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A B S T R A C T
A problem of respiration rate estimation using two new non-linear observers for a wastewater
treatment plant is addressed in this paper. In particular, a non-linear adaptive Luenberger-like
observer and a super twisting sliding mode observer have been derived to produce stable and
bounded estimates of the respiration rate. During the synthesis of the particular observer, an
appropriate mathematical utility model was used. The observability analysis of this model was
performed using a method of indistinguishable state trajectories. The stability of the devised
observers was proved using the Lyapunov stability theory. The performance of the developed
observers was validated by simulation using ranges of data from the case study wastewater
treatment plant. Satisfactory results have been obtained and they demonstrate high effectiveness
of the devised observers.

1. Introduction
Nowadays, efficient handling of most of the systems (plants) perceived as essential for the comfortable functioning

of modern society requires advanced monitoring and control algorithms. These include systems such as power systems,
transport systems, or environmental systems, e.g., drinking water distribution systems and biological wastewater
treatment plants (WWTPs). To cope with the above, the mentioned algorithms should be equipped with instruments
such as estimation, optimisation, diagnostics, etc. Moreover, the issue of access to the information on process variables
is also involved. Typically, these variables include system state variables and controlled output variables (signals)
of the system. Unfortunately, from operational practice, the access to these variables, especially state variables, is
limited [6, 22]. It is therefore necessary to have an instrument to supply the missing information on state variables.
Such a tool is a state observer (estimator) that generates estimates of unmeasured state variables, primarily. Typically,
the reconstruction (estimation) of the system state is based on other available measured variables, so-called system
measured outputs, and the mathematical model of a given plant. The topic undertaken in this paper concerns
the reconstruction of state variables in WWTPs. In industrial practice, two main kinds of biological WWTPs are
distinguished, i.e., on-flow WWTPs and sequencing batch reactors (SBRs) [32]. It should be noted that from the point
of view of the nature of biological wastewater treatment, the processes taking place in both types of WWTPs are
analogous. In the following part of the paper, an SBR-type wastewater treatment plant is considered. Biochemical
processes in the WWTP are responsible for the elimination of contaminants that have not been removed during
mechanical pre-treatment. These include in particular nitrification and denitrification for removal of nitrogen, and
dephosphatation for removal of phosphorus [16, 17, 32]. These processes are carried out by micro-organisms called
activated sludge or biomass. The requirement to achieve proper multiplication of the activated sludge is to provide
it with an appropriate concentration of dissolved oxygen (𝐷𝑂(𝑡)). To carry out biological reactions, it is therefore
necessary to aerate the sewage. In other words, the denitrification, nitrification and dephosphatation processes are
dependent on the concentration of 𝐷𝑂(𝑡) in the WWTP.

The proper dissolved oxygen concentration is affected by two crucial process variables. The first one, denoted by
𝑘L𝑎

(

𝑄air(𝑡)
), is the function describing the transfer of oxygen into sewage through the aeration system and is often the

control input in dissolved oxygen concentration control systems [32, 36, 48]. The second variable is respiration, denoted
by 𝑅(𝑡) representing the oxygen consumption rate as a result of the oxygen uptake of micro-organisms and is often
perceived as the disturbance input in dissolved oxygen concentration control systems [12, 18, 24, 36]. Both variables
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are not only important for dissolved oxygen concentration control but also for process monitoring and diagnostics.
It is because 𝑘L𝑎

(

𝑄air(𝑡)
) may be used for improving the performance of the control system, whereas 𝑅(𝑡) is a

key indicator of current sewage load and biomass activity. Typically, direct on-line measurements of 𝑘L𝑎
(

𝑄air(𝑡)
)

and 𝑅(𝑡) are not available in WWTPs. This is, among other, reasons due to a very high cost of respirometers
capable of measuring respiration [27, 34, 42, 47]. These variables are, therefore estimated based on measurements
of the airflow and dissolved oxygen concentration, and proper models of the processes. Different types of grey-box
models, such as multiplicative-linear, multiplicative-affine, and exponential-non-linear model, are usually used for
estimating 𝑘L𝑎

(

𝑄air(𝑡)
) [15, 24, 25]. In turn, the value of respiration or respiration rate is assessed using Kalman

filters [4, 24, 25, 40, 41, 43], algorithms based on solving optimisation problems [26, 46], Luenberger-like observers
[18], or high-gain observers [5]. Naturally, the aforementioned estimation algorithms have various features, e.g., the
need to meet appropriate assumptions in Kalman filters, or a considerable computation time when solving optimisation
tasks. Hence, this issue is still relevant in research work.

The main aim of this work is to provide two new respiration rate observers, i.e., the non-linear adaptive Luenberger-
like observer (ALO) and the non-linear super twisting sliding mode observer (STSMO). A one-dimensional non-
linear balance mathematical model for the aeration process in SBR from [20, 25, 36, 48] has been used as a cognitive
model. Due to considering the respiration rate behaviour, the derived (utility) model for the synthesis of the developed
observers is characterised by extending the original (cognitive) dynamics with an additional slowly time-varying state
variable. The observability analysis of the utility model is also given. The performance of the developed observers
was simulation-verified, using the ranges of data from the Swarzewo SBR WWTP [37]. To summarise, the main
contributions of this paper are as follows:
a) a proper utility model for observer design purposes has been developed,
b) an observability analysis performed by applying a method of indistinguishable state trajectories has been given,
c) two new non-linear state observers producing stable and bounded (robust) estimates of the respiration rate have

been derived, along with the discussion of the observers’ gains selection methodology,
d) a comprehensive simulation analysis, including both scenarios noise free and noise affected, has been shown.

The paper is organised as follows. Section 2 includes the description of the cognitive model of dissolved oxygen
concentration and the derivation of the utility model with an analysis of its observability. The synthesis of the non-
linear adaptive Luenberger-like observer and the non-linear super twisting sliding mode observer for respiration rate
estimation is given in Section 3. The obtained simulation results are discussed in Section 4. The paper is concluded in
Section 5.

2. Modelling of dissolved oxygen concentration dynamics
A one-dimensional non-linear model of dissolved oxygen concentration dynamics is given as follows [20, 25, 36,

48]:
̇𝐷𝑂(𝑡) = −

𝐷𝑂(𝑡)
𝐾DO(𝑡) +𝐷𝑂(𝑡)

𝑅(𝑡) + 𝑘L𝑎
(

𝑄air(𝑡)
) (

𝐷𝑂sat (𝑇 (𝑡)) −𝐷𝑂(𝑡)
)

, (1)

where: ̇(⋅) stands for the derivative with respect to 𝑡; 𝑡 ∈ 𝕋 = ℝ+ ∪ {0} is the time instant, ℝ+ denotes the positive
part of ℝ; 𝐷𝑂(𝑡) [

g O2∕m3] ∈ ℝ+ is the dissolved oxygen concentration; 𝑅(𝑡) [

g∕m3 h
]

∈ ℝ+ signifies the
respiration; 𝑘L𝑎

(

𝑄air(𝑡)
) [

1∕h
]

∈ ℝ+ is the oxygen transfer function (continuous and differentiable with respect
to 𝑄air(𝑡)) into sewage through the aeration system; 𝑄air(𝑡)

[

m3∕h
]

∈ ℝ+ denotes the airflow to tank (bioreactor);
𝐷𝑂sat (𝑇 (𝑡))

[

g O2∕m3] ∈ ℝ+ stands for the dissolved oxygen saturation concentration; 𝑇 (𝑡) [◦𝐶] ∈ ℝ+ denotes
the temperature of sewage in the bioreactor; 𝐾DO(𝑡)

[

g O2∕m3] ∈ ℝ+ is the unknown saturation parameter of the
dissolved oxygen concentration dynamics.

It is worth adding that the first product on the right-hand side of (1) is often called the respiration rate and is
designated as 𝑅̃(𝑡) [

g∕m3 h
]

∈ ℝ+ [15, 18, 25, 40]. Moreover, by their nature, in the operational conditions when
𝑄air(𝑡) is non-zero (aerobic phase), all variables in model (1) are positive and bounded, i.e.:
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0 < 𝐷𝑂 ≤ 𝐷𝑂(𝑡) ≤ 𝐷𝑂, 0 < 𝑅 ≤ 𝑅(𝑡) ≤ 𝑅, 0 < 𝑘L𝑎 ≤ 𝑘L𝑎
(

𝑄air(𝑡)
)

≤ 𝑘L𝑎,

0 < 𝑄air ≤ 𝑄air(𝑡) ≤ 𝑄air , 0 < 𝑇 ≤ 𝑇 (𝑡) ≤ 𝑇 , 0 < 𝐾DO ≤ 𝐾DO(𝑡) ≤ 𝐾DO,

where (⋅) and (⋅) are the real and positive upper and lower bounds on the particular variable.
As it has been mentioned, respiration represents the oxygen consumption rate being the result of the oxygen

uptake of micro-organisms. This phenomenon depends on many factors that can be divided into three main groups:
biomass source, type of substrate, and temporal aspect [25]. Theoretically, respiration can be determined from the
extended models, e.g., ASM2d where exact non-linear kinetics functions (growth rates) express complex relations
between biochemical compounds residing in the bioreactor [16]. On the other hand, respiration can be measured using
specialised measuring devices called respirometers [27, 34, 42, 47]. However, due to the mentioned complexity of the
ASM family models, as well as the high cost of respirometers, these possibilities are considerably limited. Hence, there
arises an interest in using respiration estimation algorithms.
Remark 1. The oxygen concentration is delivered to WWTP by the aeration system. This system is composed of
blowers, pipes and diffusers. Since the dynamics of this system is much faster than the dynamics of biochemical
processes, as well as, there are no variables directly involved in model (1), it can be modelled as a static system with a
gain of one for estimation purposes.
Assumption 1. The oxygen transfer function 𝑘L𝑎

(

𝑄air(𝑡)
)

is a linearly 𝑄air(𝑡)-dependent input to the model for
observer synthesis (utility model).

The oxygen transfer function is mainly influenced by airflow, atmospheric pressure, and the type of diffusers deriving
air to the bioreactor and their depth of immersion. However, the airflow is the crucial factor [24, 36]. When analysing
the properties of the model of dissolved oxygen dynamics, the most often used 𝑘L𝑎

(

𝑄air(𝑡)
) models are the linear,

exponential, and cubic spline models [24]. Knowing the value of 𝑄air(𝑡), it is assumed that 𝑘L𝑎
(

𝑄air(𝑡)
) is a linearly

𝑄air(𝑡)-dependent input to the utility model, i.e. 𝑘L𝑎
(

𝑄air(𝑡)
)

≜ 𝛼𝑄air(𝑡), where 𝛼 ∈ ℝ+ is the scaling parameter.
Assumption 2. The dissolved oxygen saturation concentration𝐷𝑂sat (𝑇 (𝑡)) is a 𝑇 (𝑡)-dependent input to the model for
observers synthesis.

In fact, 𝐷𝑂sat (𝑇 (𝑡)) can be considered as the time-varying variable, the time-variation of which is dependent on
factors such as: sewage composition, atmospheric pressure, tank geometry, and air humidity and primarily temperature
[3, 24, 32]. Therefore, to obtain the value of 𝐷𝑂sat (𝑇 (𝑡)), it is assumed that the temperature at a given pressure is the
main influencing factor.
2.1. Model of dissolved oxygen concentration for observer synthesis

To perform the observer synthesis, the model of dissolved oxygen concentration dynamics (1) must be revised
for use as the utility model. Firstly, it is due to the properties of the respiration 𝑅(𝑡). This variable is slowly time-
varying. Thus, according to the methodology from [10, 45], 𝑅(𝑡) may be treated as an additional dynamic variable.
This proposition has been introduced in the literature for not only reconstruction of 𝑅(𝑡) separately but also for the
estimation of the respiration rate 𝑅̃(𝑡) [4, 15, 40]. Moreover, the value of𝐾DO(𝑡) is typically unknown and consequently,
the reconstruction of 𝑅(𝑡) becomes very challenging. Therefore, a typical approach is to estimate the respiration rate
𝑅̃(𝑡) rather than the respiration itself. Secondly, the resolution of input issues must be premised on appropriate regarding
of properties of 𝑘L𝑎

(

𝑄air(𝑡)
) and𝐷𝑂sat (𝑇 (𝑡)). According to Assumption 1, the oxygen transfer function can be treated

as a direct input to the utility model. In the context of the second variable, knowing that the temperature of sewage
can be easily and precisely measured and the characteristic between the temperature and dissolved oxygen saturation
concentration is known, 𝐷𝑂sat (𝑇 (𝑡)) can be treated as an additional input to the utility model (see Assumption 2).

To perform the observer synthesis, the first state variable is simply defined as:
𝑥1(𝑡) ≜ 𝐷𝑂(𝑡). (2)

Next, an auxiliary variable 𝑃 (𝑡) ∈ ℝ− [−], where ℝ− denotes the negative part of ℝ, which consists of the
combination of the negative value of 𝑅(𝑡) and [

𝐾DO(𝑡) +𝐷𝑂(𝑡)
]−1 is introduced. It is chosen to cancel the impact
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of 𝐾DO(𝑡) on the considered dynamics and to simplify the process of 𝑅̃(𝑡) reconstruction. Hence, the second state
variable and 𝑅̃(𝑡) yields:

𝑥2(𝑡) ≜ 𝑃 (𝑡) = −𝑅(𝑡)
[

𝐾DO(𝑡) +𝐷𝑂(𝑡)
]−1 ,

𝑅̃(𝑡) ≜ −𝑥1(𝑡)𝑥2(𝑡).
(3)

Taking into account that the second state variable 𝑥2(𝑡) has been introduced, model (1) must be extended by a
new dynamical term. By invoking the literature presenting the methods devised for the estimation of unknown kinetics
functions of other biochemical processes, e.g., [8, 9, 31, 35], the 𝑃 (𝑡) related differential equation can be proposed by
using dissolved oxygen concentration proportional representation given as:

𝑃̇ (𝑡) ≜ 𝑟(𝑡)𝑥1(𝑡), (4)
where 𝑟(𝑡) ∈ ℝ is the time-varying function representing an uncertainty in system dynamics.

The explicit form of 𝑟(𝑡) can be established by the appropriate combination of highly non-linear derivatives of
specific kinetics function terms such as Monod, Haldane, etc. components, which constitute the functional form of
𝑅(𝑡) (part of 𝑃 (𝑡) introduced in (3)) [16, 24, 48]. Despite that, due to the inherent complexity of kinetics functions,
the estimation methodology presented in the paper does not rely on knowing the direct form of 𝑟(𝑡) but is premised on
considering it as the uniformly bounded unknown input.

Taking 𝑘L𝑎
(

𝑄air(𝑡)
) as an exogenous signal, as discussed earlier, the first input is given as:

𝑢1(𝑡) ≜ 𝑘L𝑎
(

𝑄air(𝑡)
)

. (5)
In turn, the second input is derived from the linear multiplication of 𝑘L𝑎

(

𝑄air(𝑡)
) and 𝐷𝑂sat (𝑇 (𝑡)):

𝑢2(𝑡) ≜ 𝑘L𝑎
(

𝑄air(𝑡)
)

𝐷𝑂sat (𝑇 (𝑡)) . (6)
Hence, by combining model (1) with (2) - (6), the following non-linear state-space utility model ΣU is obtained:

ΣU ∶

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥̇1(𝑡) = 𝑥1(𝑡)𝑥2(𝑡) − 𝑢1(𝑡)𝑥1(𝑡) + 𝑢2(𝑡)

𝑥̇2(𝑡) = 𝑟(𝑡)𝑥1(𝑡)

𝑅̃(𝑡) = −𝑥1(𝑡)𝑥2(𝑡)

𝑦(𝑡) = 𝑥1(𝑡)

𝒙(𝑡0) = 𝒙0

, (7)

where 𝒙0 ∈ ℝ2
+ denotes the vector of initial conditions.

Moreover, the following assumptions are made:
Assumption 3. The state variable 𝑥1(𝑡) is measurable, with its measurements burdened by measurement noise
modelled as white Gaussian noise.

Assumption 4. The unknown time-varying function 𝑟(𝑡) is uniformly bounded, i.e., ∀𝑡 ∈ 𝕋 |𝑟(𝑡)| ≤ 𝑟 ∈ ℝ+. Also, due
to boundedness of 𝐷𝑂(𝑡), the derivative of the respiration rate is bounded uniformly: ∀𝑡 ∈ 𝕋 |

|

|

̇̃𝑅(𝑡)||
|

≤ 𝑟𝐷𝑂.

Assumption 5. Both known inputs are the permanently excited positive signals due to the physical properties of the
considered system, i.e. [21]:

𝛼u𝑰2×2 ≤ ∫

𝑇p+𝑡

𝑡
𝒖(𝜏)𝒖T(𝜏)𝑑𝜏 ≤ 𝛼u𝑰2×2, (8)

where: 𝛼u ∈ ℝ+, 𝛼u ∈ ℝ+ are the lower and upper bounds of the permanently excited inputs; 𝑇p ∈ 𝕋 is the selected
time period; 𝑰2×2 is the identity matrix.
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2.2. Observability analysis
To perform the observer synthesis, it is necessary to verify that the model of the considered system is observable.

As can be noticed, model (7) is dependent on known and unknown inputs (exogenous signals). Hence, a method
of indistinguishable state trajectories (indistinguishable dynamics) can be used to prove the observability of this
model [7, 28, 30, 38]. In general, this approach is based on direct interpretation and utilisation of state trajectory
indistinguishability definitions, where the natural extensions of the classical observability/detectability concepts are
premised on the possibility of unique or asymptotic reconstruction of both state and unknown input trajectories. Hence,
strong 𝑢-observability and strong 𝑢-detectability notions defined in [30] are directly incorporated into this research.

Briefly, the practical utilisation of this method is given as follows. For the assumed two structurally identical
dynamical systems ΣU, i.e., ’original’ (𝒙(𝑡) dependent) system and ’copied’ (𝒛(𝑡) dependent) system, the initial
conditions of which are not equal, i.e., 𝒙0 ≠ 𝒛0, it is checked how integral curve trajectories of states of the both systems
evolve under the revealed identical input-output behaviour. In other words, whether ∀𝑡 ∈ 𝕋 lim𝑡→∞ ‖𝒙(𝑡) − 𝒛(𝑡)‖ ≠ 0
states are not detectable, lim𝑡→∞ ‖𝒙(𝑡) − 𝒛(𝑡)‖ = 0 states are detectable, or 𝒙(𝑡) ≡ 𝒛(𝑡) states are observable
[7, 28, 30, 38]. The investigation is based on the analysis of the dynamic properties of the error, defined as follows:

𝜺(𝑡) ≜ 𝒙(𝑡) − 𝒛(𝑡), (9)
where 𝜺(𝑡) ∈ ℝ2 is the error between indistinguishable state trajectories.

However, due to the presence of the unknown time-varying function 𝑟(𝑡) and the respiration rate 𝑅̃(𝑡) in model (7)
it is necessary to define the following additional error components:

𝜀r(𝑡) ≜ 𝑟(𝑡) − 𝑟∗(𝑡), 𝜀R̃(𝑡) ≜ 𝑅̃(𝑡) − 𝑅̃∗(𝑡), (10)
where 𝜀r(𝑡) ∈ ℝ is the error between ’original’ 𝑟(𝑡) and ’copied’ 𝑟∗(𝑡) ∈ ℝ unknown input, and 𝜀R̃(𝑡) ∈ ℝ denotes the
error between ’original’ 𝑅̃(𝑡) and ’copied’ 𝑅̃∗(𝑡) ∈ ℝ+ respiration rate.

Hence, combining the dynamics ΣU and the differentiated errors defined in (9) and (10) the following error
dynamics ΣI is obtained:

ΣI ∶

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜀̇1(𝑡) = 𝑥1(𝑡)𝑥2(𝑡) − 𝑢1(𝑡)𝜀1(𝑡) −
(

𝑥1(𝑡) − 𝜀1(𝑡)
) (

𝑥2(𝑡) − 𝜀2(𝑡)
)

𝜀̇2(𝑡) = 𝑟(𝑡)𝑥1(𝑡) −
(

𝑥1(𝑡) − 𝜀1(𝑡)
) (

𝑟(𝑡) − 𝜀r(𝑡)
)

𝜀R̃(𝑡) = −𝑥1(𝑡)𝑥2(𝑡) +
(

𝑥1(𝑡) − 𝜀1(𝑡)
) (

𝑥2(𝑡) − 𝜀2(𝑡)
)

𝜀1(𝑡) = 0

𝜺(𝑡0) = 𝜺0

. (11)

By studying the properties of the error dynamicsΣI, the observability/detectability of the systemΣU may be proved.
Firstly, (11) is transformed into a simplified version under Assumption 3, which causes that 𝜀1(𝑡) and 𝜀̇1(𝑡) are equal
to zero ∀𝑡 ∈ 𝕋 . Therefore, (11) yields:

ΣI ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 = 𝑥1(𝑡)𝜀2(𝑡)

𝜀̇2(𝑡) = 𝑥1(𝑡)𝜀r(𝑡)

𝜀R̃(𝑡) = −𝑥1(𝑡)𝜀2(𝑡)

𝜺(𝑡0) = 𝜺0

. (12)

Secondly, the interpretation of properties of (12) is as follows. Knowing that the dissolved oxygen concentration
is positive ∀𝑡 ∈ 𝕋 (aerobic phase), 𝜀2(𝑡) and 𝜀̇2(𝑡) must be always equal to zero. It implies that 𝑥2(𝑡) is strongly
𝑢-observable. Moreover, it is easy to check that 𝜀r(𝑡) and 𝜀R̃(𝑡) must be equal to zero ∀𝑡 ∈ 𝕋 due to 𝑥2(𝑡) observability.
Hence, the unknown time-varying function 𝑟(𝑡) is observable, and the respiration rate 𝑅̃(𝑡) can be exactly reconstructed.
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3. Synthesis of observers for respiration rate estimation in WWTP
This section presents, the synthesis of the non-linear adaptive Luenberger-like observer (ALO) and the non-linear

super twisting sliding mode observer (STSMO) for respiration rate estimation in WWTP.
3.1. Synthesis of ALO

The non-linear adaptive Luenberger-like observer is the development of the observer introduced in [2, 3, 11, 33].
The developed ALO enables to reconstruct of the respiration rate instead of estimating an unknown kinetics function
by utilising the adaptive-proportional structure of the correction term. Taking into account form (7) of the utility
model, the explicit formula of the right-hand side of ̇̃𝑅(𝑡) is generally dedicated to avoid issues around the stability
(boundedness) analysis and to simplify the selection of values of observer gains encountered in [2, 3, 11, 33]. The
main difference between them and the here developed one is that the derivative of 𝑅̃(𝑡) is not only bounded by some
constant parameter but also related to the dissolved oxygen proportional term introduced in model (7).
Theorem 1. Assume that the triple (𝑥1(𝑡), 𝑥2(𝑡), 𝑅̃(𝑡)

) represents the solution of system (7) ∀𝑡 ∈ 𝕋 . Then the following
non-linear adaptive Luenberger-like observer:

ALO ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̇̂𝑥1(𝑡) =
[

𝑥̂2(𝑡) − 𝑢1(𝑡) +𝐾1𝑒1(𝑡)
]

𝑥1(𝑡) + 𝑢2(𝑡)

̇̂𝑥2(𝑡) = 𝐾2𝑒1(𝑡)𝑥1(𝑡)
̂̃𝑅(𝑡) = −𝑥1(𝑡)𝑥̂2(𝑡)

𝒙̂(𝑡0) = 𝒙̂0

, (13)

guarantees the globally uniformly bounded estimates 𝑥̂1(𝑡), 𝑥̂2(𝑡) and ̂̃𝑅(𝑡) of state variables 𝑥1(𝑡), 𝑥2(𝑡) and the
respiration rate 𝑅̃(𝑡), respectively, with the robustness to 𝑟(𝑡) for properly selected values of the observer gains matrix
𝑲 =

[

𝐾1 𝐾2
]T ∈ ℝ2

+.
The developed ALO (13) adopts the correction term to compensate the impact of unknown input 𝑟(𝑡). To select the

values of the ALO gains matrix, the following approach based on second-order system pole placement methodology
[3, 13, 33] is proposed: 𝐾1 = 2𝜁𝜔 and 𝐾2 = 𝜔2, where 𝜁 ∈ ℝ+ is the damping rate and 𝜔 ∈ ℝ+ is the oscillation
frequency.
Proof. By combining ΣU and ALO the following estimation error dynamics is given:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑒̇1(𝑡) =
[

𝑒2(𝑡) −𝐾1𝑒1(𝑡)
]

𝑥1(𝑡)

𝑒̇2(𝑡) =
[

𝑟(𝑡) −𝐾2𝑒1(𝑡)
]

𝑥1(𝑡)

𝑒R̃(𝑡) = −𝑥1(𝑡)𝑒2(𝑡)

𝒆(𝑡0) = 𝒆0

≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒆̇(𝑡) = [𝑨𝒆(𝑡) + 𝑩(𝑡)] 𝑥1(𝑡)

𝑒R̃(𝑡) = −𝑥1(𝑡)𝑒2(𝑡)

𝒆(𝑡0) = 𝒆0

, (14)

where: 𝑒1(𝑡) ≜ 𝑥1(𝑡) − 𝑥̂1(𝑡), 𝑒2(𝑡) ≜ 𝑥2(𝑡) − 𝑥̂2(𝑡), 𝑒R̃(𝑡) ≜ 𝑅̃(𝑡) − ̂̃𝑅(𝑡) are the estimation errors for the first and
second state variables and the respiration rate, respectively, and matrix 𝑨 ∈ ℝ2×2 and vector 𝑩(𝑡) ∈ ℝ2 are given as:

𝑨 =
[

−𝐾1 1
−𝐾2 0

]

, 𝑩(𝑡) =
[

0
𝑟(𝑡)

]

. (15)

The quadratic Lyapunov function  (𝒆(𝑡)) yields [21, 29]:
 (𝒆(𝑡)) = 𝒆T(𝑡)𝒆(𝑡),

𝜆min ( ) ‖𝒆(𝑡)‖2 ≤  (𝒆(𝑡)) ≤ 𝜆max ( ) ‖𝒆(𝑡)‖2 ,
(16)

where:  ∈ ℝ2×2 is the real symmetric matrix; 𝜆max ( ) ∈ ℝ, 𝜆min ( ) ∈ ℝ denote the largest and the smallest
eigenvalues of  , respectively; ‖⋅‖ signifies a Euclidean norm of (⋅). Also, it is assumed that the estimation error
Czyżniewski, M. et al.: Preprint submitted to Elsevier Page 6 of 18
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Respiration rate estimation using non-linear observers

vector belongs to the convex and bounded domain, i.e., 𝒆(𝑡) ∈  ⊂ ℝ2 ∀𝑡 ∈ 𝕋 , and the convex set  =
{

‖𝒆(𝑡)‖ ≤ 𝜅 | 𝒆(𝑡) ∈ 
} for 𝜅 ∈ ℝ+ is given.

The time derivative of  (𝒆(𝑡)) yields:
̇ (𝒆(𝑡)) = 𝒆̇T(𝑡)𝒆(𝑡) + 𝒆T(𝑡) 𝒆̇(𝑡) =

(

𝒆T(𝑡)
[

𝑨T + 𝑨
]

𝒆(𝑡) + 2𝑩T(𝑡)𝒆(𝑡)
)

𝑥1(𝑡)

= −
(

𝒆T(𝑡)𝑰2×2𝒆(𝑡) − 2𝑩T(𝑡)𝒆(𝑡)
)

𝑥1(𝑡) < 0,
(17)

where −𝑰2×2 = 𝑨T + 𝑨 signifies the Lyapunov equation [21].
Assuming that the vector 𝑩 can be uniformly bounded, i.e., ‖𝑩(𝑡)‖ ≤ 𝑟, the Lyapunov function derivative (17) can

be assessed by the following expression:
̇ (𝒆(𝑡)) ≤ −

(

‖𝒆(𝑡)‖2 − 2𝜆max ( ) ‖𝑩(𝑡)‖ ‖𝒆(𝑡)‖
)

𝑥1(𝑡) ≤ −
(

‖𝒆(𝑡)‖ − 2𝑟𝜆max ( )
)

‖𝒆(𝑡)‖ 𝑥1(𝑡)

= − (1 − 𝜃) ‖𝒆(𝑡)‖2 𝑥1(𝑡) +
(

2𝑟𝜆max ( ) − 𝜃 ‖𝒆(𝑡)‖
)

‖𝒆(𝑡)‖ 𝑥1(𝑡),
(18)

for any parameter 𝜃 ∈ (0 ; 1).
Thus, the global uniform boundedness can be guaranteed if the following condition is met:
‖𝒆(𝑡)‖ ≥ 2𝜃−1𝑟𝜆max () = 𝜅 ∈ ℝ+ ∀𝒆(𝑡) ∈ 

Moreover, the ultimate bound 𝜉 ∈ ℝ+ can be calculated as [21]:

𝜉 =
√

𝜆max () 𝜆−1min ()𝜅.

In turn, the steady state respiration rate error 𝑒R̃(𝑡) is bounded in the following way: ||
|

(

𝑒R̃(𝑡)
)

|

|

|

≤ 𝑒∗2𝐷𝑂, where
𝑒∗2 = max

{

|

|

|

(

𝑒2
)

|

|

|

, |

|

|

(

𝑒2
)

|

|

|

}

is the minimal absolute value of the second estimation error.
Thus, the state estimation error and the respiration rate estimation error are globally uniformly bounded despite

unknown input 𝑟(𝑡).

Proof 3.1 validates the global and uniform boundedness of the estimation error using classical Lyapunov tools.
In fact, this property is weaker than the global asymptotic stability. However, taking into account that the size of set
 =

{

‖𝒆(𝑡)‖ ≥ 𝜅 | 𝒆(𝑡) ∈ 
} is dependent on the value of 𝑟𝜆max ( ), the minimisation of 𝜅 can be guaranteed by

appropriate selection of observer gains. Whereas the vector 𝑲 can be adjusted during synthesis, the selection of 𝑟must
be premised on a realistic consideration of respiration rate time variation.
Remark 2. According to [6], for particular form of matrix 𝑨 from (15), the selection of 𝑲 values certainly affects
𝜆max ( ), which results from the form of the Lyapunov function derivative (17). If the values of both observer gains
are increasing, then 𝜆max ( ) becomes smaller. Whereas, when one of the observer gains is significantly bigger than the
other, then 𝜆max ( ) is increasing. Hence, knowing that 𝐾1 is dependent on the values of 𝜁 and 𝜔, as well as that 𝐾2 is
related only to𝜔, the pole placement must be related to selecting 𝜁 close to 1 and𝜔 >> 1. It is due to avoiding too-long
transient states (for significantly high damping rate values) and the over-activity of the correction term (unnecessary
oscillations). This is the consequence of insisting on making 𝜆max ( ) as small as possible to ensure feasibility at the
most minimal value of 𝜅 and to guarantee satisfying dynamical properties of the observer.
3.2. Synthesis of STSMO

The developed non-linear super twisting sliding mode observer is based on the algorithm introduced in [8, 9],
where the problem of uncertain kinetics function reconstruction has been addressed for a given class of biochemical
processes. In the context of application issues, super twisting algorithms reveal interesting and desirable properties
[14, 23, 29]. These include the finite time of convergence 𝑇STSMO ∈ 𝕋 (global uniform asymptotic stability [21]), high
robustness with respect to selected uncertainty 𝑟(𝑡), and very high accuracy of the reconstruction process when the
measurement is noise-free, i.e.: 𝑟̂(𝑡) ≡ 𝑟(𝑡) ∀𝑡 > 𝑇STSMO. Nevertheless, those methods are very sensitive to the factors
such as measurement errors and noise and other uncertainties occurring in a given system model.
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Respiration rate estimation using non-linear observers

In order to use the methodology outlined in [8, 9], the utility model (7) must be extended accordingly. More
specifically, the model must have such a form that its solution satisfies the differential inclusion, i.e., the solution
in the sense of Filipov [44]. Therefore, model (7) is transformed to the following form:

U ∶

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥̇1(𝑡) =
[

𝑥2(𝑡) − 𝑢1(𝑡)
]

𝑥1(𝑡) + 𝑢2(𝑡)

𝑥̇2(𝑡) ∈ 𝑈𝑟𝑥1(𝑡)

𝑅̃(𝑡) = −𝑥1(𝑡)𝑥2(𝑡)

𝑦(𝑡) = 𝑥1(𝑡)

𝒙(𝑡0) = 𝒙0

, (19)

where 𝑈 = [−1 ; + 1] ∈ ℝ is the convex set. The differential inclusion of (19) represents all of the state solutions
satisfying Assumption 4.
Theorem 2. Assume that the triple (

𝑥1(𝑡), 𝑥2(𝑡), 𝑅̃(𝑡)
) represents the solution in the sense of Filipov of system (19)

∀𝑡 ∈ 𝕋 . Then the following non-linear super twisting sliding mode observer:

STSMO ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̇̂𝑥1(𝑡) =
[

𝑥̂2(𝑡) − 𝑢1(𝑡) + 2𝛽1
√

𝑟 |
|

𝑒1(𝑡)||sgn
(

𝑒1(𝑡)
)

]

𝑥1(𝑡) + 𝑢2(𝑡)

̇̂𝑥2(𝑡) = 𝛽2sgn
(

𝑒1(𝑡)
)

𝑟𝑥1(𝑡)
̂̃𝑅(𝑡) = −𝑥1(𝑡)𝑥̂2(𝑡)

𝒙̂(𝑡0) = 𝒙̂0

(20)

guarantees the global uniform asymptotic stability of the estimation error in time 𝑇STSMO ∈ 𝕋 related to the robustness
with respect to 𝑟(𝑡) for properly selected values of 𝑟 and tuning parameters 𝛽1 ∈ ℝ+ and 𝛽2 ∈ (1 ; ∞).

The uniform convergence of the observer (20) may be proved by using standard Lyapunov tools adjusted to the
properties of the sliding mode regimes [9, 29]. The analysis is performed in two ways by applying the direct Lyapunov
method for quadratic stability investigation. Firstly, assuming that the tuning parameters are properly selected, the
global uniform asymptotic stability is justified. Secondly, by using polytopic differential inclusions and linear matrix
inequality tools, the conditions for selecting 𝛽1 and 𝛽2 are given.
Proof. By combining U and STSMO the following estimation error dynamics is given:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑒̇1(𝑡) =
[

𝑒2(𝑡) + 2𝛽1
√

𝑟 |
|

𝑒1(𝑡)||sgn
(

𝑒1(𝑡)
)

]

𝑥1(𝑡)

𝑒̇2(𝑡) ∈
[

𝑈 − 𝛽2sgn
(

𝑒1(𝑡)
)]

𝑟𝑥1(𝑡)

𝑒R̃(𝑡) = −𝑥1(𝑡)𝑒2(𝑡)

𝒆(𝑡0) = 𝒆0

, (21)

Due to the fact that the estimation error dynamics (21) ideally fits into equation (15) from [9], the stability
considerations are only narrowed to show that 𝑅̃(𝑡) can be estimated by (20). This can be deduced from the third
equation of (21) in which an algebraic term occurs. Taking into account that 𝑥1(𝑡) is the measured positive variable
and 𝑒2(𝑡) converges to zero in finite time for any initial conditions, 𝑒R̃(𝑡) must tend to zero in the same way as 𝒆(𝑡).
Therefore, the respiration rate 𝑅̃(𝑡) can be uniformly and asymptotically reconstructed in time 𝑇STSMO for any initial
conditions.

Remark 3. The selection of 𝛽1 and 𝛽2 is conditioned by the Lyapunov stability analysis [9]. In turn, for selected higher
values of 𝑟, the convergence rate is more rapid and the robustness against the impact of 𝑟(𝑡) increases. However, the
reconstruction performance becomes more susceptible to the influence of errors and measurement noise.
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Respiration rate estimation using non-linear observers

Moreover, due to fact that the functions sgn(⋅) and |(⋅)| are discontinuous, their smooth approximations are proposed
to avoid the chattering phenomenon [23, 44]. For the sgn(⋅) approximation, the 𝜒(⋅) function yields:

sgn(⋅) ≃ 𝜒(⋅) =
(⋅)

𝛾 + |(⋅)|
, (22)

where 𝛾 ∈ ℝ+ denotes the tuning parameter.
In turn, for |(⋅)| function, the regularisation approach is proposed which consists in introducing the continuous

function 𝜓(⋅) [39] given by:
|(⋅)| ≃ 𝜓(⋅) = 𝑐−1

[

log (1 + exp(𝑐(⋅))) + log (1 + exp(−𝑐(⋅)))
]

, (23)
where 𝑐 ∈ ℝ+ is the tuning parameter.
Remark 4. It is worth adding that even when the estimation error converges to the small sphere (close neighborhood
of the sliding surface 𝑒1(𝑡) = 0) during the appearance of measurement noise or when the measurement process is
corrupted by inertial dynamics of the measuring device, the uniform stability is still guaranteed even when the observer
becomes more sensitive and reactive. To partially suppress the negative impact related to measurement quality, the
parameters of functions 𝜒(⋅) and 𝜓(⋅) can be adjusted.

4. Case study
The devised observers (13) and (20) have been applied to the non-linear model of dissolved oxygen concentration

dynamics (1). This model and all observers were implemented in the Matlab/Simulink environment.
The values of the particular parameters and variables were established as follows. According to Assumption 2, the

values of dissolved oxygen saturation concentration 𝐷𝑂sat (𝑇 (𝑡)) were assumed known and time-varying. They result
from [24]:

𝐷𝑂sat (𝑇 (𝑡)) = 𝛽sat𝐷𝑂
water
sat (𝑇 (𝑡)) ,

where 𝛽sat ∈ ℝ+ is the constant parameter experimentally determined for a given WWTP, and𝐷𝑂water
sat (𝑇 (𝑡)) ∈ ℝ+ is

the dissolved oxygen saturation concentration for (clean) water. The values of 𝐷𝑂water
sat (𝑇 (𝑡)) over a wide temperature

range at a given atmospheric pressure can be found in the literature, e.g., [1]. Therefore, in this study, using the values
of 𝐷𝑂sat (𝑇 (𝑡)) determined for particular temperature measurements available in the literature and comparing them
with the corresponding water-related equivalents, the value of 𝛽sat was assumed as 𝛽sat = 0.98 [−]. Then, for known
values of 𝐷𝑂water

sat (𝑇 (𝑡)) and assuming the typical value of atmospheric pressure, i.e., 760 [

mmHg
], the values of

𝐷𝑂sat (𝑇 (𝑡)) were derived. The dependence between 𝐷𝑂sat (𝑇 (𝑡)) and temperature variation is shown in Fig. 1. The
values presented in Fig. 1 were then used to build the time trajectory 𝐷𝑂sat (𝑇 (𝑡)) representing a repeating summer
day. This trajectory is illustrated in Fig. 2.

10 12 14 16 18 20 22 24 26 28 30
7.5

8

8.5

9

9.5

10

10.5

11

11.5

Figure 1: The dependence between 𝐷𝑂sat (𝑇 (𝑡)) and temperature.
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Figure 2: The trajectory of 𝐷𝑂sat (𝑇 (𝑡)).

The range of values for the bioreactor airflow trajectory 𝑄air(𝑡), i.e., 1500 - 3000 [

m3∕h
], was derived from the

range of this variable in the Swarzewo SBR WWTP, which is directly related to the power of the blowers installed
in the aeration system of this WWTP [37]. However, the variability (shape) of this trajectory within this range was
established based on other trajectories of this variable available in the literature. The trajectory obtained in this way is
shown in Fig. 3.

0 10 20 30 40 50 60 70 80 90 100
1500

2000

2500

3000

Figure 3: The trajectory of airflow 𝑄air(𝑡).

Similarly, the range of values of the respiration trajectory 𝑅(𝑡) shown in Fig. 4 was derived from the range of
this variable in the Swarzewo SBR WWTP during its typical operation in the aerobic phase. This range is 2.8 - 4.03
[

g∕m3 h
]. In turn, the variability of this trajectory was assumed on the basis of other trajectories of this variable

available in the literature.
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Figure 4: The trajectory of respiration 𝑅(𝑡).

Next, using the prepared𝐷𝑂sat (𝑇 (𝑡)),𝑄air(𝑡), and𝑅(𝑡), and taking into account Assumption 1, where 𝑘L𝑎
(

𝑄air(𝑡)
)

=
𝛼𝑄air(𝑡) with the value of parameter 𝛼 assumed from the SIMBA simulator [19], i.e., 𝛼 = 0.208 [1∕m3], and also
assuming the value of parameter 𝐾DO(𝑡) = 0.2 [g O2∕m3], model (1) was solved and thus the trajectory 𝐷𝑂(𝑡) was
obtained. It should be added that the obtained range of values of the𝐷𝑂(𝑡) trajectory (see Fig. 7), i.e. 0.5 - 5 [

g O2∕m3]

is consistent with the range of 𝐷𝑂(𝑡) measurements in the Swarzewo SBR WWTP under the considered conditions.
Finally, multiplying the trajectory 𝑅(𝑡) and the Monod-type term (with the assumed 𝐾DO(𝑡) and the obtained 𝐷𝑂(𝑡)
trajectory), the trajectory of respiration rate 𝑅̃(𝑡) was obtained. This trajectory is shown in Fig. 5.

10 20 30 40 50 60 70 80 90 100
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Figure 5: The trajectory of respiration rate 𝑅̃(𝑡).

According to Assumption 3, the measurably available state variable is the dissolved oxygen concentration.
Typically, 𝐷𝑂(𝑡) is measured by measuring devices which are characterised by negligible measurement error, the
presence of measurement noise, and certain dynamics which can be approximated by first-order inertia with a time
constant of about 40 - 60 [sec] [24]. Therefore, it was assumed that the measurement error can be neglected, and also
the measurements are burdened with measurement noise modelled as white Gaussian noise with standard deviation
equal to 0.03

[

g O2∕m3] [4, 41], whereas the dynamics of the measuring device are modelled as first-order inertia with
the time constant 𝑇sensor = 1∕60 [h]. Moreover, according to the datasheets of typical dissolved oxygen concentration
sensors, the available measurement range is between 0.0 and 20.0

[

g O2∕m3], and the resolution-related measurement
quantisation interval is 0.01 [g O2∕m3]. To match up the introduced features of the measuring device, the model shown
in Fig. 6 was implemented in the Matlab/Simulink environment.
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Respiration rate estimation using non-linear observers

Figure 6: The diagram of the measuring device model.

The ’NOISE’ and ’DYNAMICS’ blocks in Fig. 6 represent the measurement noise, and the dynamics of the
measuring device, respectively. In turn, the input sampling, measurement saturation level, rate of change of the signal
and output value quantisation are realised by ’ZOH’, ’SAT’, ’RATE’ and ’QUANTISER’ blocks, respectively. The rate
limiter-related parameter’s value was set to s = ±100 [−] whereas the sensor related sample time was selected as
𝑇ss = 3∕3600 [h]. The dissolved oxygen concentration measurement is performed by utilising classical 4 − 20 [mA]
current loop, which analogue signal is subsequently converted to its digital equivalent. Hence, the simple model
of a 16-bit analog-to-digital converter (’ADC’ block in Fig. 6) was proposed. The ’ADC’ consists of the min-max
procedure conversion blocks for transforming analogue and digital values of particular signals, sampling component,
and quantisation block. Thus, for the converter modelling purposes, the sample time was selected as 𝑇s = 1∕3600 [h]
whereas the quantisation interval is ADC = (20 − 4)∕(216) = 0.000244 [−]. 𝐷𝑂(𝑡) measurement results obtained
from the measuring device modelled in this way were filtered by the proposed low-pass filter filtered measurement
results obtained from the measuring device with the time constant 𝑇F = 3∕60 [h]. The obtained dissolved oxygen
concentration trajectories: real (blue line - 𝐷𝑂m(𝑡)), measured (orange line), and filtered (yellow line) are shown in
Fig. 7. For clarity, Fig. 8 shows a zoomed-in fragment of the trajectories from Fig. 7.
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Figure 7: Trajectories of the dissolved oxygen concentration 𝐷𝑂(𝑡).

Czyżniewski, M. et al.: Preprint submitted to Elsevier Page 12 of 18

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Respiration rate estimation using non-linear observers

10 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.1
2.3

2.35

2.4

2.45

2.5

Figure 8: A zoomed-in fragment of the dissolved oxygen concentration trajectories.

Taking these considerations into account, a series of simulation experiments have been carried out, the selected
results of which are presented in the following sections.
4.1. Estimation results – noise free scenario

In this scenario, the impact of measurement device dynamics and measurement noise is neglected to show the
estimation performance without any particular disturbances. For the assumed initial conditions of the state variables,
i.e., 𝒙0 =

[

2 2.73
]T, and initial conditions of their estimates, i.e., 𝒙̂0 =

[

2.5 0
]T, the reconstruction performance

of ALO and STSMO has been examined. The observers gains selected according to the methodology presented in
Sections 3.1 and 3.2 were as follows: 𝜁 = 0.7, 𝜔 = 50 for ALO; 𝛽1 = 15, 𝛽2 = 15, 𝑟 = 10, 𝛾 = 0.01, 𝑐 = 1000
for STSMO. The trajectories of state variables representing 𝐷𝑂(𝑡) and 𝑅̃(𝑡) (see (2) and (3)) which were generated
by model (1) (see also Section 4) and their estimates from ALO (13) and STSMO (20) are shown in Figs. 9 and 10,
respectively. It is worth emphasising that the time scale was assumed to 100 hours, what was related to the biological
properties of the process, whereas the simulation step was selected as 𝑇s.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Figure 9: Trajectories of 𝐷𝑂(𝑡) and its estimates 𝐷𝑂(𝑡) generated by ALO and STSMO - noise free scenario.
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Figure 10: Trajectories of 𝑅̃(𝑡) and its estimates ̂̃𝑅(𝑡) generated by ALO and STSMO - noise free scenario.

When analysing the trajectories shown in Fig. 9 it can be deduced that the dissolved oxygen concentration, which
is measurably available, is reconstructed with practically zero estimation error by both of the developed observers.
This estimation performance for this state variable occurred in all experiments. Therefore, further experiments will be
illustrated only by invoking to the results obtained for the respiration rate. As can be seen in Fig. 10, the trajectories of
the generated estimates are very close to the trajectory of the reconstructed (unmeasured) variable. The small estimation
error is mainly caused by the stability and boundedness aspects, discussed in detail in Sections 3.1 and 3.2. To precisely
depict the accuracy of both observers, Fig. 11 presents the relative percentage estimation error 𝑒rel2 (𝑡) ∈ ℝ for the
respiration rate reconstruction.
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Figure 11: Relative percentage estimation error for respiration rate - noise free scenario.

As can be noticed in Fig. 11, the relative percentage estimation error for ALO and STSMO does not exceed 2%.
Even though the obtained estimation performance is high, it is not the same for both observers. It results directly from
the way how the estimate is generated by the given algorithm. For ALO, the global uniform boundedness is guaranteed
by definition; however, as it has been emphasised in Remark 2, an appropriate selection of 𝜁 and 𝜔 provides a narrow
size of the estimation error boundary in the steady state. In turn, for STSMO, exact convergence is not given because of
the utilisation of the approximation functions (22) and (23) to compensate the impact of the chattering phenomenon (see
Remarks 3 and 4). Even if 𝛽1 and 𝛽2 are well selected and 𝑟 ’catches’ the variation of 𝑟(𝑡), the introduced modifications
’break’ the global uniform stability of the estimation error.
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4.2. Estimation results – noise affected scenario
In this scenario, the impact of the measurement device dynamics and the measurement noise has been included

to show the estimation performance when the dissolved oxygen concentration measuring process is disturbed. The
properties of the measuring device model and the measurement noise parameters were directly incorporated from
Section 4. The entire study was conducted in the same way as in Section 4.1; hence, the initial conditions of state
variables and their estimates were the same as in the previous research. Also, the observer’s gains were selected in
the same way; however, due to the measurement noise occurrence, they are as follows: 𝜁 = 0.8, 𝜔 = 30 for ALO;
𝛽1 = 10, 𝛽2 = 10, 𝑟 = 10, 𝛾 = 0.1, 𝑐 = 100 for STSMO. The trajectories of the state variable representing 𝑅̃(𝑡) and
their estimates from ALO (13) and STSMO (20) are shown in Fig. 12.
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Figure 12: Trajectories of 𝑅̃(𝑡) and its estimates ̂̃𝑅(𝑡) generated by ALO and STSMO - noise affected scenario.

As can be seen in Fig. 12, the trajectories of the generated estimates deviate from the trajectory of the reconstructed
(unmeasured) variable. The boundedness of the estimation error is preserved; however, the estimation performance is
lower compared to the results shown in Fig. 10. To precisely depict the obtained estimation performance, Fig. 13 shows
the relative percentage estimation error 𝑒rel2 (𝑡) ∈ ℝ for respiration rate reconstruction.
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Figure 13: Relative percentage estimation error for respiration rate - noise affected scenario.

As can be noticed in Fig. 13, the relative percentage estimation error for ALO and STSMO occasionally exceeds
7%. Like in the experiment described in Section 4.1, the estimation performance differs for the developed observers,
although the difference is slight. The reasons for this are analogous to those indicated in Section 4.1. Naturally, a
Czyżniewski, M. et al.: Preprint submitted to Elsevier Page 15 of 18

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Respiration rate estimation using non-linear observers

higher value of the estimation error is due to the measurement conditions of 𝐷𝑂(𝑡). However, the resulting estimation
performance is still high enough for the obtained results to be considered satisfactory.

5. Conclusions
In this paper, the problem of respiration rate estimation using two new non-linear observers for wastewater treatment

plants has been investigated. In particular, the non-linear adaptive Luenberger-like observer and the super-twisting
sliding mode observer were devised to produce stable and bounded estimates of the respiration rate. The global
uniform boundedness of the produced estimates or the global uniform asymptotic stability of the estimation error were
rigorously proved using the Lyapunov stability theory. For the observers’ synthesis purposes, the correct utility model
was derived and its observability was demonstrated. The designed observers were applied to the non-linear model of
dissolved oxygen concentration dynamics. The entire system was implemented in the Matlab/Simulink environment.
The performance of the developed observers was validated by simulation using data whose ranges correspond to the
data from the Swarzewo SBR WWTP. The satisfactory performance of the generated estimates was obtained, which
confirms the high effectiveness of the devised observers. The estimation performance is comparable, although it is
possible to identify some features of the developed observers that distinguish them from each other. The most important
features of the non-linear adaptive Luenberger-like observer are as follows:

• the observer guarantees a global boundedness of the estimation error to a certain sphere related to the error norm;
• a simple selection of observer gains based on the allocation of the linear second-order system eigenvalues;
• if measurement noise is present, there is a need to filter it;
• the observer has good dynamic properties;
• a simple software implementation of the algorithm.

In turn, the most important features of the super twisting sliding mode observer yield:
• the observer guarantees global asymptotic stability of the estimation error (also with fixed time - uniformly);
• selection of observer gains from the numerically determined admissible region (established for any case of the

algorithm application);
• the need to approximate the |⋅| and sgn(⋅) functions occurring in the observer structure with continuous

equivalents;
• if measurement noise is present, there is a need to filter it;
• the observer has very good dynamic properties;
• the software implementation of the algorithm is not complicated but requires skillful introduction of approxi-

mating functions and their tuning.
The trajectories of the generated respiration rate estimates can be applied both in the monitoring system of the state

of ongoing processes in the wastewater treatment plant and in the dissolved oxygen control systems. This is due to the
fact that respiration is the main indicator of current sewage load and biomass activity, while its measurements are not
common in wastewater treatment plants.
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