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Bell’s theorem is a conflict of mathematical predictions formulated within an infinite hierarchy of
mathematical models. Inequalities formulated at level k ∈ Z are violated by probabilities at level k+1.
We are inclined to think that k = 0 corresponds to the classical world, while k = 1 — to the quantum
one. However, as the k = 0 inequalities are violated by k = 1 probabilities, the same relation holds
between k = 1 inequalities violated by k = 2 probabilities, k = −1 inequalities violated by k = 0
probabilities, and so forth. By accepting the logic of the Bell theorem, can we prove by induction that
nothing exists?
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1. Introduction

Is Bell’s theorem a mathematical theorem? If we
treat Bell’s theorem [1] as a theorem about the ad-
ditivity of Lebesgue measures, then yes — this is a
mathematical theorem. However, Bell’s theorem is
more ambitious. It tells us about reality per se, the
security of communication channels, the structure
of space and time, and even the freedom of experi-
mental physicists.

Although mathematical theorems cannot have
counterexamples, this is not necessarily true for the-
orems about physical reality. The whole history of
science is a series of exceptions to various well-
established truths.

One such famous truth about reality was known
as Euclid’s fifth axiom, which essentially states that
angles in any triangle add up to 180◦. It was so self-
evident to 19th-century mathematicians that even
Gauss himself was not eager to publish his thoughts
on the subject.

Bell’s theorem is technically based on an-
other apparently self-evident truth about additivity,
namely∫

Λ

dλ (f ± g)(λ) =

∫
Λ

dλ f(λ)±
∫
Λ

dλ g(λ).
(1)

In proofs of Bell-type inequalities, one often re-
places (1) with a more elementary rule,

n±m
N

=
n

N
± m

N
. (2)

Thus, (1) occurs in contexts of probability mea-
sures, while (2) is typical of frequentist approaches.

However, neither (1) nor (2) are universally true;
(1) fails for fuzzy or fractal functions; (2) fails if
n, m, represent velocities and N is the velocity of
light. In the latter case, what we get is rather

n⊕m = N tanh

(
tanh−1

( n
N

)
+ tanh−1

(m
N

))
=

f−1
(
f(n) + f(m)

)
. (3)

Of course, nothing can prevent us from adding ve-
locities by means of (2), but this is not what Nature
does. The arithmetic of Nature is (3). A relation be-
tween ⊕ and + is here analogous to the one between
a curvature of a general manifold and the flatness
of its local chart of coordinates (charts in atlases
are flat). Arithmetic in special relativity becomes
as physical as geometry in general relativity.

A similar situation occurs with (1). In fuzzy and
fractal applications, one often encounters [2–12]∫

Λ

dλ f(λ)⊕
∫
Λ

dλ g(λ) =

∫
Λ

dλ (f ⊕ g)(λ).
(4)
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The exact meaning of ⊕ depends on the way fuzzy
sets are constructed [13] or which fractals one is
dealing with [14]. A particular example of (4) oc-
curs in Maslov’s idempotent analysis [15, 16]. Here,
certain optimization problems that are nonlinear in
the usual framework become linear with respect to
generalized arithmetic operations [17], even though
the generalized arithmetic is not isomorphic to the
one of R [18].

The goal of the paper is to show that quantum
probabilities typical of a two-particle singlet state
(that is, those used by Bell in his argumentation),
despite all the wisdom of theoretical physicists, can
result from a local theory where Einstein–Podolsky–
Rosen-type (EPR) elements of reality exist [19–21],
with probabilities given by local realistic Clauser–
Horne formulas [22], where observers have free will,
and their detectors are 100% efficient. The only dif-
ference is in the form of the integral, whose linearity
is with respect to ⊕, 	, �, and � appropriately de-
fined.

Violation of Bell-type inequalities is then no more
paradoxical than c+c = 2c, which could be claimed
to violate the speed of light limit. Moreover, there
is no problem with circumventing the Tsirelson
bounds typical of Hilbert-space models of proba-
bility [23], still maintaining Bell locality, EPR ele-
ments of reality, the free will of observers, and 100%
efficient detectors.

I can reassure the readers that the models we
are analyzing are not an alternative to quantum
mechanics. They do not explain why probability
amplitudes interfere, but, nevertheless, shift the
discussion of linearity to new, unexplored areas.
The status of theorems based on algebraic proper-
ties of observables, such as the Greenberger–Horne–
Zeilinger theorem [24, 25] or its single-particle
analogs [26], is still open.

But what the models do show is that quantum
correlations of an EPR type do not necessarily
exclude EPR elements of reality — a conclusion
with potentially dramatic implications for quantum
cryptography. How serious the consequences are, re-
mains to be investigated. Einstein’s views on incom-
pleteness of quantum mechanics receive unexpected
support.

We will begin our discussion with the observation
that principles of relativity are more general and
ubiquitous than Einstein’s relativity of uniform mo-
tion or Copernican relativity of point of observation.
The most fundamental principle occurring in all
natural sciences is the relativity of arithmetic [27].
It implies, in particular, principles of the relativity
of calculus and the relativity of probability. Both
are essential for Bell’s theorem.

2. Relativity of probability

Relativity of probability occurs at several levels.
The most obvious one is illustrated by the following

example. It can be regarded as a particular case of
Einstein’s special relativity.

Assume a source emits particles to the right or
to the left, with certain probability density ρ(v) of
velocities. If N particles have been emitted, let N+

denote the number of particles propagating to the
right. An observer measures N+/N and compares it
with the theoretical prediction, p+ =

∫∞
0

dv ρ(v).
An observer that moves with velocity V with re-

spect to the previous one will measure a different
value of N+/N , even though both of them analyze
the same experiment with the same N .

The example is trivial, but it illustrates an im-
portant fact about probability — different observers
may associate different probabilities with the same
experimental situation and with the same definition
of elementary events. In this concrete example, the
relativity of probability, p+(V ) =

∫∞
0

dv ρ(v + V ),
results from the relativity of motion.

As a less trivial relativistic example, consider the
gravitational collapse of a star. There are two ob-
servers: Alice, who falls with the star, and Bob, who
remains at rest at position r. Alice employs a broken
clock that randomly fails to work (which happens
with probability p0). The motion of the clock’s hand
becomes a Poisson process characterized by proba-
bility p1 = 1− p0 of a forward move.

A single run of experiment lasts a fixed amount
τ of the observer’s proper time. Alice measures
N = bτ/∆τc bits A1, . . . , AN (N1 events Aj=1
when the clock’s hand moves; N0 = N−N1 events
Aj=0 when it gets stuck). The average amount of
proper time measured by the Alice’s damaged clock
is p1τ .

The experimental ratio N1/N observed by Alice
gets translated into Ñ1/Ñ observed by Bob. In gen-
eral, Ñ1 6= N1 and Ñ 6= N because the numbers of
observed events differ for Alice and Bob due to the
relativity of time and the presence of the horizon.
The events observed by Alice after she crosses the
Schwarzschild radius at her proper time τS will be
unavailable to Bob, even though his detectors are
100% efficient.

Bob should cautiously draw conclusions about N1

and N on the basis of Ñ1 and Ñ he observes. For
example, if he concludes that τS is greater than τ
because, from his perspective, Alice cannot reach
the Schwarzschild radius, this inequality can be “vi-
olated” in the world of Alice.

Bob can derive various inequalities about the
data of Alice, provided he knows the map gr that
relates her N1/N with his

Ñ1

Ñ
= gr

(N1

N

)
. (5)

The exact form of gr is irrelevant to our argument,
but it could be derived on the basis of general rela-
tivity if needed.

From our perspective, it is important that gr
connects two real probabilistic processes. Both
N1/N and gr(N1/N) are true, physically significant
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probabilities. The “violation” of Bob’s world τS > τ
by Alice’s world τS < τ is paradoxical only for those
who do not understand Einstein’s theory of gravity.

3. A lemma on relativity of binary
probabilities

For binary events, there exists a simple result
guaranteeing that both N1/N and g(N1/N) are
probabilities.

Lemma 1: g(p) + g(1− p) = 1 for any p ∈ [0, 1], if
and only if

g(p) = 1
2 + h

(
p− 1

2

)
, (6)

where h(−x) = −h(x). Any such g has a fixed point
at p = 1

2 .
So, any antisymmetric h(x) leads to an acceptable

g(p). The proof can be found in [28]. For a discussion
of non-binary probabilities, see [29].

As an example, consider the antisymmetric func-
tion

h(x) =
1

2
sin(πx). (7)

Then g(p) = sin2(π2 p), and indeed

g(p) + g(1−p) = sin2
(π

2
p
)

+ cos2
(π

2
p
)

= 1

(8)
for any p. Now let p = (π− θ)/π be the probability
of finding a point belonging to the overlap of two
half-circles rotated by θ. Then

g(p) = sin2

(
π

2

π − θ
π

)
= cos2

(
θ

2

)
(9)

is the Malus law for spin 1/2 (or Mach–Zehnder in-
terferometers).

Note that g is one-to-one on [0, 1]. Moreover,
g(0) = 0 and g(1) = 1 — a property with impor-
tant implications for the definition of bits: classical,
quantum, and intermediate.

The readers should think of p and p̃ = g(p) in cat-
egories similar to those that have led us to (5). Both
p and p̃ can be physically meaningful. We should be
as cautious as Bob in formulating statements about
the level of p on the basis of the rules that apply to
the level of p̃.

4. Arithmetic elements of reality

Consider some set X and a bijection fX : X→ R.
Cardinality of X must be the same as the one of R.
The inverse map is gX = f−1

X , gX : R→ X. The map
g from the previous section can be an example of gR
restricted to [0, 1]. To put it differently, the bijection
g : [0, 1] → [0, 1] can be extended to a bijection
gR : R → R, satisfying gR(p) = sin2(π2 p) = g(p)
when restricted to p ∈ [0, 1].

We define arithmetic operations in X,
x⊕X y = gX

(
fX(x) + fX(y)

)
, (10)

x	X y = gX
(
fX(x)− fX(y)

)
, (11)

x�X y = gX
(
fX(x) · fX(y)

)
, (12)

x�X y = gX
(
fX(x)

/
fX(y)

)
. (13)

The arithmetic given by (10)–(13) is called projec-
tive [12, 30]. Here fX defines an isomorphism of
arithmetics. The neutral elements, 0X = gX(0) (pro-
jective zero in X), 1X = gX(1) (projective one in X)
are to some extent analogous to qubits [29, 31].

Indeed, expressions such as 0X+0Y are, in general,
meaningless if X 6= Y. Just think of X = R and
Y = R2. Even if X = Y and 0X = 0Y = 0, 1X =
1Y = 1, the projective bits can be as incompatible
as eigenvalues of non-commuting projectors.

However, in spite of this incompatibility,
0X = gX(0) and 0Y = gY(0) are images of the same
0 ∈ R. This “ordinary zero” can play the role of
an EPR-type element of reality for 0X and 0Y, i.e.,
incompatible projective bits can be correlated by
means of their elements of reality, in exact anal-
ogy to the formulas postulated by Bell in his classic
analysis.

Note that (3) is an example of (10). The neu-
tral elements are 0X = N tanh(0) = 0, 1X =
N tanh(1) = 0.76N (hence velocity 0.76 c is the neu-
tral element of special relativistic multiplication).
The velocity of light is literally infinite, of course
in the sense of ∞X = N tanh(∞) = N . The case
c⊕c = c is an example of∞X⊕X∞X =∞X. Strictly
speaking, a relativistic unit of velocity is not c but
c tanh(1).

5. Clauser–Horne formulas for
projective bits

We are interested in singlet-state probabilities,
P01

= P11
= P02

= P12
=

〈ψ|P̂01
⊗ I|ψ〉 = 〈ψ|P̂11

⊗ I|ψ〉 =

〈ψ|I ⊗ P̂02
|ψ〉 = 〈ψ|I ⊗ P̂12

|ψ〉 =
1

2
(14)

with joint probabilities,
P0102

=P1112
=〈ψ|P̂01

⊗P̂02
|ψ〉=〈ψ|P̂11

⊗P̂12
|ψ〉=

1

2
sin2

(
α−β

2

)
, (15)

P0112
=P1102

=〈ψ|P̂01
⊗P̂12

|ψ〉=〈ψ|P̂11
⊗P̂02

|ψ〉=

1

2
cos2

(
α−β

2

)
. (16)

We will write them in a Clauser–Horne form [12]

PA1A2
=

∫
Dx χA1

(x)�X χA2
(x)�X ρ(x), (17)

PA =

∫
Dx χA(x)�X ρ(x) =

1

2
, (18)

where the χs are characteristic functions and
ρ(x) ≥ 0 is a non-negative probability density
normalized to 1,∫

Dx ρ(x) = 1. (19)
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Of course, the trick is to work with appropriate
forms of the integral and employ the freedom avail-
able in possible meanings of �X and ⊕X. We will
assume X = R, and gX(0) = 0, gX(1) = 1. The latter
two conditions imply that the values of projective
bits will be given by ordinary 0 and 1.

Formulas (17) and (18) implicitly imply that mea-
surements are modeled in the usual way by the
products of ρ(x) with characteristic functions,

ρ(x) 7→ χA(x)�X ρ(x), (20)

ρ(x) 7→ χA∩B(x)�X ρ(x) =

χA(x)�X χB(x)�X ρ(x), (21)

and so forth. If A′ denotes the set-theoretic comple-
tion of set A, then

χA(x)⊕X χA′(x) = 1, (22)

1	X χA(x) = χA′(x), (23)

χA(x)�X χA′(x) = 0, (24)

χA(x)�X χA(x) = χA(x), (25)

χA′(x)�X χA′(x) = χA′(x). (26)

The probabilities must add up to 1 in an ordinary
way,

P0102
+ P0112

+ P1102
+ P1112

= 1, (27)
because this is how experimentalists will use them.

On the other hand, the integral can be additive in
a more general sense of (4), similarly to fuzzy, frac-
tal, or idempotent integrals. A dual form of normal-
ization will be a consequence of such a generalized
linearity,

P0102
⊕X P0112

⊕X P1102
⊕X P1112

= 1. (28)

Note that (27) and (28) must hold simultaneously
for any PA1A2 , a condition, which is not entirely
trivial, but whose solution exists.

The choice of arithmetic will naturally define the
integral occurring in (17)–(18). Historically the first
construction of calculus based on projective arith-
metic was given by Grossman and Katz in their 1972
book Non-Newtonian Calculus [32]†1.

Bell published his paper in 1964.

†1Grossman and Katz had worked on the problem since
the late 1960s, but their little book, as well as its two se-
quels [33, 34], went practically unnoticed by both mathe-
maticians and physicists. The main idea was rediscovered by
Endre Pap and published in 1993 in a local journal of Novi
Sad University [35]. Over the next two decades, the formal-
ism developed by Pap matured into a whole new branch of
applied mathematics (see [9, 10, 36]). The so-called Fα cal-
culus on fractals [37–39] can be regarded as a special case of
non-Newtonian calculus. The same can be said of Maslov’s
idempotent analysis [15, 16]. In 2014, the ideas of Grossman,
Katz, and Pap were once again rediscovered by myself [27]
and led to nontrivial applications in physics, just to men-
tion wave equations on Koch curves (a long-standing prob-
lem of fractal analysis) [40], elements of Fourier analysis on
arbitrary Cantor sets (circumventing a no-go theorem about
Fourier transforms on the triadic Cantor set) [11], or the
issues of dark energy and matter [41, 42]. The problem of

6. Non-Newtonian Calculus

We need an integral because Clauser–Horne for-
mulas involve integration. In fuzzy or fractal ap-
plications, the usual strategy would be to define
some measure on a fractal or fuzzy set, and only
then start worrying whether the resulting integral
is consistent with derivatives, typically defined by
means of a completely different procedure than the
one that has led to the integral. In effect, the fun-
damental theorem of calculus often becomes prob-
lematic [13].

The approach that starts with arithmetic is much
more systematic. First, one defines a derivative by
means of a formula which is a straightforward gen-
eralization of

dF (x)

dx
= lim
δ→0

F (x+ δ)− F (x)

δ
. (29)

Then one demands that the integral be related to
the derivative by means of the fundamental theo-
rem of calculus. The notion of measure appears au-
tomatically at the very end, once we know how to
integrate. Knowing the measure, we know how to
define probability.

The non-Newtonian derivative of a function
F :X → Y depends on the arithmetics of X and
Y. Denoting δX = gX(δ), δY = gY(δ), one defines

DF (x)

Dx
= lim
δ→0

(
F (x⊕X δX)	Y F (x)

)
�Y δY,

(30)

whose more practical form reads

DF (x)

Dx
= gY

(
dF̃
(
fX(x)

)
dfX(x)

)
. (31)

The argument of gY in (31) is the (Newtonian)
derivative (29) of F̃ defined by the commutative
diagram

X F−→ Y
fX

y xgY
R F̃−→ R

. (32)

Although (31) makes non-Newtonian differentiation
as simple as the Newtonian one, (30) reveals the
logical structure behind the derivative. For exam-
ple, it explains why we find the generalized form of
additivity

D
(
F (x)⊕Y G(x)

)
Dx

=
DF (x)

Dx
⊕Y

DG(x)

Dx
(33)

and the generalized Leibniz rule

Bell’s theorem was reformulated from a non-Newtonian per-
spective in a series of four papers [28, 29, 31, 43]. The version
of non-Newtonian formalism introduced in [27] is based on
the weakest assumptions and thus is the most general and
flexible so far, at least in my opinion. A review of the for-
malism can be found in [12].
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D
(
F (x)�Y G(x)

)
Dx

=

DF (x)

Dx
�Y G(x)⊕Y F (x)�Y

DG(x)

Dx
. (34)

To define a non-Newtonian integral
∫ b
a

Dx F (x), we
demand its consistency with the derivatives (two
fundamental theorems of calculus)

b∫
a

Dx
DF (x)

Dx
= F (b)	Y F (a), (35)

and

D

Dx

x∫
a

Dy F (y) = F (x). (36)

The result is
b∫
a

Dx F (x) = gY

 fX(b)∫
fX(a)

dr F̃ (r)

 . (37)

The argument of gY in (37) is the (Newtonian, hence
Lebesgue, Riemann, etc.) integral of F̃ defined by
the commutative diagram (32). Such an integral in-
herits additivity,
b∫
a

Dx F (x)⊕Y G(x) =

b∫
a

Dx F (x)⊕Y

b∫
a

Dx G(x),

(38)
and one-homogeneity (for a constant F ),

b∫
a

Dx F �Y G(x) = F �Y

b∫
a

Dx G(x), (39)

from the arithmetic that defines the derivative.
It should be now rather clear why non-Newtonian

hidden-variable models lead to Bell-type inequali-
ties of basically the usual form, but with the ordi-
nary plus, minus, times, and divided replaced by ⊕,
	, �, and �.

If one takes this subtlety into account, then quan-
tum mechanical singlet-state probabilities will not
violate the Bell inequality — not the one that can
be derived for the hidden-variable model.

7. Singlet-state probabilities

It remains to construct the projective arithmetic
(10)–(13) that implies (14)–(18) by means of the
corresponding non-Newtonian integral (37). First,
gX will be constructed via an intermediate g, whose
properties are described by the following conse-
quence of Lemma 1.

Lemma 2: Consider four joint probabilities p0102
,

p1112
, p0112

, p1102
, satisfying∑

AB

pAB = 1, (40)∑
A

pAA2
=
∑
A

pA1A = 1
2 . (41)

A sufficient condition for∑
AB

G(pAB) = 1, (42)

for any pAB satisfying (40), (41), is given by
G(p) = 1

2g(2p), where g satisfies Lemma 1. Any such
G has a fixed point at p = 1/4.

The proof can be found in [43].
Guided by Lemmas 1 and 2, we take X = R and

define (Fig. 1),

gX(x) =
n

2
+

1

2
sin2

(
πx− πn

2

)
, (43)

fX(x) =
n

2
+

1

π
arcsin

√
2x− n, (44)

for 1
2n ≤ x ≤ 1

2 (n + 1), n ∈ Z (for more de-
tails, see [26]). Function (43) is, up to the rescaling
g(p) 7→ 1

2g(2p) required by Lemma 2, the one we
have used as the illustration of Lemma 1 for spins
1/2, but extended from [0, 1] to the whole of R.
Non-Newtonian integrals (17)–(18) constructed by
means of (43)–(44) reconstruct singlet-state proba-
bilities if we appropriately define the characteristic
functions. For example, βX∫

αX

Dλ

�X gX(2π) =
1

2
sin2

(
β − α

2

)
, (45)

αX = gX(α), βX = gX(β), which is the standard lo-
cal hidden-variable expression postulated by Bell.
It can be rewritten as a particular case of (17) if we
denote

ρ(λ) = 1�X gX(2π) = gX
(
1/(2π)

)
, (46)

and integration is over the circle 0 ≤ λ < gX(2π).
The product of characteristic functions is encoded
in the integration limits.

The rotational invariance of the probability is a
consequence of

βX∫
αX

Dx =

βX⊕XγX∫
αX⊕XγX

Dx (47)

valid for any γX ∈ X and any non-Newtonian inte-
gral defined by means of the arithmetic (10)–(13).

Then, what about the Bell inequality?
Of course, it is not violated by (45) despite the

exact quantum mechanical form of the probability,
and there is nothing paradoxical about this state-
ment. Just try to derive any form of a Bell-type
inequality for such a non-Newtonian local hidden-
variable model. For example, following the steps
of the Clauser–Horne reasoning, one arrives at the
projective-arithmetic generalization of the Clauser–
Horne inequality,

0 ≤ 3�X P1102
(θ)	X P1102

(3θ) ≤ 1. (48)

Inserting singlet-state probabilities into (48), one
finds

3�X P1102
(θ)	X P1102

(3θ) = 1 (49)

for any θ, so there is no contradiction.
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Fig. 1. One-to-one fX : R → R (full line) and its
inverse gX (dotted) defined by (44) and (43), as im-
plied by Lemma 2. Both functions have fixed points
at integer multiples of 1/4. The plots are given in
two scales, (a) −1 ≤ x ≤ 1 and (b) −10 ≤ x ≤ 10,
explaining the origin of the correspondence princi-
ple discussed in Sect. 10.

The inequality that will be indeed violated is
0 ≤ 3P1102

(θ)− P1102
(3θ) ≤ 1, (50)

but it is derived under the wrong assumption of
additivity (1), which does not hold for this con-
crete model of non-Newtonian integration. Stan-
dard Clauser–Horne inequality (50) cannot be
proved for non-Newtonian hidden variables in ques-
tion, so it is no surprise that it is not satisfied in
our model.

The readers should keep in mind that although
(27) and (28) are simultaneously valid, this is no
longer true for arbitrary linear combinations of
probabilities, in particular those occurring in (48)
and (50).

We will now show that the relation between p and
p̃ = gX(p), which is at the core of the Bell inequal-
ity violation, is, in fact, a very special case of an
infinite hierarchy of relations, based on an infinite
hierarchy of arithmetics and calculi. What we in-
tuitively regard as the “normal” or “our” arithmetic
and calculus can correspond to any level of the hi-
erarchy.

This will lead us to the notion of a Copernican
hierarchy of models. We call them Copernican be-
cause they deprive our human point of view of the
aura of uniqueness. Each level of such a hierarchy
can be our level.

The standard Bell theorem describes a relation
between any two neighboring levels of the hierarchy.
A surprising consequence of this relation is that in
the same way that Bell proved the non-existence of
EPR elements of reality, it is possible to prove the
non-existence of ourselves.

Well, at least the author of this paper exists as
an element of reality.

8. Copernican hierarchies

Functions g that satisfy Lemma 1 form an inter-
esting structure, closed under the composition of
maps [43].

Lemma 3: Consider two functions gj : [0, 1] →
[0, 1], j = 1, 2, that satisfy assumptions of Lemma 1,

gj(p) = 1
2 + hj

(
p− 1

2

)
, (51)

where hj(−x) = −hj(x). Then g12 = g1 ◦ g2 also
satisfies Lemma 1 with h12 = h1 ◦ h2,

g12(p) = 1
2 + h12

(
p− 1

2

)
. (52)

Accordingly,
g12(p) + g12(1− p) = 1 (53)

for any p ∈ [0, 1].

Lemma 4: Let gk = g◦· · ·◦g, g−k = g−1 ◦· · ·◦g−1

(k times), g0(x) = x. If g satisfies Lemma 1,
g(p) = 1

2 + h
(
p− 1

2

)
, (54)

then gk also satisfies Lemma 1 for any k ∈ Z,
gk(p) = 1

2 + hk
(
p− 1

2

)
. (55)

Accordingly,
gk(p) + gk(1− p) = 1 (56)

for any p ∈ [0, 1], and any integer k. In particular,
g−1(p) + g−1(1− p) = 1. (57)

The proofs are straightforward [43].
As an illustration, consider again g(p) = sin2(π2 p)

and
g2(p) = sin2

[π
2

sin2
(π

2
p
)]
, (58)

g−1(p) =
2

π
arcsin

√
p. (59)

The cross-check of (56) for (58) is simple but in-
structive
g2(p) + g2(1−p) =

sin2
[π

2
sin2

(π
2
p
)]

+ sin2
[π

2
sin2

(π
2

(1−p)
)]

=

sin2
[π

2
sin2

(π
2
p
)]

+ sin2
[π

2
cos2

(π
2
p
)]

=

sin2
[π

2
sin2

(π
2
p
)]

+ sin2
[π

2

(
1− sin2

(π
2
p
))]

=

sin2
[π

2
sin2

(π
2
p
)]

+ cos2
[π

2
sin2

(π
2
p
)]

= 1.

(60)
An analogous proof for (59) is left as an exercise.
Figure 2 shows the result.
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We are inclined to believe that “our” arithmetic
corresponds to k = 0. So, consider any binary prob-
abilities from level 0,

p0 + p1 = 1, (61)

and those from level k,
gk(p0) + gk(p1) = 1. (62)

Denoting P0 = gk(p0), P1 = gk(p1), we obtain a
symmetric rule,

P0 + P1 = 1, (63)

g−k(P0) + g−k(P1) = 1. (64)

In both cases, k is an arbitrary integer: positive,
negative, or zero.

The question is: How do we know that it is pA
and not PA that defines level-zero probabilities?

We can phrase the same question in arithmetic
terms. To this end, assume g(p) is a restriction to
[0, 1] of some bijection gR : R → R that satisfies
gR(1) = g(1) = 1. We can act on both sides of
(62) with g−k, while on both sides of (65) with gk,
obtaining

g−k
(
gk(p0) + gk(p1)

)
= p0 ⊕k p1 = 1, (65)

and
gk
(
g−k(P0) + g−k(P1)

)
= P0 ⊕−k P1 = 1. (66)

We have no criterion that could tell us which of the
four additions — (61), (63), (65), or (66) — defines
the level of description we employ in everyday life.
Which of these two probabilities, and which of the
several ways of adding them, is our usual way of
processing experimental data?

Which of the three additions, +, ⊕k, or ⊕−k, is
the one we have learned as kids?

Which of the three derivatives, (29), or
DF (x)

Dx
= lim
δ→0

(
F (x⊕k δk)	k F (x)

)
�k δk,

(67)
or
DF (x)

Dx
= lim
δ→0

(
F (x⊕−k δ−k)	−k F (x)

)
�−k δ−k,

(68)
is the one we have mastered during our undergrad-
uate education?

Last but not least, which of the three integrals,∫
Dx F (x), is the one that should define a hidden-

variable theory?
Numerous fundamental answers are possible.
One possibility is that Nature prefers only one

k ∈ Z as the true physical arithmetic with some
fixed form of g, determined by some unknown phys-
ical law. This is the situation we encounter in spe-
cial relativity when we add velocities by means of
g = tanh. In principle, we can detect such a physical
g in an experiment. In [42], it is shown that prob-
lems with dark energy may indicate that time at
cosmological scales involves a nontrivial g ∼ sinh. If
this conclusion were true, dark energy would be as
unreal as the luminiferous aether.

Fig. 2. The results of g−1(p) = 2
π
arcsin

√
p (full

line), g−1(1− p) (dotted), and their sum (dashed).

The second fundamental possibility is that all
these possibilities are simultaneously true. Perhaps
there is no preferred k, like there is no preferred
rest frame or preferred point of observation of the
universe. Only relative k might be observable. Such
an option is intriguing and tempting from a theo-
retical perspective. It could mean, for example, that
the same physical law might have its mathematical
representations at any level of the hierarchy, and
each of these representations might be meaningful.
Violation of Bell-type inequalities would then be a
conflict of predictions derived at level k but tested
at level k + 1.

A similar conflict occurs if Bob concludes that
Alice will never reach the Schwarzschild radius, and
yet she crosses it in a finite time.

It remains to say something about the con-
flicts that occur between non-neighboring levels of
the hierarchy. We will see that other well-known
bounds, such as the Tsirelson inequality characteriz-
ing Hilbert-space models of probability, can be eas-
ily circumvented as well.

9. Beyond Tsirelson’s bounds

The standard Clauser–Horne inequality (50)
0 ≤ 3P1102

(θ)−P1102
(3θ) ≤ 1, (69)

is derived for joint probabilities limited by
0 ≤ P1102

(α) ≤ 0.5. (70)
The absolute bounds for such a linear combination
of probabilities are, therefore,
−0.5 ≤ 3P1102(θ)−P1102(3θ) ≤ 1.5. (71)

Tsirelson bounds are narrower,

−
√

2−1

2
≤ 3P1102(θ)−P1102(3θ) ≤

√
2+1

2
. (72)

In order to understand the influence of k on the
violation of Clauser–Horne k = 0 inequalities, we
have to estimate the expression [43]

X(gk, θ) = 3gk
(
θ

2π

)
− gk

(
3θ

2π

)
, (73)
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where 0 ≤ θ < π/3. The singlet-state example cor-
responds in this range of parameters to g1(p) =
1
2 sin2(πp). For θ = π/4, we find

X(g1,
π

4
) =

3

2
sin2

(
π
π/4

2π

)
− 1

2
sin2

(
π

3π/4

2π

)

−
√

2−1

2
= −0.20711, (74)

that is, the maximal left Tsirelson bound. This is
what is usually called the maximal (left) violation of
the Clauser–Horne inequality by singlet-state quan-
tum probabilities. For other values of k, we find

X
(
g0,

π

4

)
= 0,

X
(
g1,

π

4

)
= −0.20711,

X
(
g2,

π

4

)
= −0.39602,

X
(
g3,

π

4

)
= −0.48669,

X
(
g4,

π

4

)
= −0.49978,

...
X
(
g∞,

π

4

)
= −0.5.

(75)
Of course, as stressed before, the choice of k=0 as

the reference level is arbitrary. Level k=2022 prob-
abilities violate level k=2021 inequalities in exactly
the same way as quantum mechanics violates the
standard Clauser–Horne inequality.

More importantly, k=2 probabilities violate k=1
inequalities in the same way as k=1 probabilities
violate k=0 inequalities. If k=0 elements of reality
do not exist, then k=1 elements of reality do not
exist either. Accepting the logic of Bell’s theorem,
can we prove by induction that nothing exists?

Slightly modifying the experimental configura-
tion, one obtains the maximal right violations. In
our formalism, the function to estimate is

Y (gk, θ) = 3gk
(

3θ

2π

)
− gk

(
θ

2π

)
. (76)

We find
Y
(
g0,

π

4

)
= 1,

Y
(
g1,

π

4

)
=

1

2
(
√

2 + 1) = 1.20711,

Y
(
g2,

π

4

)
= 1.39602,

Y
(
g3,

π

4

)
= 1.48669,

Y
(
g4,

π

4

)
= 1.49978,

...
Y
(
g∞,

π

4

)
= 1.5.

(77)
All these models are local-realistic, observers have
free will, and detectors are ideal. The only modifi-
cation is in the presence of the bijection g that links
arithmetics, calculi, and probabilities at various lev-
els of the hierarchy.

Our gk plays a role analogous to gr that linked
experimental data collected at different neighbor-
hoods of a collapsing star.

Both examples are based on principles of relativ-
ity. We have learned to live with special relativity,
general relativity, and the Copernican principle.

It is time to learn to live with the arithmetic prin-
ciple of relativity.

10. Correspondence principles

Trigonometric functions cosX : X→X, sinX :X→X
are defined by

cosX(x) = gX
(

cos(fX(x))
)
, (78)

sinX(x) = gX
(

sin(fX(x))
)
. (79)

They satisfy all the usual trigonometric relations,
of course with respect to appropriate arithmetic op-
erations. They also satisfy all the usual differen-
tial relations, of course with respect to appropriate
non-Newtonian derivatives. In particular, they de-
fine circles by

θ 7→ (r �X cosX θ, r �X sinX θ). (80)

Let us now take the bijections (43) and (44), which
we have used to reconstruct singlet state probabili-
ties. Figure 3 shows seven circles defined by (80) for
decreasing radii. A picture to the right is a close-up
of its left neigbor. All the circles are given by the
same formula (80), with the same bijection gX —
the greater the radius, the more circular the shape.
Simply put, the larger the x argument, the more dif-
ficult it is to tell gX(x) from x. However, the readers
must bear in mind that all these circles are truly ro-
tationally invariant! They have been generated as
homogeneous spaces of the rotation group in 2D —
the only nonstandard element being the choice of
arithmetic.

The notion of a hidden or internal symmetry,
often used in particle physics, seems especially
adequate here. Each of these circles would have
looked “normal” if we had reprogrammed Wolfram
Mathematica to make the plots in the arithmetic
{R,⊕1,	1,�1,�1}.

The limit r →∞ plays a role of a correspondence
principle with the ordinary, rotational external sym-
metry. The obvious similarity to the classical limit
of quantummechanics is striking. Other examples of
arithmetic correspondence principles can be found
in [27] and [44]. An analogous correspondence prin-
ciple occurs in the idempotent analysis [18].

11. Implications for cryptography

In 1862, more than a century before Bell’s paper,
George Boole submitted to Philosophical Transac-
tions of the Royal Society the article On the theory
of probabilities, where he introduced inequalities im-
posing constraints on our “possible experience” [45].

S165

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. Czachor

Fig. 3. Seven circles of different radii described by (80) with the arithmetic {R,⊕1,	1,�1,�1} defined by
(43) and (44). Despite appearances, all these circles are rotationally invariant. Panels to the right are the
close-ups of those to the left.

Three decades after Bell’s theorem, in 1994, Itamar
Pitowsky noticed that Boole’s inequalities are in-
equalities of a Bell-type [46].

Boole inequalities defined “possible experience”
in common-sense categories appropriate for 1862.
Boole’s scientific paradigm has been falsified by
quantum mechanics.

If someone had asked Boole if he could give an
example of a system that violates his inequalities,
he probably would have answered in the negative.
Treating his negative answer as the ultimate proof
that Nature has to comply with Boole inequalities,
we would prove that quantum mechanics is logically
impossible.

Bell inequalities defined “possible experience”
in common-sense categories appropriate for 1964.
Grossman and Katz’s book appeared in 1972, but
its implications for Bell’s theorem went unnoticed
until very recently.

In light of these results, what is the actual sta-
tus of all the claims about the fundamental secu-
rity of quantum cryptography [47–51]? We typi-
cally base them on the belief that EPR elements
of reality cannot exist. Protocols that are not
based on a hidden-variable argumentation (such
as the Bennett–Brassard–Mermin one [49], essen-
tially based on rotational invariance of singlet-state
probabilities) can be successfully attacked in non-
Newtonian local hidden variable theories — non-
Newtonian hidden variables are rotationally in-
variant because the rotation group works there
by means of the hidden representation depicted
in Fig. 3.

Furthermore, what if the Newtonian paradigm of
contemporary quantum mechanics will one day be
falsified by some new theory?

What if it has already been falsified? What if
our enemies, whoever they may be, are well ahead
of us and know systems that can mimic quantum
probabilities by means of non-Newtonian hidden
variables? Can they hack entangled-state quantum
communication channels?

Can a no-go theorem, based on algebraic rather
than probabilistic properties of quantum mechanics,
cure the arithmetic loophole in quantum proofs of
security?

How to guarantee that we are not in the po-
sition of German cryptographers in the 1930s, so
happy with their Enigma and its security certified
by appropriate theorems, while at the same time,
it was systematically hacked by the Polish Cypher
Bureau?

The list of open questions is longer.

12. Non-Newtonian quantum mechanics

Non-Newtonian hidden variables are not meant
as an alternative to quantum mechanics.

However, non-Newtonian calculus paves the way
to natural generalizations of quantum mechanics
(quantum mechanics on a Cantor set is an exam-
ple [42]). The resulting theory is non-Newtonian
linear but Newtonian nonlinear. Such a form
of nonlinear quantum mechanics [52–55] is iso-
morphic to the standard textbook theory, so it
is free of all the difficulties that have plagued
the formalisms based on nonlinear Schrödinger
equations [56–59].

Yet, “mathematically isomorphic” is not synony-
mous with “physically equivalent”.

The following three examples illustrate the idea.
Assume X = Y = R with projective arithmetics

defined by some fX : R → R and fY : R → R. Let
ψ : X→ Y be a solution of
Hψ(x) = 	Yψ

′′(x)⊕Y U(x)�Y ψ(x)=E �Y ψ(x),

(81)

where ψ′′(x) is the non-Newtonian second deriva-
tive. Normalization of states is assumed in the form

〈ψ|ψ〉 =

∞X∫
(−∞)X

Dx |ψ(x)|2Y = 1Y = gY(1). (82)
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Contra Bellum: Bell’s Theorem as a Confusion of Languages

Fig. 4. Probability (88) of finding a particle in
[−a, a] for 0 ≤ a ≤ 3, with ψ̃(r) ∼ exp(−r2/2)
representing the ground state of a quantum har-
monic oscillator Ũ(r) = r2 (in dimensionless units)
for (i) the ordinary arithmetic (full line), and (ii)
projective arithmetics in X = R = Y defined by
fX(x) = x3, fY(x) = x (dashed). The ordinary
arithmetic is experimentally distinguishable from
the projective one because limits of integration are
[−a3, a3] instead of the usual [−a, a].

Fig. 5. The same situation as in the previous fig-
ure, but now with fX(x) = x3 = fY(x).

(For real-valued ψ(x), the modulus in
|ψ(x)|2Y = ψ(x)�Y ψ(x) (83)

is redundant, but we keep it to make the notation
less awkward.) The probability of finding a particle
in [a, b] ⊂ X equals

P (a, b) =

b∫
a

Dx |ψ(x)|2Y . (84)

As usual, ψ = gY ◦ ψ̃ ◦ fX, U = gY ◦ Ũ ◦ fX (com-
pare (32)). Let ψ̃′′

(
fX(x)

)
be the Newtonian second

derivative of ψ̃ with respect to fX(x) so that the
non-Newtonian Schrödinger equation is equivalent
to the usual Newtonian equation, but with redefined
parameters, i.e.,

fY(E)ψ̃(r) = −ψ̃′′(r) + Ũ(r)ψ̃(r), (85)

1 = 〈ψ̃|ψ̃〉 =

∞∫
−∞

dr |ψ̃(r)|2. (86)

Now let us consider fX(x) = x3, fY(x) = x. Then
ψ = ψ̃ ◦ fX, U = Ũ ◦ fX, and the Schrödinger equa-
tion is just

Eψ̃(r) = −ψ̃′′(r) + Ũ(r)ψ̃(r), (87)
so apparently the problem is completely equivalent
to the standard one. However, due to the triviality
of fY and the non-triviality of fX, probability (84)
is now explicitly given by

P (a, b) =

fX(b)∫
fX(a)

dr |ψ̃(r)|2 =

b3∫
a3

dr |ψ̃(r)|2.

(88)

As we can see, despite the mathematical banality of
the problem, the non-Diophantine arithmetic of X
does influence the probability of finding the parti-
cle in the interval [a, b] because the integral is over
[a3, b3]. Figure 4 shows the probability of finding the
particle in [−a, a] as a function of a.

Taking fX(x) = x3 = fY(x), we obtain the prob-
ability depicted in Fig. 5.

As the third example consider fX(x) = x,
fY(x) = x/

√
|x|, and gY(x) = f−1

Y (x) = x3/|x|.
Now,

P (a, b) =
( b∫
a

dr |ψ̃(r)|2
)2

. (89)

The projective addition of probabilities looks
here like a superposition principle from quantum
mechanics,

P (a, c) = P (a, b)⊕Y P (b, c) =(√
P (a, b) +

√
P (b, c)

)2

. (90)

Theories based on non-Newtonian calculi involve
the same physical principles, but their mathemati-
cal forms may differ from one another.

Is there any natural law that determines the form
of arithmetic and calculus?

13. Towards a new paradigm

Paul Benioff, a pioneer of quantum computa-
tion, was among those physicists who believed that
physics and mathematics should be logically formu-
lated at a unified level [60, 61]. According to Be-
nioff, physical or geometric quantities do not pos-
sess numerical values per se, but these values are
introduced through “value maps”. Natural numbers
are elements of any well-ordered set, and in them-
selves do not possess numerical values. A value map
takes a number and turns it into an object with con-
crete numerical properties. This is somewhat similar
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to the idea that “zero”, the neutral element of addi-
tion, can be, in fact, an arbitrary point 0X ∈ X, pro-
vided that X can be bijectively mapped onto R by
means of some fX that fulfills fX(0X) = 0 ∈ R. Be-
nioff considered only linear value maps but allowed
for the possibility of value-map fields. One of his
conclusions was that scalar value maps are in many
respects analogous to the Higgs field [62–64].

A fundamental role of the set of bijections oc-
curs also in Etesi’s recent reformulation of black-
hole entropy [65]. The “arithmetic continuum” R
plays there a role of a gas subject to thermody-
namic laws, while the black hole entropy is a purely
set-theoretic notion, related to Gödel’s first incom-
pleteness theorem.

The approach advocated in our work involves
arithmetics and calculi constructed by means of bi-
jections that can be regarded either as (global) non-
linear Benioff’s maps or as compositions of value
maps with some bijections. More precisely, the
“nonlinear” bijection fX :X → R is always linear
here, but with respect to ⊕X, 	X, �X, and �X. The
non-Newtonian formalism in its most general form
demands only the bijectivity of fX. One does not
impose continuity or topological conditions on ei-
ther fX or X. Note that fX is always smooth in the
topology and calculus it induces from R, even if X
is as weird as Cantor or Sierpiński fractals. Non-
Newtonian derivatives of fX and gX are “trivial”
(equal to 1 and 1X, respectively [12]) because from
the point of view of the projective arithmetic in X,
the map fX behaves as the identity map.

The duality between non-Newtonian linearity and
Newtonian nonlinearity is one of the trademarks of
the new paradigm. This is not the usual lineariza-
tion of a nonlinear problem by a nonlinear change of
variables. The idea can be traced back to Maslov’s
superposition principle and its application to non-
linear optimization problems [15].

The resulting structure is incredibly flexible. It
automatically leads to well-behaved calculi on all
sets whose cardinalities are the same as the car-
dinality of the continuum. The resulting relativity
principle (relativity of arithmetic and calculus) is
much more general than the principle of general co-
variance.

Non-Newtonian calculus has a huge potential for
the unification and systematization of various ideas
scattered over mathematical and physical litera-
ture [29]. It is quite typical, however, that even if
some elements of non-Newtonian thinking can be
identified in those works, their arithmetic aspects
are not exploited in their full generality.

For example, velocities in special relativity are
added and subtracted in a projective way, but
it is difficult to find a paper where repeated
addition would be replaced by multiplication and
its inverse — division. I have found only one
place in relativistic physics where velocity v =
c tanh(1), the “one” in special-relativistic projec-
tive multiplication, plays a distinguished role [66].

Kolmogorov–Nagumo averages [67, 68], the depar-
ture point of Rényi’s studies on generalized en-
tropies [69], are exactly the averages in the sense
of projective arithmetic. However, when Rényi dis-
cussed the additivity of his α-entropies, he did not
think of additivity in the same sense as the one
he implicitly used in Kolmogorov–Nagumo averag-
ing. Various forms of projective arithmetic opera-
tions and derivatives have been studied in the con-
text of generalized statistical physics and thermo-
dynamics by Kaniadakis [70–73], but only some of
the derivatives he invented were non-Newtonian,
whereas the others were neither Newtonian nor non-
Newtonian, a fact explaining why only the non-
Newtonian ones have found applications [29]. The
whole field of psychophysics is implicitly based on
projective addition (see Chapter 7 in [12]). Typi-
cally, we are unaware that decibels and star magni-
tudes correspond to logarithmic scales because our
sensory systems induce projective arithmetic in our
brains, based on approximately logarithmic bijec-
tions (the Weber–Fechner law). However, although
projective subtraction is here essential, the remain-
ing three arithmetic operations are not employed.
Certain elements of non-Newtonian integral calcu-
lus are present in cepstral analysis and homomor-
phic filtering of images [74]. Fractional derivatives
can be regarded as non-Newtonian first derivatives,
but only when formulated in the so-called Fα for-
malism [39]. Fuzzy calculus is non-additive but not
necessarily fully non-Newtonian, and this is why the
fundamental theorem of calculus does not necessar-
ily work. Non-additive probability, somewhat simi-
lar to our non-Newtonian hidden variables (as based
on non-additive Vitali and Choquet integrals), is a
standard element of modern decision theory [5, 8].

Perhaps the most radical view on generalized
arithmetics is due to Mark Burgin, who studied
arithmetics that are not isomorphic to the arith-
metic of natural numbers [75]. One of his goals was
to replace inconsistent arithmetics (e.g., the com-
puter arithmetic based on the notion of “machine
infinity”: ∞M < ∞, ∞M + 1 = ∞M ) with arith-
metics that are consistent but non-Diophantine.

Similarly radical is the approach of Sergeyev [76],
where infinities and infinitesimals are reformu-
lated in a more intuitive and, essentially, non-
Diophantine way. Here the infinity of integers is
twice bigger than the infinity of natural numbers,
while events of zero probability cannot happen (as
opposed to the Kolmogorovian formalism based on
measures) [77]. Such a new arithmetic and proba-
bilistic paradigm often turns out to be more practi-
cal than the usual Kolmogorovian framework, just
to mention Sergeyev’s Infinity Calculator software.

The interference of probabilities is one of the
greatest puzzles of quantum mechanics. Quantum
probabilities sometimes behave as if they were neg-
ative, a situation known from projective arith-
metics based on, say, gX(p) = ln(p). Risk aver-
sion paradoxes in economics can be modeled by
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non-additive integrals [5], but a new tendency ap-
pears where the same effects are modeled by quan-
tum probabilities [78]. Ironically, while here we have
shown that quantum probabilities can be classi-
cal but non-Newtonian, some authors are starting
to replace non-additive integrals from classical eco-
nomics with quantum probabilities [79].

Another aspect of interference is the superposi-
tion principle and the problem of linearity of quan-
tum mechanics. Non-Newtonian linear Schrödinger
equation can be Newtonian nonlinear. In such non-
linear quantum mechanics, the superposition prin-
ciple remains the same as in the linear theory; only
the meaning of “plus” and “times” is different. The
same type of duality was introduced by Maslov to
optimization theory [15], with the key idea that
something very difficult in a nonlinear framework
can become easy if we rewrite the problem in new
arithmetic.

Speaking of a non-Newtonian paradigm, one typ-
ically has in mind a non-Newtonian theory of grav-
ity (hence general relativity) or non-Newtonian
mechanics (hence quantum mechanics). In the new
paradigm that looms on the horizon, the term non-
Newtonian may be understood in a much broader
sense.

14. Conclusions

Bell overlooked the fundamental possibility of
probabilistic theories based on generalized calculi
and arithmetics. Both structures can be formulated
at different levels, leading to a hierarchy of models
related to one another by a new type of relativity
principle. The violation of Bell’s inequality by quan-
tum probabilities has the same status as the para-
doxes from special or general theories of relativity.
They all disappear if we correctly apply appropriate
relativity principles. The new framework of general-
ized arithmetics and calculi creates theoretical pos-
sibilities that are comparable only to those opened
by the discovery of non-Euclidean geometries.
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