
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/366655276

Generalization of Phylogenetic Matching Metrics with Experimental Tests of

Practical Advantages

Article  in  Journal of Computational Biology: a Journal of Computational Molecular Cell Biology · December 2022

DOI: 10.1089/cmb.2022.0090

CITATIONS

0
READS

57

2 authors:

Damian Bogdanowicz

Gdansk University of Technology

15 PUBLICATIONS   285 CITATIONS   

SEE PROFILE

Krzysztof Giaro

Gdansk University of Technology

40 PUBLICATIONS   863 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Damian Bogdanowicz on 11 March 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/366655276_Generalization_of_Phylogenetic_Matching_Metrics_with_Experimental_Tests_of_Practical_Advantages?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/366655276_Generalization_of_Phylogenetic_Matching_Metrics_with_Experimental_Tests_of_Practical_Advantages?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Damian-Bogdanowicz?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Damian-Bogdanowicz?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Gdansk-University-of-Technology?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Damian-Bogdanowicz?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krzysztof-Giaro?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krzysztof-Giaro?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Gdansk-University-of-Technology?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krzysztof-Giaro?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Damian-Bogdanowicz?enrichId=rgreq-6d9c7ab849f54f301bb48a97d5be34c4-XXX&enrichSource=Y292ZXJQYWdlOzM2NjY1NTI3NjtBUzoxMTQzMTI4MTEyNTk2ODI0MEAxNjc4NTA0MTE5NjIx&el=1_x_10&_esc=publicationCoverPdf


Generalizations of Phylogenetic Matching Metrics

with Experimental Tests of Practical Advantages

Damian Bogdanowicz,1∗ Krzysztof Giaro,1

1Department of Algorithms and System Modeling,

Faculty of Electronics, Telecommunications and Informatics,

Gdansk University of Technology,

Narutowicza 11/12, 80-233 Gdansk, Poland

∗To whom correspondence should be addressed;

E-mail: damian.bogdanowicz@eti.pg.edu.pl

October 2, 2022

Keywords: comparison of phylogenetic trees, matching metrics, phylogenetic

tree distance

Abstract: The ability to quantify a dissimilarity of different phylo-

genetic trees is required in various types of phylogenetic studies, e.g.,

such metrics are used to assess the quality of phylogeny construc-

tion methods and to define optimization criteria in supertree build-

ing algorithms. In this article, starting from the already described

concept of matching metrics, we define three new metrics for rooted

phylogenetic trees. One of them, MPJ, is still purely topological,

but we now utilize the Jaccard index set dissimilarity measure in its
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2 1 INTRODUCTION

construction. This modification substantially changes the structural

features of metric space. In particular, we investigate the properties

of the previously known MCJ and the new MPJ metrics, such as the

asymptotic behavior of their expected distance between two random

trees, the space diameter and the change of a distance after a single

leaf relocation. The other two metrics, MCW and MCJW, are the

first propositions of generalization of matching metrics designed for

rooted phylogenies with branch lengths. The experimental tests of

the practical utility of the phylogenetic metrics show the superiority

of MCJ, MPJ over the previous best tree comparison method. In

order to define the MCW and MCJW metrics, we introduce a gen-

eral method for constructing matching metrics for weighted rooted

phylogenetic trees.

1 Introduction

The necessity of defining a dissimilarity measure of phylogenetic trees, i.e., in-

troducing a structure of metric space1 in the set of phylogenetic trees, appears

in various types of phylogenetic studies. For example, in the simulation of

phylogeny-inference algorithms, we analyze how close to the true tree are the

trees recovered by different algorithms. Quantifying the similarities between

phylogenies is also useful in the analysis and visualization of a group of phy-

logenetic trees (Hillis et al., 2005). Furthermore, phylogenetic tree metrics are

often used to define optimization criteria in supertree building algorithms, see

e.g. Bansal et al. (2010); Whidden et al. (2014).

Although there are many various phylogenetic metrics known in the liter-

1A metric space (X, d) is a pair consisting of the set X and the function d : X ×X → R
(the metric over X) such that (i) ∀x,y∈Xd(x, y) = 0 ⇔ x = y, (ii) ∀x,y∈Xd(x, y) = d(y, x),
(iii) ∀x,y,z∈Xd(x, y) + d(y, z) ≥ d(x, z) – the triangle inequality.
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3

ature, it is difficult to state unambiguously which one is the best. The com-

parative tests described in the literature focus mainly on the tests’ suitability

for particular applications (e.g. the ones mentioned above), which substantially

impacts the obtained rankings of their usefulness. The noticeable exception is

a recent work (Kuhner and Yamato, 2015) analyzing the practical properties

of some currently available metrics. In particular, the authors of Kuhner and

Yamato (2015) designed two interesting experiments allowing for the compari-

son of metric properties for binary rooted phylogenetic trees according to their

phylogenetic reliability and practical usefulness. They are designed to examine

the general, application-independent expectations of dissimilarity tree measure

behavior during gradual, successive modification or when inferring trees on the

basis of poorer biological data.

The task in the first experiment, called “n-away”, distinguished which of

two trees is separated by a smaller recombinational distance from the same

tree. The best performance in this experiment was achieved by the Alignment

metric, which was the distance defined on the basis of a similarity measure

proposed by Nye et al. in Nye et al. (2006).

The second experiment, called “bullseye”, tested the ability to distinguish

trees inferred with a lower versus higher quality of input data. In this experi-

ment, branch-length versions of the Robinson–Foulds metric performed best.

Here, we want to investigate how to define metrics to achieve an even better

performance in at least one of the above-mentioned tests. In Bogdanowicz and

Giaro (2012, 2013, 2017) we defined the general framework for defining phylo-

genetic metrics for rooted and unrooted trees, and argued that a customization

of an element of this template leads us to metrics with properties better than

the currently known methods. In particular, any change of function h, (see

Definition 2) which is an internal element of this template, results in a new
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4 1 INTRODUCTION

dissimilarity measure with completely different properties.

In our earlier works Bogdanowicz and Giaro (2012, 2013, 2017), we used,

to put it in simple terms, dissimilarity measures based on a simple size of sets’

symmetric difference to compare variously defined internal elements of tree de-

scription. This is a common approach, encountered in the case of classic metrics

(e.g. RF Robinson and Foulds (1981), Triples Critchlow et al. (1996), Quartet

Estabrook et al. (1985), MAST Finden and Gordon (1985); Goddard et al.

(1994) metrics), as it seems natural to assume that a comparison of large, par-

tially overlapping clades should result in a larger difference value than in the

case of small ones. The described experimental results unexpectedly support

the opposite hypothesis. In this paper, we establish new metrics based on the

Jaccard index, which evaluates the inconsistency of species groups “relative”

to their sizes. This change, along with the appropriate use of the framework

allows obtaining metrics that behave as well as or even outperform the metrics

evaluated in Kuhner and Yamato (2015).

It is obvious that apart from the shape of the tree, the lengths of its branches

contain valuable phylogenetic information. In particular, in Kuhner and Yam-

ato (2015), metrics that took into account branch lengths performed better in

the “bullseye” experiment than the purely topological ones. Therefore, we in-

troduce a generalization of the earlier matching metrics paradigm (Definition

13) to formulate branch-length-aware matching metrics. Furthermore, using

that approach, we defined weight versions of the MC and MCJ metrics, namely

MCW and MCJW. In one of the experiments, the MCJW metric performed

almost as well as the best in this case weight versions of RF distance.
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5

2 Basic definitions and notation

For sets A, B let A ⊕ B = (A \ B) ∪ (B \ A) be their symmetric difference,

|A| denotes the cardinality of set A. By P(A) we denote the family of all

subsets of A (i.e. the power set of A), and F(A,B) is the set of all functions

f : A → B. Moreover, if B is a numbers’ set B ⊆ R, then the support of

a function f ∈ F(A,B) consists of arguments with nonzero values supp(f) =

{x ∈ A : f(x) 6= 0} = f−1(R \ {0}) and Ffin(A,B) ⊆ F(A,B) contains

functions with |supp(f)| < ∞. Similarly, Pfin(A) contains finite subsets, i.e.,

Pfin(A) = {X ∈ P(A) : |X| < ∞} (in particular, Pfin(A) = P(A) if A is

finite). For finite sets A,B with A ∪ B 6= ∅, the Jaccard distance JC(A,B) is

defined as JC(A,B) = 1−|A∩B|/|A∪B| = |A⊕B|/|A∪B| ∈ [0, 1] (moreover,

JC(∅, ∅) = 0). It is commonly known that functions (A,B) → |A ⊕ B| and

(A,B)→ JC(A,B) introduce the metric space in every family of finite sets (see

e.g., Kosub (2019) for the case of the Jaccard distance).

Let G = (V,E) be a graph with a set of vertices V and a set of edges

E. A bipartite graph G(V1 ∪ V2, E) has vertices partitioned into two disjoint

sets V1 ∪ V2 = V such that no two vertices within the same set are adjacent.

A bipartite graph is complete if every two vertices v1 ∈ V1 and v2 ∈ V2 are

adjacent.

A matching M ⊆ E in a graph G = (V,E) is a set of pairwise non-adjacent

edges; that is, no two edges share a common vertex. A perfect matching covers

all vertices of the graph. If we assign a weight function w : E → Z≥0 to the edges

of G, then a minimum-weight perfect matching is defined as a perfect matching,

where the sum of the weights of its edges has a minimum value. Minimum-

weight perfect matchings in bipartite graphs can be computed efficiently in time

O(|E|
√
|V | log(|V |maxe∈E w(e))) (Gabow and Tarjan, 1989; Orlin and Ahuja,

1992).
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6 2 BASIC DEFINITIONS AND NOTATION

A tree is a connected acyclic graph. A graph T = (V,E) is a rooted phyloge-

netic tree if it is a tree whose leaves, that is, vertices (nodes) of degree one, are

labeled bijectively by the elements of a finite set L (representing the species),

there is exactly one distinguished non-leaf vertex r(T ) ∈ V called the root and

none of the vertices of V \ {r(T )} has degree two. For the sake of simplicity,

we can identify the leaves with their labels, i.e., for a phylogenetic tree T by

L(T ) ⊆ V , we denote the set of leaves of T or the set of labels of those leaves.

The phylogenetic interpretation is as follows: present-day species under exami-

nation form the finite set L and are represented by the leaves of a tree. Internal

vertices, i.e., members of V \ L, represent hypothetical ancestors of the taxa of

L. In particular, r(T ) is the ancestor of all species under study.

A rooted binary phylogenetic tree is a rooted phylogenetic tree such that the

root has degree two and all other internal vertices have degree three. By RL and

RBL , we denote the sets of all rooted phylogenetic trees and all rooted binary

phylogenetic trees over the set of leaves L, respectively. A rooted tree T defines

a partial order relation of being a descendant (and ancestor) on its vertices, for

a, b ∈ V (T ) a is a descendant of b and (b is an ancestor of a) if the path in T

from a to r(T ) contains b. We can assign to every vertex v its cluster c(v) ⊆ L,

i.e., the set of leaves (labels) that are descendants of v. There are |L|+ 1 trivial

clusters in a tree T that are related to leaves u (where c(u) = {u}) and to the

root (where c(r(T )) = L(T )), and all other clusters are non-trivial. By σ(T )

and σ∗(T ) we denote the families of all clusters of T and all non-trivial clusters

of T , respectively. Hence |σ∗(T )| ≤ |L(T )| − 2 and the equality holds exactly

for binary trees. A rooted phylogenetic tree T is uniquely described by a set

σ∗(T ), and the translation between these two descriptions can be performed

efficiently (see Semple and Steel (2003) section 3.5). By L(2) we denote the

set of all unordered pairs of leaves, i.e., L(2) = {{x, y} : x, y ∈ L, x 6= y} and
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7

|L(2)| = |L|(|L| − 1)/2.

The lowest common ancestor (LCA), also called the most recent common

ancestor, of a pair of leaves u, v of a rooted tree T , lca(u, v) is the closest

vertex to r(T ) on the path connecting u and v in T . To every internal vertex

v of T ∈ RL, we can assign a set of pairs of leaves c(2)(v) for which v is the

lowest common ancestor, i.e., c(2)(v) = {{x, y} ∈ L(2) : lca(x, y) = v}. We

will call the set c(2)(v) the pair set of v. By σ
(2)
∗ (T ) we denote the family

of all pair sets of T , so σ
(2)
∗ (T ) is a partition of the set L(2) into the non-

empty disjoint sets determined by T . Note that a rooted phylogenetic tree T is

uniquely described by a set σ
(2)
∗ (T ) because σ

(2)
∗ (T ) determines σ∗(T ) and we

have c(v) =
⋃
z∈c(2)(v) z for v ∈ V \ L.

One of the most widely used metrics on a set RL is the Robinson-Foulds

distance (Robinson and Foulds, 1981) based on clusters:

Definition 1. The Robinson-Foulds (RF) distance between two rooted trees

T1, T2 ∈ RL is defined as

dRF (T1, T2) =
1

2
|σ(T1)⊕ σ(T2)|

=
1

2
|σ∗(T1)⊕ σ∗(T2)|. (1)

3 Matching metrics

We recall the general construction of matching metrics presented in Bogdanow-

icz and Giaro (2012).

Definition 2. There are given a set D, an element O /∈ D and a metric h

on D ∪ {O}. We define a metric dh : Pfin(D) × Pfin(D) → R≥0, where the
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8 3 MATCHING METRICS

distance between A,B ∈ Pfin(D) dh(A,B) is equal to the value of a minimum-

weight perfect matching in a complete bipartite graph G = (V1, V2, E), defined

as follows:

• for an arbitrary s, t ∈ Z≥0 such that s− t = |A| − |B|, we define the sets

V1 ={a1, . . . , a|A|, a|A|+1, . . . , a|A|+t},

V2 ={b1, . . . , b|B|, b|B|+1, . . . , b|B|+s}

as the vertex partitions of the graph G(V1, V2, E) and vertex labeling l :

V1 ∪ V2 → D ∪ {O}, so that

A ={l(ai) : 1 ≤ i ≤ |A|},

B ={l(bj) : 1 ≤ j ≤ |B|}

and l(ai) = l(bj) = O for |A|+ 1 ≤ i ≤ |A|+ t, |B|+ 1 ≤ j ≤ |B|+ s;

• the weights of the edges are defined using the metric h as w({ai, bj}) =

h(l(ai), l(bj)).

Lemma 1 (Bogdanowicz and Giaro (2012)). The function dh is a metric and

the value of dh(A,B) does not depend on s and t (when s− t = |A| − |B|).

In particular for |A| = |B|, we may assume s = t = 0 and |V1| = |V2| = |A|.

Moreover, in Bogdanowicz and Giaro (2012), we showed that

dh(A,B) = dh(A \B,B \A) (2)

as every matching consisting of edges connecting vertices with equal labels can

be extended to a minimum-weight perfect matching in graph G(V1, V2, E) from

Definition 2.
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9

b

T1

a c d b

T2

a dc

{{a,b}}

{{c,d}}

{{a,b},{a,c},{b,c}}

O=Ø

2/3

2/3
1

{{a,c},{a,d},{b,c},{b,d}} 1

{{a,d},{b,d},{c,d}}
1

113/5
3/5

{a,b} {a,b,c}

O=Ø

1/3

{c,d} 1
11/2

a)

b)

c)

Figure 1: Computation of matching distances: a) example of trees, b) compu-
tation of MCJ distance, dMCJ(T1, T2) = 4/3 ≈ 1.34, c) computation of MPJ
distance, dMPJ(T1, T2) = 34/15 ≈ 2.27. Values of some classic phylogenetic
metrics (see Table 1) for these trees: dRF (T1, T2) = 1.5, dTT (T1, T2) = 3,
dNS(T1, T2) ≈ 2.65, dCPH(T1, T2) = 2.

In our earlier works Bogdanowicz and Giaro (2012, 2013, 2017), we consid-

ered features of only integer-valued (or half-integer) phylogenetic metrics for

rooted (Matching Cluster and Matching Pair distances, i.e., MC, MP) or un-

rooted (Matching Split distance, MS) trees based on Definition 2, where the h

function used a cardinality of symmetric difference of some sets describing trees.

However, we will see that a metric with normalized (Jaccard) values gives

better experimental results.

Here, we recall a definition of some variant of matching metrics proposed in

Böcker et al. (2013) and called the Jaccard-Robinson-Foulds metric there. In
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10 3 MATCHING METRICS

our opinion, this method is more similar to the Matching Cluster distance, so

further in the article we will be referring to it as the Matching Cluster Jaccard

distance.

Definition 3. Let T1, T2 ∈ RL be rooted phylogenetic trees, D = P(L) \ {∅},

and O = ∅, hJC : P(L)×P(L)→ R≥0 be such that hJC(A,B) = JC(A,B). Ac-

cording to Definition 2 we define the Matching Cluster Jaccard (MCJ) distance

dMCJ : RL ×RL → R≥0 as

dMCJ(T1, T2) = dhJC
(σ(T1), σ(T2))

= dhJC
(σ∗(T1), σ∗(T2)). (3)

The second equality follows from (2), since all trivial clusters belong to

σ(T1) ∩ σ(T2). Comparing this to Matching Cluster distance of Bogdanowicz

and Giaro (2013) note, that the function hC(A,B) = |A⊕B| was applied in the

original MC definition instead of hJC .

Definition 4. Let T1, T2 ∈ RL be rooted phylogenetic trees, D = P(L(2)) \ {∅},

and O = ∅, hJP : P(L(2))×P(L(2))→ R≥0 be such that hJP (A,B) = JC(A,B).

According to Definition 2, we define the Matching Pair Jaccard (MPJ) distance

dMPJ : RL ×RL → R≥0 as

dMPJ(T1, T2) = dhJP
(σ

(2)
∗ (T1), σ

(2)
∗ (T2)). (4)

In the definition of Matching Pair distance in Bogdanowicz and Giaro (2017)

hP (A,B) = |A ⊕ B|/2 appeared originally in place of hJP . For a graphic

illustration of the MCJ and MPJ metrics computation, see Fig. 1.
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11

Now we investigate the asymptotic behavior of the expected distance be-

tween two random binary trees from RBL in the MCJ and MPJ metrics under the

most popular models of phylogenetic tree generation. In the uniform model, all

binary phylogenetic trees in RBL are equally likely. Another very popular (con-

sidered as more biologically plausible) model of phylogenetic tree generations is

the Yule model (see McKenzie and Steel (2000)), where trees are constructed in

iterative discrete random process:

1. Choose uniformly at random two different taxa v1, v2 ∈ L, create the only

rooted tree with leaf set {v1, v2},

2. For i = 3, . . . , |L| repeat:

– Select randomly the already used species u ∈ {v1, . . . , vi−1} and un-

used vi ∈ L \ {v1, . . . , vi−1}. Both choices should follow uniform

distributions.

– Extend the tree by attaching the leaf vi using a new edge to the

“middle point” of the pendant edge connected with u.

Lemma 2. For sets ∅ 6= A 6= B, |B| ∈ {1, 2}, we have JC(A,B) ≥ 1/3.

Proof. If A ⊆ B, then |A| = 1, |B| = 2 and JC(A,B) = 1/2. Otherwise,

JC(A,B) = 1− |A ∩B|/|A ∪B| ≥ 1− |B|/(|B|+ 1) ≥ 1/3.

Theorem 1. The diameters of metric spaces RL, n = |L| with dMCJ and dMPJ

fulfill

max
T1n ,T2n∈RL

dMCJ(T1n , T2n) = Θ(n), (5)

max
T1n ,T2n∈RL

dMPJ(T1n , T2n) = Θ(n). (6)

Moreover, for rooted trees T1n , T2n ∈ RBL , n = |L| generated independently

at random according to the Yule model or the uniform model, their expected

distances are
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12 3 MATCHING METRICS

ET1n ,T2n
[dMCJ(T1n , T2n)] = Θ(n), (7)

ET1n ,T2n
[dMPJ(T1n , T2n)] = Θ(n). (8)

Proof. The expected distance is obviously upper bounded by the diameter,

which is O(n) as JC ≤ 1, hence it is enough to show the lower bound Ω(n)

part of (7) and (8). As was shown in Steel and Penny (1993), the expected

RF-distance of random trees tends to the RF-diameter of RBL , |L| = n in both

the Yule and uniform models, i.e., limn→∞ E[dRF (T1n , T2n)]/(n − 2) = 1. But

dRF (T1n , T2n)] = (|σ∗(T1n)| + |σ∗(T2n)|)/2 − |σ∗(T1n) ∩ σ∗(T2n)| = n − 2 −

|σ∗(T1n) ∩ σ∗(T2n)|, hence the number of common non-trivial clusters in both

trees has expected value o(n):

lim
n→∞

ET1n ,T2n
[|σ∗(T1n) ∩ σ∗(T2n)|]/n = 0. (9)

A cherry in tree T ∈ RBL is a vertex v with only two descendant leaves,

equivalently |c(v)| = 2 and |c(2)(v)| = 1. According to McKenzie and Steel

(2000), the expected number of cherries in the T1n is n/3 ± O(1) in the Yule

model and n/4 ± O(1) in a uniform model. So the expected number of cher-

ries v in T1n , which are not present in T2n , i.e., with c(v) /∈ σ(T2n) due to

(9) is greater than n/5 for big enough n in both random tree models. Ac-

cording to Lemma 2, for each such cherry v we have ∀c∈σ(T2n )JC(c(v), c) ≥

1/3, and ∀
p∈σ(2)

∗ (T2n )
JC(c(2)(v), p) ≥ 1/3. Considering the bipartite graph

G = (V1, V2, E) from definition 2 used for evaluation of dMCJ(T1n , T2n) or

dMPJ(T1n , T2n) (we assume s = t = 0 here), we have that the weight of ev-

ery edge in G incident with the vertex corresponding to such cherry v is not

smaller than 1/3. Summing up, for big enough n the expected number of ver-

tices in G with weights of all edges incident to them equal to 1/3 or more is not
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smaller than n/5, so the expected weight of a minimum weight perfect matching

is at least n/15.

Now consider a binary tree T1 ∈ RBL and its “small modification” T2 ∈ RBL

obtained by a single leaf x ∈ L relocation, i.e., a transformation consisting of

two steps (it is a special case of a more general rooted subtree prune and regraft

operation, see Semple and Steel (2003)):

1. Pruning of x: let the edge {x, u} ∈ E(T1). If u = r(T1), make the

second neighbor of u the new root and delete u. Otherwise, delete the

edge {x, u} and suppress the degree-two vertex u. So, we obtained two

separate components: x and the rooted tree T ′1.

2. Regrafting x: subdivide an arbitrary edge e of T ′1 putting a new vertex

v on it and reconnect x with v, or connect the new vertex v with x and

r(T ′1) and make v the new root.

Theorem 2. Let T, T1, T2 ∈ RBL , n = |L| and tree T2 be a tree created from T1

by relocation of a single leaf x ∈ L, then the following relations hold:

|dMCJ(T, T1)− dMCJ(T, T2)| = O(ln(n)),

|dMPJ(T, T1)− dMPJ(T, T2)| = O(ln(n)).

Proof. Both dMCJ and dMPJ as metrics fulfill the triangle inequality, so it is

enough to show dMCJ(T1, T2) = O(ln(n)), dMPJ(T1, T2) = O(ln(n)) and a leaf

relocation may be considered as at most two subsequent “leaf move up or down”

operations defined in Fig. 2. Therefore, we can assume that T1, T2 are related

as in Fig. 2.
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14 3 MATCHING METRICS

T1

x
A1 BCk C1

ck

c1

T2

xA1 BCk C1

c’k

c’1

cx

c’x

Al Al

Figure 2: Relocation of a single leaf x. Capital letters denote leaf sets in the
respective subtrees. It is possible that Ai-leaf subtrees are empty, B-leaf and
Ci-leaf subtrees are non-empty, k ≥ 1 and we have cx =

⋃k
i=1 Ci ∪ B ∪ {x},

ci =
⋃i
j=1 Cj ∪B, c′x = B ∪ {x}, c′i =

⋃i
j=1 Cj ∪B ∪ {x}.

For dMCJ we have dMCJ(T1, T2) ≤ JC(cx, c
′
k)+JC(ck, c

′
x)+

∑k−1
i=1 JC(ci, c

′
i) ≤

1 +
∑k−1
i=1 1/|c′i|. Note that 3 ≤ |c′i| < |c′j | ≤ n for 1 ≤ i < j ≤ k. Since

for partial sums of the harmonic series, we have
∑k
i=1 1/i ≤ 1 + ln(k), then

dMCJ(T1, T2) ≤ 1 +
∑n−1
i=3 1/i < 1/2 + ln(n− 1).

Let c
(2)
i = c(2)(v) for the only vertex v ∈ V (T1) with c(v) = ci, and we

use a similar notation c
(2)
x (and c

′(2)
i , c

′(2)
x for T2). In the case of dMPJ , we

have dMPJ(T1, T2) ≤ JC(c
(2)
x , c

′(2)
k ) + JC(c

(2)
k , c

′(2)
x ) +

∑k−1
i=1 JC(c

(2)
i , c

′(2)
i ) ≤

2 +
∑k−1
i=1 JC(c

(2)
i , c

′(2)
i ). Note that JC(c

(2)
i , c

′(2)
i ) = 1/|c′i−1| for 1 < i < k and

JC(c
(2)
1 , c

′(2)
1 ) = 1/|c′x|. Since 2 ≤ |c′x| < |c′i| < |c′j | ≤ n for 1 ≤ i < j ≤ k, then

dMPJ(T1, T2) ≤ 2 + 1/|c′x|+
∑k−1
i=2 1/|c′i−1| ≤ 2 + ln(n− 1).

One of the main disadvantages of RF is its overestimation of small changes in

tree topology (Bogdanowicz and Giaro, 2012). In the case of RF, a displacement

of only one leaf may create a rooted tree distanced from the original by as much

as |L| − 2, which is the maximum possible distance in this metric. Despite

the minor change, these trees seem to be very distant. Metrics MCJ and MPJ

are not misleading in these situations. Conducting a fixed number k = const

of leaf displacements may create a tree distanced by O(ln |L|), but the spaces

diameters are Θ(|L|). Such a feature is a quite general property of matching
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metrics, see analogical facts for the MS, MC and MP metrics (Bogdanowicz and

Giaro, 2012, 2013, 2017).

4 Metrics for trees with edge lengths

Definition 5. A weighted rooted phylogenetic tree over the set of leaves L is a

pair (T (V,E), l), where T (V,E) ∈ RL and l is a function l : E → R>0.

We denote by RwL the set of all weighted rooted phylogenetic trees over the set

of leaves L. There is a relatively small number of popular metrics for weighted

trees. Metrics that compare only the topology of the trees do not usually have

a natural extension to the weighted case.

The exceptions are splitted nodal distances (Cardona et al., 2010), where

two vectors containing the distances between all pairs u, v and their lca(u, v)

are compared using L1 or L2 norms and cophenetic metrics (Cardona et al.,

2013), where the same norms are used to compare the cophenetic vectors of the

trees, i.e., vectors consisting of depths of the lowest common ancestors of all

pairs of taxa and the depths of all taxa. However, it is hard to find an intuitive

phylogenetic interpretation of a metric defined in such a manner. Another

popular method for comparing trees with weights is the weighted RF distance

(Robinson and Foulds, 1979).

The weighted tree (T, l) ∈ RwL can be represented by the length of the

edges σw(T, l) : P(L) \ {∅} → R≥0 such that supp(σw(T, l)) = σ(T ) \ {L} and

σw(T, l)(c) = l(e) for an edge e going up in T from a vertex with cluster c. The

weighted variant of RF that is described in Robinson and Foulds (1979) concerns

unrooted trees. Since in this study we are interested in rooted phylogenies, we

define an analog of the RF metric for trees from RwL . For (T1, l1), (T2, l2) ∈ RwL ,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


16 4 METRICS FOR TREES WITH EDGE LENGTHS

the weighted RF metric is defined by

dwRF =
1

2

∑
c∈P(L)\{∅}

|σw(T1, l1)(c)− σw(T2, l2)(c)|. (10)

An interesting representation of RwL as a topological space of Euclidean re-

gions (corresponding to different binary tree shapes) glued on boundaries leads

to the definition of geodesic distance dGeo (Billera et al., 2001) on RwL . The idea

of this metric is elegant and natural. However, the efficient algorithm for com-

puting it had been unknown for many years and was finally invented in Owen

and Provan (2011).

In this section, we propose a method of introducing a metric space in RwL ,

which can be regarded as continuous analogs of definition 2. Note that compar-

ing weighted trees can be reduced to defining a metric in a set of functions σw

perceived as a representation of the weighted trees.

For numbers x, y, we define inc(x, y) = max{0, x − y}, so at least one of

inc(x, y) and inc(y, x) equals 0. Following notions of D,O, h from Definition

2 at first we propose an auxiliary distance measure h′ for elements d1, d2 ∈ D

taken with some numerical “sizes” r1, r2 > 0. After that we will incorporate h′

to the Definition 2, obtaining a metric for finite support numerical functions of

the domain D. The idea of the first step is as follows: distance h(d1, d2) should

be taken with the coeficient appropriate to the common “amounts” of both

elements, i.e., min{r1, r2}, plus the remaining (max{r1, r2} −min{r1, r2})-size

part of the “bigger” one among d1, d2 should be compared with O. This informal

concept may be specified by the symmetric distance measure h′ : D′×D′ → R≥0
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defined for D′ = (D×R>0)∪{O} by the following formulas: h′(O,O) = 0 and

h′((d1, r1), (d2, r2)) = min{r1, r2}h(d1, d2)

+ inc(r1, r2)h(d1, O)

+ inc(r2, r1)h(d2, O), (11)

h′((d, r), O) = h′(O, (d, r)) = r · h(d,O). (12)

Lemma 3. If h is a metric on D ∪ {O}, then h′ fulfils metric axioms on

D′ = (D × R>0) ∪ {O}.

Proof. The only non-trivial part is the triangle inequality. In order to reduce the

number of subcases under consideration it is convenient to examine the modified

measure h′′ defined by the right side of (11) only, but over (D∪{O})×R>0 (i.e.

we temporarily2 accept arguments of the form (O, rO), rO > 0), as h′((d, r), O)

given by (12) equals to h′′((d, r), (O, rO)) from (11) with any rO > 0. So,

we consider three pairs p1 = (d1, r1), p2 = (d2, r2), p3 = (d3, r3), where di ∈

D ∪ {O}, ri > 0 and let r1 ≤ r2 ≤ r3 correspond to r1, r2, r3 sorted in non-

decreasing order. Moreover, to reformulate (11) we also need

di,s =


di if ri ≤ rs

O otherwise

for i, s = 1, 2, 3. Now it is enough to observe that the distance (11) between

2We show here, that h′′ is a pseudometric over (D∪{O})×R>0. It gives h′′((O, x), (O, y)) =
0 for all x, y > 0, and it is easy to see, that this is the only case, where different elements
have zero h′′-distance. The metric h′ is obtained form h′′ by gluing all such pairs (O, x) into
a single point O.
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18 4 METRICS FOR TREES WITH EDGE LENGTHS

pairs pi, pj (i, j = 1, 2, 3) can be expressed in the form

h′′((di, ri), (dj , rj)) = r1 · h(di,1, dj,1) + (r2 − r1) · h(di,2, dj,2)

+(r3 − r2) · h(di,3, dj,3)

and the triangle inequality follows from the same axiom for h.

Definition 6. Given are (not necessarily finite) a set D, an element O /∈ D

and a metric h on D ∪ {O}. For the given functions f, g ∈ Ffin(D,R≥0),

let A = supp(f) = {a1, . . . , a|A|}, B = supp(g) = {b1, . . . , b|B|}, and s, t be

arbitrary numbers such that s− t = |A|− |B|. We construct a complete bipartite

graph G(V1, V2, E) with |V1| = |V2| defined as follows:

• the sets of vertices are

V1 = {v1, . . . , v|A|, v|A|+1, . . . , v|A|+t},

V2 = {u1, . . . , u|B|, u|B|+1, . . . , u|B|+s},

• the weights of the edges are defined as

w({vi, uj}) =



min{f(ai), g(bj)}h(ai, bj)

+inc(f(ai), g(bj))h(ai, O)

+inc(g(bj), f(ai))h(bj , O)

if i ≤ |A|, j ≤ |B|

f(ai)h(ai, O) if i ≤ |A|, j > |B|

g(bj)h(bj , O) if i > |A|, j ≤ |B|

0 if i > |A|, j > |B|

(13)

Now we define d̄h(f, g) as the weight of a minimum-weight perfect matching in

G.

Lemma 4. The value of d̄h(f, g) does not depend on the numbers s and t (while

fulfilling the above condition) and is a metric on Ffin(D,R≥0).
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Proof. We can injectively encode any finite support numerical function f ∈

Ffin(D,R≥0) by a set of all its non-zero valued argument-value pairs κ(f) =

{(x, f(x)) : f(x) 6= 0}. Then, however, d̄h(f, g) appears to be a metric specified

according to the definition 2 with the use of h′, i.e., (11), (12) since we have

d̄h(f, g) = dh′(κ(f), κ(g)).

Note that if the functions f , g are {0, 1}-valued, then the construction from

definition 6 agrees with definition 2, hence d̄h can also be regarded as an exten-

sion of the metric dh.

Lemma 5. If A,B ∈ Pfin(D), then dh(A,B) = d̄h(δA, δB), where indicator

functions δA, δB : D → {0, 1} fulfill δ−1A (1) = A, δ−1B (1) = B.

For example, dwRF is a special case of d̄h: we take D = P(L) \ {∅}, O = ∅;

for non-empty sets A,B, a metric hRF fulfills hRF (A,B) = 1 ⇔ A 6= B and

hRF (A, ∅) = 0.5, then for (T1, l1), (T2, l2) ∈ RwL we have

dwRF ((T1, l1), (T2, l2)) = d̄hRF
(σw(T1, l1), σw(T2, l2)).

Similarly, we define a weighted generalizations of the Matching Cluster dis-

tance (see Bogdanowicz and Giaro (2013)) and dMCJ .

Definition 7. Let (T1, l1), (T2, l2) ∈ RwL , and D = P(L) \ {∅}, O = ∅, hC :

P(L)×P(L)→ Z≥0 be such that hC(A,B) = |A⊕B|. Then dwMC : RwL ×RwL →

R≥0 is a metric MCW defined as

dwMC((T1, l1), (T2, l2)) = d̄hC
(σw(T1, l1), σw(T2, l2)).

Definition 8. Let (T1, l1), (T2, l2) ∈ RwL and D,O, hJC be like in definition 3.
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20 5 EXPERIMENTAL RESULTS

Then dwMCJ : RwL ×RwL → R≥0 is a metric MCJW defined as

dwMCJ((T1, l1), (T2, l2)) = d̄hJC
(σw(T1, l1), σw(T2, l2)).

If we treat trees of RL as weighted trees with unit weights, then according

to Lemma 5, dwMCJ is an extension of dMCJ :

dMCJ(T1, T2) = dwMCJ((T1,1), (T2,1)).

For a graphic illustration of the MCW and MCJW metrics computation, see

Fig. 3.

5 Experimental results

We analyzed the properties of fifteen metrics (see Table 1 for the detailed list)

according to the test procedures designed by Kuhner and Yamato in Kuhner

and Yamato (2015).

5.1 “N-away” experiment

Here, we want to check how well the tested metrics recognize trees at different

rearrangement distances. For the experiment, we used a data file kindly pro-

vided to us by the authors of Kuhner and Yamato (2015). The data set consists

of local trees estimated on the basis of the simulated ancestral recombination

graphs (ARGs) of long chromosomal regions. The simulation was performed

with the use of ms program (Hudson, 2002) with the θ parameter set to 100. It

generated 5000 random ARGs consisting of 20 leaves with sequences of length

40,000 bp for further tests, see Kuhner and Yamato (2015) for details.
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5.1 “N-away” experiment 21

a)
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Figure 3: Computation of matching distances for trees with weights: a) example
of trees, b) computation of MCW distance, dMCW (T1, T2) = 2; observe, that
σw(T1, l1)({c}) = 2 6= σw(T2, l2)({c}) = 1, c) computation of MCJW distance,
dMCJW (T1, T2) = 2. Values of some classic phylogenetic metrics (see Table 1)
for these trees: dRFW (T1, T2) = 1, dRFW085(T1, T2) = 1, dGeo(T1, T2) ≈ 1.41.D
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22 5 EXPERIMENTAL RESULTS
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Figure 4: Success score for trees at magnitude 13 in the “n-away” experiment.

According to Kuhner and Yamato (2015), adjacent local trees in a sequence

obtained from a single ARG “almost always have a recombination distance of

0 or 1”. Therefore, for given local trees Ti, Tj , Tk in a sequence, such that

i < j < k, we check the relation between distances d(Ti, Tj) and d(Ti, Tk) for

d being each of the abovementioned metrics. Similarly to Kuhner and Yamato

(2015), we decided to use the following scoring schema: scored(Ti, Tj , Tk) is 1 if

d(Ti, Tj) < d(Ti, Tk), the value equals 0.5 if d(Ti, Tj) = d(Ti, Tk), and becomes 0

otherwise. There are various strategies for choosing indexes i, j, k. We adopted

one of the methodologies mentioned in Kuhner and Yamato (2015) and analyzed

the distances for a fixed magnitude defined as the value of j − i and a variable

span, which is by definition equal to k−j. We also set i to 1, which corresponds

to choosing the first tree in a sequence.

In Fig. 4 we present the average scored(T1, T14, T14+span) over the 5000 tree

sequences for a magnitude of 13. Success score presented on the vertical axis in
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5.1 “N-away” experiment 23

the figure corresponds to the average score computed for each of the analyzed

metrics. We are especially interested in metrics with the highest success score,

because higher score means that the particular metric more often orders ana-

lyzed trees in the expected way, i.e., trees at larger recombination distance are

also more distant to each other according to the particular metric.

In the case of a very small span equal to 1, metrics using branch lengths,

i.e., RFW, RFW085, MCJW receive a slightly higher score than any other

purely topological ones. This can be explained by the fact that many of trees at

span of 1 can have the same topology, so they are indistinguishable for purely

topological metrics. As the span grows, the situation changes, so the metrics

which ignore branch lengths get the highest scores. In particular, we confirmed

the observation made by Kuhner and Yamato in Kuhner and Yamato (2015)

that the Align metric performs very well in this task, simultaneously we were

able to find two metrics that perform even better, namely MPJ and MCJ.

Based on the results presented in Fig. 4 we can distinguish three groups.

The metrics in the first group receive the highest score consecutively for all

spans greater than 1, i.e., starting from the best: MPJ, MCJ and Align. All the

three metrics are purely topological and their score increases as span grows.

The second group is formed by metrics with moderate success score. This

group includes metrics that do not take into account branch lengths, i.e: MC,

RF, MP, NS, TT, MAST, CPH as well as metrics for weighted trees: RFW085,

MCJW, RFW. Similarly as for the metrics in the first group, their score increases

as span grows. We can notice that from all five metrics designed for weighted

trees the MCJW metric (defined in this study) receives the second best score,

right after RFW085.

The last two metrics having the lowest score (below 0.62) for spans of size

3 and higher, i.e., MCW and Geo form the third group. Both the metrics take
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24 5 EXPERIMENTAL RESULTS

branch lengths into account and their score is almost constant across the spans.

Another interesting observation is that the original matching metrics, MP

and MC received a considerably lower scores that Align, which may indicate

that normalization in branch (which takes place for Align) or cluster (used in

MPJ and MCJ) comparison has a positive impact on the general performance

of the particular methods in this task. A similar observation is also valid for

metrics that use branch lengths, where the Jaccard variant of MCW performs

much better than the original MCW distance.

5.2 “Bullseye” experiment

As described in Kuhner and Yamato (2015), in this experiment we wanted to

check how well the tested metrics distinguish between a better and worse recon-

struction of the tree. For the experiment, we generated 1000 random trees with

20 leaves using the rantree.c program (Kuhner and Yamato, 2015) under the

Yule (branching) process. Next, we generated random DNA sequences of length

2000 bp on these trees with the rectreedna.c application (Kuhner and Yamato,

2015) using a Kimura two-parameter model with a transition/transversion ratio

of 2. Both programs have been archived on Dryad3 by the authors of Kuhner

and Yamato (2015).

Then we reduced the data sets by 200 bp to produce additional sets consisting

of sequences of length 1800, 1600,..., 200 bp. Next, for each of the data sets, we

inferred the maximum likelihood tree (breaking ties arbitrarily by choosing the

first tree) with the PAUP* 4 application (Swofford, 2003) under the molecular-

clock assumption and using the same substitution model that was used for the

simulation of the data. The rationale of the experiment is that we expect that,

on average, trees inferred from longer sequences will be more accurate (Kuhner

and Yamato, 2015), so their distance to the true tree should be smaller. Similarly

3https://datadryad.org/resource/doi:10.5061/dryad.g9089
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5.2 “Bullseye” experiment 25
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Figure 5: Success score for trees in the “bullseye” experiment. The difference
in the sequence length between the longer and shorter data sets equals 600 bp.

as in the first experiment, a tested metric d receives a score of 1 if the distance

according to d between the true tree T ∗ and a tree Tlong inferred on the basis of

longer sequences is lower than the distance between a tree Tshort inferred using

shorter sequences and T ∗, d receives a score of 0.5 if d(T ∗, Tlong) = d(T ∗, Tshort),

otherwise it obtains a score of 0.

Similarly, as described in Kuhner and Yamato (2015), we analyzed the dis-

tances for trees inferred from sequences differing by 600 bp, e.g., if Tlong was

inferred from 2000 bp, then a 1200 bp dataset was used during the inference of

Tshort. In Fig. 5, we present the average score received by the analyzed metrics

based on 1000 random true trees. Similarly to the situation in the previous ex-

periment, success score presented on the vertical axis in this figure corresponds

to average score computed for each of the analyzed metrics. Here, we also are

interested in metrics with the highest success score. The higher the score is, the
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26 5 EXPERIMENTAL RESULTS

more often the particular metric indicates that the tree reconstructed based on

a larger amount of data is more similar to the true tree than the tree created

using less data, what seems to be an intuitive and natural situation.

We can easily observe that all branch-length-aware metrics perform much

better than any of the purely topological distances. Based on the overall per-

formance in this experiment we can clearly split the analyzed fifteen metrics

into three groups. The first group consists of the three best-performing met-

rics: RFW, RFW085, MCJW and the fourth best metric Geo. The two RFW,

RFW085 metrics received slightly better scores than MCJW; however, their

difference from MCJW did not exceed 0.006.

The second group consists of only one metric, i.e.: MCW, which achieved

moderate score in the experiment. This score is clearly lower than the score

of any other metric for weighted trees, but is also considerably higher than the

results received by any of the purely topological distances.

The third group (with the score lower than the two previous ones) contains

all and only the metrics which do not use branch lengths. The best results

in this group, especially visible for shorter sequences, can be observed for four

metrics: MPJ, MCJ, Align and RF.

It can be also noticed that the best results in all the cases appear for the

shortest data sets. This can be explained by the fact that in this case the ratio

between the length of the data used to construct tested trees (i.e.: Tlong and

Tshort) is the highest reaching 4 = 800/200 (so it is easier to detect impact

of the data size on the quality of the reconstructed trees), while for the case

of longer sequences (where 2000 bp is used for Tlong) the respective factor is

approximately equal to only 1.67 ≈ 2000/1200.

Furthermore, similarly as in the “n-away” experiment, we can observe that

MCJW always performs much better than the original MCW distance (the
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difference between scores varying from 0.019 to 0.092). The same relation can

be observed for the MCJ, MC pair (difference from 0.010 to 0.049) and MPJ,

MP (difference from 0.0085 to 0.0865).

6 Discussion

The vast majority of phylogenetic metrics prevailing in the literature fall into

two groups:

• possible to compute efficiently in polynomial time but based on topological

and graph features devoid of clear biological and evolutional interpretation

(e.g.: Nodal Distance (Bluis and Shin, 2003), Path Difference (Steel and

Penny, 1993));

• biologically perspicuous but with NP-hard evaluation, therefore difficult

to determine in a satisfactory time span (i.e. NNI (DasGupta et al., 1997),

SPR, TBR (Allen and Steel, 2001)).

The matching metrics method and its particular implementations (Bog-

danowicz and Giaro, 2012, 2013, 2017) give hope to overcome this frustrating

dichotomy, as we obtained metrics showing valuable properties:

• computational efficiency, i.e. polynomial time evaluation algorithms,

• clear output interpretation: a side product of the distance computing is

the pairing that illustrates the corresponding structure fragments in both

compared trees (e.g., similar clades, pair sets),

• minor sensitivity to small topological changes in comparison to the space

diameter or an expected distance between random trees.

Both the MCJ and MPJ metrics preserve the above advantages, but com-

pared to MC, MP, MS and some classic measures, they lose one convenient
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28 6 DISCUSSION

feature, that is an (half-)integer valuation. Integer expression of the differences

between purely combinatorial objects, such as trees without numerical weights,

seems to be natural, since it facilitates the insight into the metric space struc-

ture (i.e. examining the nearest neighborhood of a tree, differentiation between

“compact” tree space and those scattered into distant “islands”).

The need to define metrics for trees with numerical weights at the edges

has provoked a search for generalizations of matching metrics. It is natural

to construct definitions of dissimilarity measures as extensions of their purely

topological counterparts, i.e., retaining same values on trees with unit edge

lengths. The Definition 13 and the MCW and MCJW measures derived from

it meet this need. We also examine a different approach to extending of the

matching concept on weighted trees. However, the properties of these measures

are still hard to predict, and they need an algorithmic implementation and

repetitions of the described experiments.

A general comparison of the quality of phylogenetic metrics seems unfeasible,

as each performs better or worse depending on the application. For example, the

experiments of Bogdanowicz and Giaro (2013) prove increased efficiency of the

heuristic for the RF-supertree problem (Bansal et al., 2010) equipped with MC

instead of RF, and in Bogdanowicz and Giaro (2017) MP used as a guide metric

overcame the wide set of dissimilarity measures in tests of the heuristic for the

rSPR-distance evaluation proposed in Boc et al. (2010); Bordewich et al. (2009).

However, both measures performed much worse than their new Jaccard based

analogs, MCJ and MPJ in the experiments described here. The evaluation of the

quality of the metrics proposed by Kuhner and Yamato Kuhner and Yamato

(2015) is important as it focuses on the generally desirable characteristics of

metrics that are not limited to application in a specific heuristic. Due to the

potentially important applications, it is also important to examine the suitability
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of metrics for weighted trees in the monitoring of convergence of the Bayesian

phylogenetics analysis process (Nylander et al., 2008).

7 Conclusion

We defined a new metric MPJ for the comparison of rooted phylogenetic trees

by modifying the already known MP (Bogdanowicz and Giaro, 2017) distance.

We also analyzed the properties of a previously known MCJ metric which can

be regarded as a Jaccard-based version of the MC (Bogdanowicz and Giaro,

2013) distance. In both cases, the modification concerns the h function that is

responsible for assessing the distance between basic elements, i.e., clusters (for

MC) and pair sets (for MP), and relies on replacing the original function with

its normalized (Jaccard) version. In the “n-away” experiment, the modification

achieves results superior to Align, the previous best method. We showed that

the diameter and the expected distance between random trees in both of these

metrics grow linearly with respect to the number of leaves n, but a relocation

of a constant number of leaves can change the distance by no greater than

O(ln(n)).

As shown in Kuhner and Yamato (2015), metrics that take into account

branch lengths perform better in the “bullseye” experiment than the purely

topological ones. Therefore, we presented a general method (Definition 13) of

defining branch-length-aware matching metrics, extending our earlier matching

metrics paradigm. Furthermore, using that approach, we defined weight versions

of the MC, and MCJ metrics, namely MCW and MCJW. In the “bullseye”

experiment, the MCJW metric performed almost as well as the weight versions

of RF distance.

An interesting fact is that introducing normalization through applying the

Jaccard distance resulted in increasing the performance of a suitable version of
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metrics in both experiments. This observation motivates further research in that

area, which may include, for instance, expanding the experimental framework by

adding other types of tests or conducting the same experiments on larger and

differently prepared test sets. Finally, although we present some preliminary

results of the theoretical properties of the MCJ, MPJ metrics, there is still

a place for more formal analyses of the properties of the MCW and MCJW

distances.

The discussed metrics MCJ, MPJ, MCW and MCJW (among many oth-

ers) are implemented in TreeCmp 1.7 application freely available at https:

//github.com/dbogdanowicz/TreeCmp-weighted-metrics.
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