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Abstract 

Material removal processes, including turning and milling, are still commonly used operations for 

manufacturing most of mechanical components in modern industry. Apart from the cutting 

parameters, the cooling method has the great impact on the technological effects and, above all, 

on the environmental friendliness of production. In this study, multi-response optimization on the 

effect of wet and cryogenic machining is performed during the turning of AISI D2 steel samples. 

Spindle speeds, feed rates, depths of cut, and cutting fluid types varied in a Taguchi mixed design 

L16 orthogonal array. Statistics, such as an analysis of variance (ANOVA) and a regression model, 

were applied to the obtained data on the metal removal rate and surface roughness. By employing 

a grey relational analysis, the best cutting factors for a set of several responses were determined. 

Among the many factors influencing the rate at which material is removed, analysis of variance 

revealed that the feed rate was the most influential factor (46.67%), followed by spindle speed 

(46.65%). Analysis of the factors influencing surface roughness pointed to the feed, cutting 

condition, and spindle speed as the most essential at 56.66%, 26.04%, and 11.7%, respectively. 

ANOVA of grey relational analysis shows that speed followed by cutting conditions are the most 

predominant factor, with a percentage contribution of 71.9% and 14.14%, respectively. From grey 

relational analysis, a level setting of 4-4-1-2 was identified as the best possible combination of 
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multi-response process parameters. A close agreement is observed between the predicted value of 

GRG 0.7927 and the experimental validation value of GRG 0.8031. Moreover, the validation test 

reveals that the percentage error in estimating material removal rate, surface roughness, and GRG, 

respectively, are 4.33%, 9.09%, and 1.29%, from predicted values. A study on metallographic 

observations revealed that parts after wet machining have more tool marks on the treated surface 

than parts after cryogenic machining.  

Keywords: Cryogenic machining, GRA, Material removal rate, Surface roughness, Taguchi 

method  

 1. Introduction  

Turning is one of the most commonly used manufacturing processes utilized for the production of 

mechanical components. This machining operation is a subtractive technique to remove the 

material allowance using controlled predictive variables. The volume of the material removed 

through this technique depends on the duration of the processing time and involved predictive 

variables [1]. The cutting power is converted to heat while conducting turning operation, and 

cooling techniques, whether wet and cryogenic, are used to reduce the effect of this heat on the 

part surface quality [2].   

Wet machining utilizes common cutting fluids such as water-mixed types containing complex 

petrochemical elements and vegetable oil based types like castor, sesame, sunflower, and canola 

oil. Flooding of cutting fluid at approximately 100 l/h into the cutting zone is a common industrial 

practice to provide an effective cooling effect and lubrication. This flooding, negatively impacting 

the environment, is crucial for effective chip removal and heat transfer from the cutting zone [3, 

4]. Eco-friendly cryogenic machining utilizes nitrogen or carbon dioxide in the form of a liquid or 

gas acting directly on the tool or directly delivered to the cutting zone. This cooling technique is 

greener and better at preventing tool defects and refining the machining process.  It also has a 

significant superiority when machining composites and other non-metals due to ease of chip 

breaking, low tool wear, superior quality score, and reduced chip contact length [5].   

Many investigators studied the effect of wet and cryogenic cutting fluids during turning 

challenging to cut materials through the quality score of cutting force, tool wear, material removal 

rate, specific cutting energy, and surface roughness. A cryogenic cutting condition showed 20% 
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better surface roughness than an equivalent weight condition of flood or wet cooling technique 

during turning operation employed on AISI 316 austenitic stainless steel [6] and Ti-6Al-4V [7]. 

To minimize surface roughness and the tool wear during processing Ti-6Al-4V, a Taguchi-based 

grey relational analysis was performed to examine the impact of predictive variables. The ANOVA 

result displayed that the feed rate followed by the cutting fluid contributed more to the total 

variation in simultaneous objective functions. The suggested optimal machining setting improved 

surface roughness, tool wear, and specific cutting force in 22%, 30%, and 4%, respectively [8].  

Younas et al. [9] integrated grey relational analysis with the analytical hierarchy process to 

optimize and model a multi-objective function. Turning quality scores, surface roughness, tool 

wear, specific cutting energy, and material removal rate were selected for multi-response 

optimization during turning Ti-6Al-4V material with uncoated H13 carbide insert in dry turning 

condition. A response surface method was employed in their study to determine the optimal 

machining setting. ANOVA results showed that the interaction of feed to speed contributed more 

in affecting grey relational grade for the simultaneous objective function. Optimal turning setting 

increased tool life by 7% and material removal rate by 34%, whereas surface roughness and 

specific cutting force diminished by 2% and 6%, respectively [9].   

In research performed by Sharma et al. [10] on AA6262T6 aluminium alloy dry turning conditions 

and an uncoated tool with a carbide insert were employed. The study considers the depth of cut, 

cutting speed, and feed rate as predictive variables and uses grey relational analysis for multi-

response optimization. The predicted results showed a boost of 14.55% for the material removal 

rate and a diminished 8.9% for surface roughness [10]. Ranjith et al. [11] analysed AA6063 turning 

at cryogenic and room temperature by utilizing an L16 orthogonal array design with grey relational 

analysis to determine the effect of machining parameters on the response surface roughness and 

material removal rate. The results proved that cryogenic turning is superior to room temperature 

by lessening the material removal rate and improving surface roughness [11].  

The experimental study presented in [12] was conducted on AISI L6 difficult-to-cut material to 

investigate the effect of liquid nitrogen cutting fluid in turning operation and to optimize the 

response quality scores such as surface roughness, cutting energy, tool wear, and material removal 

rate. Taguchi-based grey relational analysis with L9 orthogonal array adapted for optimization 

identified optimal input settings as speed 160 m/min and feed 0.16 mm/rev [12]. The effect of 
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predictive variables and Al2O3 Nanofluid during turning of Incoloy 800H steel using AlTiN coated 

carbide tool inserts and L9 Taguchi design was presented in [13]. Results showed that 0.25% 

concentration of Al2O3 Nanofluid in coconut oil, along with a speed of 100 m/min and 0.14 

mm/rev feed rate have a better quality score to minimize the roughness, tool wear, and cutting 

force. The crystallographic plane, surface roughness, microhardness, and microstructure were 

some of the quality scores examined on AZ31C magnesium alloy in both dry and cryogenic 

environments [14]. Cryogenic conditions showed better surface quality and an increase in 

microhardness from 53.7 HV to 98 HV.  

D2 steel tested in this study is used in high-tech applications that require long-run tooling, where 

surface quality is critical. This applies, for example, to applications such as the production of thread 

rolling dies, blanking dies or forming dies. Deteriorated surface and rapid tool wear have been 

noted as hypercritical damage induced during the turning process [15]. Accordingly, optimal set 

of turning parameters and cooling conditions under which surface roughness is reduced and 

material removal rate increases plays a significant role in manufacturing industries. To achieve 

this goal, a comparative method was used to study the occurrence of tool wear through surface 

texturing on the flank face of the coated carbide tool. Turning AISI D2 steel with a hardness of 45 

HRC using a textured and non-textured coated carbide tool and eight tests with three predictive 

factors are studied. The result showed that the flank wears more in the non-textured cutting tool 

than in the textured one. Research presented in [16] focused on comparative study of machining 

conditions on material removal rates, and with the limited study on the effect of the cutting fluid 

effect due to its inadequacy of the observed results [16]. In the studies presented in [15], it was 

found that the feed contributes more to the dry-turning process than all other predictive variables. 

The study was focused on investigating the effects of dry turning operation having predictive 

machining parameters such as tool material, tool geometry, speed, feed, and depth of cut. In 

contrast, in the conducted experiments, the study of the effect of cutting fluids on the response 

quality factor has not been investigated.  

Much research has been conducted to optimize the machining process of D2 steel, which is often 

used in modern industrial applications. Apart from the cutting parameters, the cooling method has 

the great impact on the technological effects and, above all, on the environmental friendliness of 

production. Previous research presented in other works, focused mainly on either dry or wet 

turning processes with parametric consideration of only speed, feed, and depth of cut. Early studies 
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on the effects of cutting fluids, such as wet and cryogenic, were inadequate and insufficient for 

performing turning on D2 steel. This limitation related to the cutting fluids has not allowed to find 

optimal machining conditions for the D2 steel turning process so far. Machining with optimal 

process parameters plays a vital role for increased quality scores, increasing productivity, and 

lowering the costs of production. The main of this study is to find the set of optimal parameters, 

including the cooling method which has not yet been studied in detail. A Taguchi-based grey 

relational analysis [17-20] was applied to investigate the effect of wet and cryogenic cutting fluids 

during turning D2 steel to obtain the optimal machining conditions. In addition, a study on 

metallographic observations revealed that parts after wet machining have more tool marks on the 

treated surface than parts after cryogenic machining.  

2. Materials and Methods 

2.1. Materials  

Figure 1 shows samples with a diameter and a length of 40 mm and 200 mm, respectively, prepared 

from a round bar of D2 steel. The results of the analysis of the elemental composition of the 

samples performed with the JASCO FT/IR-6700 spectrometer are presented in Table 1. The 

experiments were conducted under the wet and cryogenic conditions of machining using a welded 

tungsten carbide tool with the following specification: P30 grade, 5° rake angle, 140 mm x 20 mm 

dimensions and 0.4 mm nose radius. 

 

Figure 1. Samples of D2-steel before wet and cryogenic machining 
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Table 1. Elemental composition of D2 steel used in wet and cryogenic machining, in % 

V C Mo Cr Si S T Mn 

0.90 1.50 0.80 12 0.30 0.030 0.460 0.340 

 

2.2. Design of experiment 

Tool makers recommend to maintain a relatively low cutting speed to reduce heat generation and 

prevent premature tool wear during turning of D2-steel. According to West Yorkshire steel Ltd. 

the recommended cutting speeds for D2 steel using a carbide tip cutting tool and employing water 

based cutting fluid is typically ranges from 800 to 1200 (rpm) and 1200 to 2500 (rpm) for rough 

and fine turning respectively. Table 2 shows four selected levels of predictive variables, i.e. spindle 

speed, feed and depth of cut within the acceptable operating range and two levels of categorical 

variables, i.e. the type of the cooling method, as the input factor. Table 3 displays selected Taguchi 

L16 orthogonal arrays with different mixed-level designs, corresponding to 16 turning experiments 

conducted on the samples of D2 steel. 

Table 2. Input factors with the assumed levels 

Factors Unit Symbol Levels 

1 2 3 4 

Spindle speed rpm A 650 1250 1850 2450 

Feed  mm/rev  B 0.06 0.12 0.18 0.24 

Depth of cut mm C 0.3 0.6 0.9 1.2 

Cutting fluid -- D Wet Cryogenic ---- ---- 

Table 3. L16 Orthogonal array design matrix for wet and cryogenic turning  

Experimental 

Run 

Spindle 

speed 

Feed Depth of cut Cutting 

fluid 

1 1 1 1 1 

2 1 2 2 1 

3 1 3 3 2 

4 1 4 4 2 

5 2 1 2 2 

6 2 2 1 2 

7 2 3 4 1 

8 2 4 3 1 

9 3 1 3 1 

10 3 2 4 1 

11 3 3 1 2 

12 3 4 2 2 
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13 4 1 4 2 

14 4 2 3 2 

15 4 3 2 1 

16 4 4 1 1 

 

2.3. Experimentation 

Cryogenic machining requires an additional supply system of the cooling medium, as shown in 

Figure 2a. A dewar with a capacity of 25 liters was used as a special container for the cryogenic 

liquid to safely maintain its temperature. It is combined with the air compressor to control the 

pressure and flow rate of the liquid nitrogen (LN2). The workpiece is mounted rigidly in a three-

jaw chuck on a CNC lathe. An insulated stainless steel hose was attached to the CNC machine tool 

to deliver LN2 to the rake face of a cutting tool while maintaining its temperature at -181oC and 

pressure at 2 bar, as shown in figure 2b. Figure 2c shows a built-in machine system with a pipe to 

deliver the conventional fluid from the coolant tank to the rake face of a tool face, under the flood 

conditions. A tank was filled with a bio-stable water-soluble Shell Dromus B cutting oil. The CNC 

lathe of Dalian machine tool group corp. with a machine model number CKE6150Z was used for 

the experiments.  

 
 

Chuck 

D2-Steel 
Tailstock 
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steel hose 

Pressure 
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pipe 
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Figure 2. Schematic illustration of the supply system of the liquid nitrogen cooling medium (a) 

and real cooling systems with liquid nitrogen (b) and conventional coolant (c) during turning 

experiments 

2.4. Measurement of surface roughness and materials removal rate 

The surface roughness of the workpieces was assessed using a Vogel surface roughness tester in 

the direction of the longitudinal feed of the tool. Three separate readings of the surface roughness 

parameter are taken and averaged for the study. Each D2 steel sample was weighed before and 

after machining on a CSS balance to estimate the material removal rate in mm3/min using Equation 

1 [1, 21]:  

                                                             𝑀𝑅𝑅 =
Wi − Wf

ρ ∗ Tm
                                                                             (1) 

where: Wi is the initial weight in kilograms, Wf is the final weight in kilograms, Tm is the 

machining time in minutes, and ρ is the density of D2 steel, which is 7700 kg/m3.  

2.5. Surface topography 

Regular machining marks are typical for turning with the specific distance between the scratches 

corresponding to the feed rate. A micrographic observation was conducted using the Guangzhou 

LISS inverted metallurgical microscope to observe the scratch lines, also called as feed marks, and 

to evaluate the surface topography, i.e. spacing between the scratch lines, number of scratch lines 
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within a given area, and deviations from the ideal structure influencing the surface quality, such 

as surface tearing.  

2.6. Analysis of responses 

The impact of turning settings on responses was analyzed statistically using a Minitab 18 software. 

In the analysis, opting higher is better for MRR, and lower is better for surface roughness. The 

signal-to-noise ratio for MRR and surface roughness may be determined using Equation 2 and 

Equation 3: 

                                                          
𝑆

𝑁
= −10 log (

1

𝑘
) ∑ (

1

𝑦2
)

𝑘

𝑖=1

                                                          (2) 

                                                    
𝑆

𝑁
= −10 log (

1

𝑘
) ∑ 𝑦2 

𝑘

𝑖=1

                                                          (3) 

where: k is the number of replication and y is the response value. 

2.7. Multi-response optimization 

Execution of multi-response optimization requires utilizing an appropriate technique or algorithm. 

This work uses grey relational analysis technique to determine the optimal machining parameters 

for maximizing MRR while minimizing surface roughness. This procedure has a few steps [8, 22], 

and the first is normalizing the responses to the value zero-one.  

For MRR, 'higher is better' is utilized to normalize the response using Equation 4: 

                                                 𝑥𝑖𝑗𝑘 = [
𝑦𝑖𝑗 − min(𝑦𝑖𝑗)

max(𝑦𝑖𝑗) − min(𝑦𝑖𝑗)
]                                                                (4) 

, and lower is better for surface roughness using Equation 5: 

                                                𝑥𝑖𝑗𝑘 = [
max(𝑦𝑖𝑗) − 𝑦𝑖𝑗

max(𝑦𝑖𝑗) − min(𝑦𝑖𝑗)
]                                                                (5)  
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The response variables i are given below for each replication k = 1, 2, 3… r., min (yij) and max 

(yij) are intended to be the minimum and maximum of each response variable. Equation 6 is used 

to determine the maximum of normalized values:  

                                                                  𝑥𝑜𝑗 = 𝑀𝑎𝑥 (𝑥𝑖𝑗𝑘)                                                                       (6) 

Regardless of the response variables, the absolute difference between each normalized value and 

the reference value xij is estimated using equation 7: 

                                                                  ∆𝑖𝑗=  |𝑥𝑜𝑗  −  𝑥𝑖𝑗𝑘|                                                                     (7)             

Grey relational coefficient 𝛾 (𝑥0𝑗, 𝑥𝑖𝑗) was calculated using Equation 8, 𝜉 is distinguishing 

coefficient ranges from 0 to 1 (0.5 widely accepted) [8, 9]. 𝜉 is used to expand and compress the 

grey relational coefficient. The formula of Equation 8 is: 

                                                          γ(x𝑜𝑗,𝑥𝑖𝑗) = [
∆𝑚𝑖𝑛 + 𝜉 ∆𝑚𝑎𝑥

∆𝑖𝑗 + ξ ∆𝑚𝑎𝑥
]                                                        (8) 

The grey relational coefficient leads to finding the grey relational grade for each experimental run 

using Equation 9: 

                                                        𝛤 (𝑥𝑜𝑗 , 𝑥𝑖𝑗) =
1

𝑘 ∗ 𝑖
∑ γ (𝑥𝑜𝑗, 𝑥𝑖𝑗)

𝑛

𝑖=1

                                                  (9) 

3. Results and Discussion  

3.1 Responses character with an experimental run 

Table 4 shows the responses measured in this experimental study which were material removal 

rate and surface roughness. After turning D2-steel in wet and cryogenic conditions as shown in 

Figure 3, the material removal rate is calculated using Equation 1. The surface roughness was 

measured three times on the longitudinal feed direction, typically as in turning,  D
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Figure 3. Samples of D2-steel after machining 

 

Table 4. Response value of material removal rate (MRR) and surface roughness (Ra) 

Exp. 

Runs 

Control Parameters  Response Value 

Speed 

(rpm) 

Feed 

(mm/rev) 

DOC 

(mm) 

Cutting 

fluid 

MRR 

(mm3/min) 

Ra (μm) 

Rep1 Rep2 Rep3 

1 650 0.06 0.3 Wet 2851 0.79 0.82 0.76 

2 650 0.12 0.6 Wet 4947 0.84 0.86 0.82 

3 650 0.18 0.9 LN2 17100 0.84 0.85 0.86 

4 650 0.24 1.2 LN2 27228 1.09 1.08 1.1 

5 1250 0.06 0.6 LN2 6697 0.60 0.64 0.62 

6 1250 0.12 0.3 LN2 9746 0.58 0.55 0.61 

7 1250 0.18 1.2 Wet 35375 0.97 0.98 0.99 

8 1250 0.24 0.9 Wet 41422 1.18 1.2 1.16 

9 1850 0.06 0.9 Wet 13428 0.76 0.74 0.78 

10 1850 0.12 1.2 Wet 34892 0.83 0.81 0.82 

11 1850 0.18 0.3 LN2 48701 0.73 0.75 0.77 

12 1850 0.24 0.6 LN2 57720 0.8 0.79 0.81 

13 2450 0.06 1.2 LN2 25688 0.41 0.45 0.49 

14 2450 0.12 0.9 LN2 50134 0.55 0.52 0.58 

15 2450 0.18 0.6 Wet 50226 0.88 0.85 0.91 
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16 2450 0.24 0.3 Wet 57296 1.02 0.99 0.96 

 

Figure 4. Responses for consecutive experimental runs 

Responses behaviour for consecutive experimental runs is shown in Figure 4. The surface 

roughness value increases as the material removal rate rises and diminishes as the material removal 

rate falls. Comparing results from several stages of the experiment it can be found that the rate of 

material removal behaved in an incremental approach, while surface roughness varied between 

relatively stable values. 

3.2 Analysis of the material removal rate and surface roughness 

The MRR and Ra were analyzed by Signal-to-Noise ratio, with higher being better and lower being 

better criterion, as indicated in Equations 2 for MRR and in Equation 3 for the surface roughness. 

A higher MRR has a higher SN ratio, and the better surface finish with lower surface roughness 

has a higher SN ratio. Figure 5a shows how a rise in the spindle speed, depth of cut, feed, and 

machining with liquid nitrogen accelerates the material removal rate. The material removal rate is 

to be linearly controlled by feed and spindle speed, according to the research conducted in [22].  A 

higher material removal rate is also observed during cryogenic machining. Figure 5b illustrates 

how various turning factors affect the surface roughness of the response. A higher SN ratio 

corresponds to a best response (lower surface roughness) and a lower SN ratio corresponds to a 

bad response (higher surface roughness). Tool manufacturers recommend to perform turning 
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operations within the limits of relatively lower spindle speed while employing wet cutting fluids 

in order to protect the surface being machined from deterioration, but here the result demonstrates 

that cryogenic condition and increase in the spindle speed improves the surface roughness 

significantly. The roughness increases with the increase in depth of cut and the feed rate. The feed 

rate is directly related to the surface roughness, as described in [12, 23-24]. 

   

Figure 5. Main effect plot for Signal-to-Noise ratio for: a) material removal rate, b) surface 

roughness 
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Figure 6. Contour plots for responses of: a) material removal rate, b) surface roughness 

Increased material removal rates were obtained from high speed to high feed, high speed to low 

depth, and high feed to the low depth of cut, as shown in Figure 6 (a1-a3) contour plots. This 

occurs due to the increased feed rate and reduced friction in the cutting zone between the workpiece 

and the cutting tool. According to the study results of other researchers, the interaction of higher 

predictive variables increases the material removal rate. The combination of lower feed with higher 

speed, the lower speed with a lower depth of cut, the higher speed with a greater depth of cut, and 

lower feed with lower to higher depth results in a good quality score or lesser roughness, as shown 

in contour plots presented in Figure 6 (b1-b3). This is due to the reason that when the depth of cut 

is low, the surface roughness is highly sensitive to cutting speed and higher cutting speeds with 

increasing depth of cut reduce the value of surface roughness [25]. 

Table 5 and Table 6 show the analysis of variance for material removal rate and surface roughness, 

carried out at a confidence level of 95%. The largest significant source or term associated with the 
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material removal rate is feed which contributes 46.67% of the total variation. The next largest 

significant contribution comes from the spindle speed of 46.65%. This shows that changes in these 

variables are associated with changes in the response variable. Depth of cut contributed 0.06% and 

cutting fluid 0.0076%, which are not statistically significant, or there is a lower association with 

material removal rate and 6.60% error contribution.  

Table 5. ANOVA for material removal rate 

Source DF Adj SS Adj MS F-Value P-Value C % Hypothesis  

Spindle speed 3 2634152917 878050972 11.78 0.011 46.65% Significant 

Feed 3 2634849886 878283295 11.78 0.011 46.67% Significant 

Depth of cut 3 3410533 1136844 0.02 0.997 0.06% Not significant 

Cutting fluid 1 415058 415058 0.01 0.943 0.0076% Not significant 

Error 5 372671938 74534388 
  

6.60%  

Total 15 5645500331 
   

100  

The feed is the largest significant parameter with a better association with measure response related 

to the surface roughness, contributing 56.66% of the total variation. Higher feed rate increases the 

surface roughness, and the lower one has a better quality score lowering the surface roughness. 

The report from experimental study which has been conducted on D2-steel under a dual nozzle 

MQL environment proved that feed has a larger effect on surface roughness with contribution of 

66.71% from the total variation [26]. 

The next significant contribution comes from the cutting fluid which was 26.04%, then the spindle 

speed at 11.79%. Depth of cut contributed about 2.02% of the total variation, which is not 

statistically significant for the surface roughness, and the contribution of error was 3.49%. Similar 

experimental study results showed that the feed was the most significant parameter, followed by 

cutting fluid, speed and depth of cut [1, 27].  

Table 6. ANOVA for surface roughness 

Source DF Adj SS Adj MS F-Value P-Value C % Hypothesis  

Spindle speed 3 0.06802 0.022673 5.63 0.046 11.79 Significant 

Feed 3 0.32687 0.108956 27.06 0.002 56.66 Significant 
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Depth of cut 3 0.01167 0.003890 0.97 0.477 2.02 Not significant 

Cutting fluid 1 0.15016 0.150156 37.29 0.002 26.04 Significant 

Error 5 0.02013 0.004026 
  

3.49  

Total 15 0.57684 
   

100  

 

3.2.1 Regression modeling for material removal rate and surface roughness 

The relationship between the predictive variables, the response material removal rate, and surface 

roughness was modeled by multiple linear regressions for both categorical variables, as shown in 

Equations 10-13. The following equations are used to predict the output performance measure of 

the material removal rate and surface roughness for a given predictive variable:  

𝑾𝒆𝒕                      𝑀𝑅𝑅 =  −28900 +  18.96𝐴 +  190287𝐵 +  1355𝐶                                    (10) 

𝑪𝒓𝒚𝒐𝒈𝒆𝒏𝒊𝒄       𝑀𝑅𝑅 =  −28578 +  18.96𝐴 +  190287𝐵 +  1355𝐶                                     (11) 

𝑆 = 6361.41   𝑅 − 𝑠𝑞 = 92.12%    𝑅 − 𝑠𝑞(𝑎𝑑𝑗) =  89.25%     𝑅 − 𝑠𝑞(𝑝𝑟𝑒𝑑) = 81.48% 

𝑾𝒆𝒕                      𝑅𝑎 =  0.6880 −  0.000097𝐴 +  2.079𝐵 +  0.0742𝐶                                   (12) 

𝑪𝒓𝒚𝒐𝒈𝒆𝒏𝒊𝒄         𝑅𝑎 =  0.4942 −  0.000097𝐴 +  2.079𝐵 +  0.0742𝐶                                   (13)   
 

     𝑆 = 0.0585225      𝑅 − 𝑠𝑞 = 93.47% 𝑅 − 𝑠𝑞 (𝑎𝑑𝑗) = 91.09%   𝑅 − 𝑠𝑞 (𝑝𝑟𝑒𝑑) = 86.28% 

where: MRR-Material removal rate, Ra-Roughness, A-Spindle speed, B-Feed, C-Depth of cut 

3.2.2 Prediction on optimal setting for material removal rate and surface roughness 

Figure 7 and 8 illustrates the optimal turning prediction plot for material removal rate and surface 

roughness, respectively. The response surface goal was to maximize the material removal rate and 

minimize surface roughness. The resulting predicted optimal variable settings for material removal 

rate are: spindle speed 2450 rpm, feed rate 0.24 mm/rev, depth of cut 1.20 mm, and cryogenic 

liquid nitrogen used as the cutting fluid with the predicted response value of 65181 mm3/min. The 

optimal parametric setting for surface roughness: spindle speed 2450 rpm, feed rate 0.06 mm/rev, 

depth of cut of 0.3 mm, and cryogenic liquid nitrogen also used as the cutting fluid of. Using the 

predicted parametric values, the estimated response for surface roughness is 0.4034 μm.  
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Figure 7. Response surface optimization plot for material removal rate 

 

Figure 8. Response surface optimization plot for surface roughness 

 

3.3 Multi-response optimization 

3.3.1 Necessity for multi-response optimization 

The statistical analysis of the single response result highlights that two different responses, 

material removal rate and surface roughness, are optimized to varying values of input variables. 

Table 7 shows how each response becomes best and worst at different input variables. This 

different situation necessitated a balance between all responses by multi-response optimization.  
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Table 7. Necessities for MRO 

Input parameters Responses 

MRR (mm3/min) Ra (μm) 

Best Worst Best Worst 

Spindle speed (rpm) 2450 650 2450 650 

Feed (mm/rev) 0.24 0.06 0.06 0.24 

Depth of cut (mm) 1.2 0.3 0.3 1.2 

Cutting fluid 2 1 2 1 

 

3.3.2 Evaluating for grey relational grade 

Table 8 shows the overall calculated results of the grey relational analysis. The first is calculating 

the values of the responses to normal values ranging from zero to one. The average response 

surface roughness is used to proceed with the grey relational analysis. The normalized values for 

material removal and surface roughness are calculated using Equation 4 and Equation 5, 

respectively. Based on normalized values, the maximum and minimum of these normalized values 

are selected regardless of the response using Equation 6. The absolute difference between every 

normalized value is computed using this normalized experimental data with Equation 7. The grey 

relational coefficient was calculated using Equation 8 to represent the correlation between the 

desired and actual experimental data. The total sum of the grey relational coefficient of both 

responses was calculated regardless of their replications. The overall grey relational grade is 

determined by averaging the grey relational coefficient corresponding to selected responses by 

using Equation 9.  

The overall performance characteristic of the multiple-response processes depends on the 

calculated grey relational grade, and this operation converts a multiple-response process 

optimization problem into a single-response optimization situation, with the objective function 

being the overall grey relational grade.  

Table 8. Analysis of Grey relational grade 

Ex. 

Run 

Normalized value Absolut difference GRY coefficient Total of 

GRC 

GRG 

MRR Ra MRR Ra MRR Ra 
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3.3.3 Selecting optimal settings 

The best experimental run is obtained in experiment #14 with the value of GRG 0.784165 with the 

input parameters (4-2-3-2) of speed 2450 rpm, feed 0.12 mm/rev, and depth of cut 0.9 mm under 

cryogenic fluid. This setting has a good quality score compared to the rest 15 experimental runs. 

The final step in the grey relational analysis is selecting and setting multi-response optimized input 

values for each predictive variable level. Based on the calculated GRG and writing it against to 

orthogonal array the average grey relational grades were obtained and illustrated in table 9. 

 The optimized parametric setting for multi-response optimization is set as (4-4-1-2) with a spindle 

speed of 2450 rpm, feed of 0.24 mm/rev, depth of cut 0.3 mm, and a liquid nitrogen (LN2) as a 

cutting fluid. 

Table 9. Average grey relational grade 

 

Factors 

Average Grey Relational Grade 

Spindle-speed Feed Depth of cut Cutting fluid 

Level 1 0.424199263 0.533444047 0.580225697 0.512154083 

1 0 0.534246575 1 0.465753425 0.333333333 0.517730496 0.85106383 0.425531915 

2 0.038200077 0.465753425 0.961799923 0.534246575 0.342044073 0.483443709 0.825487782 0.412743891 

3 0.259691265 0.452054795 0.740308735 0.547945205 0.403125436 0.477124183 0.880249619 0.44012481 

4 0.444276367 0.123287671 0.555723633 0.876712329 0.473608797 0.36318408 0.836792877 0.418396438 

5 0.070094224 0.767123288 0.929905776 0.232876712 0.34967339 0.682242991 1.031916381 0.51595819 

6 0.125662943 0.821917808 0.874337057 0.178082192 0.363811772 0.737373737 1.101185509 0.550592755 

7 0.592757295 0.273972603 0.407242705 0.726027397 0.551120441 0.407821229 0.95894167 0.479470835 

8 0.702965244 0 0.297034756 1 0.627325216 0.333333333 0.960658549 0.480329275 

9 0.19276823 0.575342466 0.80723177 0.424657534 0.382487644 0.540740741 0.923228385 0.461614192 

10 0.58395451 0.493150685 0.41604549 0.506849315 0.545824422 0.496598639 1.042423061 0.521211531 

11 0.835626674 0.589041096 0.164373326 0.410958904 0.752588915 0.54887218 1.301461095 0.650730548 

12 1 0.520547945 0 0.479452055 1 0.51048951 1.51048951 0.755244755 

13 0.416209517 1 0.583790483 0 0.461343782 1 1.461343782 0.730671891 

14 0.861743425 0.863013699 0.138256575 0.136986301 0.783384018 0.784946237 1.568330254 0.784165127 

15 0.863420146 0.410958904 0.136579854 0.589041096 0.785447414 0.459119497 1.244566911 0.622283455 

16 0.992272504 0.260273973 0.007727496 0.739726027 0.984780229 0.403314917 1.388095146 0.694047573 
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Level 2 0.506587764 0.567178326 0.576557573 0.605735564 

Level 3 0.597200256 0.548152412 0.541558351 
 

Level 4 0.707792012 0.58700451 0.537437674 
 

 

3.4 Analysis for grey relational grade  

Figure 9 illustrates the effect of used machining parameters on the simultaneous quality scores. From the 

main effect plot, we can understand that the grey relational grade increases with the increase of spindle 

speed. Regarding the feed rate, it increases for two first values, then decreases for the third value and 

increases again with the last feed value. GRG increases with a decrease in the depth of cut, and cryogenic 

machining is preferred over wet machining in terms of better multi-response GRG. Generally, this 

cryogenic (LN2) cutting fluid has changed the thought which is recommended by tool manufacturers to 

perform turning operations on D2-steel at a lower cutting speeds employing wet condition. Turning of D2-

steel at a higher spindle speed results with better response (lower roughness and higher material removal 

rate) if we incorporate LN2 as a cutting medium.  

 

Figure 9. Main effect plot for GRG means 

The relationship between predictive variables to the response grey relational grade are shown in 

Figure 10. Figure 10a illustrates relationship between spindle speed and feed rate, and the darker 

green regions of the contour indicate higher quality of production (lower Ra and higher MRR). 

These higher response values seem to form a ridge running from the graph's upper right to the 

upper left. The valleys in the graph's darker blue sections represent spindle speed-feed 

combinations that result in under-quality of production (higher Ra and lower MRR). As seen in 
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Figure 10b for the relationship between spindle speed and cut depth, the contours darker green 

regions indicate higher production quality (higher MRR and lower Ra). These higher response 

values seem to form a ridge running from the graph's upper left to the upper right. The valleys in 

the graph's dark blue regions represent spindle speed-depth of cut combinations that result in 

under-quality production (higher Ra and lower MRR). Figure 10c illustrates the relationship 

between feed and depth of cut with the darker green regions of the contour indicating a higher 

quality of production (lower Ra and higher MRR). These higher response values seem to form a 

ridge running from the graph's upper left to the lower right. The valleys in the graph's dark blue 

region represent feed-depth of cut combinations that result in under-quality production (higher Ra 

and lower MRR). 

  

 

Figure 10. Contour plot for GRG (a) Speed-Feed, (b) Speed-Depth of cut, (c) Feed-Depth of cut 

 

The analysis of variance was conducted for a confidence level of 95%. A factor with a P-value less 

than 0.05 are considered as statistically significant to the quality score. Results in Table 10 show 

that the largest significant parameter for GRG is spindle speed with a 71.9% degree of influence 

from the total variation. The next significant degree of influence comes from the cutting fluids as 
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14.14%, and then from the feed rate as 2.62%, and from the depth of cut as 2.47%, which are not 

statistically significant. The error contribution was 8.87%. 

Table 10. Analysis of Variance for GRG 

Source DF Adj SS Adj MS F-Value P-Value C % Hypothesis 

Spindle speed 3 0.178066 0.059355 13.43 0.008 71.9 % Significant 

Feed 3 0.006488 0.002163 0.49 0.705 2.62 % Not significant 

Depth of cut 3 0.006112 0.002037 0.46 0.722 2.47 % Not significant 

Cutting fluid 1 0.035030 0.035030 7.93 0.037 14.14 % Significant 

Error 5 0.022098 0.004420 
  

8.87 %  

Total 15 0.247794 
   

100  

 

3.4.1 Prediction of optimal GRG using response surface method  

A predicted parametric input results shown in Figure 11 illustrate that the optimal parametric 

setting has an optimized quality. A prediction set as a fourth level of spindle speed of 2450 rpm, a 

fourth level of feed of 0.24 mm/rev, the first level of depth of cut 0.3 mm, and a second level of 

cutting fluids of LN2 could have a GRG of 0.7927. The predicted optimal setting is obtained 

through a response surface optimization technique, proving the optimized settings obtained by 

grey relational analysis.  

 

Figure 11. Response surface optimization plot for GRG 
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3.4.2 Regression modeling for multi-response GRG 

Multi-response GRG was modeled by multiple linear regressions using the following equations 14 

and 15. These equations can simultaneously predict the multi-responses GRG for material removal 

rate and surface roughness for two cutting fluids.  

𝑾𝒆𝒕                              𝐺𝑅𝐺 =  0.2744 +  0.000157𝐴 +  0.236𝐵 −  0.0545𝐶                             (14)  

𝑪𝒓𝒚𝒐𝒈𝒆𝒏𝒊𝒄          𝐺𝑅𝐺 =  0.3680 +  0.000157𝐴 +  0.236𝐵 −  0.0545𝐶                              (15) 

𝑆 = 0.0487760      𝑅 − 𝑠𝑞 = 89.44%       𝑅 − 𝑠𝑞 (𝑎𝑑𝑗) = 85.60%     𝑅 − 𝑠𝑞(𝑝𝑟𝑒𝑑) = 77.07%   

3.5 Validation test result and comparison to prediction  

Based on the multi-response optimized result obtained using the Taguchi-based grey relational 

analysis technique, a validation test was conducted and the responses were measured to proof the 

developed models. Table 11 shows the experiment settings and results obtained from the validation 

test, the material removal rate and surface roughness were compared to the best experimental run 

#14. 

Table 11. Validation test settings with obtained responses 

Experiment  Parameters Responses 

Validation test 

 

Spindle 

speed (rpm) 

Feed 

(mm/rev) 

Depth of cut 

(mm) 

Cutting 

fluid 

MRR 

(mm3/min) 

Ra 

(μm) 

Level 4 Level 4 Level 1 Level 2 66,845 0.70 

2450 0.24 0.3 LN2 

Experimental validation test is conducted in order to confirm the response results of the predicted 

optimal values with their parametric settings. The same specifications of D2-steel as the sample 

test were utilized in this validation test and responses were recorded to compare with predictive 

one. Table 12 shows a close agreement between the predicted value of GRG (0.7927) and the 

experimental validation value of GRG (0.8031). The increase in grey relation grade observed from 

the initial best conditions of GRG is 0.7841 to optimal conditions of GRG is 0.8031, and the 

variation is 2.36%. The validation test also shows that the percentage error between prediction and 

actual experiment is 4.33%, 9.09% and 1.29% for material removal rate (MRR), surface roughness 

(Ra) and grey relational grade (GRG), respectively. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


24 
 

Table 12. Comparison of prediction with validation results 

 

Experiment 

Parameters Responses GRG 

Spindle 

speed (rpm) 

Feed 

(mm/rev) 

Depth of 

cut (mm) 

Cutting 

fluid 

MRR 

(mm3/min) 

Ra 

(μm) 

Prediction 2450 0.24 0.3 LN2 63,949 0.77 0.7927 

Validation 

run 

2450 0.24 0.3 LN2 66,845 0.70 0.8031 

% of error  4.33 9.09 1.29 

 

3.6 Surface morphology 

A metallographic study was carried out on a D2-steel after all experimental runs. Figure 12 (a-h) 

shows the surface of D2-steel after machining under wet conditions. In general, the surface 

topography is worst when compared to the machining under cryogenic conditions Figure 13(a-i). 

The lower the spindle speed, the poor surface was obtained during wet machining, and the higher 

feed also affects the steel surface, as seen in Figure 12(d). The measured surface roughness Ra 

parameter value of experimental run #8 was of 1.18 μm, and it was the worst surface finish from 

all wet machined samples. Overall wet machining conditions exhibited more tool marks on the 

workpiece surface. This is due to using a wet condition cooling technique at the tool-workpiece 

interface, which results in higher cutting temperatures in the metal cutting region. The higher 

temperature causes higher adhesion at the tool-workpiece interface. This results in more tool marks 

on the machined surface and voids, resulting in a poorer surface finish. This result proves the study 

presented in [28], which concluded that more surface marks are obtained during wet machining 

with an increased feed rate of machining conditions. 
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Figure 12. Optical micrographs of parts machined under wet conditions: (a) Experiment 1, (b) 

Experiment 2, (c) Experiment 7, (d) Experiment 8, (e) Experiment 9, (f) Experiment 10, (g) 

Experiment 15, (h) Experiment 16 

In particular, some surface defects were observed in wet machining conditions, resulting from the 

built-up edge and have been observed to increase surface roughness and deteriorate surface 

topography compared with cryogenic cooling conditions. It should be noted that a small difference 

in cutting parameters made a considerable difference in the surface topography of the D2 steel. 

However, the measured surface roughness showed a similar behaviour at low-speed machining of 

D2-steel. The machined work material's surface displayed feed marks that were less visible at high 

speed, as shown in Figure 13(a-i). With an increased speed, the surface quality of wet and 

cryogenic machining became better. Deteriorated surface morphology and feed marks were 

attributed to high cutting temperatures at lower cutting speeds and higher feed than with higher 

cutting speeds. These results were valid in both the cutting fluid conditions. 

This micrographic study presented in Figure 13 shows that machining D2-steel using cryogenic 

conditions improves the surface quality compared to the wet condition - Figure 12. This is because 

the concurrent use of LN2 at the tool-workpiece interface lowers the cutting temperatures in the 

metal cutting region, thus leading to less adhesion at the tool-workpiece interface and creating 

fewer tool marks on the machined surface. In this manner, a better surface finish was achieved.  
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The validation test was conducted to confirm the prediction. Here, the micrographic examination 

of this validation study sample, shown in Figure 13 i, illustrates that machining in cryogenic 

conditions produces fine surface finish. The study presented in [28, 29] illustrated that surface 

quality was improved by using cooling/lubricating and at higher cutting speeds. Cryogenic 

machining generates the best surface quality attributed to less tool wear and less thermal distortion. 

This result proves that performing turning operation on D2-steel at a higher spindle speed and 

cryogenic condition results with fine surface finish, and this has an advantages on tool 

manufacturer’s recommendation to perform turning of D2-steel within wet cutting medium and a 

relative lower cutting speed. 

   

   

   

Figure 13. Optical micrographs of LN2 machined parts (a) Experiment 3, (b) Experiment 4, (c) 

Experiment 5, (d) Experiment 6, (e) Experiment 11, (f) Experiment 12, (g) Experiment 13, (h) 

Experiment 14, (i) Confirmation experiment 
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4. Conclusion 

Experiments were conducted to determine multi-response optimal turning conditions in wet and 

cryogenic conditions on D2-steel using Taguchi mixed L16 orthogonal array. Through analysis of 

the responses of material removal rate and surface roughness, the following conclusions have been 

drawn:  

• Liquid nitrogen used as a cutting fluid in an eco-friendly cryogenic turning of D2-steel 

allowed the optimization of the machining process regarding surface finish and material 

removal rate. 

• The analysis of variance for material removal rate declares that significant factors 

associated with response values are feed followed by spindle speed with a percentage 

contribution of 46.67% and 46.65%, respectively.  

• The analysis of variance for surface roughness interprets that significant factors associated 

with response values are feed, cutting fluid, and spindle speed, with percentage 

contributions of 56.66%, 26.04%, and 11.79%, respectively.  

• Analysis of the variance result reveals that the speed followed by the cutting fluid is the 

significant process parameter affecting the response GRG with a percentage of contribution 

of 71.9% and 14.14%, respectively.  

• From the experimental tests, experiment #14 with a 4-2-3-2 at a speed of 2450 rpm, feed 

of 0.12 mm/rev, depth of cut 0.9 mm, and fluid of liquid nitrogen parametric combination 

resulted in the highest GRG of 0.7841 to get the maximum material removal rate and the 

minimum surface roughness.  

• Surface response optimization exhibits with the new parametric setting 4-4-1-2, and the 

predicted material removal rate, surface roughness, and GRG are 63,949 mm3/min, 0.77 

μm, and 0.7927, respectively, at a significance level of 95%.  

• Grey Relational Analysis determined the actual multiple quality characteristics optimal 

parameter combination as 4-4-1-2, the same as the predicted setting. The anticipated results 

were confirmed with the experimental validation result of GRG 0.8031. 

• Experimental validated with a parametric combination of 4-4-1-2 at a speed of 2450 rpm, 

feed of 0.24 mm/rev, depth of cut 0.3 mm, and fluid of liquid nitrogen. Responses measured 
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for the validation test were material removal rate and surface roughness, and its value is 

66,845 mm3/min and 0.70 μm, respectively. 

• The percentage error between prediction and optimal validation experiment is 4.33%, 

9.09% and 1.29% for material removal rate, surface roughness and GRG, respectively.  

• The final multi-response optimized validation result demonstrated a superior effect from 

the first best run by 2.36% and 1.29% from the forecast in grade. 

Overall, the application of cryogenic liquid nitrogen has resulted in the improvement of AISI D2 

steel machinability in terms of surface roughness and material removal rate. As a result, it is 

suitable for industrial applications involving turning metal machining. The machinability of AISI 

D2 steel can be researched in the future using a dual nozzle cryogenic supply system. In the future, 

tool life, cutting force, cutting zone temperature, and chips morphology might all be evaluated in 

a single and twin nozzle cryogenic environment.   
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