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ABSTRACT

When applied to identification of time-varying systems, such
as rapidly fading telecommunication channels, adaptive es-
timation algorithms built on the local basis function (LBF)
principle yield excellent tracking performance but are com-
putationally demanding. The subsequently proposed fast LBF
(fLBF) algorithms, based on the preestimation principle, al-
low a substantial reduction in the complexity without signif-
icant performance losses. We propose a novel preestimator,
called bidirectional, which further improves performance of
the fLBF scheme.

Index Terms— Identification of time-varying systems,
local basis function approach, rapidly fading telecommuni-
cation channels

1. INTRODUCTION

We will consider the problem of identification (tracking) of a
time-varying FIR (finite impulse response) system governed
by

y(t) = Z 0 (t)u(t —i+1) + e(t)
=0 (t)p(t) +e(t) )]

where ¢t = ...,—1,0,1,... denotes discrete (normalized)
time, y(¢) denotes the complex-valued output signal, ¢(t) =
[u(t),...,u(t —n + 1)]7 denotes regression vector made
up of past samples of the complex-valued input signal u(¢),
O(t) = [01(t),...,0,(t)]T is the vector of time-varying sys-
tem coefficients, and {e(¢)} denotes measurement noise. The
symbol * stands for complex conjugate and H — complex con-
jugate transpose (Hermitian transpose). Many nonstationary
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communication channels (terrestrial, underwater) can be well
approximated by a FIR model of this form [1], [2].

We will focus on noncausal estimation, i.e., we will as-
sume that in addition to past measurements {y(s), ¢(s),s <
t} a certain number of “future” ones (with respect to the “cur-
rent” time instant t) {y(s),p(s),s > t} are available and
can be used for estimation purposes. Such is the situation,
for example, in the case of identification of channels operat-
ing in the full-duplex (FD) mode [3], [4]. In this case u(t)
is a known, near-end signal, emitted by the transmit antenna
(placed near the receive antenna) and e(t) is a mixture of a
far-end signal and channel noise, which should be extracted
from y(¢) by removing from it the self-interference compo-
nent (the first term on the right hand side of (1)). Note that
FD systems, which — to increase channel throughput — simul-
taneously transmit and receive information in the same fre-
quency bandwidth, allow one to work with a decision delay,
which means that channel identification can be carried out us-
ing noncausal estimation algorithms with improved tracking
capabilities, such as the ones described in this paper.

Additionally, we will assume that: (A1) {u(t)} is a zero-
mean circular white noise with variance o2, (A2) {e(t)}, in-
dependent of {u(¢)}, is a zero-mean circular white noise with
variance o2, and (A3) {6(t)} is a sequence independent of
{u(t)} and {e(t)}. Note that assumptions (A1)-(A3) are typ-
ical of wireless communication systems.

2. FAST LBF ESTIMATORS

The LBF identification technique is based on the assump-
tion that in the local analysis interval T'(t) = [t — k,t + k]
of length K = 2k + 1, centered at ¢, system parameters
can be expressed as linear combinations of a certain num-
ber of linearly independent complex-valued functions of time
f1()s ooy fm(4), 4 € I, = [—k, k], further referred to as ba-
sis functions. The point-estimation LBF approach (general-
ized Savitzky-Golay filtering [5]) is a time-localized version
of the interval-estimation basis function (BF) technique ex-
plored by many authors [6] - [15].
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Without any loss of generality we will assume that the ba-
sis Frn = {f1(4), -+, fm(§),J € I} is orthonormal, namely
i £(G)ER(G) = L, where £(5) = [f1(3), .-, fn(1)]"
and I,, denotes the m x m identity matrix. We will also
assume that the first basis function is constant: f;(j) =
1/\/? = fo,j € Ir. As an example of a basis set (which
has some physical justification in telecommunication appli-
cations [1]) we will consider the complex exponential basis
of the form

= {(l/ﬁ)eij“’l,...,

where i = /=1, w1 = 0, m = 2mg + 1 and wy =
—(27Tl)/K, Wal4+1 = (271’[)/](, = 1,...,m0.

Computational complexity of LBF estimators is O(m?3n?)
complex flops (complex multiply-add operations) per time
update. This cost can be significantly reduced if the iter-
ative dichotomous coordinate descent (DCD) technique is
used [16]. The computationally much cheaper fast LBF esti-
mators, proposed in [17], take the form

V) jen} @

k
o) = > BBt + ) )

=k
where hLBE (7Y = £1(0)E(5), j € I, 4)

denotes the impulse response of a FIR filter associated with
the LBF estimator and {6(t) } is a sequence of “preestimates”
— maximum bandwidth parameter estimates [18], which are
approximately unbiased (no matter how the system parame-
ters change) but might have a large variance.

Unidirectional (forward-time) preestimates, which were
originally proposed in [19] and further developed in [17], [20]
can be obtained by means of “inverse filtering” the estimates
yielded by the short-memory exponentially weighted least
squares (EWLS) algorithm

t
OIS (1) = arg min Xy (j) — 0% ()7 )
j=1

=G (t)g(t)
where A\, 0 < A < 1, denotes the so-called forgetting con-
stant. The n x n matrix G(t) = Z;Zl A=Ip(5)e™(j) and

the n x 1 vector g(t) = Z; L AT p(5)y*(4). can be com-

puted in a recursive way using

G(t) = AG(t — 1) + @(t)e" (1)
g(t) = Ag(t — 1) + o(t)y* (1) ©)
G(0) =0, g(0)=0.
The inverse filtering formula derived and analyzed in [17],

which can be used to obtain forward-time preestimates, has
the form

0(t) = M)O"WVES () — AM(t — DOEVIS(t — 1) (7)

where M (t) denotes the effective width of the exponential
window which can be evaluated using

t
)= N =AM(t—-1)+1 (8)
=1

with initial condition M (0) = 0. The recommended choice
of the forgetting factor is A = max{0.9,1 — 2/n} [21].

It can be shown that under (A1) - (A3) the unidirectional
preestimates are approximately unbiased, i.e., E[@(t)] = 0(¢)
where the expectation is carried out over {e(t)} and {(¢)}.

3. BIDIRECTIONAL PREESTIMATES

Bidirectional preestimation is a new concept. While unidirec-
tional preestimates can be obtained by filtering EWLS esti-
mates (causal), as a basis for evaluation of bidirectional prees-
timates we will use noncausal double exponentially weighted
least squares (E2WLS) estimates of the form

t+7
0" WIS (1) = argmin 3~ Ay () — 6" ()| o
j=1

= H (t)h(t)

where FI(t) = 3757 A7l (j)" (4), h(t) = 3217 Al
»(7)y*(j), and 7 denotes the truncation point of the dou-
ble exponential window. It is recommended to set A =
max{0.8,1 — 4/n}. It can be shown that if the condition
T > 8/(1 — X) is met (which is adviced), the preestimates
obtained using the truncated double exponential window
are practically indistinguishable from those obtained for
T — 00, 1.e., the truncation effects are negligible.

Note that the n x n matrix H(¢) and the n x 1 vector
h(t) can be obtained by backward-time processing of G(-)

and g(-)

H(j) = AH(j + 1) + (1 — *)G())
h(j) = Ah(j + 1) + (17A2>g(j) (10)
j=t+7-1,.

with initial conditions H(¢ + 7) =
g(t+ 7).

The effective width of the double exponential window is
given by

G(t+7)andh(t+7) =

t+7
L(t) =Y NI = ALt +1) +

j=1

(1 =A)M(@) (A1)

with initial condition L(¢t + 7) = M (t + 7).

Suppose that the sequence {p(t)} is (locally) station-
ary and ®y = E[p(t)¢"(t)]. Our derivation will be based
on the following approximation H=(¢) = (E[H(t)])™! =
ﬁ@a ! which holds true for sufficiently large values of L(t)
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(under (A1) one can easily show that the matrix H(t)/L(t)
converges in the mean square sense to €, when { — oo and
A— D).

Replacing H~1 () with its approximation, one obtains

67 WIS (1) ﬁ@glh(t) (12)

and consequently, according to (10)

L(HO WIS (1) — AL(t + 1)0 WES (¢ + 1)

13)
=@, ' [h(t) - Ah(t+1)] = (1 - N*) @ 'g(1)
which can be written down in the form
_ L)% WES (1) — NGF* WIS (¢ 4 1
1—A
We will show that the following quantity
~ ot
0. = 20, (15)
where
5(t) = (1+ A)LHBF WIS (1) — AL(t — 1)0% WES(¢ — 1)
—AL(t+ 1)0F WS (£ 4 1) (16)

can be used as a bidirectional counterpart of (7). Actually, ac-
cording to (14) and (6), it holds that 8.4 () = &, p(t)y* (t).
Hence, under assumptions (A1)-(A3), one obtains

E[0(t)] = E[®; o(t)y* ()] = E[®;  o(t)" (1)0()]
+ E[®; 'p(t)e* (1)) = 0(t) (17)

i.e., just like unidirectional preestimates, bidirectional prees-
timates are (approximately) unbiased.

Under assumptions (A1)-(A3) the unidirectional and bidi-
rectional preestimates can be written down in the form

0(t) = 0(t) +z(t), 0+(t)=0(t)+zs(t)

where {z(t)} and {z(t)} denote zero-mean preestimation
noise sequences with large covariance matrices. Hence the
fLBF estimate (4) can be regarded as a result of “denoising”
preestimates using the basis function approach [17] (the same
formula can be used to postfilter {6 (£)}). The most impor-
tant difference between the two preestimation schemes is the
noise intensity: for bidirectional preestimates the preestima-
tion noise is usually much “smaller” than for the unidirec-
tional ones - see Fig. 1.

4. COMPUTATIONAL ASPECTS

4.1. Preestimation

The EWLS estimates can be computed using the well-known
recursive algorithm [22] at the cost of O(n?) flops per time

Unidirectional preestimate
: ; ;

Re[0:(t)]

. .
Bidirectional preestimate
T T T

Rel[0:(t)]

0 1000 2000 3000 4000 5000 6000 7000 8000
t

Fig. 1. Typical preestimation results obtained for a simulated
channel (n = 20, SNR=30 dB): unidirectional (forward-time)
preestimates (top figure, A = 0.9) and bidirectional preesti-
mates (bottom figure, A = 0.8, 7 = 41). Forgetting constants
were chosen so as to make the “information content” identical
in both cases. Preestimates (black lines) are superimposed on
true parameter trajectories (red lines).

update. Alternatively, to reduce the computational cost to
O(n) flops, the EWLS estimates can be computed using the
fast transversal filter algorithm [22].

Recursive computability of EZWLS estimates is less obvi-
ous. To demonstrate that this is the case, note that both H(t)
and h(¢) can be written down as sums of two components

H(t) = G(t) +S(t), h(t) =g(t) +s(t) (18)

where S(t) = Z;J;H N 7o(7)e" (), s(t) = Z;ZH NIt
p(7)y*(j). Note that

SEZD et 0) + At 4 TIpH 1+ 7)

s(t) = s(t; 1) 3

Since the recursions presented above are not exponentially
stable, to avoid unbounded accumulation of numerical (round-
off) errors, the quantities S(¢) and s(¢) should be from time
to time (eg. every 7 sampling intervals) calculated directly
instead of using the recursive formulas. Importantly from
the computational viewpoint, the additional computational
cost of resetting can be evenly distributed over time, which
is particularly relevant when estimation is carried out in the
almost-real-time mode, i.e, with a constant processing delay
equal to At = max{k, 7}. Actually, suppose that one intends
to reset S(+) at the instant ¢. Since S(t) = A\ (t+1) (t+1)
X2t +2)R(t+2) + ...+ Xt + 1) (t + 7), eval-
uation of S(¢) can be started at the instant ¢ — 7 + 1 by

S(t) =

P()y™ () + ATp(t +T)y* (t + 7).
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computing its first component. Then, at the instant ¢t — 7 + 2,
the second component can be computed and added etc. etc.
Proceeding in this way, evaluation of S(¢) will be completed
at the instant ¢, and the process will be repeated starting from
the next time instant to compute S(¢ + 7).

Even though the matrices/vectors G(t), g(t), S(t) and
s(t) are recursively computable, the last step — computation
of the E2WLS estimate

O WIS (1) = [G(t) + S(1)] [g(t) +s(t)]  (19)

does not allow the use of fast computational techniques. Since
computation of (19) requires inversion of the n X n matrix
G(t) +S(¢) (either in a direct or indirect way), the associated
computational burden is of order O(n?) per time update.

4.2. Postfiltering

The adopted basis functions (2) are recursively computable:
£(j) = Af(j +1), A = diag{e '“1,..., e~ ¥} Exploiting
this property, one arrives at the following recursive formula
which can be used to update &;(t) = Z?sz £(5)0:(t + j)
and 6;(t)

&ilt) = A [@lt = 1) = Bi(t — k — DE(-F)]

+0;(t + k)E(K)
6:(t) = f1(0)au(t), i=1,...,n. (20)

The total computational cost of postfiltering is O(mn) and
does not depend on the width of the analysis interval K.

5. SIMULATION RESULTS

All methods described in this paper were tested on a signal
generated by an FIR system (1) with 20 time-varying param-
eters, simulating a FD underwater acoustic (UWA) commu-
nication system. The variance of consecutive parameters was
decaying exponentially var[f;(t)] = 0.69'"1,i = 1,...,20,
to reflect power delay profile due to scattering and absorp-
tion [2]. Parameter trajectories were generated as low-pass
filtered complex Gaussian random sequences with a cut-off
frequency equal to 1 Hz under 1000 Hz sampling (such rates
of parameter changes are typical of UWA applications). The
input signal was a circular complex random sequence of the
form u(t) = +1 + i. Noise was a circular complex random
Gaussian process with variance equal to 02 = 3.2 - 1073
(SNR=30 dB) or 02 = 3.2 - 10~° (SNR=50 dB). Note that in
the self-interference cancellation case, very high values of the
signal-to-noise ratio (SNR) are typical due to a small distance
between the transmit and receive antennas. To avoid bound-
ary problems, data generation was started 1000 time instants
before ¢ = 1 and lasted 1000 time instants after the identifi-
cation was stopped.

SNR 30 dB
-20 T T T
—¥— LBF
—©6— Unidirectional
= -2 —&— Bidirectional
=
Z
= -30
-35 - -
SNR 50 dB
-20 T T T
—¥— LBF
—©— Unidirectional
& -30% —F&— Bidirectional
B T Se-oo0 o009
2
~ -400

-50

I I I I I I
200 300 400 500 600 700

Fig. 2. The self-interference cancellation performance of the
compared algorithms in the simulated FD UWA environment.

Unidirectional preestimates were computed for A = 0.9.
For bidirectional preestimates the settings were equal to A =
0.8 and 7 = 41. Both fLBF and LBF schemes used m = 5
complex exponential basis functions (two methods of adap-
tive selection of k& and m were proposed in [25]).

Results of our simulation experiments are summarized in
Fig. 2. MSE was averaged over one long realization of data
(10° samples). Additionally, the proposed new version of the
fLBF algorithm was compared with three other algorithms:
EWLS, E?WLS and TU-RLS (time updated recursive least
squares, considered the state-of-the art in UWA communica-
tion [23], [24]) and . For SNR equal to 30 dB the best re-
sults achieved using EWLS, E2WLS and TU-RLS algorithms
were -23.04 dB (for A = 0.93), -30.01 dB (for A = 0.97), and
-24.34 dB (for A = 0.95, © = 0.003) and -17.24 dB, respec-
tively. For SNR equal to 50 dB the best achievable results
were -29.07 dB (for A = 0.81), -36.98 dB (for A = 0.89), and
-32.07 dB (for A = 0.83, 1 = 0.01), respectively. Note that
the proposed fLBF algorithm based on bidirectional prees-
timates outperforms all identification algorithms mentioned
above.

6. CONCLUSION AND RELATION TO PRIOR
WORK

The proposed method is an extension of the fast local basis
function approach described in [17], recently successfully
applied to identification of fast-varying underwater acous-
tic channels [26]. It has been shown that new, bidirectional
preestimates, used in the first phase of identification, allow
achieving estimation accuracy that exceeds the accuracy of all
currently available tracking algorithms, including the state-
of-the-art time updated recursive least squares algorithms.
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