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A B S T R A C T

The average accident frequency is essential for quantitative risk analysis and is conventionally estimated from
accident statistics. This paper has systematically synthesised the knowledge on statistical errors and offered
the missing instructions, a framework, for determining the minimum sample size and the margin of error
(MOE) when calculating the average accident frequency from an accident database at hand. We have applied
this framework to representative accident datasets in the maritime domain and presented the revealing results
that can already be used in QRAs based on these datasets. The findings are useful to both QRA analysts and
policy makers. Interestingly, the framework application has revealed that the determined minimum sample
sizes would exceed the datasets available in existing maritime casualty databases by decades, requiring at
least 10% MOE to be factored into pertinent QRAs. By the same token, the earlier notable QRAs (developed
as part of formal safety assessments in support of rule making) had to consider the MOE of over 30%, given
the sample sizes used, likely shifting the conclusions they arrived at. Other findings of the application have
shown that the average accident frequencies for large passenger ships have remained constant over the past
40 years.
1. Introduction

The average frequency of accidents (𝑥̄), such as ship collisions or
fires, is essential for quantitative risk analysis (QRA), not least for for-
mal safety assessment (FSA) in support of rule making, and elementary
trend analysis, e.g. [1–3]. It is analogous to the failure rate in reliability
engineering and hence is used in predictive models (e.g., in event trees
for accident consequence analysis) as well in cost–benefit analysis when
benefits of safety interventions are compared against associated costs.
In the operational and regulatory settings, the 𝑥̄ also serves as one
of many lagging safety indicators to be monitored and guide safety
management.

However important the 𝑥̄ may be, the treatment of associated param-
eter uncertainty, particularly when caused by data variability, deserves a
more rigorous, evidence-based approach, [4]. It is not enough to merely
acknowledge the use of incomplete historical data and then perform
sensitivity–uncertainty analysis on data-ignorant assumptions e.g., [5],
or recognise the fact that accidents are inherently rare—hence limited
data—but carry on with applying statistical instruments that fundamen-
tally require adequate sample sizes. One should not then expect the
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conclusions to be robust when ignoring the statistical error associated
with the sample size at hand. Equally, attempting to obtain as much
data as one possibly can is unwise, because one could unwittingly
expend more effort than actually required to achieve one’s objectives.
All this is a poor practice of QRA, likely leading to systematic errors
along its application.

A good practice is to use statistical errors as part of analysis and
decision making, as opposed to ignoring them. Specifically, it is about
being aware of the required minimum sample size (MSS) for the vari-
ability in the given accident dataset, and factoring in the corresponding
margin of error (MOE) when the actual sample size is below the MSS.

However, we have found no study that specifically determines the
MSS for QRA in the maritime transportation context nor accounts for
the effect of limited sample size on the obtained accidents frequencies
and associated MOE. The wider problem per se has attracted some
attention, particularly in light of the debate on the interpretation of
an accident probability in the context of FSA, [6], the use of accident
statistics in general [7,8], and application of other methods to esti-
mate the accident probability, [9–11]. Examples include a prediction
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of the fatal accident probability using worldwide shipping accident
data [12], estimation of oil spill frequencies pertaining to oil tankers
accidents [13], the issue of accident under-reporting [14] and a solu-
tion for it [15]. The majority of solutions though focus on achieving the
highest prediction strength of the models adopted rather than striving
for the scientific rigour in deriving quantities based on solid scientific
foundations. In contrast, recommendations for the MSS outside the mar-
itime domain are abound, e.g. reliability and safety engineering [16],
or transportation safety, [17]. Most of the recommendations followed
from various analyses of data variability, as done in this study.

Hence, there is a clear practice gap when it comes to using statistical
errors for average accident frequencies in the maritime domain. This
is because the MSS and the MOE have not been readily available
for specific datasets nor there has been a framework—a clear set of
instructions—for the MSS/MOE determination. With this in mind, the
paper seeks to facilitate the use of a good practice in the maritime
QRA by offering a framework for the systematic determination of MSS
and MOE, along with its subsequent application to specific datasets.
The framework is a synthesis of the existing, textbook knowledge on
statistical errors, which makes it robust and widely applicable. This
constitutes the scope of this paper and the novelty it offers, ultimately
providing answers to the following practical questions:

1. How to determine the MSS and MOE for an accident dataset at
hand?

2. What is the MSS for specific maritime accident categories and
ship types, and how does the MOE vary with the sample size
(time exposure) for these datasets?

The application included the world fleet of two main categories of
afety-critical ships, namely cruise ships over 10,000 Gross Tonnage
GT) and passenger Roll-on/Roll-off ferries (RoPax) above 1,000 GT
nd 4,000 GT. We have considered typical accident categories, namely
ollision, grounding (stranded), contact, and fire over the period from 1
anuary 1980 to 31 December 2020 (40 years). The obtained accident
requencies for this period were categorised into corresponding years
nd then normalised by the fleet size in each year. The resultant annual
ccident frequencies per ship constituted 40 data points (per each
ccident category and ship type, 12 datasets in total) which were then
sed in the analysis.

Note that throughout the paper, the term ‘accident’ refers to all
vents recorded under a given accident category regardless the conse-
uences. This means that the term encompasses both incidents (haz-
rdous events with no or minor consequences) and accidents (haz-
rdous events with serious consequences). Also, the paper, however,
oes not aim to improve trend analysis (statistical comparison), for it
s a different problem, and an curious reader should refer to correspond-
ng literature, e.g. [18,19].

The paper is organised as follows. Section 2 provides further details
n the average accident frequency, required statistical properties for
ccident data, and introduces to the framework. Section 3 elaborates
n the framework application details, specifically on the used datasets
nd outlines the application results in tabular and graphical forms.
ection 4 offers a discussion on the study, whereas Section 5 highlights
he caveats and limitations associated with it. Section 6 concludes the
aper.

. Definitions, prerequisites and framework

.1. Definitions

The 𝑥̄ is often calculated as a statistical mean of event occurrences
ver a period of time (time exposure) normalised by the fleet size
t risk. For example, if there have been ten collisions over the past
ive years in the fleet of 200 ships, the average collision frequency
s 𝑥̄ = 0.01 per ship-year (i.e. a company with the fleet of 20 vessels
2

hould expect a collision every five years). The tacit assumption here is f
that accidents occur at a constant average rate per year, i.e the average
frequency, or, at least, the rate that represents some central tendency
(typical behaviour). In other words, the annual frequencies are assumed
to be clustered around the mean value. However, this assumption is
precarious and is completely at the mercy of the level of variability
in the data. For instance, the following dataset (4, 1, 10)1 represents
real accident frequencies within three consecutive years. The average
frequency would be 5 accidents per year (assuming the fleet size of one,
for simplicity), which would be acceptably representative of the first
year, but would grossly overestimate by factor of 5 and underestimate
by factor of 2 the other years. This problem is conventionally mitigated
by increasing the time exposure, i.e. by getting more sample years,
as implied by the law of large numbers (LLN). Fig. 1 demonstrates
the idea of how the sampling error (the difference between the sample
mean and population mean or true mean) reduces with the sample
size, depending of whether the underlying data distribution exhibits
relatively low (Poisson) or high (Pareto) variability (measured by the
variance). Hence, the higher variability is exhibited by a time series,
the longer time exposure is required for the average frequency to be
representative of the population mean (i.e., true frequency).

From the perspective of a data analyst, the annual variability in
accident data is beyond control and it is driven by systematic and, to
a lesser extent, random phenomena of global (at the industry level)
and local (at the company level) nature. Examples of systematic factors
are macroeconomic impacts such as changed fuel prices (could lead
to slow or fast steaming and hence fewer or more collisions) and
accident reporting, or rather under-reporting, culture [14,20]. Out-of-
range environmental fluctuations that invalidate design assumptions
could be an example of random factors; the blackout on cruise ship
Viking Sky in 2019 is a case in point [21].

Hence, the increase in time exposure is the only means of improving
the accuracy of the 𝑥̄. The targeted accuracy level implies the determi-
nation of the minimum time exposure, referred to as the MSS, with
a sample representing an annual accident frequency (count) within a
given population — understood as a fleet of ships. The caveat, however,
is that accident under-reporting, miss-reporting or other factors that
affect the accuracy of annual accident frequencies introduce systematic
errors into accident data. This means that even having data in excess
of MSS does not guarantee that the true average frequency is captured.

The determination of MSS is straightforward as long as the data
exhibit certain statistical properties such as: randomness, identical and
thin-tailed distribution, independence, and stationarity. Section 2.2
elaborates on these statistical properties of accident data. Knowing
MSS for various accident categories and ship types, one would also
be able to determine the sampling error, expressed in terms of MOE,
implicit in a dataset at hand or accident database that offers it, and
adjust accordingly. If the database were found to contain a shorter time
exposure than needed, the knowledge about the size of the gap would
allow avoiding disproportional mitigation of the introduced parameter
uncertainty. Thus for instance, small gaps that do not introduce high
uncertainties may be ignored all together, whilst bigger ones would
allow planning for a more rigorous analysis of the effect, e.g. by
applying sensitivity analysis via Monte Carlo simulations [4].

2.2. Prerequisite statistical properties

Since the MSS calculation is based on the central limit theorem
(CLT), there are inherent requirements that the data in question need
to meet [22].

First, the data should be random, identically distributed and, ideally
independent. That is, the time series should not contain non-random

1 These correspond to collision frequencies within three consecutive years
or RoPax ships above 4k GT; see Section 3.1.
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 Fig. 1. Sample mean converges (a) or not converges (b) to the population mean with
the sample size.

variability and be drawn from the same probability distribution. Sec-
ond, the data should be stationary, i.e. drawn from a probability
distribution whose variance, mean and auto-correlation structure do
not change over time. In other words, the data are drawn from the
same probability distribution over the entire time exposure. Third, and
as indicated in Fig. 1, the underlying probability distribution should be
not be fat-tailed or highly skewed, for the LLN is poorly applicable to
such data [23]. The applicability of this and other requirements for the
maritime accident data is discussed in the following section.

2.2.1. Randomness, identical and independent distribution
Research shows that the accidents in question are not mere random

technical failures, but the results of flawed socio-technical interactions
which are systematic and locally rational [24,25]. For instance, in case
of onboard fires, pre-ignition events take time to develop. Conditions
(e.g., wrong design assumptions, presence of design limitations) would
lead to events or other conditions (e.g., ill-informed management, train-
ing, and operational procedures), which in turn lead to other events and
conditions and so on [26,27]. The metaphors like ‘‘incubation period’’
and ‘‘drifting into failure’’ are used to explain the dormant, latent
conditions in a system that, with time, insidiously degrade the system to
the point when an accident becomes imminent [28]. This degradation
or drift is systematic (not random) and fuelled by natural phenomena
3

of adaptation to new circumstances (endogenous and exogenous) and
optimisation of resources [29]. It may also be seen as the inexorable
manifestation of entropy.

The assumption of randomness is a simplification necessary for
facile application of the mathematical instruments, particularly in QRA.
This assumption can be justified on the conditions of full awareness of
the common pitfalls and good practices are followed to avoid them.
If this is done with adequate scientific rigour, it can indeed be useful.
Alas, poor examples also exist [30]. Additionally, statistical tests should
confirm the absence of non-random variation, as explained further.

If the process shows only random variation, the data points (time
series) will be well distributed around the median [31]. This can be
determined visually by looking for non-random variations. Specifically,
if the process centre (mean) is shifting, one may observe unusually long
runs of consecutive data points on the same side of the median or that
the run chart crosses the median unusually few times. The length of
the longest run and the number of crossings in a random process are
predictable within limits and depend on the total number of data points
in the run chart [32].

A systematic shift signal is present if any run of consecutive data
points on the same side of the median is longer than the prediction
limit (PL1) defined as:

𝑃𝐿1 = ⌊ log2(𝑛) + 3 ⌉ (1)

Data points that fall on the median do not count, they do neither
break nor contribute to the run [33].

A crossings signal is present if the number of times the graph crosses
the median is smaller than the prediction limit (PL2), [34].

𝑃𝐿2 = 𝑄𝑏𝑖𝑛𝑜𝑚(0.05, 𝑛 − 1, 0.5) (2)

Note that the shift and the crossings signals have the false positive
signal rate of around 5% and hence have been proven useful in practice.
The shift and crossings signals are two sides of the same coin and
will often signal together, and hence any one of them is diagnostic
of non-random variation [35]. However, we adopted a more conser-
vative approach and required both signals to be present to confirm the
non-random variation.

Another requirement is that the data are identically and indepen-
dently distributed (i.i.d). That is, the data should be drawn from the
same probability distribution with data points being mutually inde-
pendent. This is another assumption that simplifies the underlying
mathematics of statistical analysis, although it may, in some cases, not
be realistic [36]. However, if we grouped accidents by ship type, the
accidents within such groups become germane as if they were sampled
from the same probability distribution. The assumption of indepen-
dence can strongly hold for accidents caused by ships belonging do
different operators—hence different safety management systems—who
are also spread geographically and hence regulated by different au-
thorities. As the data used in this paper belong to the world fleet
(Section 3.1), this is exactly the case. Section 2.2.3 addresses these
assumptions further.

2.2.2. Stationarity
A stationary process has the property that the mean, variance

and auto-correlation structure do not change over time [37]. More
generally, the location, scale and other parameters of an underlying
probability distribution generating the events (e.g., number of collisions
per year) are time-invariant.

Since a time series can be random but not stationary (e.g., a ran-
dom walk), we test for stationarity using the Ljung–Box test for in-
dependence [38]. The test checks for significant evidence of nonzero
correlations at a given time lag, which in this case is one, meaning that
the correlation is calculated between accident frequencies that are one
year apart. The null hypothesis of independence in a given time series is

assumed and it is rejected if the 𝑝-value is less than 5% [39]. Thus, the
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rejection of the null hypothesis means that the time series represents a
non-stationary signal [40].

We note that assuming stationarity in the case of an inconclusive
result would be more prudent than assuming otherwise. Serinaldi and
Kilsby [41] argue that when the model structure and physical dynamics
are uncertain, stationary models should be retained because they are
simpler, more theoretically coherent, and more reliable for practical
applications.

2.2.3. Type of underlying probability distribution
The average accident frequency per ship-year is often modelled with

the use of a Poisson distribution in the context of risk analysis [42].
Conversely, as a stable average is rarely observed, as exemplified in
Section 2.1, the annual accident frequency might, for instance, be
biased towards lower values when nothing much happens most of the
time and there are a few years with high accident frequencies. This is
characteristic for some fat-tailed and other skewed distributions such
as Pareto or Log-normal distribution, as was assumed in [2].

The challenge is, however, to fit any distribution to rather limited
accident data (40 sample-years, see Section 3.1) or perform corre-
sponding statistical tests to reveal the distribution type. Therefore,
a more qualitative, first-principles approach is required instead. As
argued below, a negative binomial can be assumed to model accident
frequencies. This distribution can be skewed towards lower values,
hence capturing the bias discussed above, and it has the stable mean
and variance, i.e. the LLN applies to it.

The assumption of negative binomial distribution can be justified
by considering the three classical models for accident frequencies or
counts: pure chance, proneness and true contagion [43,44]. All three
models assume that ships subject to accidents operate under conditions
of equal safety risk. If accidents are assumed to occur purely at random
in a homogeneous fleet of ships, the frequency model leads to a Poisson
distribution. The proneness model assumes that not all ships are equally
accident prone. Instead, ships are divided into sub-fleets with different
susceptibilities to accidents. The overall distribution of accidents is
then a composite of several Poisson sub-distributions. The resulting
distribution is a negative binomial distribution.

Based on the true contagion model, it is assumed that each ship
starts its operation with the same probability of having an accident.
Then, if a ship happens to suffer an accident, the probability that it will
suffer further accidents increases or decreases. This frequency model
also results in a negative binomial distribution.

It should be noted that the parameters of a negative binomial distri-
bution (i.e., the number of failures before a given number of successes
and the probability of failure in each experiment) are determined
directly from the mean and variance.

2.3. The framework

This section synthesises the knowledge on the statistical error into
a framework for the MSS and MOE determination.

The MSS is conventionally calculated with the help of the CLT [45].
The basic idea behind the CLT is that the sample means (or any other
linear combination of samples) are normally distributed regardless the
underlying distribution from which the samples are drawn. Then the
properties of a normal distribution allow estimating the confidence
interval (CI) for the population mean:

𝐶𝐼 =

(

𝑥̄ − 𝑍𝜎
√

𝑛
, 𝑥̄ + 𝑍𝜎

√

𝑛

)

(3)

here 𝑥̄ is the sample mean (i.e. estimated population mean), 𝑛 is the
ample size (number of sample years) with a sample representing an
nnual accident frequency within a given fleet of ships, 𝑍 is a standard
-score for the desired level of confidence (e.g., 𝑍 = 1.96 for 95%

confidence interval), and 𝜎 would normally be the population standard
4

deviation if it is known. In practice, the unknown 𝜎 is often approxi-
mated by the sample standard deviation or by using bootstrapping, as
explained further in Section 2.3.1.

The Eq. (3) shows how the sample mean becomes more accurate as
the sample size, 𝑛, increases. Hence, if we wish to have a confidence
interval that is 𝑊 units in width (𝑊 ∕2 on each side of the sample
mean), the above equation is solved for 𝑛 to obtain the MSS:

𝑀𝑆𝑆 ≥
(𝑍𝜎

𝐸

)2
(4)

where 𝐸 = 𝑊 ∕2, i.e. is the tolerable error (target precision), which is
a half width of confidence interval shown in Eq. (3), i.e. it is the radius
around the sample mean value at a certain confidence level. The 𝐸 also
corresponds to the MOE, thus, for a given 𝑛, the maximum MOE is:

𝑀𝑂𝐸 = ±𝑍𝜎
√

𝑛
(5)

and in the percentage form from the sample mean value, as reported
in the result Section 3.2:

𝑀𝑂𝐸% = ± 𝑍𝜎
𝑥̄
√

𝑛
(6)

In many fields of research, a typical MOE acceptable for a study
is 5% [46]. It would correspond to the error of ±5 accidents per year
within the fleet of 100 ships. However, the accident data samples are
inherently limited and hence a higher MOE should be allowed. We,
therefore, assumed the MOE to be 10% (±10 accident per year within
the fleet of 100 ships), leading to 𝐸 = 0.1𝑥̄ in Eq. (4).

The use of MOE in QRA is as follows. If, for instance, an event tree
is used to model risk in terms of potential loss of life (PLL) or expected
number of fatalities the risk model takes form of a linear model such
as:

𝑃𝐿𝐿 = 𝐸(𝑁) = 𝐹 ⋅ 𝑃 ⋅𝑁 (7)

where 𝐹 is the accident frequency per ship-year, 𝑃 is a product of the
probabilities within the event tree, and 𝑁 is the maximum number of
fatalities from the initial event. Knowledge of MOE in conjunction with
the 𝐹 used allows the variation interval to be defined for 𝐹 itself or
directly for the resulting PLL such as:

𝑃𝐿𝐿𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑃𝐿𝐿 ⋅ (1 ±𝑀𝑂𝐸%) (8)

The conservative value should then be assumed in the cost–benefit
analysis. The flowchart demonstrating the main steps of the introduced
framework is depicted in 2.

2.3.1. Bootstrapping
As indicated above, the calculation of the MSS and MOE requires

the presence of the population standard deviation (𝜎). In practice, the
unknown 𝜎 is either approximated by the sample standard deviation,
𝜎𝑆 , or determined by bootstrapping. The latter is a method which ap-
plies random resampling with replacement on the given data samples,
thereby mimicking the original sampling process. Given that 𝜎𝑆 may
significantly deviate from 𝜎, the bootstrapping allows to statistically
capture this uncertainty through estimates of an empirical distribution
function for 𝜎.

We generate an empirical distribution function of the population
variance, 𝜎2, and calculate distribution quantiles at 50% (median) and
95% probabilities. The two quantiles correspond to the most typical
and high (conservative) population variances.

Fig. 3 shows an example distribution of the population variance
generated by the bootstrapping for the RoPax (>4k GT) fires’ dataset.
The two quantiles are then used as input for the MSS calculations. The
number of random runs was 1,000 and they were executed by using R
package boot [47].

The application of the bootstrapping has the following caveats. The
technique assumes that the input data samples are independent and
identically distributed. As discussed in Section 2.2.1, these assumptions

http://mostwiedzy.pl
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Fig. 2. A framework evaluating MOE and resulting MSS.

Fig. 3. Variance quantiles at 50% (median) and 95% probabilities for the RoPax (>4k
T) fires’ dataset.

an be accepted for the data in question. If the underlying population
acks a finite variance, which can be the case with some heavy tailed
5

istributions, the technique will not work reliably [48]. Section 2.2.3 (
Fig. 4. Fleet size evolution.

Table 1
Number of accidents between 01/01/1980 to 31/12/2020, according to Sea-Web
database.

Collision Contact Grounding Fire

Cruise ships (>10k GT) 78 70 61 109
RoPax ships (1k–4k GT) 157 170 135 106
RoPax ships (>4k GT) 318 420 154 280

argues that the underlying distribution is a negative binomial and hence
it has a finite variance.

3. Application

This section describes the datasets used to apply the framework to,
along with the application results.

3.1. Data

To obtain maritime time series of accident frequencies we used the
Sea-web2 causality database. The database allows performing multi-
criteria searches such as causality type, geographic location, ship type,
ship size and other ship particulars, etc. For the sake of this paper, we
searched for causalities with cruise and RoPax ships worldwide within
the time period 01/01/1980 to 31/12/2020 (40 years).3 We stopped
at the 40 year time exposure because longer time exposures hardly
added data to the datasets; possibly due to general unavailability of
older records and higher under-reporting rates in the past. Hence, the
40 year period may be considered somewhat arbitrary.

We limited ship sizes in accordance with earlier FSA studies for
these two ship types [49,50]. Specifically, cruise ship sizes were limited
to be above 10,000 GT, whereas for RoPax ships were split into two size
categories: 1,000–4,000 GT and above 4,000 GT. Table 1 shows the
number of events obtained from the database. Fig. 4 shows the annual
data on the fleet sizes obtained. The fleet sizes have been growing for
all three ship categories; Table 2 indicates the approximate fleet sizes
at the end of the period. The annual accident frequencies normalised
by fleet size are reported in Section 3.2.

Note, the accident data obtained from the Sea-Web database contain
multiple records per year, with detailed time (hours, day, month, year)
and other attributes such as accident locations, fatalities involved, etc.
For instance, there was one registered fire accident in 1980 on cruise

2 https://maritime.ihs.com
3 Selected references to cruise ships: ‘‘Passenger (Cruise) Ship, Passenger

Cruise, Passenger Ship’’, and RoPax: ‘‘Passenger/Ro-Ro Cargo, Passenger/Ro-
o Cargo Ship, Passenger/Ro-Ro Ship (Vehicles), Passenger/Ro-Ro Ship
Vehicles/Rail)’’

https://maritime.ihs.com
http://mostwiedzy.pl
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Fig. 5. Run charts for cruise (>10k GT) accidents. The horizontal red line corresponds to the median. Refer to Section 2.2 for explanation of the terms.
Table 2
Approximate fleet sizes on 31/12/2020, according to Sea-Web database.

Fleet size

Cruise ships (>10k GT) 305
RoPax ships (1k–4k GT) 848
RoPax ships (>4k GT) 906

ships >10k GT, but already 6 fires in 1981, 3 fires in 1982, again 1 fire
n 1984, and even 9 accidents in 2013. Hence, in principle one could
ork with shorter time periods (e.g., month) and calculate accident

requencies per month, per day, per hour etc. However, it is customary
o work with the annual frequencies in the maritime domain [42].
ence, we limited our study to this time scale.

.2. Results

This section outlines the application results of the MSS/MOE frame-
ork presented in Section 2.3. The focus here is on the numerical

esults rather than the framework application aspects. The latter are
iscussed in Section 4.

.2.1. Non-random variation
Figs. 5 to 7 display run charts of annual accident frequencies per

hip-year used to visually test for non-random variation. We used the
ffective fleet size in each year. We specifically looked at the plot
egends that contain the data specific criteria and then compared them
gainst the plotted data points. Thus for instance, Fig. 5(a) shows that
he longest runs (the number of consecutive data points on the same
6

side of the median, excluding the points of the median itself) have to be
above 8 points for a non-random (systematic) variation to be present,
as per Eq. (1). Additionally, the minimum number of crossings (the
number of times the graph crosses the median) has to be below 14 if a
non-random variation is present, see Eq. (2).

Looking at the plot, there are maximum 6 longest runs (less than
required) and 14 crossings (more than required). Hence, the time series
for cruise collisions in Fig. 5(a) does not exhibit non-random variation.
Table 3 summarises the test results for all 12 datasets, indicating if the
non-random variation is present or absent. The results show that 2 out
of 12 datasets exhibit non-random variation.

3.2.2. Stationarity
The results of the Ljung–Box tests for stationarity of the data are

also given in Table 3. A stationary signal has a 𝑝-value greater than 5%.
The results show that only the cruise ship grounding data set is non-
stationary. Based on the tests for nonrandom variation and stationarity,
Table 3 then indicates whether the further statistical analysis, i.e., the
calculations of MSS and MOE, was applicable (A) or not (NA).

We note that only 3 of 12 records failed the tests: grounding
accidents for cruise ships and contact accidents for both types of RoPax
ships. This statistical property supports the visual observation that the
trend for grounding accidents for cruise ships is decreasing (Fig. 5(c)),
while the rate of contact accidents for RoPax ships appears to be
increasing (see Figs. 6(b) and 7(b)). Note that in the absence of this
statistical property, any visual trend analysis can be misleading, as in
the case of fire accidents for RoPax (1k–4k GT) in Fig. 6(d). It looks as
if the frequency of fires has decreased overall, but this contradicts what
the statistical analysis says: the time series is random and stationary.
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Table 3
Summary of statistical test results for non-random variation (present or absent), stationarity (𝑝-value > 5%) and combined (further statistical
analysis is applicable -A- or not applicable - NA).

Collision Contact Grounding Fire

Cruise ships (>10k GT)
Non-random variation
Stationarity (% 𝑝-value)
Verdict

Absent
5.9
A

Absent
99.6
A

Absent
1.1
NA

Absent
15.6
A

RoPax ships (1k–4k GT)
Non-random variation
Stationarity (% 𝑝-value)
Verdict

Absent
84.0
A

Present
20.3
NA

Absent
5.6
A

Absent
10.1
A

RoPax ships (>4k GT)
Non-random variation
Stationarity (% 𝑝-value)
Verdict

Absent
62.8
A

Present
46.3
NA

Absent
21.8
A

Absent
15.5
A

Fig. 6. Run charts for RoPax (1k–4k GT) accidents. The horizontal red line corresponds to the median. Refer to Section 2.2 for explanation of the terms.
The remaining 9 data sets —the majority —are stationary and
randomly distributed around the median values of the last 40 years.
Thus, there are arguably no statistically significant global or industry-
wide effects on the corresponding accident rates that would involve
nonrandom variation or nonstationary behaviour.

This finding is bad news for maritime safety efforts. However, it
is good news for analysts because a larger pool of data is potentially
available for statistical analysis beyond what has been presented in
this paper. For example, one might attempt to fit negative binomial
distributions to the data and then compare different accident or vessel
categories in terms of the statistical characteristics of the fitted distribu-
tions. This could be more informative than simply comparing average
accident rates, such as was done in [3].
7

Then, the test results were used to determine which datasets could
be used to calculate MSS and MOE, as shown in the following section.

3.2.3. MOE and MSS
Fig. 8 shows the log–log plots of margin of error (MOE) at 95%

confidence level for the valid datasets. These plots can be used to
determine the MOE for a given sample size, and hence the maximum
distance between the sample and population mean –the sampling error.
The median (typical) and conservative (high variability) MSS for the
datasets are presented in Table 4.

The recommended MSS in Table 4 indicate that if we had only
40 years-long time exposure—as obtained for the current study—that
would not be enough to calculate the average accident frequencies

http://mostwiedzy.pl


Reliability Engineering and System Safety 235 (2023) 109221R. Puisa et al.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 7. Run charts for RoPax (>4k GT) accidents. The horizontal red line corresponds to the median. Refer to Section 2.2 for explanation of the terms.
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Table 4
Minimum sample sizes (numer of sample years) for median (typical) and high variability
scenarios, at 95% confidence level and the tolerable error (or MOE) of ±10%.

Collision Contact Grounding Fire

Cruise ships (>10k GT) (102, 144) (151, 222) NA (139, 277)
RoPax ships (1k–4k GT) (109, 144) NA (110, 155) (80, 127)
RoPax ships (>4k GT) (93, 122) NA (108, 146) (57, 79)

(rates) with the target precision of ±10%. Since longer time exposures
are not readily available, Fig. 8 shows the MOE that one could expect
for a dataset at hand. With the current time exposure, one should factor
in some ±(20%–30%) MOE when analysing the cruise ship accidents in
QRA studies (see Section 2.3).

4. Discussion

This study began with the premise that one must follow a good QRA
practice that involves the systematic use of statistical errors in analysis
and subsequently decision making. In the context of maritime risk
analysis this practice has not been universally followed when it comes
to the average frequency of accidents per ship-year. This is because the
MSS and the MOE have not been readily available for specific datasets
(characterised in terms of accident category, ship type and ship size)
nor there has been a framework—a clear set of instructions—for the
MSS/MOE determination.

We argue that the unavailability of MSS/MOE could have shifted
conclusions in the following earlier QRA/FSA studies where the sta-
8

tistical errors were ignored. Thus, an FSA for cruise ships above 10k i
GT used data over 15 years (1990–2004) for collision, contact, ground-
ing and fire accidents [51]. This would require the MOE of some
±(30%–45%), depending on the accident category. Had this MOE been
aken into account, the risk value could have been reduced by 55%,
otentially invalidating the cost-effectiveness of the risk control options
e.g., RCO 1+3 and RCO 1+2+3) the assessment recommended. In
nother FSA study on RoPax ships well above 1k GT, the used time
xposure was just over 10 years (1990 – 2004) [52]. This would lead
o the MOE of ±(25%–50%), with analogous consequences to the con-
lusions of cost–benefit analysis. Hence, both FSA studies would have
enefited from the results of this paper. Another statistical analysis of
o-called safety level by Eliopoulou et al. [3] looked at accident records
ith RoPax, cruise and other ships over the period of 12 years (2000–
012). The study derived trends for collision, contact, grounding, fire
nd other events, and calculated average accident frequencies. The
atter were used to compare the accident categories or ship types with-
ut considering the error in the values. We argue that the comparison
onclusions would have been shifted, should the expected MOE of at
east 30% have been considered.

It should be noted that the fact that the three datasets which did
ot pass the statistical tests (see Table 3) does corroborate with the
isual analysis. The datasets exhibit clear downward trends (cruise
hips) and sharp jumps upwards leading to increased value by factor
f 5 (RoPax ships), indicating they could not be reasonably assumed to
e sampled from stationary probability distributions. Hence ultimately,
oth numerical and visual analyses are necessary to conclude which
ata is suitable for further statistical analysis towards MSS and MOE.

The presented run charts for accident time series provide useful

nsight into the presence, or absence, of systematic trends in annual
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Fig. 8. Log–log plots of margin of error (MOE) at 95% confidence level as a function
of sample size.

accident rates (Section 3.2). Thus, it shows that 9 out of 12 datasets
have no non-random variations and have been stationary over the
course of 40 years (1980–2020), meaning that neither statistically
significant surge nor decline of safety records can be observed. Thus
arguably, most of the large passenger ships have been running into
accidents at the same annual rate over the last 40 years. This is contrary
to the conclusions often found in the literature that the corresponding
9

c

frequencies have been either increasing or decreasing, e.g. [3]. In
other words, the run charts along with statistical tests introduced in
Sections 2.2.1 and 2.2.2 could potentially serve as a good alternative
for trend analysis—something to be confirmed in future research.

The observation of the stable average accident frequencies is useful,
although in different ways, to both analysts and policy makers. The
former are interested in stationary statistical properties of data, for it
allows for statistical inference with, as suggested Section 2.2.3, a neg-
ative binomial distribution.4 In turn, the policy makers are interested
n the impact of implemented safety policies. Arguably, the impact on
ccident frequencies has been negligible most of the time, although
uture research needs to confirm this.

. Caveats and limitations

As already indicated in Section 3.1, the considered time exposure of
0 years was somewhat arbitrary, guided by the perceived availability
f accident records within the casualty database. The general rule
e followed was to have the longest time exposure possible, being

autious that the further back in time we go (say beyond 30 years
rom now), the lower accuracy of accident data could be expected.

e did not analyse or factor in the accuracy of annual accident rates
e.g., due to under-reporting [14,20]), because pertinent information
as simply unavailable. We also had no access to information on how

he redefinition of a collision and contact accidents in 2012 by the
K [53], influenced the numbers of cases in each category.

We are aware that accident underlying factors, such as operational
onditions and used technology, are subject to significant change. This
oses a challenge to the predictive power of the presented statistical
nalysis and hence the results should be used with care.

The run charts in Figs. 5 to 7 show that shorter time exposures could
e considered for the statistical analysis conducted. Thus for instance,
ne can notice that the upward trend for RoPax contact accidents may
ave become stabilised over the last 15 years and the statistical analysis
ould be valid for this shorter period. However, we argue that the
hortened time exposure (i.e., the sample size of some 15 points) would
ly in the face of the MSS calculation results (recall the lowest MSS is
7, Table 4), and it hence was dismissed.

. Conclusions

The paper provides a framework for systematically identifying MSS
nd MOE, suitable for QRA analysts and policy makers. The framework
nswers the practical questions associated with MSS for a given dataset
maritime accident and ship types) and the associated MOE.

The paper has specifically synthesised the knowledge on statistical
rrors into a generic framework for the MSS and MOE determination
nd applied the framework to specific accident datasets.

The resulting MSS values have been summarised in a tabular form,
hereas the MOE is determined from the MOE plots as functions of the
vailable sample size (time exposure in years). The lowest value for the
SS corresponds to fire accidents with RoPax ships above 4k GT, the

alue is between 57 and 79 sample years. The highest MSS, between
93 and 277 sample years, is associated with fire accidents on cruise
hips. Thus, given that no accident database exists to contain at least
7 years of records, the 𝑥̄ will always contains the MOE above 10%. To
ur best knowledge such study for the maritime domain has not been
erformed earlier, making the presented work novel and relevant.

Future studies should look at other critical ship types, such as oil
ankers, to raise awareness among QRA analysts and their end users.

4 Note, the distribution parameters, the success probability and the number
f failures before a prespecified number of successes is reached, are directly
alculable from the sample mean and variance.
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