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ABSTRACT: This article explores the use of Light Detection And Ranging (LiDAR) derived point clouds to
extract the shoreline of the Lake Ktodno (Poland), based on their geometry properties. The data collection was
performed using the Velodyne VLP-16 laser scanner, which was mounted on the HydroDron Unmanned
Surface Vehicle (USV). A modified version of the shoreline extraction method proposed by Xu et al. was
employed, comprising of the following steps: (1) classifying the point cloud using the Euclidean cluster
extraction with a tolerance parameter of 1 m and min. cluster size of 10,000 points, (2) further filtration of
boundary points by removing those with height above 1 m from the measured elevation of water surface, (3)
manual determination of a curve consisting of 5 points located along the entire shoreline extraction region at a
relatively constant distant from the coast, (4) removal of points that are further from the curve than the average
distance, repeated twice. The method was tested on the scanned section of the lake shoreline for which Ground
Control Points (GCP) were measured using a Global Navigation Satellite System (GNSS) Real Time Kinematic
(RTK) receiver. Then, the results were compared to the ground truth data, obtaining an average position error
of 2.12 m with a standard deviation of 1.11 m. The max error was 5.54 m, while the min. error was 0.41 m, all
calculated on 281 extracted shoreline points. Despite the limitations of this parametric, semi-supervised
approach, those preliminary results demonstrate the potential for accurate shoreline extraction based on LiDAR
data obtained using an USV. Further testing and optimisation of this method for larger scale and better
generalisation for different waterbodies are necessary to fully assess its effectiveness and feasibility. In this
context, it is essential to develop computationally efficient methods for approximating shorelines that can
accurately determine their course based on a set of points.

1 INTRODUCTION Therefore, it is essential to monitor the state of the
seashore, which changes rapidly and is determined by

A shoreline is a boundary between the land and water ~numerous anthropogenic and natural factors. These

surfaces [1]. It is characterised by instability and
functional diversity which vary depending on the
region [2]. This boundary is of particular importance
from the perspective of economic and environmental
policies of the coastal states. This stems from the fact
that the shoreline is rich in natural resources, which is
why approx. 50% of the world’s population inhabits
the areas located within 100 km of the shoreline [1].

include: biological activity, coastal flooding [3],
earthquakes [4], marine erosion, ocean acidification
[5], ocean currents, river regulation, sea level rise [6],
seawater intrusion [7], temperature increase, tides,
transportation of the rock debris [8] or wave action.
Research into the impact of the above-mentioned
factors on the shoreline course is conducted in a
variety of waterbodies such as bays [9], river deltas
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and estuaries [10,11], wetlands [12], as well as other
geographic formations situated along the coast [13,14].
Due to complex shoreline dynamics, different
indicators [e.g. High Water Line (HWL), Mean High
Water Line (MHWL)] are used to define and describe
shoreline [1]. Moreover, different authors often use
divergent definitions for the same shoreline indicators

[1].

Similarly, many different methods for determining
the shoreline course are applied throughout the
literature. These include: geodetic surveys [15,16], in
particular, those using the Global Positioning System
(GPS) and remote sensing measurements [17]
performed using unmanned and manned airborne
systems [18], as well as satellites [19]. In recent years,
Light Detection And Ranging (LiDAR) has become a
popular method for shoreline determination. LiDAR
measurements are typically performed using airborne
systems [13], and allow for a large area to be covered
in a relatively short time [20,21]. The method involves
emitting a beam of light at a specific wavelength and
recording the return signal if the beam encounters a
reflector (i.e., a light reflecting object). By measuring
the time, it takes for the beam to return and taking
into account the device's orientation in space and the
angle at which the beam was emitted, it is possible to
calculate the position of the reflector. LiDAR has
several advantages over other shoreline determination
methods, including its ability to capture detailed
topographic information, its high accuracy and
precision, as well as its ability to provide data in real-
time [22]. However, the use of LiDAR also has its
limitations, including relatively high cost, the need for
extensive data pre-processing, as well as dependence
on environmental and weather conditions, which can
make LiDAR less practical for some applications.

Farris et al. [22] compared three shoreline
extraction methods used by the United States
Geological Survey (USGS) as part of the Marine
Geology Program. The first of them is a modified
profile method as described by [21]. It uses a 20 m-
wide window determined along the transverse
profiles. The second one is the grid method based on
the interpolation of heights onto a grid of squares. The
third one is a contour method that allows a contour of
the Mean High Water (MHW) level to be obtained by
using the contour generation function in the ArcGIS
software. As part of the validation tests, a visual and
quantitative assessment of the shoreline extraction
accuracy was conducted based on the Airborne Laser
Scanning (ALS) data recorded using the ATM-II
system. The measurements were performed on Fire
Island (USA) by the National Oceanic and
Atmospheric Administration (NOAA) and the USGS
in the years 2000 and 2012. The authors had no data
on the actual position of the shoreline, which
prevented the comparison of the errors in the
determination of its course. For this reason, they
decided to compare the differences in the extraction
results between the individual methods. The authors
quantitatively ~demonstrated that the shoreline
courses obtained using the contour, grid and profile
methods are very similar to each other, with shifts
between them of less than 1 m.

Fernandez Luque et al. [23] developed the
Elevation Gradient Trend Propagation (EGTP)
method for shoreline extraction, which uses the

446

iterative method based on a grid of squares. The
EGTP method involves the use of the elevation
gradient trend (its size and direction) calculated for
each grid cell of a known elevation towards cells of an
unknown elevation. This process is repeated until the
new point of the grid reaches a level similar to (lower
than) the selected vertical reference system. In this
way, it is easy to determine the shoreline course from
the extrapolated terrain model. As part of the
validation tests, a visual and quantitative assessment
of the shoreline extraction accuracy was conducted
based on the ALS data recorded using the Leica
Geosystems ALS60 system. The measurements were
performed along the Mediterranean coast in the
Almeria province (Spain) in 2009. The shoreline
extraction errors were referred to 62 control points
that were determined using a Differential Global
Positioning System (DGPS) receiver. As demonstrated
by statistical analyses, the mean uncertainty and the
median uncertainty for the EGTP method were 2.08 m
and 1.51 m, respectively. The study results obtained
using the elevation gradient trend propagation were
compared with the results obtained using the
reference methods as proposed by [21,22]. The EGTP
method has been proven to have a higher accuracy of
the shoreline course determination than that of the
reference methods.

Hua et al. [24] developed a method for detecting
shores of an anthropogenic nature. At the beginning
of the paper, attention was drawn to the large volume
of data derived from LiDAR measurements.
Therefore, the authors proposed simple criteria to
limit the size of the LiDAR point cloud, thus reducing
the computational complexity at the later stages of the
anthropogenic method. External software was used
for the visualisation and analysis of the LIDAR points.
This enabled the determination of the coordinate
range of the area under study, the coordinate range
within which the shoreline is found, the scanning
direction when using aircraft and the side on which
the shoreline was located on the scan. The program
also enabled the performance of preliminary
segmentation (classification) of the area under study.
Subsequently, the points that may have been reflected
from the water surface were removed. Only then
could the shoreline course be determined based on the
information on the direction of flight. As part of the
validation tests, a visual assessment of the shoreline
extraction accuracy was conducted based on the ALS
data. The measurements were conducted in the
coastal zone of Longkou (China). The authors
compared the method they had proposed with the
contour method only visually. Unfortunately, they
failed to describe the reference method.

Liu et al. [25] proposed two shoreline extraction
methods, both of them using LiDAR data and remote
sensing imagery. It is noteworthy that the authors
created and made available a plugin for the ArcGIS
software named “ShorelineExtractor”, which enables
the determination of the shoreline course using the
contour and object-oriented methods. The contour
method subtracts the elevation of the local tidal
system from the elevation in the Digital Terrain
Model (DTM). In this way, a contour (a shoreline)
with an elevation of 0 m is obtained. On the other
hand, in the object-oriented method, a cluster of land
or water pixels is regarded as an object, while the
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shorelines are created as boundaries between clusters
of different «classes. The “ShorelineExtractor”
extension also enables the generalisation and
smoothing of the shoreline obtained using one of the
two methods proposed by the authors. The first of
them is the shoreline simplification by the Douglas-
Peucker method, which preserves points that are
relevant in terms of maintaining the basic shape of the
curve. The second method involves an analysis of the
shoreline shape and the elimination of bends with
high curvature. As part of the validation tests, a visual
assessment of the shoreline extraction accuracy was
conducted based on the ALS data recorded using the
ATM system. The measurements were conducted in
the coastal zone of Galveston Bay (USA) in 1999. The
study demonstrated that the accuracy of the shoreline
course determination was 4.5 m (p=0.95). It should be
pointed out that the use of a constant tidal datum
value for a large region could lead to an error in
shoreline position determination.

Xu et al. [26] proposed a parametric method of
shoreline extraction based on the cloud of points
surveyed by LiDAR. The first part of the algorithm
involves the detection and rejection of the points
belonging to the water surface by using plane fitting
by the RANdom SAmple Consensus (RANSAC)
method [29], as well as density and distance
characteristics of individual points [30]. The second
part of the algorithm involves classification of the
land returns using the Euclidean cluster extraction
[27,28]. The indication of potential boundary points
and the optimisation of the boundary formed from
them based on the cost function optimisation model
[26,31]. As part of the validation tests, a visual and
quantitative assessment of the shoreline extraction
accuracy was conducted based on the ALS data. The
measurements were carried out on five waterbodies
with different geometrical and optical characteristics:
Bowman Lake, Canyon Stream, Oregon Estuary,
Susquehanna River and Wax Lake, in the years 2005
2014. Shoreline extraction accuracy metrics, such as
correctness and completeness, were calculated as
90.7% and 92.5%, respectively. Moreover, it was
demonstrated that the accuracy of the shoreline
course determination by the parametric method on
five different waterbodies was 1 m [26]. The obtained
results were compared with the results presented in
four different papers addressing similar issues. It has
been proven that their accuracy level was 1.5-31 m,
i.e. lower than that of the parametric method [26,32—
35]. It should be noted that the extraction results were
obtained on various data sets (aerial images and
LiDAR points) with different spatial resolutions. The
authors also addressed the issues related to the
parametricity of the method proposed. The operation
of the algorithm was tested for different parameter
values. In their article, they provided suggested
values of individual parameters for which satisfactory
results of the shoreline extraction on five waterbodies
were obtained.

Yousef et al. [36,37] developed a morphological
shoreline extraction method, which uses a DTM
created based on the ALS data and the local tidal
system. The morphological algorithm comprises eight
main stages. The first stage is the process of
converting the point cloud from LiDAR
measurements into the form of a digital terrain model.

In the second stage, the segmentation (classification)
of each cell of the DTM to one of the two classes: land
or water, is performed. In the third stage, the
anomalies that are interpreted as outliers and
measurement errors are detected and removed using
the neighbourhood test. In the fourth stage,
constrained morphological open and close operations
are carried out in order to remove the remaining
artifacts, such as gaps between the neighbouring land
areas or broken parts of water areas. In the fifth stage,
small isolated land and water bodies are removed. In
the sixth stage, the Hough transform [38] is applied to
remove structures of an anthropogenic nature, such as
bridges, docks or fishing piers. In the seventh stage,
the shoreline is determined and subsequently
smoothed. To this end, the authors performed the
Gaussian kernel. In the eighth stage, the shoreline
obtained was superimposed on an aerial image in
order to visually assess the extraction results. As part
of the validation tests, a visual and quantitative
assessment of the shoreline extraction accuracy was
conducted based on the ALS data recorded using the
LMS-Q680i  system. The measurements were
performed along the coast of the USA, passing
through three states: New Jersey, Rhode Island and
Virginia, in the years 2008-2012. In order to assess the
shoreline  extraction accuracy, the shoreline
determined manually based on an aerial image was
used. Moreover, a Monte Carlo simulation was
performed in the article in order to estimate the
shoreline extraction errors using the morphological
method. Statistical analyses showed that the mean
error and the standard deviation were 1.21 m and 1.97
m, respectively. The study results obtained using the
morphological method were compared with the
results obtained wusing the reference methods
proposed by [25,39]. The morphological method has
been proven to have a higher accuracy of shoreline
position determination than that of the reference
methods.

As part of the INNOBAT project [40], it was
decided to implement the parametric method [26] for
shoreline extraction. An important advantage of the
method is the use of only the geometrical properties
of the LiDAR point cloud. The method proposed
enables the full automation of the extraction process
and offers the possibility for conducting further
research to attempt to develop specific parameter
values for a particular measurement (waterbody type,
the nature of the shoreline and measurement
conditions) [31]. Moreover, according to the results
presented by the original authors, the parametric
method enables the fulfilment of the accuracy
requirements provided for the most rigorous
International Hydrographic Organization (IHO)
order, i.e. the Exclusive Order (horizontal accuracy of
5 m (p=0.95)) [41], which refer to the works related to
the shoreline course determination. In view of the
above, the aim of this article is to validate the
parametric method of shoreline extraction based on
the LiDAR data recorded using an Unmanned Surface
Vehicle (USV).

447


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

2 MATERIALS AND METHODS

2.1 Data collection

The shoreline extraction was performed on data
collected with the Velodyne VLP-16 laser scanner
mounted on the HydroDron USV. Obtained results
were validated against the ground-truth data

determined with a Global Navigation Satellite System
(GNSS) Real Time Kinematic (RTK) receiver. The
study area was a shoreline section of the Lake Ktodno
(Poland). Both the lake and the measurement area are
presented on Figure 1.

Figure 1. Satellite image of the Lake Klodno with the area in
which the hydrographic surveys were conducted marked
with a red rectangle.

The data was collected and georeferenced to the
PL- Universal Transverse Mercator (UTM) (zone 34N)
and PL-EVRF2007-NH systems using the HYPACK
software. To compensate for the movements of the
vessel and obtain accurate positions, the HYPACK
program was integrated with the Ekinox2-U Inertial
Navigation System (INS) and a GNSS RTK receiver.

2.2 Shoreline extraction method

The shoreline extraction method used in this work is
based on the method proposed by Xu et al. [26]. The
modifications involve additional filtration steps and
skipping of the shoreline approximation using the
cost model proposed by the authors of the original
method. This was due to the problems with the
implementation of the original approach, described in
further sections of the article. The shoreline extraction
method used in this work comprises of five main
stages:

1. Classification of points in the LiDAR derived point
cloud into clusters using Euclidean clustering,
described in detail by Rusu [28];

2. Indication of potential boundary points using the
authors’ original test algorithm [26];

3. Filtration of potential boundary points using the
elevation threshold;

4. Manual indication of curve points in the water
along the entire shoreline section at a relatively
constant distance from the shore;

5. Calculation of the average distance between the
points and the formed curve, rejection of points
found further than the average distance.
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2.3 Extraction error calculation

In order to quantitatively measure the error of the
extraction method, the Euclidean distance was
computed between coordinates of each extracted
point and the coordinates of the closest Ground
Control Point (GCP). The Mean Error (ME) was
calculated using the Euclidean distance, and its
formula is given by Equation 1:

ME:%imjin[d(R,chj)] (1)

where:

N — number of extracted shoreline points (-);

i — numbering representing shoreline points (-);

j — numbering representing GCPs (-);

Pi —i-th shoreline point (-);

GCP;j - j-th GCP (-);

d(Pi,GCP;j) — Euclidean distance between i-th shoreline
point and j-th GCP (m).

The Euclidean distance for a pair of shoreline
points p, g is given by Equation 2:

d(p,q):\/(xp—xq)z+(yp—yq)2+(2p—zq)2, (2)

where:

d(p,q) — Euclidean distance between points p, g in
three- dimensional Cartesian coordinate space (m);

p, g — numbering representing a pair of shoreline
points (-);

x — longitude of the shoreline point (m);

y — latitude of the shoreline point (m);

z — height of the shoreline point (m).

Min. and max values of the shoreline position error
were calculated in similar manner, as well as the
standard deviation of the mean. Obtained values are
presented at the end of the Results section.

3 RESULTS

The shoreline extraction method applied was
developed based on the extraction method proposed
by Xu et al. [26]. Several issues that were described in
detail in this article prevented the authors of this
study from implementing the method described in
[26] in its original form. Additional filtering steps
were required in order to remove the excess points.
Moreover, the method for shoreline approximation
given a set of boundary points was not performed due
to problems with its implementation. Instead, the
manual connection of extracted points was performed
for ease of visual analysis. Additionally, the mean
shoreline position error and deviation were
calculated. It should be also noted that the point cloud
data used in this study was obtained using a different
technique [Terrestrial Laser Scanning (TLS) from a
moving USV rather than ALS]. Below are the results
of the extraction routine performed in this paper. The
following steps assume that the cloud does not
contain many water returns. Otherwise, prior
filtration of water returns should be performed, e.g.
using the density and distance thresholds mentioned
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by [26,30]. In the case of the measurements on the
Lake Klodno, there were hardly any water reflections,
thus, the additional filtration step was not performed
(Figure 2).

Figure 2. Point cloud derived from LiDAR measurements
conducted along the section of the Lake Ktodno shoreline.

3.1 Clusterisation of LIDAR returns

One of the first steps of the algorithm is the Euclidean
extraction, which clusters points in the point cloud
based on the distance to others. This algorithm
requires that three parameters are provided [28].
These are the min. number of points in the cluster, the
max number of points in the cluster and the cluster
tolerance. In their study, the authors [26] only
provided the value used for the min. number of points
in the cluster. The max number of points in the cluster
can be omitted, by setting its value as the number
equal to or higher than the number of points in the
cloud. This was done in this study, as a result the
constraint on the max cluster size was removed.
However, the cluster tolerance parameter is crucial,
affecting the results dramatically, yet it also remains
left out in the study by Xu et al. [26]. The
clusterisation step could be described as the data pre-
processing stage and has a huge impact on the results
of the rest of the algorithmic routine. It was necessary
to determine the parameters of the clustering process
for the study area. To this end, the Euclidean
clustering [28] was performed for all the combinations
of parameter values from Table 1. Results of the

classification =~ obtained for each  parameter
combination ~were evaluated through visual
inspection.

Table 1. Parameter grid used for the Euclidean clustering
evaluation.

Parameter Value

Tolerance (m) 0.1,0.25,0.5,0.75,1,1.5,2, 3, 4
Min. points (-) 200, 10000

Max points (-) 108 (represents no restrictions)

Selected results from the Euclidean clustering are
presented on Figures 3 and 4.

Figure 3. Influence of the tolerance parameter on the
clusterisation results. The left image (a) shows the results of
the Euclidean clustering with a tolerance of 0.25 m and min.
cluster size set to 200 points. The right image (b) shows the
results of the Euclidean clustering with a tolerance of 3 m
and min. cluster size set to 200 points.

(a) (b)

Figure 4. Influence of the min. number of points in the
cluster on the clusterisation results. The left image (a) shows
the results of the Euclidean clustering with a tolerance of 0.5
m and min. cluster size set to 200 points. The right image (b)
shows the results of the Euclidean clustering with a
tolerance of 0.5 m and min. cluster size set to 10,000 points.

3.2 Identification of potential boundary points

In [26], an algorithm called the testing algorithm was
proposed by the authors to identify potential
boundary points using an iterative convex hull fitting
approach. The algorithm required a custom
implementation as the source code was not provided
in the original paper. Therefore, the algorithm was re-
implemented, according to the description provided
in [26]. To ensure correctness of the implementation, a
simple validation was performed on an artificial set of
100 points (Figure 5).

Y
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Figure 5. Testing algorithm [26] applied to an artificial set of
100 points. The left image (a) shows the initial stage of the
algorithm when all points are treated as unlabeled potential
candidates. In the middle plot (b), the first iteration of the
algorithm is shown. For the first tested point, marked with a
blue cross, 10 nearest neighbours are selected and marked
with orange crosses. A convex hull is created for the set of
points containing the tested point and its neighbours,
marked by the black contour. The points inside the convex
hull are labeled as non-boundary points and coloured red.
The process is then repeated until no more points are found
that could be labeled as non-boundary. The right image (c)
shows the final results, where non-boundary points are
coloured in red and potential boundary points are coloured
in blue.
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The results demonstrate that the testing algorithm
was correctly implemented. Then, the algorithm was
applied to the clustered point cloud to identify
candidate boundary points for the Lake Klodno
dataset. Results of the boundary point identification
using the testing algorithm [26] on real world LiDAR
data are presented on Figure 6. They were obtained
using the original point cloud with no downsampling,
after performing the Euclidean clustering with a
tolerance of 0.5 m and min. cluster size set to 10,000
points. In order to increase efficiency of the iterative
convex hull fitting, a three-dimensional k-d tree [28]
was used for space partitioning. Such approach is
very efficient and may significantly speed up the
process of searching nearest neighbours in the point
cloud.

Figure 6. Results of the testing algorithm [26] applied to the
Lake Ktodno dataset.

3.3 Filtration of potential boundary points

The main problem at this stage of the algorithm is to
eliminate the points that do not constitute the
shoreline (e.g. the tree cover). Including those points
in the shoreline would greatly impact the accuracy.
Therefore, a filtration method is necessary. To this
end, the authors of the original method used an
elevation threshold [26]. In this paper, the approach is
followed, and the results of applying an elevation
threshold of 1 m height relative to the measured water
surface elevation are presented on Figure 7.

Figure 7. Results of filtration of the candidate point clouds
using elevation threshold of 1 m height relative to the
measured water surface elevation.
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The above results are satisfactory, yet many points
that are not direct components of the shoreline remain
in the point cloud. Visual inspection of the point cloud
at this stage revealed that some points in the cloud are
up to 15-20 m inland. Therefore, another filtration
was necessary. The filtration approach was based on
the distance to the waterbody. To this end, the manual
indication of a curve consisting of 5 points was
performed. The curve was assumed to be placed on
the waterbody and roughly following the shoreline.
The elevation of the curve is constant and was
determined by fitting a plane to all of the points
remaining in the cloud. The mean Euclidean distance
was calculated for all of the remaining potential
boundary points. Then, the curve was used to filter
out points that were further than mean distance from
the curve. This was repeated twice, in order to
strengthen the removal effect. The results of this
supervised filtration approach are presented on
Figure 8.

Figure 8. Results of filtration of the candidate point clouds
using the mean distance from polyline threshold. Red points
are removed from the candidate boundary points. Green
points are the remaining points which will be used for
boundary approximation. Two consecutive filtrations were
performed using the same curve and shrinking set of
candidate boundary points.

The elevation and waterbody distance filtration
steps allowed to filter out the points that were
deemed unnecessary, without losing the underlying
shoreline geometry information. It should be noted
that the shoreline is traditionally defined by a curve
rather than a set of points. So far the algorithm results
in a set of points. Therefore, it is necessary to
determine an order in which the points should be
connected. The approximation of shoreline from a set
of points is a non-trivial task, which is described in-
depth in the following section.

3.4 Approximation of shoreline from a set of points

Authors of the original article [26] propose to find the
optimal shoreline from the set of boundary points by
evaluating edges constructed by all possible 3-point
permutations of said points. The paper proposes a
cost optimisation model, which consists of nodes that
represent the permutations. Single node in the model
represents the selection of three points from the cloud
and linking them as the leftmost, the middle and the
rightmost one. The model evaluates each such
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permutation using a novel cost function, which
calculates the cost of each node according to the

Equation 3 [26]:
o
cos (ﬂ]
2
where:

cost(k,l,m) — cost of the single node (-);

k, I, m — numbering representing the k-th, I-th and m-th
point from the point cloud (3-point permutation
with no repetitions), assigned respectively as the
leftmost, the middle and the rightmost points in the
shoreline section (-);

d(k,1) — Euclidean distance between the leftmost and

the middle point in the node (m);

d(l,m) — Euclidean distance between the middle and

the rightmost point in the node (m);

A — weight coefficient (-);

Oum — angle between edges (k) and (I,m) (rad).

d(k,1)+d(l,m)
2

cost(k,l,m)z +4- , 3)

This is an NP-hard combinatorial optimisation
problem. Solving such problems typically requires a
specific approach that takes into account the
problem's unique characteristics and structure. Due to
the complexity of NP-hard problems, finding exact
solutions may be infeasible or even impossible in
some cases. Therefore, heuristic and approximation
algorithms are often used to find near-optimal
solutions efficiently. The authors [26] proposed to use
a dynamic programming approach and backtrack the
solution from the sink node to the source. However,
the problem of defining source and sink nodes was
not clearly addressed in their paper. The
representation of the problem proposed by Xu et al.
[26] is also computationally expensive. In a graph in
which each node represents the 3-point permutation
of points created from n-element point cloud, the
number of permutations is described by Equation 4:

n!
n-3

P(n,3)= , (4)

N | =

where:

P(n,3) — set of all 3-element permutations with no
repetitions from n-element point cloud (-);

n —number of points in the point cloud (-).

Multiplication by %2 in the above formula results
from ignoring reverse permutations. Point clouds
derived from laser scanning are considerably large,
and the number of points at the end of algorithmic
routine may vary depending on the parameters an
individual traits of the scanned area. For the dataset
used in this study, after the elevation threshold there
was still over 1000 points left, which results in over
840 million permutations with no repetitions and no
reversed permutations included, according to the
Equation 4. Due to the above-mentioned issues, the
shoreline approximation based on the set of obtained
boundary points was not performed in this study.
Instead, a point-wise qualitative and quantitative
error of shoreline extraction was performed. The
extracted shoreline points (black colour)
superimposed on the GCPs (green colour) are
presented on Figure 9.

Figure9. Extracted boundary points (black colour)
superimposed on the GCPs (green colour).

In order to verify the performed extraction in a
quantitative way, the position errors of the individual
points making up the curve (shoreline) obtained were
calculated. For each of the 281 shoreline points, the
nearest GCP was selected. The calculated statistics are
provided in Table 2.

Table 2. Summary of errors of the 281 points comprising the
extracted shoreline obtained in relation to the reference line
determined using a GNSS RTK receiver.

Mean Standard Max Min.
error (m) deviation (m)  error (m) error (m)
2.12 1.11 5.54 0.41

A one-tailed t-test was additionally performed to
verify, if the extraction results fulfil the accuracy
requirements provided for the Exclusive Order (i.e.
horizontal accuracy of 5 m (p=0.95)). In the test, the
null hypothesis (Ho) was specified as the (error)
population mean being larger or equal to 5 m, while
the alternative hypothesis (Ha) was specified as the
(error) population mean being less than 5 m. The
calculated t-statistic of -43.36 and a very small p-value
of 1.4-10? m allow to reject the null hypothesis can be
rejected with high confidence. Therefore, results
presented in this work show that the method used
fulfils the accuracy requirements provided for the
most stringent IHO order.

4 DISCUSSION

Most of the state-of-the-art in the area of shoreline
extraction puts focus on using methods based on
DTMs using cross-shore profiles or contours of the
vertical datums. This article explores the topic of
shoreline extraction based on the geometry of LiDAR
derived point clouds. Methods which are based solely
on geometry are quite scarce in the literature. In this
paper, the results of reimplementation of the method
proposed by Xu et al. [26] are described. Specifically,
the process of clustering the point cloud, identifying
the candidate boundary points and filtering the
candidates is validated on a real-world dataset.

The direct interpretation of the clusterisation
results in the case of a problem with shoreline
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identification is hindered due to the heterogeneity of
the environment and the objects found there. In other
words, this is not a pure test case of the desk object
type [28], where the interpretation of the results is
relatively easy. However, it is quite evident that the
results are very parameter dependent. High tolerance
values lead to grouping points into bigger clusters,
while low values can separate too many clusters. Best
results on the dataset from the Lake Klodno were
obtained for a tolerance of 0.5 m and min. cluster size
of 10,000 points. These settings allowed for most of
the point cloud to be discarded, while keeping the
largest clusters adjacent to the waterbody. It is
important to note that the results may differ if the
point cloud was derived from ALS. Moreover,
additional processing is needed to facilitate the task of
shoreline identification with the resulting point cloud.

The iterative convex hull fitting approach is
effective in identifying edges in an unorganised point
cloud. However, although this approach significantly
reduces the number of remaining points, further
filtration is still required. It appears that this approach
will inevitably result in a large number of points
remaining at the far-off ends of the clusters, which
need to be eliminated. To achieve this, the authors [26]
employ an elevation threshold, which may pose
challenges in areas with waterbodies that have
varying elevations. Nevertheless, the original article
demonstrates promising results in such cases.
However, this approach may also prove challenging
in areas with low terrain slopes surrounding the
waterbody.

In this paper, a multi-step filtration approach was
employed to identify shoreline points in a LiDAR
derived point cloud. The first step involved using the
elevation threshold as proposed by Xu et al. [26]. This
approach is simple and effective, particularly in cases
where only one waterbody is present in the scene and
the adjacent terrain has a noticeable slope. However,
in the case of the Lake Klodno point cloud, this
approach alone was not sufficient, and additional
filtration was required due to the low terrain slope in
the region. To address this issue, a supervised
filtration step was proposed, which involved
manually determining a 5-point curve that
approximately followed the shoreline. Then, the mean
distance from the curve was calculated for all
remaining points and used as a threshold to eliminate
far-off points that did not constitute the shoreline.
This operation was repeated twice but could be
repeated more times, though with increasing loss in
the underlying shoreline geometry. This approach
effectively removed unwanted points while
preserving the essential shoreline points for further
analysis.

The task of shoreline approximation is a complex
one, as previously discussed. While the approach
introduced by Xu et al. [26] of finding the min. cost
path between permutations of all points in the point
cloud is intriguing, its computational expense is a
notable drawback. Moreover, the original manuscript
lacked certain implementation details, which made
reimplementation challenging. This emphasises the
necessity of developing precise and efficient methods
for approximating shorelines from point clouds.
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5 CONCLUSIONS

The applied method successfully extracted the
shoreline with an average accuracy of 2.12 m and a
standard deviation of 1.11 m. However, to evaluate
the method's reliability, it is essential to test it on
larger data sets derived from diverse waterbodies and
scanning techniques, such as ALS. Notably, Xu et al.
[26] proposed their method for larger scale scenes
surveyed using airborne LiDAR. This study
demonstrates that key concepts utilised in the
algorithmic routine, such as clusterisation, convex
hull fitting, as well as elevation and distance
thresholds, can effectively obtain a high accuracy
shoreline representation that meets IHO standards. To
utilise point cloud-based methods effectively, it is
crucial to enhance filtration techniques and develop
efficient algorithms for shoreline approximation. As
the effectiveness of the investigated methods depends
heavily =~ on  parameter settings, developing
customisable plugins with user-friendly interfaces
and interactive visualisations to assist in determining
feasible parameters could be highly beneficial.

FUNDING

This research was funded by the National Centre for
Research and Development in Poland, grant number
LIDER/10/0030/L-11/19/NCBR/2020. Moreover, this research
was funded from the statutory activities of Gdynia Maritime
University, grant  numbers WN/P1/2023/03 and
WN/2023/PZ/05.

REFERENCES

1.Li, Z; Zhai, ], Wu, F. Shape Similarity Assessment
Method for Coastline Generalization. ISPRS Int. J. Geo-
Inf. 2018, 7, 283.

2.5ui, L.; Wang, J.; Yang, X,; Wang, Z. Spatial-temporal
Characteristics of Coastline Changes in Indonesia from
1990 to 2018. Sustainability 2020, 12, 3242.

.Kanwal, S.; Ding, X.; Sajjad, M.; Abbas, S. Three Decades
of Coastal Changes in Sindh, Pakistan (1989-2018): A
Geospatial Assessment. Remote Sens. 2020, 12, 8.

. Nikolakopoulos, K.; Kyriou, A.; Koukouvelas, I.; Zygouri,
V.; Apostolopoulos, D. Combination of Aerial, Satellite,
and UAV Photogrammetry for Mapping the Diachronic
Coastline Evolution: The Case of Lefkada Island. ISPRS
Int. J. Geo-Inf. 2019, 8, 489.

5. Zhang, Y.; Hou, X. Characteristics of Coastline Changes
on Southeast Asia Islands from 2000 to 2015. Remote
Sens. 2020, 12, 519.

.Mury, A,; Jeanson, M.; Collin, A.; James, D.; Etienne, S.
High Resolution Shoreline and Shelly Ridge Monitoring
over Stormy Winter Events: A Case Study in the
Megatidal Bay of Mont-Saint-Michel (France). J. Mar. Sci.
Eng. 2019, 7, 97.

7.Fu, Y,; Guo, Q.; Wu, X,; Fang, H.; Pan, Y. Analysis and
Prediction of Changes in Coastline Morphology in the
Bohai Sea, China, Using Remote Sensing. Sustainability
2017, 9, 900.

8. Mahamud, U.; Takewaka, S. Shoreline Change around a
River Delta on the Cox’s Bazar Coast of Bangladesh. J.
Mar. Sci. Eng. 2018, 6, 80.

. Martinez, C.; Quezada, M.; Rubio, P. Historical Changes
in the Shoreline and Littoral Processes on a Headland
Bay Beach in Central Chile. Geomorphology 2011, 135,
80-96.

W

=~

[o)}

Ne


http://mostwiedzy.pl

A\ MOST

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Chu, Z.X,; Yang, X.H.; Feng, X.L.; Fan, D.J.; Li, Y.K,;
Shen, X.; Miao, A.Y. Temporal and Spatial Changes in
Coastline Movement of the Yangtze Delta during 1974—
2010. J. Asian Earth Sci. 2013, 66, 166—174.

Cowart, L.; Corbett, D.R.; Walsh, J.P. Shoreline Change
along Sheltered Coastlines: Insights from the Neuse
River Estuary, NC, USA. Remote Sens. 2011, 3, 1516—
1534.

Kuleli, T, Guneroglu, A, Karsli, F.; Dihkan, M.
Automatic Detection of Shoreline Change on Coastal
Ramsar Wetlands of Turkey. Ocean Eng. 2011, 38, 1141-
1149.

Specht, M.; Specht, C.; Lewicka, O.; Makar, A
Burdziakowski, P.; Dabrowski, P. Study on the Coastline
Evolution in Sopot (2008-2018) Based on Landsat
Satellite Imagery. J. Mar. Sci. Eng. 2020, 8, 464.

Zhang, X.; Pan, D.; Chen, J.; Zhao, J.; Zhu, Q.; Huang, H.
Evaluation of Coastline Changes under Human
Intervention Using Multi-temporal High-resolution
Images: A Case Study of the Zhoushan Islands, China.
Remote Sens. 2014, 6, 9930-9950.

Specht, C.; Weintrit, A.; Specht, M.; Dabrowski, P.
Determination of the Territorial Sea Baseline—
Measurement Aspect. IOP Conf. Ser. Earth Environ. Sci.
2017, 95, 1-10.

Specht, M.; Specht, C.; Waz, M.; Dabrowski, P.; Skora,
M.; Marchel, L. Determining the Variability of the
Territorial Sea Baseline on the Example of Waterbody
Adjacent to the Municipal Beach in Gdynia. Appl. Sci.
2019, 9, 3867.

Basterretxea, G.; Orfila, A.; Jordi, A.; Fornds, J.; Tintoré, J.
Evaluation of a Small Volume Renourishment Strategy
on a Narrow Mediterranean Beach. Geomorphology
2007, 88, 139-151.

Specht, M.; Specht, C.; Mindykowski, J.; Dabrowski, P.;
Masnicki, R.; Makar, A. Geospatial Modeling of the
Tombolo Phenomenon in Sopot Using Integrated
Geodetic and Hydrographic Measurement Methods.
Remote Sens. 2020, 12, 737.

Viafia-Borja, S.P.; Ortega-Sanchez, M. Automatic
Methodology to Detect the Coastline from Landsat
Images with a New Water Index Assessed on Three
Different Spanish Mediterranean Deltas. Remote Sens.
2019, 11, 2186.

Boak, E.H., Turner, LL. Shoreline Definition and
Detection: A Review. ]. Coast. Res. 2005, 214, 688-703.
Stockdonf, H.F.; Sallenger Jr.; A.H.; List, ].H.; Holman,
R.A. Estimation of Shoreline Position and Change Using
Airborne Topographic Lidar Data. J. Coast. Res. 2002, 18,
502-513.

Farris, A.S., Weber, KM., Doran, K.S., List, J.H.
Comparing Methods Used by the U.S. Geological Survey
Coastal and Marine Geology Program for Deriving
Shoreline Position from Lidar Data. Available online:
https://pubs.usgs.gov/of/2018/1121/0fr20181121.pdf
(accessed on 26 April 2023).

Fernandez Luque, I.; Aguilar Torres, F.J.; Aguilar Torres,
M.A.; Pérez Garcia, J.L; Lopez Arenas, A. A New,
Robust, and Accurate Method to Extract Tide-
coordinated Shorelines from Coastal Elevation Models. J.
Coast. Res. 2012, 28, 683-699.

Hua, LW.; Bi, Y.L.; Hao, L. The Research of Artificial
Shoreline Extraction Based on Airborne LIDAR Data. J.
Phys.: Conf. Ser. 2021, 2006, 012048.

Liu, H; Wang, L.; Sherman, D.J; Wu, Q. Su, H.
Algorithmic Foundation and Software Tools for
Extracting Shoreline Features from Remote Sensing
Imagery and LiDAR Data. J. Geogr. Inf. Syst. 2011, 3, 99—
119.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Xu, S.; Ye, N,; Xu, S. A New Method for Shoreline
Extraction from Airborne LiDAR Point Clouds. Remote
Sens. Lett. 2019, 10, 496-505.

Rusu, R.B. Semantic 3d Object Maps for Everyday
Manipulation in Human Living Environments. KI -
Kiinstliche Intelligenz 2010, 24, 345-348.

Rusu, R.B. Semantic 3d Object Maps for Everyday
Manipulation in Human Living Environments. PhD
Thesis, Technische Universitit Miinchen, Miinchen,
Germany, 2009.

Xu, S.; Xu, S. A Minimum-cost Path Model to the Bridge
Extraction from Airborne LiDAR Point Clouds. J. Indian
Soc. Remote Sens. 2018, 46, 1423-1431.

Smeeckaert, J.; Mallet, C.; David, N.; Chehata, N.; Ferraz,
A. Large-scale Classification of Water Areas Using
Airborne Topographic LiDAR Data. Remote Sens.
Environ. 2013, 138, 134-148.

Lewicka, O.; Specht, M.; Stateczny, A.; Specht, C,;
Dardanelli, G.; Bréié, D.; Szostak, B.; Halicki, A.;
Stateczny, M.; Widzgowski, S. Integration Data Model of
the Bathymetric Monitoring System for Shallow
Waterbodies Using UAV and USV Platforms. Remote
Sens. 2022, 14, 4075.

Di, K; Wang, J; Ma, R; Li, R. Automatic Shoreline
Extraction from High-resolution IKONOS Satellite
Imagery. In Proceedings of the American Society for
Photogrammet and Remote Sensing Annual
Conference 2003 (ASPRS 2003), Anchorage, AK, USA, 5-
9 May 2003.

Lee, I1-C; Cheng, L., Li, R. Optimal Parameter
Determination for Mean-shift Segmentation-based
Shoreline  Extraction Using Lidar Data, Aerial
Orthophotos, and Satellite Imagery. In Proceedings of
the American Society for Photogrammetry and Remote
Sensing Annual Conference 2010 (ASPRS 2010), San
Diego, CA, USA, 26-30 April 2010.

Liu, H.; Sherman, D.; Gu, S. Automated Extraction of
Shorelines from Airborne Light Detection and Ranging
Data and Accuracy Assessment Based on Monte Carlo
Simulation. J. Coast. Res. 2007, 236, 1359-1369.
Niedermeier, A.; Romaneefien, E.; Lehner, S. Detection
of Coastlines in SAR Images Using Wavelet Methods.
IEEE Trans. Geosci. Remote Sens. 2000, 38, 2270-2281.
Yousef, A.H.; Iftekharuddin, K., Karim, M. A New
Morphology Algorithm for Shoreline Extraction from
DEM Data. In Proceedings of the SPIE Defense, Security,
and Sensing 2013, Baltimore, MA, USA, 29-30 April
2013.

Yousef, A.H.; Iftekharuddin, KM., Karim, M.A.
Shoreline Extraction from Light Detection and Ranging
Digital Elevation Model Data and Aerial Images. Opt.
Eng. 2013, 53, 011006.

Trucco, E.; Verri, A. Introductory Techniques for 3-D
Computer Vision; Prentice Hall: Hoboken, NJ, USA,
1998.

Lee, 1.-C.; Wu, B.; Li, R. Shoreline Extraction from the
Integration of LiDAR Point Cloud Data and Aerial
Orthophotos Using Mean Shift Segmentation. In
Proceedings of the  American Society  for
Photogrammetry and Remote Sensing Annual
Conference 2009 (ASPRS 2009), Baltimore, MD, USA, 9-
13 March 2009.

Specht, M.; Stateczny, A.; Specht, C.; Widzgowski, S.;
Lewicka, O.; Wisniewska, M. Concept of an Innovative
Autonomous Unmanned System for Bathymetric
Monitoring of Shallow Waterbodies (INNOBAT
System). Energies 2021, 14, 5370.

IHO. IHO Standards for Hydrographic Surveys, 6th ed.;
Special Publication No. 44; IHO: Monaco, Monaco, 2020.

453


http://mostwiedzy.pl

