
General provisioning strategy for local specialized cloud
computing environments

Piotr Orzechowski1[0000-0002-4339-9707] and Henryk Krawczyk2[0000-0003-0436-6264]

1 Centre of Informatics Tricity Academic Computer and Network, Gdansk University of Tech-
nology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland,

porzechowski@task.gda.pl
2 Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technol-

ogy Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland,
hkrawk@pg.edu.pl

Abstract. The well-known management strategies in cloud computing based on
SLA requirements are considered. A deterministic parallel provisioning algo-
rithm has been prepared and used to show its behavior for three different require-
ments: load balancing, consolidation, and fault tolerance. The impact of these
strategies on the total execution time of different sets of services is analyzed for
randomly chosen sets of data. This makes it possible to improve the project and
to implement the proper strategies for the local TASKcloud environment used in
our institution.

Keywords: cloud computing, management strategy, criteria of optimalizations,
provisioning algorithms.

1 Introduction

In general, service providers establish a service level agreement (SLA [1]) covering the
general terms and conditions in which they will work with customers. The SLA is not
only a set of conditions for service providers, but it could be also a source of benefits
for customers. The contract between the provider and customer describes different char-
acteristics of the service, which makes the services comparable between different pro-
viders. The SLA should also contain methods of redressing service issues. Other topics
mentioned in SLA documents include:

• client expectations according to his/her needs,
• detailed descriptions of every service offered, under all possible circumstances, with

the turnaround times included,
• definition of quality measurement metrics and quality level assurance,
• compensation or payment if the provider cannot properly fulfill this SLA.

Cloud computing [2] is mainly built on top of virtualization, as cloud users typically
rent virtual resources from cloud providers. A popular form of virtualization is the use

Postprint of: Orzechowski P., Krawczyk H. (2023). General Provisioning Strategy for Local Specialized Cloud
Computing Environments. In: Zamojski W., Mazurkiewicz J., Sugier J., Walkowiak T., Kacprzyk J. (eds) Dependable
Computer Systems and Networks. DepCoS-RELCOMEX 2023. Lecture Notes in Networks and Systems, vol 737.
Springer, Cham. DOI: 10.1007/978-3-031-37720-4_18

https://doi.org/10.1007/978-3-031-37720-4_18

2

of virtual units (virtual machines, containers) which are created to run on a host ma-
chine (typically a physical server). Thanks to this, cloud architectures integrate IT en-
vironments and share scalable resources across a network to deliver an online platform
on which client applications can run. In general, cloud systems are highly complex, as
they deal with a range of distributed components, users, and deployment scenarios.

In the literature, different enhancement and approaches to cloud management are
considered and various models are proposed [4]. In general, the service provider is re-
sponsible for managing the resources to fulfill the requests generated by users. Service
providers employ suitable algorithms to manage the incoming client requests (services)
and to manage their virtual resources efficiently. Management strategies make it possi-
ble for providers to maximize revenue by utilizing their available resources up to their
limits. In practice, in terms of the performance of cloud computing resources, the choice
of management strategy makes a pronounced difference.

Our consideration and experiments focus on the implementation of a provisioning
algorithm for local cloud computing, with the assumption that these local providers
possess a more limited number of services and resources available for clients. Typical
local cloud architectures are implemented through commonly available open-source
software (Unix, OpenStack, Kubernetes). The presented models have been simulated
hosting the TASKcloud [5] service (based on OpenStack software) which is a cloud
computing service developed and deployed in our institution. The paper focuses on
some aspects related to the main management strategies regarding the allocation and
provisioning of resources (virtual units). They can be defined in different ways under
the accepted assumptions related to clients’ requirements, cloud architecture, models
of services and resources, and optimization criteria. Resource Allocation refers to the
allocation (reservation) of a pool of resources represented by virtual machines or con-
tainers (virtual resources – VR) to satisfy the SLA previously accepted by both the user
and the cloud provider, while Resource Provisioning is the effective provisioning of a
portion of the reserved resources to execute the fixed set of services notified by the
user. Fig. 1 explains the proposed approach. When a cloud provider accepts a request
from a customer, it has to create the appropriate number of VRs and allocate user ser-
vices to run. A typical example of resource provisioning is the deployment of a new
virtual machine by the consumer, which uses a subset of the physical resources to run
the single service. Due to virtualization, we can allocate resources flexibly, based on
the current client demands. Then we can estimate the optimal values of resources for a
concrete client demand. In general, this will be a much lower value than the value esti-
mated based on the SLA.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3

Fig. 1. Considered scope of cloud management (source: authors).

The paper considers local specialized clouds, such as the mentioned TASKcloud, and
considers a resource provisioning strategy for a lower number of services and resources
compared to the global clouds deployed by such Big Tech firms such as Google, Mi-
crosoft and IBM. In such a case, deterministic provisioning algorithms can be consid-
ered. Their behavior can be examined for different optimization criteria, i.e., load bal-
ancing, consolidation, and fault tolerance. The impact of many parameters related to
heuristic algorithms can be eliminated this way. Moreover, a parallel version of the
algorithm to increase its speed and to consider mixed optimization criteria has been
prepared. The paper presents that mixed criteria could have a significant impact on the
execution time compared to a single criterion. It makes it possible to estimate the as-
surance cost of t-faults tolerance, where t is the maximal number of faulty virtual units
in the cloud.
The structure of the article is as follows. First, in Section 2, the state-of-the-art in the
field of the practical implementation of management strategies in local cloud environ-
ments is discussed. In Section 3, the model of the assumed provisioning problem is
described. Three criteria and the universal parallel algorithm to solve load balancing,
consolidation, and fault tolerance problems are defined. The experiments are described,
and the test results of the algorithm are discussed in detail in Section 4. Section 5 con-
cludes the article.

2 Categories of cloud provisioning

Organizations can manually provide whatever resources and services they need, but
public cloud providers offer tools to provision multiple resources and services, for in-
stance: AWS CloudFormation, Microsoft Azure Resource Manager, and Google Cloud
Deployment Manager. Such solutions concern global clouds and primarily concentrate
on the administrative problems of cloud provisioning and offer many tools to support
whole organizations rather than single customers. This paper focuses on local special-
ized clouds and considers the methods of allocating a cloud provider’s resources and
services to customers. In the current considered provisioning problems, the customer
signs a formal contract of service with the cloud provider [7]. The provider prepares

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4

the agreed-upon resources or services for the customer and delivers them. It is a process
that can be conducted using one of three delivery models. Each delivery model differs
depending on the kinds of resources or services the organization purchases, how and
when the cloud provider delivers those resources or services, and how the customer
pays for them. The three models are advanced provisioning, dynamic provisioning, and
user self-provisioning:

• Advanced Provisioning – the customer requests services from the provider and the
provider prepares the appropriate resources in advance. The customer is charged a
flat fee or is billed monthly,

• Dynamic provisioning – the customer can purchase cloud resources based on aver-
age consumption needs. The cloud provider deploys and adjusts the resources to
match the customer’s usage demands. Based on the customer’s fluctuating demands,
the provider allocates more resources when they are needed and removes them when
they are not. Cloud deployments typically scale up to accommodate spikes in usage
and scale down when demand decreases. The customer is billed on a pay-per-use
basis. When dynamic provisioning is used to create a hybrid cloud environment, it
is sometimes referred to as cloud bursting,

• User self-provisioning (also called cloud self-service) – the customer buys resources
from the cloud provider through a web interface or portal and the cloud provider
makes these resources available shortly after purchase. This usually involves creat-
ing a user account and paying for the resources with a credit card. Those resources
are then quickly spun up and made available for use – within hours, if not minutes.
Examples of this type of cloud provisioning include an employee purchasing cloud-
based productivity applications via, e.g., the Microsoft 365 suite or G Suite.

A self-service provisioning model helps to streamline users’ requests and manage
cloud resources but requires strict rules to ensure they do not provision resources they
should not. In this paper, the focus is on this type of provisioning model. The following
metrics can be distinguished within the above provisioning approach:

• Scalability – there is no requirement for forecasting infrastructure needs; organiza-
tions can simply scale up and scale down their cloud resources based on short-term
usage requirements,

• Provisioning speed – developers can quickly spin up a set of workloads on demand,
removing the need for an IT administrator who provisions and manages the compute
resources,

• Cost savings – many cloud providers allow customers to pay for only what they
consume. However, the attractive economics presented by cloud services can present
its own challenges, which organizations should address in their cloud management
strategies.

It is a well-known fact that resource over-provisioning can cost users more than neces-
sary and resource under-provisioning hurts application performance. In general, it is a
complicated optimization problem, and there is a wide research avenue available for
solving this. In the paper [8], some details about various optimization techniques for
resource provisioning are presented. It has been shown that the cost-effectiveness of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5

cloud computing strongly depends on how well the customer can optimize the cost of
renting resources (Virtual Machines) from cloud providers. In the above paper, a frame-
work is proposed. It is inspired by a cloud layer model, to enable the optimal provision
of resources by combining the concepts of autonomic computing, linear regression and
Bayesian learning. The efficacy of the proposed framework is evaluated using both the
CloudSim toolkit and real-world workload traces from Google, followed by the traces
from Clarknet. Such parameters as response time, SLA violations, virtual machine us-
age hours and cost were evaluated. In the paper [9], the authors propose a concrete
solution for migrating physical servers to a cloud with the usage of the Azure cloud
framework. The utilization of physical server resources on remote VM servers is con-
sidered. Such a migration process in the framework was implemented in two phases:
first by integrating physical servers into virtual ones by creating virtual machines, and
then by integrating the virtual servers into cloud service providers in a cost-effective
manner. Two virtual machine instances were created using Microsoft Hyper-V on Win-
dows Server 2016 R2. Applications that were installed on a workstation were migrated
to the VM and the performance of this VM was monitored using a PowerShell script.
Then Tableau was used to generate load and do analytical calculations to evaluate the
physical server functionality.
The above papers concentrate on the IaaS level, considering VM-based environments,
where a hypervisor will strictly allocate resources to the deployed VMs. The deployed
VMs, however, can compete for the shared physical resources, but the hypervisor
should detect and prevent this to not violate SLA requirements. In this paper, a more
general approach is proposed to mitigate these constraints, where cloud services are
assigned to virtual units. A dynamic provisioning approach is presented, and a deter-
ministic algorithm is proposed. As was mentioned in Section 1, three different optimal-
ization criteria are analyzed and some results are given. Moreover, the implementation
of the algorithm is prepared in such a way that it can be used in the TASKcloud envi-
ronment. Deployment of TASKcloud is fully automated using advanced Ansible play-
books and it can be adapted to change the scheduling mechanisms.

3 Model of cloud environments to optimize provisioning
strategies

As was shown in the previous section, there are many proposals on how to build a
suitable provisioning strategy for cloud environments. However, heterogenous re-
sources and the different methods of their cooperation, as well as the diversity, varia-
bility, and unpredictability of the required workload, and different needs of various
cloud users make universal, simple, and effective methods most useful. They can be
formulated based on general models, which can be used at different levels of cloud
management strategies.

Consider a set 𝑃 of permutations of services and virtual resources; their number can
be 𝑃 = 𝑛 ∗ 𝑚, where 𝑚 is the number of all possible services and 𝑛 is the number of
all possible virtual resources. For the exact solution of the provisioning problem, all
possible allocation modes must be reevaluated and the best mode chosen. Due to the
large number of exponential modes, the problem is an example of a set packing problem

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6

which is of NP-complete type. Moreover, in the proposed method, the provisioning of
a set of services at one point in time is considered instead of queued services that are
provisioned one by one. The assumed notation is presented below:

• 𝑆 = {𝑠!, 𝑠", … . , 𝑠#}	 – is the set of user demands representing services waiting to run
in the computing cloud, where 𝑠$, 𝑖 = 1,2, … ,𝑚 is a user demand to run the 𝑖 − 𝑡ℎ
service. It can be a single task or a scenario of tasks.

• 𝑅 = {𝑟!, 𝑟", … . . , 𝑟%}	 – is the set of virtual resources available in the cloud, where 𝑟&
represents the 𝑗 − 𝑡ℎ resource which belongs to one of the cloud servers. Each virtual
resource is supported by some physical resources described by computing capabili-
ties, such as computational power, storage, and cloud services.

• 𝜓(𝑆, 𝑅) – is the allocation matrix of required services 𝑆 to the available cloud re-
sources belonging to 𝑅, in brief:
─ 𝜓 = :𝜓$&;, where:

 𝜓$& = <1 − 𝑖𝑓	𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑠$ 𝑖𝑠	𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑	𝑡𝑜	𝑐𝑙𝑜𝑢𝑑	𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟&
0 − 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

where 𝑖𝜖{1,2, … . ,𝑚} 	∧ 𝑗𝜖{1,2, … . , 𝑛}

• – is the vector representing the current rate of use of all cloud resources 𝑅, before
allocation of the new services from S, i.e., 𝛿 = [𝛿!, 𝛿", … , 𝛿%], 𝛿$ ∈< 0,1.2 >. In
further considerations, a small 20% over-provisioning is allowed.

In practice, the rate of use, as a ratio of the amount of currently occupied resources to
the amount of all resources available, can be calculated. In simple cases, the percentage
of virtual machines currently active to all available space can be used here.

Let 𝛾 = :𝛾$&; be the vector determining the rate of the 𝑗 − 𝑡ℎ resource use when the
𝑖 − 𝑡ℎ service can be assigned to it; 𝛾$& ∈< 0,1 >. Note that 𝛾 can be calculated in the
same way as 𝛿. In practice, it means the percentage of engaged resources.

The load of the j-th resource after the allocation of services S on resources R accord-
ing to 𝜓 can be calculated in the following way:

 𝛿'& = 𝛿& + ∑ 𝜓$& ⋅ 𝛾$&#
$(! (2)

Let T be the matrix of the given execution times for all services running on all resources,
i.e.:

 𝑇 = :𝑡$&; (3)

where 𝑡$& denotes the processing time of service 𝑠$ on resource 𝑟&. It can be calculated
empirically either by testing or by estimating the service properties and the character-
istics of the resources.
Note that it is true where 𝛾$& ≤ 1 − 𝛿&, otherwise the processing time 𝑡$& can be in-
creased according to the following formula:

d

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7

 𝑡'$& = W𝛿& + 𝛾$&X · 𝑡$& (4)

The execution time of all services 𝑆 running on resources 𝑅 for allocation 𝜓(𝑆, 𝑅) is
denoted by 𝜏(𝑆, 𝑅). If the services are to be processed sequentially, then:

 𝜏(𝑆, 𝑅) = ∑ ∑ 𝑡$& ⋅ 𝜓$&%
&(!

#
$(! (5)

For the parallel execution of all services (which is possible when 𝑛 ≥ 𝑚):

 𝜏(𝑆, 𝑅) = 𝑚𝑎𝑥$(!,..,# ∑ 𝑡$& ⋅ 𝜓$&%
&(! (6)

In general:

 𝑚𝑎𝑥$(!,..,# ∑ 𝑡$& ⋅ 𝜓$&%
&(! ≤ 𝜏(𝑆, 𝑅) ≤ 	∑ ∑ 𝑡$& ⋅ 𝜓$&%

&(!
#
$(! (7)

Let us consider provisioning problems for three different optimization criteria: load
balancing, consolidation, and fault tolerance. Load balancing algorithms are used to
distribute new demands of users (services) among the virtual resources to guarantee a
well-balanced load across all cloud nodes. In contrast, consolidation is usually achieved
by spreading the service workload over a smaller set of resources so the servers remain-
ing unused can be powered down or put into standby mode. The first approach mini-
mizes the total execution time of the set of services, in other words, to maximize the
use of their resources at a lower overall client cost to increase their profit. The second
approach copes better with highly fluctuating demands from clients. Moreover, having
a set of free servers (nodes) that is not currently needed also makes it possible to design
fault-tolerant systems. In that case, we plan the execution of each of the user tasks on
more than one node. Below, we discuss the criteria in more detail and provide formal
optimization criteria.
Load balancing algorithms are used to distribute new requests of users (services) in a
cloud between the virtual units to guarantee an equal number of services allocated to
each cloud server. However, each client demand can be expressed by service workloads
to run on virtual units. Then, load balancing is a mechanism to balance the load by
uniformly distributing the workload among the nodes [10]. Effective load balancing
mechanisms will optimize the utilization of resources and improve the cloud’s perfor-
mance. There are various implementations of such mechanisms based on different load
balancing algorithms [11]. In [12], capacity planning methods for cloud users and cloud
service providers, and algorithms that combine the capabilities of different strategies
which are more efficient, are considered. In consequence, load balancing algorithms
seek to distribute service workloads across several virtual machines in a manner that
minimizes the average time taken to complete the execution of those workloads, which
typically results in server utilization being maximized and balanced.
The optimization problem for load balancing is defined as looking for (𝑆, 𝑅), which
minimizes 𝜏(𝑆, 𝑅), subject to:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

8

⎩
⎪
⎨

⎪
⎧𝛿$ 	≅ 	 𝛿& 	∀$+& 	𝑖, 𝑗Î	{1, 2… , n}

∑ 𝜓$&	³0#
$(!

∑ 𝜓$& = 1%
&(!
𝛾$& ≤ 1 − 𝛿&

 (8)

Workload consolidation aims at maximizing the usage of servers by grouping services
to run concurrently on fewer virtual units. Workload consolidation is one way to reduce
resource wastage by clustering services on a subset of the pool of available machines.
This technique is used to maintain control over the potentially high economic and en-
vironmental cost [13]. Many different approaches have been proposed for workload
consolidation, but it is unclear which of the proposed approaches works best in each
situation. In the paper [14], the authors showed that consolidation algorithms, whose
goal is to maximize the number of empty physical machines, perform many virtual
machine migrations, named eager migrations. These migration processes have a signif-
icant impact on the response times of the services deployed on those machines. The
authors propose a new method and a heuristic to decide which virtual machines should
be migrated. This solution takes into account the variability of the sizes of the virtual
machines and prioritizes virtual machines with a steady capacity to be migrated first.
In the paper [15], the authors proposed a solution to allocating a set of services based
on a bin packing problem. The described framework is a semi-online workload man-
agement system which gathers incoming user requests to start a workload and packages
them into sets. Then a whole group of services is taken into account during the alloca-
tion process. Such an allocation policy produces a saving of up to 40% of the resources
compared to other consolidation algorithms.
For consolidation, the optimalization criterion of maximizing the number of empty
nodes (value |I|) is proposed:

 𝐼 = g𝑗h𝜓$& = 0	"$i, |I|	is	cardinality	of I (9)

subject to:

 𝛾$& ≤ 1 − 𝛿& (10)

 ∀𝑗, 𝑗Î{1,2, … , n}\I	 ∑ 𝜓$& 	³	1#
$(! (11)

 ∀𝑗, 𝑗	Î	𝐼 ∑ 𝜓$& = 0#
$(! (12)

A fault-tolerant system works on one of two strategies. The replication strategy assumes
that service replicas are running for each service in parallel and the result is obtained
by majority voting. Alternatively, the redundant strategy assumes that the redundant
servers or virtual units reside on an inactive mode unless and until any fault tolerance
system demands their availability. Thus, if one part of the system fails, it has other
instances that can be used in its place to keep it running. Extensive research efforts are
consistently being made to implement fault tolerance in cloud infrastructures: the paper
[16] gives a systematic and comprehensive elucidation of different fault types, their
causes and various fault tolerance frameworks used in cloud implementations. Re-
cently, cloud computing-based environments have presented new challenges to support
fault-tolerance and opened up new paths to develop novel strategies, architectures, and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

9

standards. In the paper [17], the needs and solutions of fault-tolerance in cloud compu-
ting are discussed and future research directions specific to the development of cloud
computing fault-tolerance are enumerated. In further considerations, an assumption has
been made that 𝑡 fault tolerance means that resources are allocated in a manner such
that the impact of 𝑡 failures (e.g., failures of virtual units) on the system performance is
minimized or unimportant. The optimalization problem for t-faults tolerance, where
𝑛 ≥ 2𝑡 + 1 can be defined as minimizing 𝜏(𝑆, 𝑅), can be expressed as:

 ∑ 𝜓$& ≥ 𝑡 + 1%
&(! ,∀$∈ {1,2, … ,𝑚} (13)

 𝛿 ʹ& 	£	1.2 (14)

As can be seen, each optimalization problem given above can be solved either sepa-
rately or in different combinations, depending on the user needs. There are many avail-
able options based on genetic algorithms or artificial intelligence. They differ in some
assumptions related to the features of the user requests and the services and capabilities
of the cloud resources. In general, to minimize the total running time, the following
properties are considered:

1. For user needs – requirements contained in SLA agreements should be considered
during management processes and their implementation requires consideration at
three levels: global, local, and operating system level. In this report, we investigate
the local level,

2. For services – they are deterministic, their processing time preemptive without prec-
edence constraints regarding the order of services, and each service cannot be further
split into smaller subtasks,

3. For resources – the processing capacity of the node remains unchanged but bounded,
i.e., a limited number of services can be processed in sequential order of provision-
ing. The number of resources (nodes) can be invariant according to the user needs.

4 Experiments and results

To evaluate the provisioning strategy, the following parallel provisioning algorithm is
proposed:

Algorithm

Input Data: S,R,δ,T

do in parallel:
 create all allocations for ψ(S,R)
 select allocations satisfying criteria (8), (9), (13)
end
make selection of the best allocations
 D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

10

Output Data: ψ(S,R) and τ(S,R) according to the selected
criteria

Because the above algorithm is NP complete type, despite the proposed parallelization,
only configurations with a maximum of 8 services and 4 resources (nodes) have been
analyzed. It has been assumed that each service has its copy, which is a backup in case
of a node failure. Services are named 𝑠$ and their copies are named 𝑠$′. Let us assume
the following input data for 8 services:

Table 1. Values of matrix 𝑇

Services/Resources 𝑟! 𝑟" 𝑟# 𝑟$
𝑠! 4 5 3 4
𝑠!ʹ 4 5 3 4
𝑠" 3 4 3 2
𝑠"ʹ 3 4 3 2
𝑠# 5 4 6 3
𝑠#ʹ 5 4 6 3
𝑠$ 3 3 4 3
𝑠$ʹ 3 3 4 3

Table 2. Values of matrix 𝛾

Services/Resources 𝑟! 𝑟" 𝑟# 𝑟$
𝑠! 0.4 0.5 0.3 0.4
𝑠!ʹ 0.4 0.5 0.3 0.4
𝑠" 0.3 0.4 0.3 0.2
𝑠"ʹ 0.3 0.4 0.3 0.2
𝑠# 0.5 0.4 0.6 0.3
𝑠#ʹ 0.5 0.4 0.6 0.3
𝑠$ 0.3 0.3 0.4 0.3
𝑠$ʹ 0.3 0.3 0.4 0.3

The solutions presented in Table 3 were obtained using the proposed algorithm.

Table 3. Optimal allocation for the considered model and 8 services. Values of processing time
are in brackets. (x*) means acceptation of resource overload.

Criteria/Re-
sources

𝑟! 𝑟" 𝑟# 𝑟$

Load balancing
(LB)

𝑠$, 𝑠$′(6) 𝑠#′(4) 𝑠!, 𝑠!′(6) 𝑠", 𝑠"′, 𝑠#(7)

Consolidation
(CONS)

 𝑠!, 𝑠!% , 𝑠", 𝑠"′
(12.6*)

𝑠#, 𝑠#% , 𝑠$, 𝑠$’
(12.6 ∗)

Fault tolerance
(FT)

𝑠!′, 𝑠$′(7) 𝑠#′(4) 𝑠!, 𝑠"′(6) 𝑠", 𝑠#, 𝑠$(8)

Load balancing
& Fault toler-
ance (LBFT)

𝑠!′, 𝑠$′(7) 𝑠#′(4) 𝑠!, 𝑠"′(6) 𝑠", 𝑠#, 𝑠$(8)

Consolidation &
Fault tolerance
(LBFT)

𝑠!, 𝑠#, 𝑠$(12.6*) 𝑠!′, 𝑠", 𝑠$′(10) 𝑠"′, 𝑠#′(5) D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

11

Experiments were run for sets of 2, 4, 6, 8, 10 and 12 services and the results are pre-
sented in Fig. 2 and Fig. 3.

Fig. 2. Execution time of a set of services on different resources provisioned using different al-
gorithms.

Fig. 3. Sum of execution times of services on different resources provisioned using different
algorithms.

The randomly chosen values of Table 1 and Table 2 were analyzed and the processing
times of the sets of services were determined. It is shown that the most time-consuming
criterion is fault tolerance, the second is consolidation, while the lowest processing time
is consumed for the load balancing criterion. Moreover, the common consideration of
the two criteria of load balancing and fault tolerance produced a slightly better result D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

12

than the common consideration of consolidation and fault tolerance, which is also ver-
ified in practice. This provides a practical suggestion for the implementation of permis-
sion strategies.

5 Final Remarks

Three different cases of provisioning problems have been considered. The execution
time of a set of independent services has been compared. A formal model that can be
used at different levels of cloud resources – virtual units or physical units – has been
proposed. Three optimalization problems have been classified based on their mean pro-
cessing time. A hybrid approach has been investigated, and load balancing with fault
tolerance is shown to produce more promising results than consolidation with fault tol-
erance. The presented model makes it possible to analyze a series of service sets re-
quired to run in a cloud environment and achieve acceptable scalability. It makes it
possible to determine the proper strategy of provisioning for changing user require-
ments or clients’ demands in near real time. The sequential and parallel execution of
services on one node can also be considered. To improve the provisioning speed of
much bigger sets of services and resources (which will be interesting for global clouds),
a heuristic algorithm should be considered. There is also the aspect of the influence of
the services on each other, as can be seen in equation (4). This problem has been men-
tioned in [18] and [19] and provides a possible path to further enriching the algorithm
proposed in this paper. The resulting algorithm could minimize the interaction of ser-
vices in different categories, which should positively impact cost savings for clients
(services should execute with no delays). Such a solution will be considered in further
research.

Provisioning problems have been tested in a TASKcloud test environment, which
also confirms the presented simulation results. The next step is to implement the provi-
sioning tool for this environment to utilize the natural possibilities of the platform.

Acknowledgments

The Regional Operational Program of the Pomeranian Voivodeship for 2014–2020,
Project Number RPPM.01.02.00-22-0001 / 17, “Establishment of the Competence Cen-
ter STOS (Smart and Transdisciplinary knOwledge Services) in Gdansk in the field of
R&D infrastructure.”

References

1. Odun-Ayo, I., Udemezue, B., Kilanko, A.: Cloud Service Level Agreements and Resource
Management Advances. Science Technology and Engineering Systems Journal 4(5), 228–
236 (2019).

2. Manvi, S., Shyam, G.K.: Cloud Computing Concepts and Technologies. 1st ed. CRC Press,
(2021).

3. Jennings, B., Stadler, R.: Resource Management in Clouds: Survey and Research Chal-
lenges. Journal of Networks and System Management 23, 567–619 (2015).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

13

4. Gonzalez, N., Carvalho, T., Miers, C.: Cloud resource management: towards efficient exe-
cution of large-scale scientific applications and workflows on complex infrastructures. Jour-
nal of Cloud Computing 6, (2017).

5. Orzechowski P.: Task Cloud Infrastructure in the Centre of Informatics – Tricity Academic
Supercomputer & Network. TASK Quarterly 22, 313–319 (2018).

6. Beaumont, O., Eyraud-Dubois, L., Guermouche, A., Lambert, T.: Comparison of Static and
Dynamic Resource Allocation Strategies for Matrix Multiplication. In: 26th IEEE Interna-
tional Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), Florianopolis (2015).

7. Sumalatha, K., Anbarasi, M. S.: Provisioning Cloud Resources: Optimization Techniques
for Resource Provisioning in Cloud Environment. 1st ed. Lambert Academic Publishing
(2019).

8. Panwar, R., Supriya, M.: Dynamic resource provisioning for service-based cloud applica-
tions: A Bayesian learning approach. Journal of Parallel and Distributed Computing 168,
90–107 (2022).

9. Perumal, K., Mohan, S., Frnda, J. et al.: Dynamic resource provisioning and secured file
sharing using virtualization in cloud azure. Journal of Cloud Computing 11, (2022).

10. Kashyap, D., Viradiya, J.: A survey of various load balancing algorithms in cloud compu-
ting. International Journal of Scientific & Technology Research 3(11), 115–119 (2014).

11. Mesbahi, M., Rahmani, A.: Load Balancing in Cloud Computing: A State of the Art Survey.
International Journal of Modern Education and Computer Science 8, 64–78 (2016).

12. Sharma, M., Sharma, P.K., Sharma, S.S.: Efficient Load Balancing Algorithm in VM Cloud
Environment. International Journal of Computer Science and Technology 3(1), 439–441
(2012).

13. Ponto, R., Kecskeméti, G., Mann, Z.: Comparison of workload consolidation algorithms for
cloud data centers. Concurrency Computation Practice Experience, 1–24 (2021).

14. Ferreto, T.C., Netto, M.A., Calheiros, R.N., Rose, C.A.D.: Server consolidation with migra-
tion control for virtualized data centers. Future Generation Computer Systems 27(8), 1027–
1034 (2011).

15. Armant, V., De Cauwer, M., Brown, K.N., O’Sullivan, B.: Semi-online task assignment
policies for workload consolidation in cloud computing systems. Future Generation Com-
puter Systems 82, 89–103 (2018).

16. Hasan, M., Goraya, M.S.: Fault tolerance in cloud computing environment: A systematic
survey. Computers in Industry 99, 157–172 (2018).

17. Rehman, A.U., Aguiar, R., Barraca, J.P.: Fault-Tolerance in the Scope of Cloud Computing.
IEEE Access 10, 63422–63441 (2022).

18. Orzechowski, P.: Complementary oriented allocation algorithm for cloud computing. TASK
Quarterly 21(4), 395–403 (2017).

19. Orzechowski, P., Proficz, J., Krawczyk, H., Szymański, J.: Categorization of Cloud Work-
load Types with Clustering. Proceedings of the International Conference on Signal, Net-
works, Computing, and Systems 395, 303–313 (2016).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

