisted LLME  

0.02 mg kg–1  [199] 

Short-chain fatty acids Beverages (yoghurt-based carbonated drink, 
non-alcoholic beer, fruit juices: apple, orange, 
grape, mango)  

GC-FID  ethyl methyl ammonium chloride and carvacrol (2:1) /  
DES-based DLLME  

0.89–6.6 µg L-1  [200] 
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Steroidal hormones 
(dydrogesterone, cyproterone 
acetate) 

Urine, plasma samples HPLC-UV methyltriphenylphosphonium iodide and ethylene glycol (1:4) /  
DES-based three-phase HF-LPME  

0.5–2 µg L−1  [201] 

Steroid hormones (estrone, 17β-
estradiol, 17β-ethinylestradiol, 
estriol) 

Water samples (tap water, agricultural well 
water, river water and wastewater) 

GC-MS L-menthol and (1S)-(+)-camphor-10-sulfonic acid (5:1) /  
DES-based LPME  

0.2–1.0 ng L−1  [202] 

Steroids (prednisolone, cortisone, 
dexamethasone, triamcinolone 
acetonide, hydrocortisone acetate, 
1,4-androstadiene-3,17-dione, 
testosterone, finasteride, 4-
androstene-3,17-dione)  

Water samples (tap water, river water)  HPLC-UV tetrabutylammonium bromide and acetic acid (1:2) /  
DLLME based on SFOD  

1.0–9.7 ng mL−1  [203] 

Strobilurin fungicides (azoxystrobin, 
pyrimethanil, kresoxim-methyl) 

Apple samples HPLC-UV  methyltrioctylammonium chloride and n-butanol (1:3) / 
DES-based ultrasound-assisted DLLME  

1.5−2 μg kg−1  [204] 

Strobilurin fungicides 
(picoxystrobin, pyraclostrobin, 
trifloxystrobin) 

Water, juice, wine and vinegar samples HPLC-UV thymol and octanoic acid (1:5) /  
effervescence tablet-assisted microextraction based on SDES  

0.15–0.38 μg L−1  [205] 

Sudan dyes Food samples (chilli sauce, chilli powder, 
ketchup) 

HPLC-UV benzyltriethylammonium bromide and eugenol (1:2) /  
DES-based vortex-assisted DLLME  

0.5−1 ng mL−1  [206] 

Sudan dyes  Spice samples (chilli peppers, paprika, cumin, 
sumac)  

HPLC-UV thymol and coumarin (1:1) /  
DES-based ultrasound-assisted solid-liquid microextraction  

0.25−0.35 μg g−1  [207] 

Sudan dyes Tomato chilli sauces HPLC-UV  Brij-35 and hexafluoroisopropanol (1:20) /  
DES-based vortex-assisted LLME  

0.0045–
0.0118 μg g−1  

[208] 

Sudan I Food samples (chilli oil, chilli sauce, duck egg 
yolk) 

HPLC-UV choline chloride and sesamol (1:3) /  
DES-based vortex-assisted LLME  

0.02 mg kg–1  [209] 

Sudan I Food samples (duck blood, chilli powder)  HPLC-UV  trioctylmethylammonium chloride and oleic acid (1:2) /  
DES-based vortex-assisted LLME  

0.3 µg kg–1  [210] 

Sulfonamides (sulfapyridine, 
sulfamethazine, sulfamethoxine)  

Fruit juices (apple juice, grape juice, peach 
juice, pear juice) and black tea  

HPLC-UV  trioctylmethylammonium chloride and 2-octanol (1:2) /  
DES-based ultrasound-assisted LLME  

0.02–
0.05 µg mL−1  

[211] 

Sulfonamides (sulfadiazine, 
sulfamerazine, sulfametoxydiazine, 
sulfamethoxazole)  

Water samples (river water)  HPLC-UV choline chloride and phenol (1:2) /  
DES-based ELLME  

1.2–2.3 μg L–1  [212] 

Sulfonamides (sulfapyridine, 
sulfamethazine, sulfamethoxazole, 
sulfaphenazole)  

Water samples (mineral water, sea water, tap 
water) 

UHPLC-UV thymol and acetic acid (1:1) /  
DES-based vortex-assisted DLLME  

0.78–
3.42 ng mL−1  

[213] 

Sunset Yellow dye Effervescent vitamin C tablets UV-Vis menthol and decanoic acid (2:1) /  
DES-based ultrasound-assisted LLME  

0.32 µg mL−1  [214] 

Sunset yellow FCF Food and pharmaceutical products UV-Vis tetrabutylammonium bromide and decanoic acid (1:2) /  
DES-based ultrasound-assisted DLLME  

0.05 μg L−1  [215] 

Surfactants Exhaled breath condensate samples HPLC-MS/MS phosphocholine chloride and fatty acids (1:3) /  
DES-based air-assisted LLME  

0.12–
0.23 ng mL−1  

[216] 

Synthetic colorants (Amaranth, 
Carmine, Allura red, Brilliant blue) 

Beverages (energy drinks, fruit juices, 
carbonated drinks)  

HPLC-UV  choline chloride and phenol (1:4) /  
DES-based effervescence-assisted DLLME  

0.6−3.0 ng mL−1  [217] 

Synthetic dyes (tartrazine, 
quinoline yellow, sunset yellow, 

Jellies and drinks HPLC-UV  benzyltriethylammonium chloride and thymol (1: 4) /  
DES-based vortex-assisted DLLME  

0.02−0.05 µg L−1  [218] 
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brilliant blue, ponceau 4R, indigo 
carmine, allura red, carmoisine)  
Synthetic pigments (Lemon yellow, 
Carmine, Sunset yellow, Allura red, 
Brilliant blue, Erythrosine, Indigo, 
Amaranth)  

Beverages  HPLC-UV  tetrabutylammonium chloride and octanoic acid (1:2) /  
DES-based LLME  

0.016–
1.12 ng mL−1  

[219] 

Tamoxifen and its metabolites Plasma samples  HPLC-UV thymol and nonanoic acid (1:1) /  
DES-based vortex-assisted DLLME  

0.3–3.2 μg L−1  [220] 

Tartrazine  Water, drug and beverage samples  UV-Vis tetrabutylammonium bromide and decanoic acid (1:3) /  
DES-based ultrasound-assisted microextraction  

0.084 mg L−1  [221] 

Terpenes  Spices (cinnamon, cumin, fennel, clove, thyme, 
nutmeg) 

GC-MS  tetrabutylammonium bromide and dodecanol (1:2) /  
DES-based HS-SDME  

LOQ: 0.47–
86.40 μg g−1  

[222] 

Testosterone and 
methyltestosterone 

Milk  HPLC-UV menthol, lauric acid, and decanoic acid (3:1:1) /  
DES-based LLME  

0.067–
0.2 µg mL−1  

[223] 

Tetracyclines (oxytetracycline, 
tetracycline, doxycycline)  

Milk samples  HPLC-UV octanoic acid and thymol (1:1) /  
DES-based DLLME  

1.5–8.5 µg L−1  [224] 

Tetracyclines (oxytetracycline, 
tetracycline, doxycycline)  

Infant formulas  HPLC-UV  thymol, ethylene glycol, and benzyl alcohol (2:2:1) /  
DES-based vortex-assisted ELLME  

0.88–
2.74 μg kg–1  

[225] 

Tetracyclines (tetracycline, 
doxycycline, oxytetracycline)  

Water samples (seawater, agriculture water, 
river water, underground water, tap water)  

HPLC-UV  choline chloride, thymol, and nonanoic acid (1:2:2) /  
DES-based air-bubble-assisted DLLME  

1.2–8.0 μg L−1  [226] 

Tetracyclines (tetracycline, 
oxytetracycline, chlortetracycline)  

Water samples (tap water, lake water, 
reservoir water, drinking water) 

HPLC-UV methyltrioctylammonium chloride and nonanoic acid (1:2) /  
DES-based LLME  

0.5–2.0 ng mL−1  [227] 

Tetracyclines (oxytetracycline, 
doxycycline, tetracycline) 

Water samples (well water, rainforest water, 
coastal seawater, gardening water, mineral 
water) 

HPLC-UV  [thymol and octanoic acid (1:1)] (hydrophobic) and [choline chloride and 
ethylene glycol (1:2)] (hydrophilic) /  
hydrophobic and hydrophilic DES-based DLLME  

1.37–4.38 µg L−1  [228] 

Thiabendazole  Fruit samples (orange, apple, grapefruit, 
peach, lemon, kumquat, mandarin, nectarines, 
strawberry, bitter orange quince, apricot, 
pineapple) 

UV-Vis glycolic acid and betaine (1:2) /  
DES-based vortex-assisted DLLME  

0.1 µg L−1  [229] 

Thiophanate-methyl and 
carbendazim  

Water samples (lake water, tap water) HPLC-UV menthol and 1-ctanol (1:3) /  
DES-based vortex-assisted LLME  

0.007–
0.053 µg mL–1  

[230] 

Thiophenols (thiophenol, 4-
methylthiophenol, 4-
aminothiophenol, 4-
bromothiophenol)  

Water samples (tap water, wastewater) GC-FID choline chloride and p-cresol (1:2) /  
DES-based ELLME  

10–15 μg L–1  [231] 

Triarylmethane dyes (malachite 
green, crystal violet) 

Shrimp water samples  HPLC-UV thymol and camphor (1:1) /  
DES-based ELLME  

0.09–0.13 μg L−1  [232] 

Triazine herbicides (simazine, 
ametryn, prometryn, 
terbuthylazine) 

Vegetable oils (soybean oil, maize oil, 
sunflower seed oil, peanut oil)  

HPLC-UV  tetrabutylammonium chloride and ethylene glycol (1:2) /  
DES-based vortex-assisted reversed-phase LLME  

0.60–1.50 μg L−1  [233] 

Triclosan  Personal care products (facial cleanser, soap, 
toothpaste, hand sanitizer) and environmental 
water samples (tap water, surface water, 
rainwater, lake water, wastewater from a 
sewage treatment plant)  

HPLC-UV triclosan and 2,2,4-trimethyl-1,3-pentanediol /  
LLME based on in situ formation of DES  

0.5 µg L−1  [234] 
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Triclosan and alkylphenols  Water samples (lake water, river water, well 
water, tap water, rainwater) 

HPLC-UV menthol and myristic acid (3:1) /  
temperature-controlled air-assisted LLME based on the solidification of floating 
DES  

0.1–0.5 μg L−1  [235] 

UV filters (2,4-
dihydroxybenzophenone, 
benzophenone, 2-hydroxy-4-
methoxybenzophenone) 

Water samples (swimming pool water, river 
water)  

HPLC-UV trioctylmethylammonium chloride and decanoic acid (1:3) /  
DES-based ultrasound-assisted DLLME  

0.15–
0.30 ng mL−1  

[236] 

UV filters (benzophenone-type) Water samples (swimming pool water, river 
water, wastewater) 

HPLC-UV  DL-menthol and decanoic acid mixture (1:1) /  
DES-based air-assisted DLLME  

0.05–
0.2 ng mL−1  

[237] 

UV filters (benzophenone, 
salicylate) 

Water samples (swimming pool water, well 
water, river water) 

HPLC-UV C10:C12 fatty acids (2:1) /  
air-assisted LLME based on SDES  

0.045–
0.54 µg L−1  

[238] 

Vincristine Plasma HPLC-UV methyltrioctylammonium chloride and n-butanol (1:3) /  
DES-based vortex-assisted DLLME  

0.02 μg L−1  [239] 

Volatile aromatic hydrocarbons 
(benzene, toluene, ethylbenzene, 
xylene isomers)  

Water (well water, surface water) and urine 
samples  

GC-FID  choline chloride and chlorophenol (1:2) /  
DES-based HS-SDME  

0.05–
0.90 ng mL−1  

[240] 

Warfarin  Water, plasma and urine samples  HPLC-UV borneol and decanoic acid (1:3) /  
DES-based air-assisted LLME  

0.5−2.7 µg L−1  [241] 
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3 Determination of inorganics  

Although the majority of the described procedures are devoted to the determination of organic 

compounds, articles focused on the determination of inorganic analytes are also significantly 

represented (23% of the total number of reviewed papers) [243-311]. The applications of DES-based 

liquid–liquid extraction procedures for the determination of inorganic analytes are summarised in 

Table 2. Most of these articles (58%) are devoted to the determination of a single element [243-282], 

while 17% and 12% of the articles present the determination of two [283-294] or more elements [295-

302], respectively. Only a few articles describe speciation analysis of elements, such as arsenic [303], 

chromium [304, 305], iron [306] and selenium [307-309], and only 2 articles are devoted to the 

determination of anions. One reported a DES-based vortex-assisted DLLME combined with HPLC for 

the determination of nitrite in water and biological samples [310], and another described a DES-based 

vortex-assisted microextraction for the determination of orthophosphate in water samples by the 

molybdenum blue method [311]. Examples of the determination of inorganic compounds in various 

matrices using DES-based procedures will be discussed below.  

In regard to the determination of inorganic analytes, various atomic absorption techniques, 

such as flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption 

spectrometry (ETAAS), were most often used for detection, with 46% and 26% representation, 

respectively, while techniques such as ICP-OES [255, 264, 300-302] or UV-Vis spectrophotometry [251, 

254, 261, 279, 306, 307, 311] have been reported less frequently. The determination of metals using a 

DES-based preconcentration followed by AAS detection was covered in detail in our previous review, 

published early last year [312]; we will therefore limit ourselves to a brief discussion of the issue here. 

Spectrophotometric detection was mainly used in the analysis of water samples [251, 254, 261, 279, 

306, 307], as well as food samples (tomato sauce, green and black tea, and dark chocolate) [251], 

(apple, banana, carrot and potato) [261]. A remarkable method based on the use of digital image 

colorimetry detection was proposed by Lemos et al. [280]. The DES-based ultrasound-assisted LPME 

was based on the extraction of V complex with Br-PADAP into choline chloride-phenol (1:2) DES. The 

addition of tetrahydrofuran and ultrasonic energy were used to promote the dispersion of the 

extraction solvent in the aqueous solution. After centrifugation and removal of the enriched phase, 

detection was carried out directly in the solvent by digital image colorimetry, with an LOD of 0.3 μg L–

1. The procedure was applied to the determination of V(V) and V(IV) species in water samples and total 

vanadium in food samples [280].  

Regarding samples, the most frequently analysed were water (37%) and food (34%), followed 

by fruit and vegetable samples (12%), while others, such as biological or environmental samples (soils, 

sediments, cosmetics, rocks, etc.), were analysed less frequently. It should be noted that with the 

analysis of solid samples, a sample pretreatment step consisting of either sample 

decomposition/digestion [244, 247-249, 258, 259, 272, 274, 275] or the extraction/leaching of the 

analytes into a suitable solvent [265] is usually necessary. Unfortunately, authors quite often pay only 

minimal attention to the sample pretreatment step and focus only on the DES-based extraction step. 

Procedures using a DES for direct extraction of the analytes from solid samples have also been 

reported. Kanberoglu et al., for example, reported a DES-based digestion followed by a DES-based 

ultrasound-assisted LPME procedure for copper determination [256]. The liver samples were first 

digested using a DES consisting of lactic acid and choline chloride; then the residue was dissolved in 

distilled water, and the Cu(II) ions were complexed with sodium dimethyl dithiocarbamate and 

extracted into tetrabuthylamonium chloride–decanoic acid DES. The quantification of copper was 

performed using FAAS technique with an LOD of 4 μg L−1 [256]. A DES-based procedure was applied for 
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the extraction of manganese from vegetable samples, such as basil herb, spinach, dill and cucumber 

peels, prior to ICP-OES analysis [264]. The method is based on the solubilisation of manganese in a 

choline chloride-based DES medium. The LODs were found to be in the range of 0.34–1.23 μg L-1 

depending on the acid component of the DES (tartaric acid, oxalic acid and citric acid) [264]. 

Rastegarifard et al. described a DES-based extraction method for the determination of total Hg in 

marine fish samples using cold vapor atomic absorption spectrometry. The method is based on the 

complete dissolution of samples in a choline chloride–oxalic acid DES without additional microwave or 

pressure processing. The remaining small particles were digested quickly after adding 7 mol L-1 HNO3. 

Since a clear, residue-free solution was obtained, further steps, such as centrifugation and filtration, 

are not necessary. The LOD of the method was found to be 0.03 μg g-1. In addition, several fish samples 

were analysed using a DES-based method and a conventional acid digestion method, with no 

significant difference found between the results of the proposed method and the reference method 

[262]. Oil samples can also be pretreated using some well-known digestion procedure and 

subsequently analysed using DES microextraction [257]. However, a simpler method based on diluting 

the sample with ethyl acetate followed by reversed-phase DLLME has also been reported [285].  

As for microextraction procedures, we can state that various modalities of the LLME technique 

have been used, often aided by the use of auxiliary energy such as ultrasound [243, 246, 247, 251-253, 

256, 257, 272, 278, 280, 281, 283, 284, 288-290, 292, 295, 298, 303, 305, 306, 308, 309], vortex [244, 

258, 261], microwave [301], or both ultrasound and vortex [249]. Air-assisted [270, 275, 277, 286] and 

effervescence-assisted [260] procedures have also been described. In the majority of cases, a DES was 

used as the extraction solvent. However, Sorouraddin et al. reported a procedure in which a DES 

miscible with both aqueous and organic phases, prepared by mixing glycolic acid and mandelic acid at 

a molar ratio of 2:1, was applied as a dispersive solvent in a reversed-phase DLLME for the extraction 

of Cd(II) and Zn(II) ions from oil samples prior to FAAS quantification. The procedure shows good 

detection limits of 0.12 μg L−1 and 0.18 μg L−1 for Cd(II) and Zn(II), respectively, and was applied for the 

analysis of fish oil, butter and margarine samples [285].  
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Table 2 Examples of DES-based liquid-liquid extraction procedures for the determination of inorganic analytes  

Analyte Matrix Detection Selected DES / Procedure  LOD Refs 

Al  Water samples (river, drinking, mineral, seawater, spring 
water) and food samples (rice, cultivated mushroom, 
chicken meat)  

ETAAS choline chloride and phenol (1:4) /  
DES-based ultrasound-assisted LPME  

0.032 μg L−1  [243] 

As  Water (wastewater, well water, bottled water), rice and 
honey samples 

HG-AAS benzyltriphenylphosphonium chloride and ethylene glycol (1:1) /  
DES-based vortex-assisted LPME  

6.5 ng L−1  [244] 

Au  Plating bath solution SQT-FAAS choline chloride and phenol (1:2) /  
DES-based LPME  

5.1 µg L−1  [245] 

Cd  Celery and apple samples SQT-FAAS  chloline chloride and phenol (1:2) /  
DES-based ultrasound-assisted LPME  

0.35 μg L–1  [246] 

Cd  Food samples (bean stew, black tea, chicken shawarma, 
canned corn, corn, canned mushroom, cheese, 
mushroom, fish tissue, tomato, meat, canned fish, rice 
and spinach) and water samples (tap water, wastewater, 
ice tea)  

ETAAS choline chloride and phenol (1:4) /  
DES-based ultrasound-assisted LPME  

0.023 ng L−1  [247] 

Cd  Food samples (cow and goat cheese, goat milk) and 
water samples (wastewater, snow water, rainwater, tap 
water)  

FAAS  trihexyltetradecylphosphonium chloride and pivalic acid (1:4) /  
DES-based LPME  

1.6 µg L−1  [248] 

Cd  Water samples (drinking water) and some food samples 
(rice, wheat, watermelon)  

GFAAS  L-menthol and salicylic acid (4:1) /  
DES-based ultrasound-vortex-assisted DLLME  

0.37×10−4 µg L−1  [249] 

Co  Linden tea samples SQT-FAAS  choline chloride and phenol (1:2) /  
DES-based LPME  

2.0 µg L−1  [250] 

Co  Water samples (tap water, river water) and food samples 
(tomato sauce, green and black tea, dark chocolate) 

UV-Vis n-phenyliminodiacetic acid and choline chloride (2:1) /  
DES-based ligandless ultrasound-assisted LPME  

5.23 µg L−1  [251] 

Cr  Urine samples ETAAS benzyltriphenylphosphonium bromide and phenol (1:7) /  
ultrasound assisted DLLME followed by SFOD  

2.0 ng L−1  [252] 

Cr  Water samples (wastewater, groundwater, seawater, 
canal water, mineral water, tap water) 

GFAAS  ZnCl2 and acetamide (1:3) /  
DES-based ultrasound-assisted DLLME  

6.0 ng L−1  [253] 

Cr  Water samples (tap water, wastewater, mineral water, 
fish pool, well water)  

UV-Vis  benzyltriethylammonium chloride and phenol (1:4) /  
DES-based DLLME  

1.5 µg L−1  [254] 

Cu  Lake and river sediment samples ICP-OES  choline chloride and oxalic acid (1.5:1) /  
DES-based extraction  

1.2 µg L−1  [255] 

Cu  Liver samples MS-FAAS [choline chloride and lactic acid (1:2)] and [tetrabuthylamonium chloride and 
decanoic acid (1:2)]  
DES-based digestion and ultrasound-assisted ELPME  

4.00 µg L−1  [256] 

Cu  Olive oil and water samples (lake water, wastewater)  FAAS  choline chloride and phenol (1:4) /  
DES-based ultrasound-assisted LPME  

6.6 μg L−1  [257] 

Cu  Quince samples SQT-FAAS  choline chloride and phenol (1:2) /  
DES-based vortex-assisted ELPME  

0.5 μg L−1  [258] 

Cu  Vegetable samples (spinach, lettuce, broccoli, potato, 
carrot, parsley) 

FAAS benzyltriphenylphosphonium bromide and ethylene glycol (1:8) /  
DES-based HLLME  

0.13 µg L−1  [259] 

Cu  Water samples (tap water, lake water) FAAS choline chloride and phenol (1:3) /  
DES-based effervescence-assisted DLLME  

2.9 μg L−1  [260] 
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Fe  Water samples (bottled water, tap water, lake water, 
river water, well water) and food samples (apple, 
banana, carrot, potato) samples  

UV-Vis  thymol and lauric acid (2:1) /  
temperature-controlled vortex-assisted LLME based on SDES  

1.5 μg L−1  [261] 

Hg  Fish samples CVAAS  choline chloride and oxalic acid (1:2) /  
DES-based extraction  

0.03 μg g–1  [262] 

Mn  Blood samples FAAS  zinc chloride and acetamide (1:2) /  
DES-based extraction  

0.29 μg L–1  [263] 

Mn  Vegetable samples (basil herb, spinach, dill, cucumber 
peel) 

ICP-OES choline chloride and tartaric acid, or oxalic acid, or citric acid (1:1) /  
DES-based extraction  

0.34–1.23 μg L–1  [264] 

Mn  Wastewater and coffee samples  FAAS choline chloride and phenol (1:2) /  
DES-based LPME  

0.52 µg L−1  [265] 

Ni  Spinach samples SQT-FAAS  choline chloride and phenol /  
DES-based LPME  

3.8 µg L–1  [266] 

Ni  Water samples (tap water, river water, mineral water, 
seawater) 

FAAS choline chloride and 4-boromo phenol /  
DES-based DLLME  

1.7 µg L−1  [267] 

Ni  Water samples (waste, sea, mineral, well) and food 
samples (onion, parsley, cigarette)  

MS-FAAS tetrabutylammonium chloride and decanoic acid (1:3) /  
DES-based LPME  

0.13 μg L−1  [268] 

Pb  Blood samples ETAAS  choline chloride and urea (1:2) /  
carrier-mediated HF-LPME  

0.1 ng mL–1  [269] 

Pb  Gasoline samples  GFAAS  menthol, mandelic acid and glycolic acid (2:1:1) /  
DES-based air-assisted LLME  

1.6 ng L−1  [270] 

Pb  Milk samples SQT-FAAS choline chloride and phenol (1:2) /  
DES-based LPME  

8.7 μg L−1  [271] 

Pb  Tobacco and food samples (cigarette, parsley, onion) FAAS  tetrabutylammonium chloride and decanoic acid /  
DES-based ultrasound-assisted LPME  

4.4 µg L–1  [272] 

Pb  Water samples (tap water, river water, seawater)  FAAS choline chloride and 2-chlorophenol (1:2) /  
DES-based ELLME  

5.93 μg L–1  [273] 

Pb  Water samples (tap, river, canal, wastewater) and food 
samples (black tea, canned fish, green tea, spinach, 
boiled wheat, chicken meat, beef meat, canned 
mushroom)  

FAAS  choline chloride and decanoic acid (1:1) /  
DES-based microextraction  

0.086 µg L−1  [274] 

Pb  Water samples (lake, waste, river, seawater) and food 
samples (black tea, green tea, cumin, cows meat, linseed, 
canned fish, chicken meat, potato)  

GFAAS choline chloride and phenol (1:4) /  
DES-based air-assisted LPME  

0.60 ng L−1  [275] 

Pd  Catalytic converter and road dust samples  ETAAS phenyl salicylate (salol) and DL-menthol (1:1) /  
DES-based temperature-controlled LLME  

0.03 μg L−1  [276] 

Pd  Water samples (tap, mineral, sea, river water) and acid-
digested environmental samples  

FAAS choline chloride and phenol (1:4) /  
DES-based air-assisted ELLME  

1.2 µg L−1  [277] 

Se  Water samples (tap water, river water, mineral water, 
well water) and food samples (rice flour, mushroom, 
soya, corn flour, broccoli, pumpkin, buckwheat flour, oat 
flour, egg, tomato, brown rice, green tea, canned tuna, 
canned shrimp, chicken liver)  

HG-AAS menthol and lauric acid (1:3) /  
DES-based ultrasound-assisted LLME  

0.25 ng L−1  [278] 

Th  Water samples (river water and seawater) and rock 
sample  

UV-Vis 1-hexyl-3-methylimidazolium and salicylic acid (1:1) /  
DES-based DLLME  

2.1 ng mL−1  [279] 
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V  Food samples (beetroot, passion fruit, eggplant, plum, 
spinach) and water samples (river water and well water)  

Digital image 
colorimetry 

choline chloride and phenol (1:2) /  
DES-based ultrasound-assisted LPME  

0.3 μg L–1  [280] 

V  Foodstuffs (tomato, cucumber, banana, black tea, apple, 
cabbage, egg, chicken meat, cultivated mushroom, 
spinach, honey, canned fish, cow meat, bean, coffee, 
cheese, red wine, white wine, cow milk, ice tea)  

ETAAS choline chloride and phenol (1:4) /  
DES-based ultrasound-assisted DLLME  

0.025 μg L−1  [281] 

Zn  Fish and eel samples FAAS choline chloride and phenol (1:2) /  
DES-based extraction  

0.041 μg kg−1  [282] 

      
As and Se  Rice samples  HG-AAS  proline and malic acid (2:1) /  

DES-based ultrasound-assisted microextraction  
3.0 ng L−1 (Se) 
and 1.7 ng L−1 
(As)  

[283] 

Cd and As  Wine samples FAAS  trioctylmethylammonium chloride and DL-lactic acid (1:3) /  
DES-based ultrasound-assisted DLLME  

0.080 μg L−1 
(Cd) and 
0.30 μg L−1 (As)  

[284] 

Cd and Zn  Oil samples FAAS glycolic acid and mandelic acid (2:1) /  
DES as a disperser in reversed-phase DLLME  

0.12 μg L−1 (Cd) 
and 0.18 μg L−1 
(Zn)  

[285] 

Cd and Zn  Water samples (surface water, tap water) and juices 
(cherry juice, peach juice)  

FAAS menthol, sorbitol, and mandelic acid (1:2:1) /  
DES-based air-assisted LLME based on SDES  

0.15 µg L−1 (Cd) 
and 0.12 µg L−1 
(Zn)  

[286] 

Co and Ni  Water samples (river water, well water, urban water) and 
juices (grape juice, peach juice)  

FAAS  choline chloride and 4-aminophenol (1:1) /  
DES-based DLLME  

0.30 µg L−1 (Ni) 
and 0.22 µg L−1 
(Co)  

[287] 

Ni and Co  Food samples (broccoli, spinach) and water samples (tap, 
mineral, sea, river)  

FAAS DL-menthol: decanoic acid (1:1) /  
DES-based ultrasound-assisted DLLME based on SFOD  

0.3 µg L−1 (Ni) 
and 0.4 µg L−1 
(Co)  

[288] 

Ni and Zn  Food samples (hydrogenated edible oil, milk, fish 
samples) 

FAAS tetrabutylammonium chloride and decanoic acid (1:2) /  
DES-based ultrasound-assisted LLME  

0.029 µg kg–1 
(Ni) and 1.5 
µg kg–1 (Zn)  

[289] 

Pb and Cd   Cosmetic samples (lipstick, eye shadow) FAAS ZnCl2 and acetamide (1:2) /  
DES-based ultrasound-assisted microextraction  

0.86 μg L−1 (Cd) 
and 0.66 μg L−1 
(Pb)  

[290] 

Pb and Cd  Vegetable samples (leek, spinach, dill, parsley, mint, 
arugula, eggplant, dry tea) 

FAAS  citric acid and sucrose (1:3) /  
DES-based microextraction  

0.17 ng mL−1 
(Pb) and 
0.35 ng mL−1 
(Cd)  

[291] 

Pb and Cd  Water samples (tap water, mineral water, river water, 
well water) and food samples (sesame, peanut, eggplant, 
corn, wheat, soy, cucumber)  

FAAS L-menthol and dodecanoic acid (3:1) /  
DES-based ultrasound-assisted LPME  

0.24 µg L−1 (Pb) 
and 0.46 µg L−1 
(Cd)  

[292] 

Se and As  Edible mushroom GFAAS  choline chloride and oxalic acid (1:2) /  
DES-based extraction  

0.32 µg L−1 (Se) 
and 0.50 µg L−1 
(As)  

[293] 
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Se and As  Fish samples  ETAAS choline chloride and oxalic acid (1:2) /  
DES-based digestion (extraction)  

0.75 μg kg−1 (Se) 
and 0.46 μg kg−1 
(As)  

[294] 

      

Cu, Cd, and Pb  Honey  FAAS citric acid and sucrose (3:2) /  
DES-based ultrasound-assisted DLLME  

0.23–
0.87 μg kg−1  

[295] 

Cd, Pb, and Cu Milk samples (milk, honey milkshake, babana milkshake)  FAAS menthol, sorbitol and mandelic acid (1:2:1) /  
DES-based DLLME  

0.38–0.42 μg L−1  [296] 

Hg, Pb, and Cd  Soil and vegetables irrigated with treated municipal 
wastewater 

GFAAS 1-decyl-3-methylimidazolium chloride and 1-undecanol (1:2) /  
DLLME based on SDES  

0.01–
0.03 µg kg−1  

[297] 

Pb, Cd, Co, and Ni  Water samples (lake water, river water, well water) HPLC-UV trihexyl(tetradecyl)phosphonium chloride and thiosalicylic acid (1:2) /  
DES-based ultrasound-assisted DLLME with solidification of the aqueous phase  

0.05–0.13 µg −1L  [298] 

Pb, Co, Ni, and Mn  Edible oils (sunflower oil, baby oil, trout oil, waste frying 
oil and syrup-soaked pastry oil)  

MS-FAAS  choline chloride and urea (1:2) /  
DES-based LPME  

2.4 µg L−1 (Pb) , 
4.6 µg L−1 (Co), 
7.5 µg L−1 (Ni), 
and 1.0 µg L−1 
(Mn)  

[299] 

Cd, Co, Hg, Ni, Pb, and V Oral and parenteral drugs ICP-OES DL-menthol and decanoic acid (2:1) /  
DES-based DLLME  

0.05–1.2 µg L−1  [300] 

Cd, Cu, Fe, Mn, and Zn Medicinal herb samples ICP-OES choline chloride, oxalic acid and water (1:1:1) /  
DES-based microwave-assisted extraction (MAE)  

0.008–
0.36 mg kg−1  

[301] 

As, Cr, Mo, Sb, Se, and V Soil samples ICP-OES  choline chloride and oxalic acid (1:2) /  
DES-based UAE  

0.009–0.1 µg g−1  [302] 

      
Speciation of arsenic 
(water samples) and 
total arsenic (food and 
environmental samples)  

Water samples (lake water, mineral water, tap water, 
river water), foods (edible mushrooms, fish, green tea, 
black tea, rice) and sediment, soil, cigarette samples  

ETAAS choline chloride and phenol (1:3) /  
DES-based ultrasound-assisted LPME  

10 ng L−1  [303] 

Speciation of chromium  Water samples (river water, well water, tap water, 
wastewater) and urine  

GFAAS  choline chloride and phenol (2:3) /  
DES-based microextraction  

0.096 μg L−1  [304] 

Speciation of chromium 
(water samples) and 
total chromium (food 
samples)  

Water samples (bottled mineral water, tap water, 
seawater, wastewater) and food samples (fish, 
mushroom) samples 

ETAAS  choline chloride and ethylene glycol (1:3)  
DES-based ultrasound-assisted LPME  

4.3 ng L‐1  [305] 

Speciation of iron  Water samples (steam water, drum water, tap water)  UV-Vis  choline chloride and 4-chlorophenol (1:3) /  
DES-based ultrasound-assisted temperature-controlled DLPME  

1.2 µg L−1  [306] 

Speciation of selenium  Water samples (tap water, river water, well water, 
wastewater, mineral water)  

UV-Vis  benzyltriphenylphosphonium bromide and 1-undecanol (1:4) /  
DLLME based on the SDES  

0.76 μg L−1  [307] 

Speciation of selenium 
(water and ice tea 
samples) and total 
selenium (food samples)  

Water samples (tap water, mineral water), ice tea and 
food samples (sheep milk, cow's milk, yoghurt, mixed fruit 
juice, egg, orange juice, grape fruit, honey, canned fish, 
edible mushroom)  

ETAAS choline chloride and phenol (1:3) /  
DES-based ultrasound-assisted LPME  

4.61 ng L−1  [308] 

Speciation of selenium 
(water samples) and its 
total content (milk 
formula and cereals)  

Water, milk formula and cereals  GFAAS choline chloride and phenol (1:3) /  
DES-based ultrasound-assisted DLLME  

0.029 μg L−1  [309] 
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Nitrite  Water samples (well water, tap water, lake water) and 

biological samples (saliva, human urine)  
HPLC-UV  trioctylmethylammonium chloride and oleic acid (1:2) /  

DES-based vortex-assisted DLLME  
0.2 μg L−1  [310] 

Orthophosphate  Water samples (tap water, river water)  UV-Vis glucose and choline chloride /  
DES-based vortex-assisted microextraction  

0.2 µg L−1  [311] 
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Concluding remarks and future trends  

The unique physicochemical properties of DESs as well as the simplicity of the combination of DES-

based extraction techniques with the main chromatographic and spectroscopic methods allow their 

use in the analysis of various samples. As we have seen, DESs have been used for liquid–liquid 

(micro)extraction of both organic and inorganic analytes. The wide range of organic compounds 

separated and pre-concentrated with their use include pharmaceuticals, plant bioactive compounds, 

pesticides, dyes, polycyclic aromatic hydrocarbons, phthalates, parabens, endocrine disrupting 

compounds as well as others. In the case of inorganic analysis, the fact that a very narrow range of 

DES-LLME applications is devoted to speciation analysis of elements as well as for determination of 

anions is worth mentioning. The application of DESs in LLE/LLME offers many advantages compared to 

classical organic solvents. In addition, their preparation is simple, and they are generally considered to 

be green solvents. Therefore, DESs attract and motivate researchers to look for new possibilities of 

their use. However, DESs are currently not widely available, which limits their application in routine 

analyses in commercial laboratories. The first attempts to automate analytical methods using DESs 

have been published, and this will contribute to the development of new analytical methods. We hope 

to see more publications in this area in the near future.  
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DES, Deep eutectic solvent;  
DI-SDME, Direct immersion single-drop microextraction; DLLME, Dispersive liquid–liquid 

microextraction; DLPME, Dispersive liquid-phase microextraction; ELLME, Emulsification liquid–liquid 
microextraction; ELPME, Emulsification liquid-phase microextraction; EME, Emulsification 
microextraction; HF-, Hollow-fibre; HF-LPME, Hollow-fibre liquid-phase microextraction; HLLME, 
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Homogeneous liquid–liquid microextraction extraction; HLLE, Homogeneous liquid–liquid extraction; 
HS-SDME, Headspace single-drop microextraction; LLE, liquid–liquid extraction; LLME, Liquid–liquid 
microextraction; LPME, Liquid-phase microextraction; MAE, Microwave-assisted extraction; SDES, 
Solidification of DES; SDME, single-drop microextraction; SFOD, Solidification of floating organic 
droplet; UAE, Ultrasound-assisted extraction; USAEME, Ultrasound-assisted emulsification 
microextraction.  

CVAAS, Cold vapor atomic absorption spectrometry; ETAAS, Electrothermal atomic absorption 
spectrometry; FAAS, Flame atomic absorption spectrometry; GC-µECD, Gas chromatography–micro 
electron capture detector; GC-ECD, Gas chromatography–electron capture detector; GC-FID, Gas 
chromatography–flame ionization detector; GC-MS, Gas chromatography–mass spectrometry; GC-
MS/MS, Gas chromatography–tandem mass spectrometry; GFAAS, Graphite furnace atomic 
absorption spectrometry; HG-AAS, Hydride generation–atomic absorption spectrometry; HPLC-FLD, 
High-performance liquid chromatography–fluorescence detector; HPLC-MS, High-performance liquid 
chromatography–mass spectrometry; HPLC-MS/MS, High-performance liquid chromatography–
tandem mass spectrometry; HPLC-UV, High-performance liquid chromatography–ultraviolet 
detection; ICP MS, Inductively coupled plasma mass spectrometry; ICP-OES, Inductively coupled 
plasma optical emission spectrometry; IMS, Ion mobility spectrometry; LC-, Liquid chromatography; 
LC-ICP MS, Liquid chromatography–inductively coupled plasma mass spectrometry; LC-UV, Liquid 
chromatography–ultraviolet detection; MECC-UV, micellar electrokinetic capillary chromatography–
ultraviolet detection; MS-FAAS, Micro-sample injection flame atomic absorption spectrometry; SQT-
FAAS, Slotted quartz tube–flame atomic absorption spectrometry; UHPLC-MS, Ultra-high-performance 
liquid chromatography–mass spectrometry; UHPLC-MS, Ultra-high performance liquid 
chromatography–mass spectrometry; UHPLC-MS/MS, Ultra-high performance liquid 
chromatography–tandem mass spectrometry; UHPLC-QTOF-MS, Ultra-high performance liquid 
chromatography–quadrupole time-of-flight mass spectrometry; UHPLC-UV, Ultra-high performance 
liquid chromatography–ultraviolet detection; UPLC-FLD, Ultra-high-performance liquid 
chromatograph–fluorescence detector; UPLC-MS/MS, Ultra performance liquid chromatography–
tandem mass spectrometry; UV-Vis, UV-Vis spectrometry;  
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