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Abstract

In this paper, the buckling of rectangular functionally graded (FG) porous nanoplates based on three-
dimensional elasticity is investigated. Since, similar researches have been done in two-dimensional
analyses in which only large deflections with constant thickness were studied by using various plate
theories; therefore, discussion of large deformations and change in thickness of plates after deflection
in this study is examined. Moreover, porosity is assumed in two situations, even and uneven
distributions considered in several conditions. Using nonlocal elasticity theory, nonlocal three-
dimensional equations are obtained. Regarding difficulties in solving three-dimensional differential
equations, simple analytical methods are assumed and proposed. The most important results show
that even porosity makes the plate softer and results of uneven porosity are so close to the prefect
material which leads to this considerable conclusion that porosity as an uneven distribution cannot be
an important factor in static stability analyses of FG nanoplates.

1. Introduction

Plates are important elements included in industrial machines and engineering structures that may miss their
stability under tensile, compressive and shearing loads. The minimum stableness force is a remarkable quantity
in engineering design and simulation. Todays, the combinatorial applications of materials are becoming more
and more widespread in order to obtain appropriate properties. Given the advancement of technology, a
material cannot, by itself, be responsive to advanced industry’s needs. So, to satisfy such a request, the laminated
functionally composite materials were produced which had two entirely different properties in their opposite
surfaces. However, they were not suitable in light of the fact that these materials were layered because of residual
stresses which led to their short life. Therefore, the non-homogenous materials have been produced within
which their microstructural mechanical properties gradually change from a surface to another one. Due to lack
of sudden split in these materials against laminated composites, their resistance were improved noticeably and
also the stresses were distributed uniformly because of removing stress concentration. In this regard, study of the
critical conditions of such materials is a serious need. Lee et al [ 1] used a mesh-free radial interpolation approach
for examining nonlinear stability of functionally graded (FG) plates subjected to thermal in-plane loads. Lieu

et al[2] taken a FG variable thickness plate for free vibration and bending responses. They assumed functionally
graded property in bi-directional and solved the harvested equations by an isogeometric technic. Thai and Kim
[3] analyzed resonant frequencies and bending of a FG plate by proposing a simple higher-order shear
deformation theory. Ohadi et al [4] considered nonlinear thermo-vibrational behavior of a FG plate with taken
piezoelectric layers. Zenkour and Radwan [5] compressively studied a FG plate embedded on an elastic
foundation. They used a refined shear deformation theory with choosing a hyperbolic function rather than using
shear correction factors. They also used an analytical solution from which various boundary conditions were
accurately obtained in order to calculate maximum deflections. Thai and Vo [6] derived a new sinusoidal shear

©2018 IOP Publishing Ltd
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deformation theory for static and dynamic analyses of FG plates based on the Navier approach. Wang et al[7]
investigated stability of a FG thin plate with assuming in-plane material inhomogeneity. Thai and Kim [8]
employed a closed-form solution for stability analysis of thick FG plates rested on a polymer matrix. They used
third-order shear deformation theory in order to derive the equilibrium equations. The equations were solved
by applying Levy solution for simply-supported boundary conditions. Bever and Duwez [9] considered
gradients in the structure of composite materials to exhibit their compositional properties. Carrera et al [10]
evaluated thickness stretching influences in single and multi-layered FG plates and shells. With regard to the
Carrera’s unified formulation, variable plate/shell theories were implemented. Bousahla et al [11] analyzed
buckling of FG plates on the basis of a modified four-variable plate model exposed to linear and non-linear
temperature distributions in the thickness direction. Akavci [12] studied stability and resonant frequencies of a
FG composite plate rested on a soft foundation by proposing a new shear deformation theory in which a
hyperbolic function was used instead of employing any shear correction factor. Bouderba et al [ 13] derived a
simplified first-order theory of shear deformation in which only four-unknown variables were existed. This new
plate theory was employed to examine a FG sandwich plate in a thermal buckling condition. Ghadiri et al [14]
investigated for the first time influences of Coriolis and thermal on the natural frequency analysis of a FG plate
which was in a rotational condition. To this, generalized differential quadrature method was applied for
cantilever boundary conditions. El-Haina et al [15] proposed a new simple analytical solution technic in order to
study stability of a thick FG composite plate subjected to thermal in-plane forces. Hichem et al[16] derived a
simple and efficient four-variable shear deformation theory to study elastic stability of a FG plate.

On the other hand, in recent years, due to developing of the use of engineering structures in small-scale and
necessity to optimize their performance, researchers have been encouraged to use materials with micro and
nanoscales. Liu et al [ 17] investigated wave propagation in nanoplates with considering piezoelectricity
influences. They also considered surface piezoelectricity and nonlocal impacts in their research. Lietal[18] ina
special work modeled flexural wave propagation for a nonlocal FG beam using nonlocal strain gradient theory.
Shahsavari and Janghorban [19] dynamically analyzed the shearing and bending response of a graphene plate
under a concentrated moving load. A two-variable shear deformation theory was accompanied with nonlocal
elasticity theory of Eringen in order to derive the vibrational equations and the obtained relations were
calculated with Navier technic. Hichem et al [20] formulated a zeroth-order shear deformation theory and
applied it for examining post-stability of a nanoscale beam. Eringen’s law and a closed-form approach were
employed to achieve this aim. A wave propagation analysis for double-walled carbon nano shell models was
investigated by Tadi Beni et al [21]. They modeled a slip boundary condition and assumed that the nanotube
conveys fluid. To consider nanoscale properties, nonlocal strain gradient theory was used and the model was
surrounded in a polymer matrix. Janghorban et al [22] employed a novel higher-order nonlocal strain gradient
shell theory for analytically studying wave dispersion in a doubly-curved nano shell. The mechanical behavior of
the model was assumed to be an anisotropic shell. In a specific research, Karami et al [23] employed three-
dimensional elasticity formulation for considering a FG nano spherical model. They applied small-scale effects
with using nonlocal strain gradient theory and incorporated the anisotropic property for the model. Ebrahimi
and Salari [24] analyzed natural frequencies and static stability of functionally graded (FG) nanobeams which
were under in-plane thermal forces. The beam was modeled as a Timoshenko beam and nonlocality was
modeled by nonlocal elasticity theory of Eringen. Tadi Beni et al [25] investigated stability of FG nano bridges
under electro-mechanical in-plane loads with utilizing theory of strain gradient. Zamani Nejad et al [26] studied
stability of FG nonlocal beams. They applied Euler—Bernoulli beams and presented a solution by taking into
account the variation of properties in two-directional FG materials with arbitrary functions. They solved the
equations with using generalized differential quadrature method for different boundary conditions. Yang et al
[27] demonstrated thermal stability and post-stability of nano-FG composite plates.

In special analyses, various boundary conditions were considered. Akhavan et al [28] investigated the
fundamental frequencies of a moderately thick FG plate with utilizing first-order theory of shear deformation.
The plate was placed on a Winkler-Pasternak substrate and the derived equations were solved by an analytic
assumption. Panda et al [29] studied stability of a FG single/doubly shell panel with initial curvature under
thermal in-plane loads by considering temperature-dependent (TD) and temperature-independent (TID)
properties. Abdelaziz et al [30] presented a new hyperbolic shear defirmation plate theory for analyzing
functionally graded sandwich plates. They studied stability, bending and natural frequencies of the composite
plate whilst several boundary conditions were applied. Many articles have also been presented in recent years in
terms of FGMs and nano materials [31-64].

In addition to these, the materials with porosity are another type of materials with different behavior [65].
The nanoporous materials have cavities in nanoscale which are diverse. In fact, the volumetric ratio of cavity of
the porous material to the total volume is called the porosity [66—-68]. According to the definition of
nanotechnology, chemistry scientists use nanoporous for materials that contain cavities with a diameter of less
than 100 nm [66—68]. In terms of such materials, Shafiei and Kazemi [69] carried out the nonlinear stability of
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Figure 1. Schematic geometry of the FG porous nanoplate in rectangular coordinate system.

micro/nano functionally graded (FG) porous beams. Wang and Zu [70] studied vibrational responses of a FG
non-square porous plate exposed to thermal in-plane forces. Resonant frequencies of FG porous plates with
piezoelectricity impacts under electro-mechanical loads in a translation state was studied by Wang [71].

In view of exact analyses literature, there are a few research within which the materials have been analyzed
three-dimensionally. Ansari et al[72] examined free vibration of functionally graded (FG) nanoplates on elastic
foundations via three-dimensional theory of elasticity. The generalized differential quadrature method was
adopted by using three-dimensional meshing. Brischetto [73] developed an exact three-dimensional equation
for static analysis of single and multi-layered shells and plates. The equations were solved via a proposed exact
3D shell method by which simple boundary conditions were satisfied. The shell solution was based on a layer-
wise approach and the second order differential equations were solved using the redouble of variables and the
exponential matrix method. Ansari et al [74] three-dimensionally analyzed static and dynamic of FG nanoplates
based on a new differential quadrature-based approach. They established nonlocal elasticity theory of Eringen to
take into account nanoscale effects and it was found that the proposed approach had a fast rate of convergence.
Dastjerdi and Akgoz [75] conducted new static and dynamic models of nano and macro FG plates based on the
three-dimensional elasticity by considering thermal effects. Their results showed that if the thermal analysis is
considered, neglecting the amount of €, leads to serious errors, and only the results of the three-dimensional
elasticity theory should be used. Nahvi et al [76] presented three-dimensional elasticity formulation for bending
behavior of FG micro/nanoplates placed on an elastic medium on the basis of a couple stress approach and an
analytical solution. Three-dimensional thermo-elastic solution of a composite plate with a FG core under
thermal shock using Fourier series expansion was investigated by Alibeigloo [77]. Kant et al [78] compared the
three-dimensional elasticity solutions for FG plates. The Pagano’s classical, series expansion, mixed
formulation, state space and semi analytical approaches were compared to one another.

In this paper, it is aimed to three-dimensionally analyze the mechanical behavior of a porous functionally
graded nanoplate under critical stability conditions to have a more accurate model. The governing equations are
derived based on the Eringen’s nonlocal elasticity theory with taking porosities effects into consideration. To
solve the achieved equations, a proposed analytical method is presented by employing some suitable shape
functions. The proposed volume integral is a simple method in contrast to the solution techniques in the
literature. In order to verify the outcomes of the equations, the results of three-dimensional analysis are
compared with results of plate theories. Afterwards, the results of the current analysis are plotted by investigating
several parameters such as power law, porosity factor, thickness to length ratio, nonlocal parameter and aspect
ratio.

2. Mathematical modeling

A rectangular FG nanoplate is shown in figure 1. The development of nanotechnologies extends the field of
application of the classical or non-classical theories of plates. Recently, many theories of nanoscale have been
suggested and various theories of plates are formulated. The classical plate theory (CPT) is inconsistent in the
sense that elements are assumed to remain perpendicular to the mid-plane, yet equilibrium requires that stress
components 0., 0y, still arise (which would cause these elements to deform). The theory of thick plates (higher-
order transverse shear deformation theories (HSDT) or third-order shear deformation theory (TSDT)) are
more appropriate, but they still make the assumption that o, = 0. Note that both are approximations of the
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three-dimensional equations of elasticity. Hence, in this study, by considering changes in thickness of the plate
the three-dimensional elasticity relations are presented. In this regard, general three-dimensional displacement
field can be expressed as [75]:

U,y 2, t) = ulx, y, 2) (1a)
V(x, y,2, 1) = v(x, ¥, 2) (1b)
W(x, y, 2, t) = w(x, ¥, 2) (1¢)

In which u, vand w are the three-dimensional displacement parameters regarding the x, y and z-axis. The three-
dimensional constitutive model is the most general type of material models considered in this paper. The non-
zero stiffness coefficients of the stiffness matrix are defined as follows [75]:

[Qjjuil
[E@(1 -v@)  E@v@E) E@v () 0 0 o |
K K K
E(z)v(2) E(z)(1 — v(2)) E(z)v(2) 0 0 0
K K K
E(@@)v(2) E(2)v(2) E@z)(A - v(2) 0 0 0
B K K K @
0 0 0 __£@ 0 0
2(1 + v(2))
0 0 0 __f@
2(1 + v(2))
| 2(1 + v(2)) |
K=0+v()d - 2v(2) (3)

The material property gradation considering power law in the FG nanoplates is expressed as [74-76]:

E(z) = E,, + (E. — E )(l T f)k (4)
- m c m 2 h

Here E shows the modulus of elasticity, h represent the thickness of the plate before deflection, E. and E,,, are the
Young’s modulus corresponding to ceramic and metal, respectively, and k is volume fraction exponent or
material grading/power law index. Due to insignificant variation of the Poisson’s ratio, this variant is assumed to
be constant along the thickness (¢(z) = v). From equation (4), whenever k — ©0, the FG nanoplate reduces to a
pure metal and for case k = 0, the plate would be a pure ceramic.

According to equation (4) and using a porosity distribution type [79], the physical and mechanical properties
of the FG porous nanoplate is as follows:

1 z\* le’
E(z) = E E. —E)—-+=]| — =(E E
(2) m + (Ec m)(2+h) 2(c+ m) (54)
k
E(Z):Em'i_(Ec_Em)(%—"%) —%(Ec—i-Em)(l—%) (5b)

where v is the porosity distribution factor. Equation (5a) shows evenly distributed porosities (P-I) and
equation (5b) represents unevenly distributed porosities (P-II) [80]. Thereafter, the Lagrangian strains are:

1{Ou;  Ouj  Ouy Ouy ..
i = — + — ) > ) k = X bl 6
61 Z[an 8xi 8xi an b A ( )

where 0 (i = x, y, z) is the static stresses in the plate. Using equation (6) and with considering the von Karmén
assumption the three-dimensional strains field are expressed as follows:
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u 1(3_W)2
Ox 2\ 0x
ov z[a_w]
- dy 2\ 0y
| |ow 1 8_)2
Ezz — 0z 2\ 0z @)
Tz Ou  Ow ( ow )
Y| =+ == 1
Yay 0z  0Ox\O0z
v Ow ( ow )
=+ —=+1
0z Oy\O0z
Ou v, Owdw
dy Ox  Ox Oy
To obtain the total potential energy (V') of the plate, strain energy is added to the potential energy of external
loads as follows [81]:
V=U+Q ®)
where U'is the strain energy as follows:
§U = ff/ NONLOCAL 5 ¢ dV/, i, j = x, y, z )

And Q is the potential energy of external loads neglected in this paper.
Using the principle of minimum total potential energy (6V = 0) the nonlinear three-dimensional governing
equations are obtained in the following equations:

NL
30NL 8030/ 80NL

Su=0: =X 4 + = 10,
! Ox Ay 0z (100)

8O_NL 8O'NL 8O,NL
=0 —2 4+ 2L 4+ ¥ 9 10b
! Ox Oy 0z (105)

NL a NL 6 NL 2
(1 + —) 90y Ow | P9 (1 + a_w) 4 20z 0w | g O ;VZL—a d
Ox 0z Ox dy 0z 0z Oy 0x0z 0y0
O*w O*w O*w 0w ot ow
+oMTT L MO g 2 T (1+—)=0
o T o T ey T a2 T s 0z
(10¢)

In which subscript NL and L denote the quantities for the Nonlocal and Local cases, respectively. The local and
nonlocal stress-displacement relations are defined as [82, 83]:
0? 0? 0?

(a— uvz)o_llj\]ONLOCAL 5OCAL, 1= (ega)?, V2= a + 2 57 + @ (11)

Using equation (11) and substituting it into equation (10), the nonlocal three-dimensional equations with local
stresses are obtained as follows:

dol Doy, dok
90x 4+ 24 99 _ (12a)
Ox Oy 0z

ot ; o
O0x dy 0z
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dok o), dot w0 P . 9w L 0w L 0w
ey + =2+ + o2+ ol T2 4 20l +20L, + 20k,
ox | oy | oz “oxr Doy T g Yoxoy | oxdz | 0y0z

oot ow  dok, ow doy, 0w 0oy, ow oot ow w  Pw 0w
e R e e e R 1 D e e
0z Ox ox 0Oz dy 0z 0z Oy 0z 0Oz ox* oy 07
L 0w L 0w L O*w oL 0w . 0w . 0w Ook ow
x +o +o + 20k +20L, + 20k~ 4 —=
[ “oxr T a2 T Voxay T Foxoz | Foyoz | 0z ox
L 0 0
+8sza_w+ Uyza_W+ O—yza_W+80' aW (12C)
Ox 0z dy 0z 0z Oy 9z 9z
Now by writing the relation of stresses and strains and helping equation (7) the stress field is expressed:
Ox
Tyy
UZZ
Oxz
0yz
O'x},
[E@)(1 -v@)  E@rE) E@2)v(2) 0 0 o |
K K K
E(2)v(z) E(z) (1 — v(z)) E(Z)v(2) 0 0 0
K K K
E@)v(2) E(2)v(z) E((A — v(2)) 0 0 0
B K K K
0 0 0 & 0 0
2(1 + v(2))
2(1 + v(2)
| 2(1 + v(2)) |
[ ou owy |
—+ =
Ox ( Ox )
v + aw
dy ay
oo
x{ % z > (13)
o (o)
0z Ox\0z
o e )
0z oOy\O0z
ou ov), owow
dy  Ox Ox Oy

Due to the fact that the nonlinear terms in equation (13) are very small and there is no need to use them, in
particular in stability analysis; therefore, they should be ignored. On the other hand, substituting equation (13)
into equation (12) and also using the adjacent equilibrium method, the nonlocal three-dimensional equations in
the displacement field are obtained as follows:

_ 2 2 2 2 2 2
E(z)(1 V(z))a_u n E@@)v(z) 0% n E(z) 8_14 n 0% n B_u n o0*w —0 (142)
K Ox? K 0x0y 21 +v@)\dy* 0xdy 0z> 0x0z
2 _ 2 2 2 2 2
E(2)v(z) 0%u + E(2)(1 y(z))ﬂ + E(2) 0%*u + Q + ﬂ + o0*w —0 (14b)
K  0x0y K Iy 200 +v@)\oxdy  Ox* 9z} Oydz
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Table 1. Admissible functions assumed solutions in the directions.

SS-1 SS-11
Displacements X, (%) Y, (y) X, (%) Y, (y) Z,(2)
2

u(x, y, 2) Cos[ Zx Sin n_wy Al cos| X« Sin Ey Z\(2): 2[1 - 4i]

Ly L Ly L, 3h*

0x
. (mm . (mm . 7z

v(x, ¥, 2) S1n( L x) Cos [;_:y] Sm( L x @(COS(%},]] Zy(2): sm(T)

Oy

nm
Sin| —
1n( L y)

Z5(2): cos(%z)

w(x, y, z) Si mm | nm Si mm
in Lxx Sin T y in Lxx

E@) (0w 0w 0% 0w), EQU-v@) W | w0
2(1 + v(2)\Ox0z  Ox*?  0Oydz  Oy? K 0z ¥ Ox? 7 oy?
O*w O*w O*w 0*w O*w O*w
—ployl=— + + +oi| — + =0 14
a (”"(axﬂ ooy | ovozr) N\t T axey | ayer (140

3. Solution methodology

In order to complete the formulation, the stability equations (equation (14)) should be accompanied by a set of
boundary conditions. Therefore, in this paper a type of boundary condition is applied. The type is the simply
supported (S) boundary condition. Below is the case of this boundary condition [72]:

+ Edge Boundary conditions
All edges simply supported (SSSS):

L
, L, 15)

+ Surface Boundary conditions

Since the nanoplate is considered in three dimensions, the surface boundary conditions are defined by:
0,=0,0,=0,0,=0:2z=0, h (16)

To solve the stability equations, a method has been presented in which the responses are assumed to be as
follows:

u(x, y, z) o oo | AmnrXm(x).Y(y).Z,(2)
V(x) Vs Z) - Z Z aner(x)Yn(y)Zr(Z) (17)
w(x, y, 2) == o Xon (%). Y (). 2, (2)

In which X,,,(x) and Y,,(y) are admissible shape functions on the basis of x and y which satisfy the boundary
conditions in equation (15), Z,(z) is the approximate solution in the direction of z-axis. And A,,,,,,, B, and
C,nr are the constant coefficients which should be calculated. Note that the proposed solutions are
approximations of the analytical method for three-dimensional equations. This means that by using the present
solutions, the quasi three-dimensional analytical approaches have been applied. These are simpler than the other
solutions which have been used to solve three-dimensional elasticity equations. In some references, the Navier
solution was used as a three-dimensional exact method [84] which its relations are harder than the current
formulation. The suitable shape functions are proposed in table 1.

Where m and n are the integer numbers. Substituting equation (17) into eqaution (14), a residual in the
algebraic form will be obtained, based on the presented approach, the residual will be calculated by:

[/R(x, Vs 2)Xmn (%, ¥).2,(2)dzdydx =0, m, n=1, 2, 3, ... (18)
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On the basis of equation (18), the system of homogenous algebraic equations will be obtained as:

Kll I<12 I<13 Amnr
Ky Ky Koz |§ Bunr ¢ =0 (19)
K31 K32 K33 Cmnr

where (A, B, C)aretheunknown variables. Also [Kj;] are coefficients of unknown variables which are shown
as follows:

Lx ply chl E(2)(1 — v(2)) 0% X, E(2) 0*X,, 0*X,
Ky = X, X, X, X, "X, X,
! fo fo j; ( K o T +V(z))( ay? "o )]

X XX, X, dzdydx

Ly ply eh(E(z)v(z) E(2) X, o, 5 5
K, = XX, X, 2dzdyd
12 j; j; «/(; ( K + 2(1 4+ v(2)) ) 0xdy e

Lx ply ph E(z) 82er
K = " X X, 2X, dzdyd
" j; f f 2(1 + v(2)) Oxdz e

o e (E@v(z) E(2) O X . 5
Kmffo fo fo( raRT Xon X X, 2dzdydx

+ v(2)) ) 0x0y
Lx rly E(z)(l — v(2)) 9%, E(z) X, %X,
Kzz_f f f ( 82Xer+2(1+y(z))(8x2 Xnde 5 XX))

X XmXn X, dzdydx

Lol oh o E@) %X
Ky = X 2 X, X, dzdyd
» fo f f 2(1 + v(2)) dydz “w

Lx ply ph E(2) aZer
Ky = " X, X, 2X, dzdyd
o fo f f 2(1 + v(2)) 9x0z e

Lx L h 2
Kz, = f f yf E@) 9 X"’erzXandzdydx
0 2(1 + v(2)) OyOz

Lx ply ph E(z2) 0*X,, 0%X, E(z)(1 — v(2)) 0%X,
Kiz = X X, "X Xy XX,
? fo fo fo [2(1 + V(Z))( O0x? * y? * K 2%

X, L 0? X o[ 0*X,, O*X o n 0*Xp
+ ok —X, X, + 0 ol ==X, X, + "X, + L X,
u( ( Ox* Ox*0y? Ox*0z*
0*X 0*X, 0*X
L n m,n n,r
+ 0o ( 8}/4 XX, + a_xza}/zxr + ay28zzxm)]]xmxnxrd2dydx (20)

4. Results and discussions

In this section, several comparisons for some materials and conditions in order to determine the precision of
the proposed analytical solution are carried out. First of all, buckling of uniaxially compressed rectangular
isotropic macro plates is considered while all the edges are simple boundaries. Results are shown from [85] in
which exact three-dimensional theory of elasticity was used in conjunction with differential quadrature and
hyperbolic differential quadrature methods, (DQ) and (HDQ). Moreover, Mindlin plate theory was
accompanied with Pb-Ritz method in [86]. It can be seen that the results decreased with increasing thickness
to length ratio (span ratio). As can be observed, the distance among the results of the current paper and [85]
with those obtained by ref [86] with increasing span ratio is jumped remarkably. However with increasing
aspect ratio these distances have become further smaller and it can be found that plate theories in analyzing
rectangular plates with large length have further accurate results than square ones. This might be because of
shortcoming of plate theories to analyze moderately thick and thick plates which means that assuming
constant thickness after deflection in plate theories can be a serious weakness. Table 2 is similar to previous
table, but here the results are verified with biaxial buckling of the plate. It is worth noting that within biaxial
analysis, the deviation of the Mindlin plate theory is lesser in contrast to table 1 and then also the results of
present paper are closer to [85] against former table. Another comparison is taken into consideration with
[87]and [88] in which equations of first-order shear deformation theory (FSDT) were solved with DQ and
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Table 2. Comparison of buckling factors, A = N, Ly ?h/7?D (D = Eh*/12(1-17%)), of the uniaxially compressed rectangular plates.

Thickness to width ratio, h/Ly

0.05 0.10 0.15
Boundary Aspect ratio (Lx/Ly) Grid [85]3D, [86] Mindlin, Pb-Ritz [85]3D, [86] Mindlin, Pb-Ritz [85]3D, [86] Mindlin, Pb-Ritz
conditions size, X X Y X Z HDQDQ method Present, 3D HDQDQ method Present, 3D HDQDQ method Present, 3D
SSSS 0.5 5.8107 6.0346 6.0204 5.3002 5.4693 5.3529 8.2533 4.7305 4.5607
5.9899 5.3412 4.5530
1.0 3.6387 3.9437 3.9575 3.6709 3.7839 3.7683 3.4382 3.5446 3.4725
3.9314 3.7412 3.4676
1.5 4.0103 4.2559 4.2120 3.9075 4.0214 3.9369 3.5606 3.6831 3.5520
4.2375 3.9613 3.5827

*“The results for HDQ and DQ are in convergence values.
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then Mindlin plate theory were calculated with Pb-Ritz method, respectively. This table confirms this fact
that when the plate is thicker, three-dimensional elasticity outcomes are farther than those results obtained
by various plate theories. Additionally, to have more validation, table 5 is presented. In this table, a simply-
supported square FG plate is considered. In other words, other than macro plates shown in tables 2 to 4, it is
required to compare the results of current work with a FG plate. Again [87] is employed besides [89] within
which the equations of an approximate plate theory were solved by Navier approach. When k = 0, present
research and other references are in greatest difference to one another. It shows that by an increase in power
law index, the results are in a good agreement, not only for present research, even for [89]. This needs to
further consideration, for which tables 6 and 7 are demonstrated. It should be noted that the results of

h/L, = 0.2 are farther for three cases in contrast to i/L, = 0.1.Intable 6, a FG plate is analyzed by
incorporating higher-order transverse shear deformation plate theory (HSDT) and solving with Levy [90]
and also Navier [91] solution methods. Undoubtedly, one of the appropriate plate theories for evaluating
moderately thick and thick plates can be HSDT applied in many papers over the past two decades. Fork = 1,
results are more satisfactorily acceptable with those references, however by decreasing this index, the values
are found to be in a high percent difference from present paper to results given by [90, 91]. As a matter of
fact, if the plate is thicker, the grading factor is more effective and makes the further distances in results of
various solutions. It is worth mentioning that by using HSDT and increasing power law index the results
originated from [90, 91] are becoming closer to each other in table 6, and by using thicker plates, the results of
[87-89] are getting farther to each other in table 5. On the other hand, these effects are steady for present
equations with HSDT which leads to closing results by an increase in k. This proves that the plate theories
(CPT, FSDT, etc) cannot exactly predict the responses of thick and even moderately thick plates and it is
better to use thick plate theories such as HSDT and TSDT. Finally, all of these harvests can be confirmed by
the last one table. In table 7 the third-order shear deformation theory (TSDT) was applied [16] which is an
accurate thick plate theory. It is obvious that the results lead to further matching with increasing material
grading index and also length to thickness ratio. This conclusion is seen reversely in table 5 for plate theories
which means that in thick plates, the thick plate theories such as HSDT, TSDT and etc can be fit ones in
contrast to plate theories.

Tables Quantities

tables 2 E = 210 GPa,v = 0.3[85] E = 210 GPa,v = 0.3,k; = 5/6 [86]E = 210 GPa,v = 0.3,k = 0, « = 0 [Present]
&3
table 4 E =3 x10%v = 0.3,k = 5/6,5555[87,88]E = 3 x 10 v = 0.3,k = 0, = 0, SSSS [Present]
table 5 E,, = 70 GPa,E. = 380 GPa,v = 0.3,k, = 5/6 [87] E,, = 70 GPa, E. = 380 GPa,v = 0.3 [89]E,, = 70 GPa, E. = 380 GPa,
v = 0.3, = 0[Present]
table 6 E, = 70 GPa,E. = 420 GPa,v = 0.3, h/L, = 0.1[90,91] E,, = 70 GPa, E. = 420 GPa,v = 0.3, &« = 0, h/L, = 0.1 [Present]
table 7 E,, = 70 GPa, E. = 380 GPa,v = 0.3,[16] E,, = 70 GPa, E. = 380 GPa,v = 0.3, « = 0 [Present]

In order to obtain the outcomes and various conditions, the nondimensional critical buckling load is defined
as A\, = N,/E_ h, and table 8 is employed to achieve this purpose.

Figures 2(a) and (b) show the accuracy of the proposed solution functions for thickness variations
with change in nonlocal parameter (figure 2(a)) and porosity factor (figure 2(b)). It can be seen that by
increasing nonlocal parameter the outcomes of the functions are decreased remarkably and reached
to one another. In other words, for high values of small-scale parameter the proposed functions are
more appropriate than lower values of ones. Furthermore, by investigation of figure 2(b), it is seen that for
various values of porosity factor the presented functions are suitable ones and there is no difference in the
results.

To investigate both porosity cases and also both analytic approaches, figures 3(a) and (b) are
considered whilst the thickness to length ratio is the changeable factor. In the first figure, by comparing
three states; evenly porosity (P-I), unevenly porosity (P-II) and non-porosity (prefect) FG nanoplates, it is
clear that when the plate has unevenly and miscellaneous cavities in its volume the plate’s critical buckling
loads are noticeably nearer to prefect plates. Asarule, in such a condition we can ignore porosity in
analyzing of stability of FGMs. It also demonstrates that by increasing the span ratio (h/L,), all of the states
are getting closer and closer to one another. It can be concluded that in large values of span ratio, there
is no need to analyze porosity in buckling of moderately thick and thick plates. In fact, porosity in this
condition is not an important factor. From figure 3(b) it is depicted that both analytical solutions are in an
excellent agreement and there is no difference between their results. Although the increase of the span
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Table 3. Comparison of buckling factors, A\ = N,Ly*h/m*D of the biaxially compressed rectangular plates.

Thickness to width ratio, h/Ly

0.05 0.10 0.15
Boundary Aspect ratio (Lx/Ly) Grid [85]3D, [86] Mindlin, Pb-Ritz [85]3D, [86] Mindlin, Pb-Ritz [85]3D, [86] Mindlin, Pb-Ritz
conditions size, X X Y X Z HDQDQ method Present, 3D HDQDQ method Present, 3D HDQDQ method Present, 3D
SSSS 0.5 4.6486 4.8277 4.7731 4.2402 4.3754 4.2849 3.6294 3.7844 3.6101
4.7919 4.2729 3.6298
1.0 1.8194 1.9719 1.9787 1.8355 1.8920 1.8639 1.7191 1.7723 1.7363
1.9657 1.8706 1.7338
1.5 1.2795 1.4297 1.4231 1.3398 1.3872 1.3620 1.2843 1.3218 1.2949
1.4265 1.3755 1.2994

*“The results for HDQ and DQ are in convergence values.
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Table 4. Comparison study of the critical buckling load parameter

(A = N,Ly*/m°D) of isotropic square plate under uniaxial load.

h/L.
References 0.05 0.1 0.2
[87], FSDT-DQ 3.9444 3.7865 3.2637
[88], Mindlin, Pb-Ritz method 3.944 3.786 3.264
Present- Z, (z) 3.9061 3.7060 3.0929

M Malikan et al

Table 5. Comparison study of the critical buckling load parameter (A = N,/E.h) for simply-supported square Al/Al,O; FG plate under

uniaxial load.
h/L, = 0.1 h/L, = 0.2
References k=0 k=05 k=1 k=4 k=0 k=05 k=1 k=4
[87], FSDT-DQM 0.034 22 0.022 33 0.017 23 0.011 63 0.1180 0.078 10 0.060 66 0.040 23
[88], Navier 0.033 81 0.02214 0.01698 0.01131 0.1140 0.075 71 0.058 26 0.037 21
Present- Z,(z) 0.034 02 0.022 44 0.017 12 0.011 42 0.1206 0.077 65 0.060 25 0.041 67
Table 6. Comparison of critical buckling loads (MN/m) for the FG plates with all edges simply-
supported boundary conditions.
k=0 k=1
Li/L, L/L,
References Loading 1 1.5 1 1.5
[90], HSDT-Levy solution Uniaxial 1437.361 1527.903 702.304 748.920
Biaxial 718.692 526.861 351.124 256.776
[91], HSDT-Navier solution Uniaxial 1431.594 1519.588 700.068 745.801
Biaxial 715.808 525.308 350.034 256.194
Present- Z,(z) Uniaxial 1447.6 1536.733 705.34 747.476
Biaxial 723.797 530.629 349.67 256.189
Table 7. Comparison of nondimensional critical buckling loads (A = N,L2/E,,h°) for square FG plates with all edges simply-
supported boundary conditions.
k
References Loading L.,/h 0 0.5 1 2 5 10
[16], TSDT-Levy solution Uniaxial 5 16.0211 10.6254 8.2245 6.3432 7.5778 4.4807
10 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528
20 19.3528 12.5668 9.6675 7.5371 6.3448 5.7668
100 19.6145 12.7158 9.7775 7.6293 6.4507 5.8752
Biaxial 5 8.0105 5.3127 4.1122 3.1716 2.5265 2.2403
10 9.2893 6.0615 4.6695 3.6315 3.0177 2.7264
20 9.6764 6.2834 4.8337 3.7686 3.1724 2.8834
100 9.8073 6.3579 4.8888 3.8147 3.2254 2.9376
Present- Z,(z) Uniaxial 5 16.1172 10.6838 8.2656 6.3685 7.6043 4.4896
10 18.6528 12.1653 9.3671 7.2776 6.0443 5.4582
20 19.3915 12.5856 9.6771 7.5431 6.3492 5.7696
100 19.6243 12.7208 9.7804 7.6308 6.4516 5.8753
Biaxial 5 8.0345 5.3259 4.1204 3.1763 2.5297 2.2425
10 9.3078 6.0718 4.6765 3.6351 3.0201 2.7277
20 9.6860 6.2877 4.8366 3.7701 3.1733 2.8839
100 9.8082 6.3584 4.8890 3.8148 3.2255 2.9376
12
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Figure 2. (a) Material grading index versus small-scale effects (L/L, = 1,h/L, = 0.2, = 0.1,k = 2, P-I, SS-Il m = n = 1).
(b) Variation of evenly porosity factor versus material grading index (L,/L, = 1,h/L, = 0.1,e0a = 0.01 nm,k = 0,P-l, m = n = 2,
SS-1I).

Table 8. Material properties of the FG porous nanoplate used in this paper as follows:.

Material Elastic properties

FG porous nanoplates (v = 0.3) [92-94] Porous metal; stainless steel-grade 304 (SUS304) E,, = 201.04 GPa
Nano-oxide ceramic; silicon nitride (SizNy) E. = 310 GPa

ratio shows that in high amounts of it, there is no need to consider the nanoplate asa FGM due to equaling
results of FGM and non-FGM, this might not be a sensible conclusion in physical interpretation.

Variation of nonlocal parameter for both analytical solutions versus grading index (figure 4(a)) and
porosities (figure 4(b)) has been plotted. In both figures the analytical solutions are completely corresponded to
each other. Although the figures represent that by increasing nonlocal parameter the results of various cases have
become closer to one another, the significant harvest can be the impact of small-scale parameter on the results of
critical buckling loads of the FG nanoplate. Because, low values of this parameter decrease the buckling loads

remarkably.

13


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

10P Publishing

Mater. Res. Express 5 (2018) 095006 M Malikan et al

170
160
150
140
130
120 —_—— P-|, a=0.2
110
100 =—tr—P-Il, a=0.2

—o—a=0

58388

888

10 s A A
0 1 1 1 1 1 el i . -t
005 01 015 02 025 03 035 04 045 0.5

Y. %8

.‘.

(a)

170 |

160
150 =551, k=0

140 — 551, k=4
130
120 A S5-I, k=0

110
100 O S5-I, k=4

90
80
70
60
50
40
30

20
10
0

005 01 015 02 025 03 035 04 045 05
WL

(b)

Figure 3. (a) Porosity variation versus thickness to length ratio (L,/L, = 2,epa = 0.02 nm, k = 1,SS-Il,m = n = 1, Z,(2)).
(b) Material grading index versus thickness to length ratio (L./L, = 2,epa = 0.02 nm, o = 0.1, P-Il, m = n = 1, Z(2)).

To further examine the porosities, figure 5(a) is shown for evenly porosity and figure 5(b) is revealed for
unevenly porosity which both are considered for same grading indexes. In the first observation, it can be
evident that the evenly porosity is further impressive for the FG nanoplate in light of the slope of curves on the
diagrams. In fact, the decrease of buckling loads by using evenly porosity is much more than decrease of
buckling loads by applying unevenly porosity parameter. It can be stated that the use of the evenly porosity
leads to a softer plate. In addition, it is clearly seen that k factor has not influenced on the porosities. Since the
distances between the curves of various power law index in both figures are intensively similar to each other.
By more examining, it is deduced that results of critical buckling loads decreased linearly with an increase in
porosities.

Figures 6(a) and (b) show variation of material grading index versus evenly porosity and half-waves,
respectively. It can be seen from figure 6(a) that the increase of grading index decreases critical buckling loads
nonlinearly. However, after k = 4, this decreasing trend has more intensity and finally for k — oo which the
FG nanoplate is converted to fully metal, the results of critical buckling loads would be smaller. This
nonlinear trend is accompanied with linear decreasing trend of porosity in figure 6(c). In this figure, in the
right section the changes in porosity and in the left section the variation of grading index are illustrated.
According to this three-dimensional figure, it can be deduced that the lowest buckling loads when
0.2 < a < 0.6 and k = 5 occurs. Moreover, a comparison between results of half-waves is presented by
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Figure 4. (a) Material grading index versus small-scale effects (L/L, = 1,h/L, = 0.2,a = 0.1, P-I,m = n = 1, Z,(2)). (b) Porosities
versus small-scale effects (L/L, = 1,h/L, = 0.2,k = l,a = 0.1,m = n = 1,Z,(2)).

figure 6(b) within which both type of porosities are considered. It is indicated that for lower half-waves the
decreasing trend of buckling loads which resulted from increasing grading index is slower than higher half-
waves. It can be seen after a specific value of k, the results of various half-waves tend to be equal to one
another.

By utilizing figure 7 the changes in aspect ratio (L,/L,) in the right section and also span ratio (h/L,) in the left
section of figure are shown. The increase of aspect ratio leads to growing the resistance of the FG nanoplate
linearly, however, the span ratio is a more important factor due to its very smaller values.

5. Conclusions

The constitutive equations for a porous functionally graded material were derived in Cartesian coordinate
system using three-dimensional elasticity theory. The governing equations were in a nonlocal form by using
nonlocal elasticity theory of Eringen. In order for results to be obtained, the nonlocal governing equations were
solved with the volume integral methods in which some shape functions were assumed. After comparing the
results of the present solution with other research results, the excellent agreements were observed. Thereafter,

15


http://mostwiedzy.pl

/\_/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

A

I0OP Publishing Mater. Res. Express 5 (2018) 095006 M Malikan et al

18
Ac
0 1 1 i 1 1 1 i ' i
0 01 02 03 04 05 06 07 08 09 1
a
(a)
18
10
A
8 —— k=0
6 —0O—k=1
4 —tr—k=2
2
0 i ' i i i i i L i
0 01 02 03 04 05 06 07 08 09 1
a
Figure 5. (a) Variation of evenly porosity factor versus material grading index (L./L, = 1,h/L, = 0.1,e0a = 0.01 nm, P-I,
m = n = 2,Z,(2), SS-II). (b) Variation of unevenly porosity factor versus material grading index (L,/L, = 1,h/L, = 0.1,
eoa = 0.01 nm, P-Il,m = n = 2,Z,(2), SS-1I).

with utilizing some significant parameters the diagrams were plotted within which some noticeable conclusions
are presented as follows:

+  Even porosity made plates softer and results of uneven porosity are so close to the prefect material which led
to this considerable conclusion that porosity as an uneven distribution cannot be important in order to
implement it in the equations.

+ The drastic influence of three-dimensional nonlocal parameter on the critical buckling analysis of FG
nanoplate proved that this parameter plays a determinative role to examine mechanical behavior of porous
FG nanoplates.
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Figure 6. (a) Material grading index versus porosity factor variation (Ly/L, = 1,h/L, = 0.1,epa = 0.01 nm, P-I m = n = 2, Z(2),

SS-II). (b) Material grading index versus porosity factors (L,/L, = 1,h/L, = 0.1, = 0.25, P-I, ega = 0.01 nm, Z,(2), SS-II).
(c) Material grading index versus porosity factors (Lx/Ly = 1,h/Lx = 0.1, epa = 0.01 nm, Z,(2), P-I, m = n = 2, SS-II).
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