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A B S T R A C T   

Smart composites (SCs) are utilized in electro-mechanical systems such as actuators and energy 
harvesters. Typically, thin-walled components such as beams, plates, and shells are employed as 
structural elements to achieve the mechanical behavior desired in these composites. SCs exhibit 
various advanced properties, ranging from lower order phenomena like piezoelectricity and 
piezomagneticity, to higher order effects including flexoelectricity and flexomagneticity. The 
recently discovered flexomagneticity in smart composites has been investigated under limited 
conditions. A review of the existing literature indicates a lack of evaluation in three-dimensional 
(3D) elasticity analysis of SCs when the flexomagnetic effect (FM) exists. To address this issue, the 
governing equations will incorporate the term ∂/∂z, where z represents the thickness coordinate. 
The variational technique will guide us in further developing these governing equations. By using 
hypotheses and theories such as a 3D beam model, von Kármán’s strain nonlinearity, Hamilton’s 
principle, and well-established direct and converse FM models, we will derive the constitutive 
equations for a thick composite beam. Conducting a 3D analysis implies that the strain and strain 
gradient tensors must be expressed in 3D forms. The inclusion of the term ∂/∂z necessitates the 
construction of a different model. It should be noted that current commercial finite element codes 
are not equipped to accurately and adequately handle micro- and nano-sized solids, thus making 
it impractical to model a flexomagnetic composite structure using these programs. Therefore, we 
will transform the derived characteristic linear three-dimensional bending equations into a 3D 
semi-analytical Polynomial domain to obtain numerical results. This study demonstrates the 
importance of conducting 3D mechanical analyses to explore the coupling effects of multiple 
physical phenomena in smart structures.   

1. Introduction 

A reciprocity of the modern smart composite structures with the non-smart advanced ones (functionally graded structures, 
nanocomposites, etc.) marks that the smart composites are capable of remembering the configurations, and then under specific stimuli 
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can return to their initial situations [Mohamed, 2017]. In other words, it can be said that smart materials and structures are objects that 
sense circumstance conditions and react to the environment by processing the obtained information. Having such a sense of the 
surroundings enables smart materials to be suitably responsive and reactive. The other side, non-smart advanced composites are 
usually multi-structural solid elements whose utilizations provide multi-functionality [Xu et al., 2021a, X., 2021b; Shao Ong et al., 
2023; Yee & Ghayesh, 2023; Karami & Ghayesh, 2023]. Although such structures remit extraordinary mechanical features, they are 
senseless to the non-solid operators. For instance, electric and magnetic fields, or humidity and temperature parameters. 

Today, electro-magnetic materials are broadly used in various industries and have found important applications in many engi
neering branches and disciplines, such as sensors and actuators. Intelligent structures have expanded technologies to produce non- 

Nomenclature 

N0 Axial effect of magnetic field 
u Axial displacement 
εxx Axial strain 
σxx Axial stress 
ℵ Displacements 
ui(i=1,3) Displacement in the x- and z- directions 
εij Elastic strains 
σij Elastic stresses 
ψ External magnetic potential 
F External mass loads 
hijkl 4th-order converse flexomagnetic tensor 
fijkl 4th-order direct flexomagnetic tensor 
Cijkl 4th-order elasticity tensor 
ℜ Free energy density 
ηijk Gradient of the elastic strains 
ξijk Higher-order stress tensor 
Tij Hyper stress resultant 
δij Kronecker’s delta 
w Lateral displacement 
q Lateral static load 
x Length coordinate 
L Length of the beam 
Hi Magnetic field 
Bi Magnetic flux 
l Material’s length scale parameter 
Ψ Magnetic potential function 
ν Poisson’s ratio 
α Position vector 
G Shear modulus 
τxz Shear stress 
γxz Shear strain 
U Strain energy 
t Surface traction 
aij 2nd-order magnetic permeability tensor 
gijklmn 6th-order strain gradient tensor 
gi Strain gradient coefficients 
qijk 3rd-order piezomagnetic tensor 
z Thickness coordinate 
h Thickness of the beam 
εzz Transverse strain 
σzz Transverse stress 
∇ 3D nabla operator 
p Unknown variables for displacements 
Nxx Work done by a magnetic field 
W Work performed by external forces 
b Width of the beam 
E Young’s modulus  
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biological systems in such a way that their integrated design can be achieved by using extensive observations in biological systems and 
competition with adaptive capabilities. Among the smart materials widely used in structures, one can mention smart composite (SC) 
beam-like structures. Smart composite beams are advanced structural elements that combine the benefits of both composite materials 
and smart systems. They are made by integrating different materials, such as ceramics, boron, cobalt, micro/nanostructures, etc., to be 
embedded as sensors, actuators, and control systems. The application of these materials can be seen in an outspread range to eliminate 
vibration, noise, and shape control in civil, mechanical, marine, and aerospace structures [Vijay et al., 2006; Poplawski et al., 2021; 
Ezzin et al., 2022; Markov et al., 2022; Gia et al., 2022]. These smart elements enable the beam to adapt to changing loads and 
environmental conditions, as well as to actively respond to external stimuli such as vibrations or impacts. Smart composite beams have 
other large assortments of applications, including in aerospace, civil infrastructure, and automotive industries, particularly in 
renewable energy. They offer improved durability, damage tolerance, and corrosion resistance compared to classic materials, and their 
smartness makes them ideal for structures that must adapt to changing conditions or respond to dynamic loads [Fattahi & Mirdamadi, 
2017; Singhal et al., 2021; Singh et al., 2022; Ud Din et al., 2022; Jankowski, 2022]. 

A property that causes smartness in the composite beams can be the flexomagnetic effect. Flexomagneticity is a relatively new area 
of research in the mechanics of solids. It constitutes a fundamental property by which a material exhibits a magnetic response to the 
gradient of mechanical strain (direct effect) or emerges due to the coupling between the gradient of magnetic field and mechanical 
strain (reverse effect). This scale-dependent coupling has been observed in a broad spectrum of materials, consisting of ceramics, 
insulators, and even biological systems. The phenomenon has the potential to revolutionize several fields, encompassing magneto
elasticity, spintronics, and magnetic data storage. Further research in this field could lead to the development of new materials with 
enhanced magnetic properties that can be controlled and manipulated using mechanical deformation [Lukashev & Sabirianov, 2010; 
Sabirianov & Lukashev, 2010; Kabychenkov & Lisovskii, 2019; Eliseev et al., 2009, 2011, 2019]. One example of the use of the 
flexomagnetic effect is in the development of magnetoelectric sensors. These sensors use the flexomagnetic effect to convert the 
gradient of mechanical strain into an electrical signal, allowing them to detect changes in pressure, temperature, or other environ
mental factors. Another application is in the development of materials that can convert mechanical energy into the electrical one. By 
using the flexomagnetic effect, it may be possible to develop materials that can harvest energy from mechanical vibrations, such as 
those generated by the movement of machinery or the motion of a human body [Hong Lee et al., 2017; Makushko et al., 2022; Borkar 
et al., 2022; Mallek-Zouari et al., 2023]. 

The theoretical understanding of the flexomagnetic effect is still in its early stages, with much of the work being done using 
computational models. However, experimental studies have provided strong evidence for the existence of the effect and have 
demonstrated its potential for practical applications [Lukashev & Sabirianov, 2010; Sabirianov & Lukashev, 2010; Hong Lee et al., 
2017; Kabychenkov & Lisovskii, 2019; Eliseev et al., 2009, 2011, 2019; Makushko et al., 2022; Borkar et al., 2022; Mallek-Zouari et al., 
2023]. As research in the field continues, it is likely that new materials and devices will be developed that make use of the flex
omagnetic effect, leading to new opportunities for the development of novel technologies. Research has focused on developing 
flexomagneticity in several conditions for materials underhand as well as understanding the fundamental mechanisms that govern 
their behavior in one-dimensional (1D) or two-dimensional (2D) elasticity analyses [Sidhardh & Ray, 2018; Zhang et al., 2022a, 2019, 
2022; Sladek et al., 2021; Malikan & Eremeyev, 2020a, M. 2020b, 2020c; Malikan et al., 2020a, M. 2020b; Malikan & Eremeyev, 
2021a, M. 2021b, M. 2021c, 2021d; Malikan et al., 2021, 2022a, M. 2022b; Malikan & Eremeyev, 2022a, M. 2022b; Malikan & 
Eremeyev, 2023a; Khabisi-Momeni & Tahani, 2022]. These literature backgrounds provide a good starting point for learning about the 
field of flexomagnetic and its current state of research. Some of the challenges that still remain, include improving the efficiency of 
energy conversion, developing new fabrication techniques, and upgrading the durability and stability of these materials. Overall, 
flexomagnetic is a promising field of research with many potential applications. However, more studies are essential to fully realize the 
potential of FM materials and develop practical devices that can take advantage of their unique properties. 

Three-dimensional (3D) elasticity analysis is a mathematical and computational approach used to model the behavior of solid 
objects in three dimensions. Three-dimensional elasticity analysis offers several advantages over simpler two-dimensional models 
[Wittrick, 1987; Liew & Yang, 1999; Dastjerdi & Akgöz, 2018; Russillo et al., 2022] which are composed of:  

1. More accurate results: Three-dimensional models (3DMs) take into account the full geometry of the object being analyzed, allowing 
for more precise results. In contrast, two-dimensional models may not capture the full complexity of the object and can lead to 
erroneous or incomplete results.  

2. Greater flexibility: 3DMs offer greater flexibility in terms of the types of boundary conditions and loads that can be applied. This can 
be critical for analyzing a wide range of different scenarios and applications.  

3. Better representation of real-world conditions: 3DMs are better able to capture the full range of deformation and motion that occurs 
in real-world structures and objects. This is consequential for minutely predicting how a structure will behave under different 
conditions. 

A three-dimensional elasticity analysis of flexomagnetic smart structures is covered in this report. The modified energy density of 
piezo-flexomagnetic (PFM) beams newly derived by the author of this paper will be reused. Thereafter, the constitutive equations will 
appear step by step. All the 3D tensors will be collected and seized through the existing and well-esteemed literature. Due to the 3D 
formulation of elastic non-constant thickness beams, the internal forces and moments cannot be developed. Instead of these, the 
principal equations can be attained directly via stress components. The transverse static load is presumed to act uniformly. The possible 
solution for the 3D equilibrium equations can be accomplished through polynomial series based on a semi-analytical process. 

The paper’s layout is organized as follows: 
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Section 1 is dedicated to an introduction to the topic together with a short literature review. 
Section 2 represents the mathematical modeling of the objective title. 
Section 3 denotes a solution technique process that is based on a semi-analytical method. 
Section 4 compares the results in conformity with the references. 
Section 5 discusses the results and puts out a detailed interpretation. 
Section 6 provides conclusions and a summary of the performed study. 

2. Mathematical modelling 

Fig. 1 shows a composite beam, positioned in the x-z coordinate system and occupying a block volume of [0, L]×[− 0.5h, 0.5h]. The 
beam is subjected to a transverse static load and a magnetic field that exhibits a linear variation across its thickness. It is noted that the 
length “L” inside the formulations is the effective length of the beam. 

2.1. The flexomagnetic model 

Let us briefly examine the mathematical models available for FM structures [M. Malikan & Eremeyev, 2022b]. These samples are 
limited to small deformations and an initial isothermal condition. The vectors of displacement (ℵ) variables and first-order magnetic 
field (H) are given by 

ℵ = ℵ(α),H=H(α) (1)  

where the α is a position vector. 
The general quadratic representation of the free energy density of the flexomagnetic structures is given by [M. Malikan & Ere

meyev, 2022b] 

ℜ =
1
2
Cijklεijεkl −

1
2

aklHkHl − qijkεijHk +
1
2

gijklmn
∂εij

∂xk

∂εlm

∂xn
+ rijklmεij

∂εkl

∂xm

−
1
2
bijkl

∂Hi

∂xj

∂Hk

∂xl
− sijkHi

∂Hj

∂xk
− λijklm

∂εij

∂xk

∂Hl

∂xm
−

1
2
fijkl

∂εij

∂xk
Hl −

1
2
hijklεij

∂Hk

∂xl

(2)  

in which the utilized tensors can be introduced as follows: 

Cijkl: 4th order pure elasticity tensor 
akl: 2nd order magnetic permeability tensor 
qijk: 3rd order piezomagnetic tensor 
bijkl: 4th order magnetic field gradients coupling tensor 
gijklmn: 6th order strain gradient tensor 
λijklm: 5th order strain gradient-magnetic field gradient coupling tensor 
sijk: 3rd order magnetic field-magnetic field gradient coupling tensor 
rijklm: 5th order strain-strain gradient coupling tensor 
hijkl: 4th order converse flexomagnetic tensor 

Fig. 1. A symbolic thick continuum multi-physic simply supported-clamped beam.  
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fijkl: 4th order direct flexomagnetic tensor 

The first three terms in Eq. (2) correspond to piezomagnetic materials. Not to mention that the first term also expresses a pure 
elastic structure. Some of the above-written tensors are supposed to be ignored for centrosymmetric materials, such as qijk and λijklm. In 
particular, for centrosymmetric materials, the piezomagnetic effect does not exist. Nevertheless, these materials include fijkl and hijkl. 
The structure investigated in this work is referred to as a non-centrosymmetric piezomagnetic solid. 

The variables presented in Eq. (2) are given by the formulae 
Elastic strain: 

ε =
1
2
(
∇u+∇uT +∇u.∇uT) (3a) 

A gradient of the elastic strain: 

η = ∇ε (3b) 

The magnetic field can be represented with the magnetic potential as 

H = − ∇ψ (4) 

Given the variational principle, the static characteristic equations can be associated with the problem [Malikan et al., 2020c; Xu 
et al., 2021c; Karami et al., 2022; Zheng et al., 2022] 

δ
∫

V
UdV = δW (5)  

in which V composes the domain’s volume. Further, the variation of works performed by the outer forces has the following expansion: 

δW =

∫

V

F ⋅ δu +

∫

∂V

t ⋅ δuds (6) 

The highest and lowest limits for Eq. (6) can be found by 

∇.(σ − ∇.ξ) + F = 0 (7a)  

∇.(B − ∇.T) = 0 (7b) 

The piezomagnetic-flexomagnetic constitutive equations for a 3D solid involving Eq. (7) have the forms [M. Malikan & Eremeyev, 
2022b] 

σij =
∂ℜ
∂εij

= Cijklεkl − qijkHk + rijklm
∂εkl

∂xm
− hijkl

∂Hk

∂xl
(8a)  

ξijk =
∂ℜ

∂
(

∂εij
∂xk

) = gijklmn
∂εlm

∂xn
+ rijklmεij − λijklm

∂Hl

∂xm
− fijklHl (8b)  

Tij =
∂ℜ

∂
(

∂Hi
∂xj

) = − bijkl
∂Hk

∂xl
− sijkHi − λijklm

∂εij

∂xk
− hijklεij (8c)  

Bi = −
∂ℜ
∂Hi

= aklHk + qijklεij + sijk
∂Hj

∂xk
+ fijkl

∂εij

∂xk
(8d) 

In the next part of the study, all the relations will be deduced into a beam, eliminating variables dependent on the y-axis. A thick 
beam is under investigation so that the representation of the 3D kinematic displacement field can be given in the below form [Malikan 
et al., 2018; Dastjerdi et al., 2021a; Alshenawy et al., 2023] 

⎡

⎣
u1(x , y, z)
u2(x , y, z)
u3(x, y, z)

⎤

⎦ =

⎡

⎣
u(x , z)

0
w(x, z)

⎤

⎦ (9) 

It is easy to obtain elastic strains using the Lagrange strain formula and then the gradients of the strains [M. Malikan & Eremeyev, 
2020b; Dastjerdi et al., 2020a, Sh. 2020b, Sh. 2021b] 

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xi

∂uk

∂xj

)

; i, j, k= 1, 2, 3 (10a)  
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ηijk =
∂

∂xk

[
εij
]
; i, j, k= 1, 2, 3 (10b) 

Then, the nonlinear strain and strain gradient tensors can be developed as matrices 

[ε] =

⎡

⎣
εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎤

⎦ (11a)  

[η] =

⎡

⎣

( ηxxx ηxxy ηxxz ) ( ηxyx ηxyy ηxyz ) ( ηxzx ηxzy ηxzz )

( ηyxx ηyxy ηyxz ) ( ηyyy ηyyx ηyyz ) ( ηyzx ηyzy ηyzz )

( ηzxx ηzxy ηzxz ) ( ηzyx ηzyy ηzyz ) ( ηzzx ηzzy ηzzz )

⎤

⎦ (11b) 

The strain and strain gradient tensors are symmetric here as εij = εji and ηijk = ηjik. Moreover, no dependence on y is considered (εxy 

= εyx = εyz = εzy = 0) as the aim is a 3D beam, not a 3D plate. Thus, we get 

{
εxx
εzz

}

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂x

+
1
2

(
∂w
∂x

)2

∂w
∂z

+
1
2

(
∂w
∂z

)2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

; {εxz} = {εzx} =
1
2

{
∂u
∂z

+
∂w
∂x

(

1+
∂w
∂z

)}

(12) 

And subsequently, we came to the formulae 

{
ηxxx

ηxxz

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂εxx

∂x
∂εxx

∂z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2u
∂x2 +

∂2w
∂x2

∂w
∂x

∂2u
∂x∂z

+
∂2w
∂x∂z

∂w
∂x

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

;

{
ηxzx

ηxzz

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂εxz

∂x
∂εxz

∂z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
1
2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2u
∂x∂z

+
∂2w
∂x2

(

1 +
∂w
∂z

)

+
∂w
∂x

∂2w
∂x∂z

∂2u
∂z2 +

∂2w
∂x∂z

(

1 +
∂w
∂z

)

+
∂w
∂x

∂2w
∂z2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

;

{
ηzxx

ηzxz

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂εzx

∂x
∂εzx

∂z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

{
ηxzx

ηxzz

}

;

{
ηzzx

ηzzz

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂εzz

∂x
∂εzz

∂z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2w
∂x∂z

(

1 +
∂w
∂z

)

∂2w
∂z2

(

1 +
∂w
∂z

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

;

(13) 

It is now supposed to derive constitutive equations by means of Eq. (5) 

δU + δW = 0 (14) 

For the present purposes, the strain energy variations are categorized as 

δUAll = δUMech + δUMag (15)  

where the abbreviations of “Mech” and “Mag” denote mechanical and magnetic parts of the energy, respectively. 
The variation of the mechanical part by collecting the non-zero tensors can be written as 

δUAll =

∫

V

⎡

⎢
⎣

σxxδεxx + τxzδγxz + σzzδεzz + ξxxxδηxxx + ξxxzδηxxz + ξxzxδηxzx + ξxzzδηxzz

+ξzzxδηzzx + ξzzzδηzzz − Txxδ
∂Hx

∂x
− Tzzδ

∂Hz

∂z
− BxδHx − BzδHz

⎤

⎥
⎦dV (16)  

where 

Hk =

⎧
⎨

⎩

Hx
Hy
Hz

⎫
⎬

⎭
= −

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ψ
∂x
∂Ψ
∂y
∂Ψ
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17) 

Then 
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δUMech =

∫L

0

∫h/2

− h/2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σxx

(
∂δu
∂x

+
∂w
∂x

∂δw
∂x

)

+ τxz

(
∂δu
∂z

+
∂δw
∂x

+
∂δw
∂x

∂w
∂z

+
∂w
∂x

∂δw
∂z

)

+σzz

(
∂δu
∂z

+
∂w
∂z

∂δw
∂z

)

+ ξxxx

(
∂2δu
∂x2 +

∂2δw
∂x2

∂w
∂x

+
∂2w
∂x2

∂δw
∂x

)

+ξxzz

(
∂2δu
∂z2 +

∂2δw
∂x∂z

+
∂2δw
∂x∂z

∂w
∂z

+
∂2w
∂x∂z

∂δw
∂z

+
∂δw
∂x

∂2w
∂z2 +

∂w
∂x

∂2δw
∂z2

)

+ξxzx

(
∂2δu
∂x∂z

+
∂2δw
∂x2 +

∂2δw
∂x2

∂w
∂z

+
∂2w
∂x2

∂δw
∂z

+
∂δw
∂x

∂2w
∂x∂z

+
∂w
∂x

∂2δw
∂x∂z

)

+ξzzx

(
∂2δw
∂x∂z

+
∂2δw
∂x∂z

∂w
∂z

+
∂2w
∂x∂z

∂δw
∂z

)

+ξzzz

(
∂2δw
∂z2 +

∂2δw
∂z2

∂w
∂z

+
∂2w
∂z2

∂δw
∂z

)

+ξxxz

(
∂2δu
∂x∂z

+
∂2δw
∂x∂z

∂w
∂x

+
∂2w
∂x∂z

∂δw
∂x

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dzdx (18a)  

δUMag = −

∫L

0

∫h/2

− h/2

(
∂Bx

∂x
+

∂Bz

∂z
+

∂2Txx

∂x2 +
∂2Tzz

∂z2

)

δΨdzdx +
∫h/2

− h/2

[

Bx +
∂Txx

∂x

]L

0
δΨdz

+

∫L

0

[

Bz +
∂Tzz

∂z

]h/2

− h/2
δΨdx

(18b) 

We establish the nonlinear bending equations by exerting the variational technique on Eq. (18). In consequence, we have 

δu = 0;
∂σxx

∂x
+

∂τxz

∂z
+

∂2ξxxx

∂x2 +
∂2ξxxz

∂x∂z
+

∂2ξxzx

∂x∂z
+

∂2ξxzz

∂z2 = 0 (19a)  

δw = 0;
∂σxx

∂x
∂w
∂x

+
∂σzz

∂z

(

1 +
∂w
∂z

)

+ σxx
∂2w
∂x2 + σzz

∂2w
∂z2 +

∂τxz

∂x

(

1 +
∂w
∂z

)

+
∂τxz

∂z
∂w
∂x

+2τxz
∂2w
∂x∂z

+
∂2ξxxx

∂x2
∂w
∂x

+ 2ξxxx
∂3w
∂x3 +

∂ξxxx

∂x
∂2w
∂x2 +

∂2ξxxz

∂x∂z
∂w
∂x

+ 2ξxxz
∂3w

∂x2∂z
+

∂ξxxz

∂x
∂2w
∂x∂z

+
∂2ξxzx

∂x2

(

1 +
∂w
∂z

)

+ 4ξxzx
∂3w

∂x2∂z
+

∂ξxzx

∂z
∂2w
∂x2 +

∂ξxzx

∂x
∂2w
∂x∂z

+
∂2ξxzx

∂x∂z
∂w
∂x

+
∂2ξxzz

∂x∂z

(

1 +
∂w
∂z

)

+2ξxzz
∂3w

∂x∂z2 +
∂ξxzz

∂z
∂2w
∂x∂z

+
∂ξxzz

∂x
∂2w
∂z2 + 2ξxzz

∂3w
∂x∂z2 +

∂2ξxzz

∂z2
∂w
∂x

+
∂2ξzzx

∂x∂z

(

1 +
∂w
∂z

)

+2ξzzx
∂3w

∂x∂z2 +
∂ξzzx

∂z
∂2w
∂x∂z

+
∂2ξzzz

∂z2

(

1 +
∂w
∂z

)

+ 2ξzzz
∂3w
∂z3 +

∂ξzzz

∂z
∂2w
∂z2 = 0

(19b) 

Based on the Voigt notation, the Cijkl can be reduced into Cij (i, j ∈{1, 2, …, 6}). The possibility of reducing the number of inde
pendent elastic constants can go forward if the material possesses a plane of elastic symmetry with a linear-elastic behavior, as [Shu 
et al., 2011; Qu et al., 2021; Zhang et al., 2022b; Naskar et al., 2022; Shahmohammadi et al., 2023; Zhang et al., 2023; Malikan & 
Eremeyev, 2023b] 

[
Cijkl

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20) 

For hexagonal crystal piezomagnetic materials, the piezomagnetic tensor can be reduced into [Malikan & Nguyen, 2018; Zhang 
et al., 2022b] 

[
qijk

]
=

⎡

⎣
0 0 0 0 q15 0
0 0 0 q15 0 0

q31 q32 q33 0 0 0

⎤

⎦ (21)  

in which the piezomagnetic constants were converted from qijk into qiα (α ∈{1, 2,…, 6}). 
In the same way, the symmetry forms of the direct and reverse flexomagnetic parameters can also be reduced into three inde
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pendent elements as f11, f111, f14 for a cubic crystal [Shu et al., 2011; Qu et al., 2021; Naskar et al., 2022] 

[
fij
]
=

⎡

⎣
0 0 0 0 f111 0
0 0 0 f111 0 0
f14 f14 f11 0 0 0

⎤

⎦ (22) 

Later, for the same material, as there is not enough literature, let us suppose that the converse flexomagnetic tensor corresponds to 
the direct one and hence it can be diminished into (the piezomagnetic material has been diagnosed to be a cubic crystal) 

[
hij
]
=

⎡

⎣
0 0 0 0 h46 0
0 0 0 h46 0 0

h15 h15 h11 0 0 0

⎤

⎦ (23) 

The small-sized devices have a challenge of size dependence in their empirical design. Such small-scale characteristics can be 
captured using several micro- and nano-mathematical models [Dastjerdi & Jabbarzadeh, 2017; Stempin & Sumelka, 2022; Stempin 
et al., 2023]. In this study, the size effect is developed and exploited in the framework of the generalized first strain gradient theory. 
The general form of the strain gradient tensor of rank six (gijklmn) has been derived for isotropic, and linear elastic materials [Auffray 
et al., 2013; Zhou et al., 2016; Gusev & Lurie, 2017; Sidhardh & Ray, 2018; Torabi et al., 2021; Yurkov & Yudin, 2023] 

gijklmn = g1
[(

δijδkl + δikδjl
)
δmn + (δimδln + δinδlm)δjk

]

+g2
[
δij(δkmδln + δknδlm) + δik

(
δjnδlm + δjmδln

)]
+ g3δilδjkδmn

+g4δil
(
δjmδkn + δjnδkm

)
+ g5

[
δim

(
δjlδkn + δjnδkl

)
+ δin

(
δjlδkm + δjmδkl

)] (24)  

where gi are the remaining higher-order elastic moduli. Remember that the solid analyzed here is a non-centrosymmetric piezo
magnetic material, but the use of the centrosymmetric strain gradient tensor is an assumption only which is implemented here for 
reasons of insufficient literature. The components of g are given by the isotropic gradient elasticity when the order-of-differentiation 
conditions and potentiality are applied. 

It has been known so far that 

δij =

{
1, if i = j,
0, if i ∕= j. (25) 

Thus, for example, we can express the first term of strain gradient elastic moduli through the Voigt notation rules as follows: 

g111111 = g1111 = g11 = 4(g1 + g2 + g5) + g3 + 2g4 (26) 

The material’s strain gradient parameters can be expressed as follows [Zhou et al., 2016; Sidhardh & Ray, 2018; Torabi et al., 
2021]: 

g1 = −
2
3
(g2 + g5), g2 =

μ
30

(
27l2

0 − 4l2
1 − 15l2

2

)
,

g3 =
1
3
(8g2 + 2g5), g4 =

μ
3
(
l2
1 + 6l2

2

)
, g5 =

μ
3
(
l2
1 − 3l2

2

)

in which the material length scales l0, l1, l2 are introduced. 
Nonetheless, we assume l0 = l1 = l2 = l for the sake of simplicity. In this regard, two cases can be yielded, if we adopt l0= l1 = l2 = 0, 

the attained model will exclude strain gradient effects, and by setting l1 = l0 = 0 and l2 = l, the corresponding modified couple stress 
model will be gained. In addition, it has not yet been determined what is the exact value of the strain gradient shear modulus (μ). 
Hence, we consider its amount equal to the elasticity shear modulus (G) as a scalar. 

Let us move ahead with the formulation. The lower and higher-order stress-strain relations can be expressed as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
τyz
τxz
τxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=
[
Cij

]

6×6 ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

−
[
qij
]

6×3 ×

⎧
⎨

⎩

Hx
Hy
Hz

⎫
⎬

⎭
−
[
hij
]

6×3 ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Hx

∂x
0 0

0
∂Hy

∂y
0

0 0
∂Hz

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)  

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξxxx
ξxxz
ξzzx
ξzzz
ξxzz
ξxzx

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=
[
gij
]

6×6 ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ηxxx
ηxxz
ηzzx
ηzzz
ηxzz
ηxzx

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

−
[
fij
]

6×3 ×

⎧
⎨

⎩

Hx
Hy
Hz

⎫
⎬

⎭
(28)  
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⎧
⎨

⎩

Txx
Tyy
Tzz

⎫
⎬

⎭
= −

[
hij
]

3×6 ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(29)  

⎧
⎨

⎩

Bx
By
Bz

⎫
⎬

⎭
=

[
aij
]

3×3 ×

⎧
⎨

⎩

Hx
Hy
Hz

⎫
⎬

⎭
+
[
qij
]

3×6 ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+
[
fij
]

3×6 ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ηxxx
ηxxz
ηzzx
ηzzz
ηxzz
ηxzx

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(30) 

The expanded 3D elasticity stiffness matrix for a homogenous isotropic material can be expressed as follows [Zafarmand & Kad
khodayan, 2015; Malikan et al., 2018; Abouelregal et al., 2021; Dastjerdi et al., 2022a; Sahmani & Safaei, 2022]: 

[
Cijkl

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E(1 − ν)
K

Eν
K

Eν
K

0 0 0

Eν
K

E(1 − ν)
K

Eν
K

0 0 0

Eν
K

Eν
K

E(1 − ν)
K

0 0 0

0 0 0
E

2(1 + ν) 0 0

0 0 0 0
E

2(1 + ν) 0

0 0 0 0 0
E

2(1 + ν)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(31)  

in which K = (1 + ν)(1 − 2ν). 
The performed work by external loads includes the influence of the lateral magnetic field, which itself is an axial force, and the 

transverse static load as 

δW =

∫L

0

[

qδw+Nxx

(
∂δw
∂x

∂w
∂x

)]

dx (32)  

where Nxx = N0 = q31
ψ
h

∫h/2

− h/2

dz. 

The determination of the values of the magnetic potential will steer the discussion. Let us define the magnetic potential on the 
bottom and top layers of the domain as [M. Malikan & Eremeyev, 2022b] 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ
(

+
h
2

)

Ψ
(

−
h
2

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

{
ψ
0

}

(33) 

The direct FM parameter will be neglected for the next relations due to focusing on the converse FM effect only. A precise 
mathematical interaction between Eqs. (17), (18), (30), (33) gives (the influence of Bx has been ignored) 

Ψ =
q31

a33

(
h2

4
− z2

)(
∂2u
∂x∂z

+
∂w
∂x

∂2w
∂x∂z

)

+
q33

a33

(
h2

4
− z2

)(
∂2w
∂z2 +

∂w
∂z

∂2w
∂z2

)

+
ψ
h

(

z +
h
2

)

+
h46

a33

(

z2 −
h2

4

)(
∂3u

∂x2∂z
+

∂3w
∂x3 +

∂3w
∂x3

∂w
∂z

+
∂w
∂x

∂3w
∂x2∂z

)

+
h15

a33

(

z2 −
h2

4

)

×

[
∂3u

∂x∂z2 +
∂w
∂x

∂3w
∂x∂z2 +

(
∂2w
∂x∂z

)2]

+
h11

a33

(

z2 −
h2

4

)[
∂3w
∂z3 +

∂2w
∂z2

∂4w
∂z4 +

(
∂3w
∂z3

)2]

(34) 

As seen, Eq. (34) can exactly satisfy the magnetic conditions requested by Eq. (33). Afterwards, by considering the component of 
the lateral magnetic field only, we have the linearized magnetic field component as presented below 
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Hz = − 2z
q31

a33

∂2u
∂x∂z

− 2z
q33

a33

∂2w
∂z2 − 2z

h46

a33

(
∂3u

∂x2∂z
+

∂3w
∂x3

)

− 2z
h15

a33

∂3u
∂x∂z2 − 2z

h11

a33

∂3w
∂z3

+
ψ
h
+

q31

a33

(
h2

4
− z2

)
∂3u

∂x∂z2 +
q33

a33

(
h2

4
− z2

)
∂3w
∂z3 +

h46

a33

(

z2 −
h2

4

)(
∂4u

∂x2∂z2 +
∂4w

∂x3∂z

)

+
h15

a33

(

z2 −
h2

4

)
∂4u

∂x∂z3 +
h11

a33

(

z2 −
h2

4

)
∂4w
∂z4

(35) 

Finally, after performing lots of mathematical efforts, the bending governing equations can be acquired, linearized, and represented 
as follows: 

C11
∂2u
∂x2 + (C13 + C55)

∂2w
∂x∂z

+
h46q31

a33

(

z2 −
h2

4

)
∂5u

∂x3∂z2 +
h46q31

a33

(

z2 −
h2

4

)
∂5w

∂x4∂z

+

[
q2

31

a33

(
h2

4
− z2

)

+ 2
zh15q31 + h2

15

a33
+

1
2
(g15 + g26 + g66) + g22 + g62 + g51

]
∂4u

∂x2∂z2

+2
(

h15q31 − zq2
31

a33

)
∂3u

∂x2∂z
+

[
2h15q31

a33

(

z2 −
h2

4

)]
∂5u

∂x2∂z3 −
h15h11

a33

(

z2 −
h2

4

)
∂6w

∂x∂z5

+2
(

h15q33 − zq31q33

a33

)
∂3w

∂x∂z2 +

[

g52 +
1
2
(g56 + g65 + g25)

]
∂4u

∂x∂z3 + g54
∂4w
∂z4

+

[
q31q33

a33

(
h2

4
− z2

)

+
2h15h11 + 2zh11q31 + 4zh15q33

a33
+ g53 + g64 + g24 +

g55

2

]
∂4w

∂x∂z3

+

[
h11q31

a33

(

z2 −
h2

4

)

−
h15q33

a33

(
h2

4
− z2

)]
∂5w

∂x∂z4 −
h2

15

a33

(

z2 −
h2

4

)
∂6u

∂x2∂z4 + C55
∂2u
∂z2

+2
(

h15h46 − zh46q31

a33

)(
∂4u

∂x3∂z
+

∂4w
∂x4

)

−
h15h46

a33

(

z2 −
h2

4

)(
∂6u

∂x3∂z3 +
∂6w

∂x4∂z2

)

+
(

g61 + g21 + g12 +
g16

2

) ∂4u
∂x3∂z

+
1
2
(g26 + g66 + g15 + 2g13)

∂4w
∂x3∂z

+
g55

2
∂4u
∂z4

+g11
∂4u
∂x4 +

g16

2
∂4w
∂x4 +

[

g63 + g14 + g23 +
1
2
(g56 + g65 + g25)

]
∂4w

∂x2∂z2 = 0

(36a)  

(

C33 − 2
q2

33

a33
+ q33

ψ
h

)
∂2w
∂z2 +

[
4h11q33 − 2zq2

33

a33
+ −

z2q2
33

a33

]
∂3w
∂z3 +

g66

2
∂4w
∂x4

+

[
2h2

11 + 6zh11q33

a33
+

q2
33

a33

(
h2

4
− z2

)

+ g44

]
∂4w
∂z4 + 2

[
h11q33

a33

(

z2 −
h2

4

)

−
zh2

11

a33

]
∂5w
∂z5

−
2h46q33

a33

(
∂3u

∂x2∂z
+

∂3w
∂x3

)

+

[

2z
(

h15q33 + h11q31

a33

)

+
1
2
(g55 + g35 + g46) + g42

]
∂4u

∂x∂z3

+

[

2
h11h46

a33
+ g52 + g32 + g41 +

1
2
(g65 + g36 + g56)

]
∂4u

∂x2∂z2 −
h2

11

a33

(

z2 −
h2

4

)
∂6w
∂z6

+

(
4h11q31 − 2h15q33 − zq31q33

a33

)
∂3u

∂x∂z2 +

[
2h11h46

a33
+

1
2
(g65 + g36 + g56) + g63

]
∂4w

∂x3∂z

+

[
h15q33

a33

(

z2 −
h2

4

)

−
2zh11h15

a33
−

h11q31

a33

(
h2

4
− z2

)]
∂5u

∂x∂z4 + C55
∂2w
∂x2 + Nxx

∂2w
∂x2

+
h46q33

a33

(

z2 −
h2

4

)
∂5u

∂x2∂z3 +

(

C55 + C13 −
2q31q33

a33

)
∂2u
∂x∂z

+

(
2h11q31 − 2zq31q33

a33

)
∂3u

∂x∂z2

−
2zh11h46

a33

(
∂5u

∂x2∂z3 +
∂5w

∂x3∂z2

)

+

[
2h11h15 + 4zh11q31 − 2zh15q33

a33
+

q31q33

a33

(
h2

4
− z2

)]
∂4u

∂x∂z3

−
h11h46

a33

(

z2 −
h2

4

)(
∂6u

∂x2∂z4 +
∂6w

∂x3∂z3

)

−
h11h15

a33

(

z2 −
h2

4

)
∂6u

∂x∂z5 +
h46q33

a33

(

z2 −
h2

4

)
∂5w

∂x3∂z2

+g61
∂4u
∂x4 +

(
g62 + g51 + g31 +

g66

2

) ∂4u
∂x3∂z

+

[

g64 + g33 + g53 +
1
2
(g55 + g35 + g46)

]
∂4w

∂x2∂z2

+(g54 + g34)
∂4w

∂x∂z3 +
(

g43 +
g45

2

) ∂4w
∂x∂z3 +

g45

2
∂4u
∂z4 = 0

(36b) 
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The above-presented equations predict the linear bending response of a 3D piezomagnetic-flexomagnetic beam. 

3. Solution technique 

Semi-analytical solution methods are a set of methods and techniques that can be used to solve mathematical and physical problems 
explicitly and reach a mathematical and workable solution. For example, one of the semi-analytical methods is the SAPM [Dastjerdi & 
Akgöz, 2019; Dastjerdi et al., 2020a, Sh. 2020b, Sh. 2021c, 2022a, Sh. 2022b, 2023a, 2023b], which provides the possibility of solving 
the problem faster and easier by using the decomposition of functions into a set of simpler polynomial functions. Due to its high 
precision and accuracy, this method has been used recently to solve physical problems. In the onward, the 3D version of the SAMP 
method for 3D problems will be in use. The details for the SAPM method are available in the former works [Dastjerdi & Akgöz, 2019; 
Dastjerdi et al., 2020a, Sh. 2020b, Sh. 2021c, 2022a, Sh. 2022b, 2023a, 2023b]. 

The linear sixth-order partial differential equations have been derived and illustrated by Eq. (36). To ensure that the solution 
technique can provide appropriate numerical results, one must ensure the satisfaction of boundary conditions. The derived differential 
equations can be resolved based on the following expressed geometrical (essential) and natural (force) boundary conditions enforced 
at both ends and top and bottom surfaces of the beam,  

• Clamped (C): 

u|x=0,L = w|x=0,L = 0    

• Simply-supported (S): 

w|x=0,L = 0, σxx|x=0,L = Nxx    

• Free (F): 

σxx|x=0,L = Nxx, τxz|z=− h
2 ,+

h
2
= 0   

The boundary conditions at the top and bottom surfaces of the beam are expressed as follows: 
Top: σzz|z=− h

2 ,+
h
2
= Q, τxz|z=− h

2 ,+
h
2
= 0, where Q = q/b. 

Bottom: σzz|z=− h
2 ,+

h
2
= τxz|z=− h

2 ,+
h
2
= 0 

Having available the appropriate and previously utilized allowable boundary condition expressions [Dastjerdi & Akgöz, 2019; 
Dastjerdi et al., 2020a, Sh. 2020b, Sh. 2021c, 2022a, Sh. 2022b, 2023a, 2023b], one can have 

u(x, z) =
∑N

i=1

∑M

j=1
p(j+M(i− 1))x(i− 1)z(j− 1) (37a)  

w(x, z) =
∑N

i=1

∑M

j=1
p(j+M(i− 1)+M.N)x(i− 1)z(j− 1) (37b)  

where N and M are distributions of points on the beam thickness. 
To impose the SAPM technique, initially, the media will be divided by grid points. The points mesh here for x and z coordinates 

concerning Eq. (37) follows the well-used Chebyshev-Gauss-Lobatto (CGL) grid points as 

xi =
1
2

L
(

1 − cos
i − 1
N − 1

π
)

, i= 1, 2,...,N (38a)  

zk =
1
2

h
(

1 − cos
i − 1

M − 1
π
)

, k= 1, 2,...,M (38b) 

The CGL is pictured by Fig. 2. On the domain, each point is able to move and hence, thickness stretching as a 3D deformation 
elasticity property can also be achieved. The solid red points represent the governing equations and the solid black ones obey the 
boundaries. This kind of grid points differs with the simple one. It actually gives non-equal distance points and is further accurate than 
the simple grid points due to the boundaries points that are nearer to one another. 

As far as there are two unknown parameters (u and w) for each point, 

u = [u(x1, z1), ..., u(xN , z1), u(x1, z2), ..., u(xN , z2), ..., u(x1, zM), ..., u(xN , zM)]
T (39a)  
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w = [w(x1, z1), ...,w(xN , z1),w(x1, z2), ...,w(xN , z2), ...,w(x1, zM), ...,w(xN , zM)]
T (39b) 

Then, there will be N× M× 2 equations number and the same unknown. Later, the Newton-Raphson technique aids us in 
computing the u and w values for unknown points by finding the answer to the algebraic equations. 

4. Results comparison 

Since the current solution is based on a semi-analytical method, which itself is based on polynomial functions, we must check the 
convergence of the results at the beginning of the results section. In fact, we should know how many nodes along the length and 
thickness of the beam will converge our results with the help of this solution method. Then, considering the number of converged 
points, the main results can be extracted. 

With the help of the figures presented in this part, i.e. in Figs. 3a and 3b, the convergence of the results under different boundary 
conditions is shown. It should be noted that both figures are a problem for a thick macrobeam regardless of the magnetization part. As 
shown in Fig. 3a, for the clamped-clamped (C–C) and clamped-simply supported (C–S) boundary conditions, the results are converged 
at the number of nodes 13 in both thickness and length directions. But it is clear from Fig. 3b that in the boundary condition of 
clamped-free edges (C-F), the convergence of the results will be after the number 13. In fact, this means that the free boundary 
condition in the utilized semi-analytical method requires larger number of polynomials to give correct structural behavior and is 
almost a more sensitive condition. 

In the discussion of engineering and numerical problems, it is always customary to validate the derived mathematical model with 
those of the available references and evaluate its accuracy so that the correctness of the results can be ensured before an in-depth 
investigation of the mechanical behavior of the structure. This goal will be possible through Figs. 4a, 4b, and 5a, 5b. 

Figs. 4a, 4b, and 5a, 5b compare the bending results for a thick macrobeam assuming zero values for all intelligent parameters. The 
comparison is done between the results of the current model and the finite element numerical method. In Figs. 4a and 4b, the beam is 
limited in the clamped-free states, while in Figs. 5a and 5b, it is evaluated for the beam with two clamped ends. As it is firmed up by 
these figures, the maximum transverse deflections in both compared examples wholly and clearly serve to prove that the presently 
derived model and the solution process are highly accurate. 

5. Results presentation 

The previous section has fully and error-freely verified the solution method and the present computational model with the help of 
existing references. In this section, we are evaluating the important parameters of the problem in detail. To extract the mechanical and 
magnetic properties of the piezo-flexomagnetic beam (PFM) model, some literature is used for the present results in the discussion of 
three-dimensional elasticity. Due to the lack of enough literature and studies, we here consider the values of the reverse FM parameters 
equal to the direct ones. Also, the piezomagnetic parameters’ amounts and elasticity constants are taken from [Gholami & Ansari, 
2017; Malikan & Nguyen, 2018; Sidhardh & Ray, 2018; Kuo & Wang, 2022] for a CoFe2O4 material. Hereafter, if any parameter is not 
mentioned in the title of the figures, that means the value is the default one. In the next section, in order to facilitate and simplify the 
discussion of the results, the effects of vital parameters will be presented in sub-sections. 

5.1. Slenderness effect 

One of the most important issues that can be investigated in the three-dimensional elasticity analysis of beams and plates is the issue 
of large deformations. In the topic of beam and plate theories, even higher-order theories such as Reddy plate theory, the deformations 

Fig. 2. CGL grid points for a symmetrical beam (N = 9, M = 5).  
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are absolutely small, but the displacements may be small or large. In the physics of nature, deformations are often large. Therefore, 
with the help of three-dimensional elasticity, the flexomagnetic beam can be analyzed closer to its exact physics. 

Fig. 6 is one of the most critical results of this study for a PFM. The figure has been assumed to show changes in the deformation in 
two directions. The first direction is the longitudinal direction that is usually presented in the one-dimensional analysis of the PFM 
beam to indicate deflections, which shows the maximum deflection here too. Anyway, the elastic changes along the thickness are 
assumed to be constant in beam and plate theories, and here these changes are considered inside the problem. As one sees, when the 
thick smart beam bends under the transverse load, not only the deflection but also the deformation occurs in the thickness of the beam. 
It is the large deformations that become significant for the problems of thick PFM beams and sheets. 

Another worthwhile result earned from Fig. 6 is seen in boundaries. In a normal situation and for thin or moderately thick domains, 
deformation in a clamped boundary is encountered with a low slope and then a steep one. Nevertheless, in a very thick structure and 
small deflections, the case is non-identical. 

Fig. 3. a Mesh convergence in the SAPM (L/h = 7.5, b/h = 0.25, E = 190 GPa, ν=0.29, Q = 1 kPa). 
b Mesh convergence in the SAPM (L/h = 7.5, b/h = 0.25, E = 190 GPa, ν=0.29, Q = 1 kPa). 
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The results obtained in Fig. 6 can be further investigated and expanded. By presenting Figs. 7a, 7b, and 7c, the effect of the 
slenderness ratio of the beam from a very thin beam to a very thick one has been examined. It should be mentioned that for Fig. 7a, the 
vertical axis of the diagram is for ws parameter, which is the ratio of the deflection for the lowest surface of the thickness to the highest 
surface. The lower value of this parameter shows that the deformation of the beam increases through the thickness. In very thin beams, 
the beam has no deformation along the thickness and the amount of the ws parameter equals one. That is, the deflection is constant in 
line with the thickness. With the help of the figure, it is clear that as the beam becomes thicker, the changes in thickness go up. 

Fig. 4. a 3D results for C-F (L/h = 7.5, b/h = 0.25, E = 190 GPa, ν=0.29, Q = 1 kPa). 
b FEM results for C-F (L/h = 7.5, b/h = 0.25, E = 190 GPa, ν=0.29, Q = 1 kPa). 
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Fig. 5. a 3D results for C–C (L/h = 7.5, b/h = 0.25, E = 190 GPa, ν=0.29, Q = 1 kPa). 
b FEM results for C–C (L/h = 7.5, b/h = 0.25, E = 190 GPa, ν=0.29, Q = 1 kPa). 
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Moreover, another important result that can be pulled out from this figure is that as the beam gets thicker, the slight difference in the 
results of the two curves seen at the beginning increases fundamentally later. The first curve is related to a non-intelligent micro/ 
nanobeam and the second one is the smart micro/nanobeam. When smart parameters enter the problem, they affect the change and 
deformation of the thickness. This effect is reduced to a greater difference in the upper and lower layers of the thickness while adding 
smartness. Such a result doubles the importance of 3D elasticity analysis for smart beams. 

Furthermore, Fig. 7b extends the thickness deformation studies in Fig. 7a by a change in the width of the beam. Apparently, the 
increase or decrease in the width dimension of the beam influences the ws values, and this outcome determines that the third dimension 
of the beam, namely width, is straightly related to the way that thickness deforms. 

ws =
Deflection of the lowest thickness surf ace
Deflection of the highest thickness surf ace

(39) 

Fig. 7c examines another parameter versus the slenderness factor of the beam. The mentioned parameter is wd, which is the ratio of 
three-dimensional deflection to that of one-dimensional for smart and non-smart micro/nanobeams. At the beginning of the results and 
the direction of the very thin beam, one can see the biggest difference between the two smart and non-smart beams. But this difference 
gradually decreases and increases again after a certain amount of thickness-to-length ratio. As seen, as the beam becomes thicker in 
both intelligent and non-intelligent modes, the value of the wd parameter also increases, which illustrates that the results of the one- 
dimensional analysis can be completely rejected in thick beams. More importantly, this diagram displays that for the analysis of smart 
micro/nanobeams, even in very small thicknesses, the one-dimensional analysis does not provide appropriate and correct results. 

wd =
Deflection of 3D beam
Deflection of 1D beam

(40)  

5.2. Strain gradient parameter effect 

The strain gradient parameter (l) is decisive in analyzing the mechanical behavior of micro- and nanostructures. But this impor
tance will be multiplied when the strain gradient becomes inclined to create the flexomagnetic effect. By presenting Figs. 8a, 8b, and 
8c, the significance of the strain gradient parameter has been proven. In all three figures, the longitudinal axis is shown for the de
flections in line with the length, and the transverse axis demonstrates the deflection variations in the thickness direction (de
formations). The boundary conditions in all three diagrams have been investigated completely fixed for two ends. The input 
parameters of the problem can be seen in the titles of the figures, and it should be noted that the value of the magnetic potential is based 
on milliamperes. It is noteworthy that the transverse load has been neglected in all three figures and the deflections and deformations 

Fig. 6. Deflection vs. thickness deformation (L/h = 1.5, b/h = 0.05, Q = 0.1 Pa, l/h = 0.1, ψ=0, C–C).  
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Fig. 7. a Thickness deformations vs. slenderness ratio (b/h = 0.05, Q = 0.1 Pa, l/L = 1/15, ψ=0, C–C). 
b Thickness deformations vs. changes in the width of the beam (L/h = 5, l/h = 0.025, Q = 1 Pa, ψ=2 mA, C–C). 
c 3D elasticity effect vs. slenderness ratio (b/h = 0.05, Q = 0.1 Pa, l = 0, ψ=0, C–C). 
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are the result of the magnetic potential and the strain gradient parameter only. In fact, the reason for omitting the transverse load is to 
show the pure deformations originated from strain gradients and the magnetic field. In the figures, the values of the strain gradient 
parameter have been selected as zero, one-tenth, and two-tenth of the thickness, respectively. The most momentous results that can be 
drawn from these three figures are that changes in the strain gradient parameter not only affect the deflection of the beam (Note that if 
the maximum deflection here is not in the center of the length that is because the transverse static load has not been imposed) but also 
lead to deformation in the thickness of the beam. 

In addition to this, in one-dimensional analysis, when the lateral load exists, the maximum deflection occurs in the longitudinal 
center of the beam; however, when the force is eliminated, there is no deflection even if the strain gradient and magnetic force are 
involved inside the equations [Malikan & Eremeyev, 2020c]. But, according to these figures, in 3D analysis, even if there is no static 
bending transverse load, the magnetic force makes a deflection and the strain gradient also affects the deflection. This finding cannot 
be obtained utilizing a 1D elasticity analysis. Pursuant to the research background, increasing the value of the strain gradient 
parameter leads to increased stiffness of the material and a decrease in the beam’s deflection. The comparison of the three figures 
reveals that in the three-dimensional analysis of the smart beams, the effect of the strain gradient causes different values of deflections 
along with the length. All in all, the noteworthiness of 3D analysis here manifests that the essence of the strain gradients, in addition to 
influencing the deflection, happens other things on the beam, and the strain gradient causes the beam’s twisted form along its length as 
well. 

The results harvested from the effective parameter of strain gradient will not be limited to the previous figures, and by bringing 
forward Fig. 9, another interesting result can be witnessed. This figure represents the variations in the numerical value of the strain 
gradient parameter compared to the changes in the ws parameter. This parameter has been explained earlier. The importance of 
collecting the results in this figure is to show how the increase in the value of the strain gradient parameter has an effect on the 
thickness deformation. Fig. 9 conveys that when the strain gradient parameter is left out of the analysis, the dissimilarity in the 
deflection of the bottom and top layers of the thickness looks small. Regardless of how, increasing the value of the strain gradient 
parameter results in a major deviation of the deflection values at the highest and lowest levels of the beam thickness. The meaning of 
this achievement is that the strain gradient has an enormous effect on the beam structure and finally, at large values of the strain 
gradient parameter, considerable deformation occurs in the thickness of the beam. 

5.3. Magnetic potential effect 

The effect of changes in the magnetic potential parameter resulting from the external magnetic field can be indicated in Fig. 10. The 
unit of magnetic potential is the milliampere. As one can see, when the magnetic potential has zero value and as if there is no external 
magnetic field, the changes in thickness deformation or the deflection ratio of different thickness layers are insignificant. However, as 

Fig. 7. (continued). 
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Fig. 8. a Deflections vs. strain gradient effect (L/h = 10, b/h = 0.5, Q = 0, l/h = 0, ψ=20 mA, C–C). 
b Deflections vs. strain gradient effect (L/h = 10, b/h = 0.5, Q = 0, l/h = 0.1, ψ=20 mA, C–C). 
c Deflections vs. strain gradient effect (L/h = 10, b/h = 0.5, Q = 0, l/h = 0.2, ψ=20 mA, C–C). 
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Fig. 8. (continued). 

Fig. 9. Ws parameter vs. strain gradient effect (L/h = 10, b/h = 0.5, Q = 1 Pa, ψ=20 mA, C–C).  
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soon as the external magnetic field is applied and the magnetic potential has a value, the deflection in different layers of thickness will 
have different values, so that when the amount of the magnetic potential is large enough, the deflection difference in the upper and 
lower layers of thickness will be remarkable, and principally, the thickness deformation is substantial. 

6. Conclusion 

With the aim of identifying the effect of flexomagneticity (FM) in a three-dimensional mechanical analysis, a parametric study has 
been conducted through a case study. To the best of our knowledge and upon reviewing the literature, it was crystal clear that a three- 
dimensional (3D) elasticity study of the smart flexomagnetic composite structure was not evaluated prior to this study. Thus, a further 
investigation was seriously needed. To manage such an analysis, the governing equations incorporated the thickness stretching effect, 
which means the term ∂/∂z. A proposed flexomagnetic model that was restricted to piezomagnetic structures has been re-utilized. 
Using the variational technique, the governing equations were derived for a thick composite beam by adjusting and compiling 
several approaches, which were composed of a 3D beam kinematic model, von Kármán strain nonlinearity, Hamilton’s principle, and 
appointed direct and converse FM models. The essential tensors were given in 3D forms with respect to the 3D study. Thereafter, the 
derived characteristic linear three-dimensional bending equations were transferred to a 3D semi-analytical Polynomial Method to 
propagate numerical results. This work highlighted the importance of 3D mechanical analyses on the multi-physic connection, such as 
flexomagneticity, and filled a gap by revealing new insights on FM. Although some findings are pointed out and listed below, the novel 
achievements are not limited to these,  

• In 1D analysis of small-scale smart beams, when the external loads are applied, the presence of the strain gradients only induces 
further material stiffness, but in 3D evaluation, it also affects thickness deformation and beam twisting. The result is physically 
logical cause the strain gradient means the rate of changes in strains. Thus, while the transverse strain is engaged inside the 
problem, the strain gradients are more fruitful and have a further impact on the elastic behavior.  

• In contrast to the non-smart structures, the smart feature brings about further deformations inside the thickness and consequently, 
the 3D analysis is crucial for smart micro/nanocomposite structures.  

• 3D evaluations displayed that the magnetic field influences not only the beam’s deflections but the beam’s deformations as well.  
• In 1D investigations of small-scale smart structures, if the static bending load is removed, the beam will not confront any deflection 

even if the other higher-order and external factors like magnetic influence are engaged in the problem. However, in 3D studies, it 
was shown that some parameters, such as magnetic potential can affect the deflection and deformation of the structure no matter 
whether the lateral load is forced. 

CRediT authorship contribution statement 

Mohammad Malikan: Conceptualization, Methodology, Mathematical Modelling, Formal analysis, Investigation, Writing–origi
nal draft, Resources, Data curation, Writing–review & editing, Supervision, Project administration, Funding acquisition. Shahriar 
Dastjerdi: Software, Solution, Validation, Visualization, Formal analysis, Investigation, Writing–review & editing. Victor A. Ere
meyev: Methodology, Formal analysis, Investigation, Writing–review & editing, Supervision, Project administration. Hamid M. 

Fig. 10. Deflections vs. magnetic potential parameter (mA) (L/h = 10, b/h = 0.5, Q = 1 Pa, l/h = 0.1, C–C).  

M. Malikan et al.                                                                                                                                                                                                      

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Engineering Science 193 (2023) 103966

22

Sedighi: Investigation, Data curation, Writing – review & editing. 

Declaration of Competing Interest 

There is no conflict of interest to disclose regarding manuscript “On a 3D material modeling of smart nanocomposite struc
tures” submitted by Mohammad Malikan to International Journal of Engineering Science. 

Data availability 

The data/code is a part of the authors’ future studies and cannot be shared. 

Acknowledgements 

The work regarding the “3D mathematical modeling of smart composites” was financially supported by Gdańsk University of 
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Dastjerdi, Sh., Naeijian, F., Akgöz, B., & Civalek, Ö. (2021c). On the mechanical analysis of microcrystalline cellulose sheets. International Journal of Engineering 

Science, 166, Article 103500. Article. 
Eliseev, E. A., Glinchuk, M. D., Khist, V., Skorokhod, V. V., Blinc, R., & Morozovska, A. N (2011). Linear magnetoelectric coupling and ferroelectricity induced by the 

flexomagnetic effect in ferroics. Physical Review B, 84, Article 174112. Article. 
Eliseev, E. A., Morozovska, A. N., Glinchuk, M. D., & Blinc, R (2009). Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Physical Review B, 79, Article 

165433. Article. 
Eliseev, E. A., Morozovska, A. N., Khist, V. V., & Polinger, V (2019). Chapter Six - Effective flexoelectric and flexomagnetic response of ferroics, Editor(s): Robert L. 

Stamps, Helmut Schultheiß. Solid State Physics, Academic Pre, 70, 237–289. 
Ezzin, H., Mkaoir, M., Qian, Z., Arefi, M., & Das, R (2022). Lamb Wave Analysis in Anisotropic Multilayer Piezoelectric-piezomagnetic Material. Journal of Applied and 

Computational Mechanics, 8, 629–640. 
Fattahi, I., & Mirdamadi, H. R. (2017). Novel composite finite element model for piezoelectric energy harvesters based on 3D beam kinematics. Composite Structures, 

179, 161–171. 
Gholami, R., & Ansari, R. (2017). A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezomagnetic 

rectangular nanoplates with various edge supports. Composite Structures, 166, 202–218. 
Gia Phi, B., Van Hieu, D., Sedighi, H. M., & Sofiyev, A. H (2022). Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by 

carbon nanotubes with piezoelectric layers in thermal environments. Acta Mechanica, 233, 2249–2270. 
Gusev, A. A., & Lurie, S. A. (2017). Symmetry conditions in strain gradient elasticity. Mathematics and Mechanics of Solids, 22, 683–691. 
Hong Lee, J., Kim, K. E., Jang, B. K., Ünal, A. A., Valencia, S., Kronast, F., Ko, K.-T., Kowarik, S., Seidel, J., & Yang, Ch.-H (2017). Strain-gradient-induced magnetic 

anisotropy in straight-stripe mixed-phase bismuth ferrites: Insight into flexomagnetism. Physical Review B, 96, Article 064402. Article. 
Jankowski, P (2022). Detection of nonlocal calibration parameters and range interaction for dynamics of FGM porous nanobeams under electro-mechanical loads. 

Facta Universitatis, Series: Mechanical Engineering, 20, 457–478. 

M. Malikan et al.                                                                                                                                                                                                      

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0001
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0001
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0002
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0002
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0003
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0004
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0004
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0005
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0005
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0006
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0007
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0007
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0008
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0008
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0009
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0009
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0010
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0010
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0011
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0011
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0012
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0012
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0013
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0013
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0014
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0014
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0015
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0015
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0016
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0016
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0017
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0017
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0018
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0018
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0019
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0019
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0020
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0020
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0021
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0021
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0022
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0022
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0023
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0023
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0024
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0025
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0025
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0026
http://refhub.elsevier.com/S0020-7225(23)00157-X/sbref0026
http://mostwiedzy.pl


International Journal of Engineering Science 193 (2023) 103966

23

Kabychenkov, A. F., & Lisovskii, F. V (2019). Flexomagnetic and flexoantiferromagnetic effects in centrosymmetric antiferromagnetic materials. Technical Physics, 64, 
980–983. 

Karami, B., Janghorban, M., & Fahham, H. (2022). On the stress analysis of anisotropic curved panels. International Journal of Engineering Science, 172, Article 103625. 
Article. 

Karami, B., & Ghayesh, M. H. (2023). Vibration characteristics of sandwich microshells with porous functionally graded face sheets. International Journal of Engineering 
Science, 189, Article 103884. Article. 

Khabisi-Momeni, H., & Tahani, M. (2022). A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips. 
Advances in nano research, 12, 427–440. 

Kuo, H. Y., & Wang, Y. H. (2022). Wave motion of magneto-electro-elastic laminated plates with membrane-type interfacial imperfections. Composite Structures, 293, 
Article 115661. Article. 

Liew, K. M., & Yang, B. (1999). Three-dimensional elasticity solutions for free vibrations of circular plates: A polynomials-Ritz analysis. Computer Methods in Applied 
Mechanics and Engineering, 175, 189–201. 

Lukashev, P., & Sabirianov, R. F (2010). Flexomagnetic effect in frustrated triangular magnetic structures. Physical Review B, 82, Article 094417. Article. 
Makushko, P., Kosub, T., Pylypovskyi, O. V., et al. (2022). Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films. Nature 
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